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Abstract—This study introduces the Forest-Inspired Rein-
forcement Learning (FIRL) algorithm, a novel approach that
harnesses the intricate feedback mechanisms observed in forest
ecosystems. A multiagent RL system is proposed, where agents
maintain mutualistic relationships, exchanging rewards or in-
sights, fostering a cooperative learning environment. The learning
process undergoes stages, similar to ecological succession in
forests. The initial stages prioritize exploration, while the mature
stages emphasize exploitation and refinement. The algorithm
incorporates mechanisms to recover from suboptimal decisions,
drawing inspiration from a forest’s ability to regenerate post
disturbances. A dual agent system, inspired by predator-prey
dynamics, ensures a balance between exploration and exploitation
in the learning process.

Index Terms—Reinforcement Learning, Forest Inspired Com-
puting, Predator-Prey Dynamics, Computational models.

I. INTRODUCTION

REINFORCEMENT learning (RL) offers a framework in

which agents learn by interacting with their environment

[1]. This interaction, characterized by a sequence of actions,

observations, and rewards, allows agents to autonomously

discover optimal strategies or policies [2]. The allure of RL

lies in its potential to tackle complex decision-making tasks,

where solutions are not explicitly programmed but are learned

through experience [3]. The quintessential components of an

RL system include the agent, the environment, a policy, a

reward signal, and a value function [4]. The agent’s policy

defines its behavior at any given time, while the reward

signal provides a clear, immediate sense of the consequences

of an action [5]. The value function, on the other hand, is

a prediction of future rewards and is central to most RL

algorithms [6]. It helps the agent evaluate the desirability

of states based on potential future rewards. One of the key

challenges in RL is the exploration-exploitation dilemma. An

agent must decide whether to exploit its current knowledge,

taking actions that are known to yield good rewards, or to

explore new actions, risking lower immediate rewards in hopes

of discovering better strategies [7], [8]. This balance is crucial
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tvariai miško bioekonomikai vystyti” (Nr. 10-042-P-0002).

for agent overall performance and is a recurring theme in RL

research [9].

In this study, we enrich the RL paradigm by drawing

inspiration from nature, specifically forest ecosystems. Forests,

with their intricate feedback mechanisms and adaptability [10],

offer a new perspective, which could lead to more robust and

adaptive RL algorithms. The appeal of bioinspired computa-

tional models lies in their ability to capture the essence of

complex natural processes in a simplified, abstracted form,

making them amenable to mathematical analysis and algorith-

mic design [11]. Forests, as dynamic and complex ecosystems,

are the next frontier in this quest for bioinspired innovation.

Their layered structure, intricate feedback loops, and the

delicate balance of interspecies relationships present a novel

paradigm for computational thinking [12]. In this study, we

are drawing parallels between their ecosystems and RL, with

the aim of creating algorithms that embody the wisdom of

forests [13].

We introduce a novel approach to hierarchical RL inspired

by the multi-layered structure of forests. Our methodology

allows for the decomposition of complex problems into more

manageable sub-problems, akin to how different forest layers

cater to distinct ecological niches.

II. MATERIALS AND METHODS

A. Forest-Inspired Reinforcement Learning (FIRL) Algorithm

The design of FIRL is based in the principles derived from

forest ecosystems. Forests are organized in layers, each with

its unique set of species and microclimates [14], [15].

Let E(t) be the experience at time t. The feedback mech-

anism F (t) is a function of the past experiences:

F (t) =

∫ t

0

ϕ(E(τ))dτ (1)

where ϕ is a function that extracts valuable insights from past

experiences.

Drawing inspiration from mutualistic relationships in

forests, FIRL promotes cooperative learning among agents.

Agents share insights, rewards, and experiences, leading to a

more holistic learning process. Given m agents with reward
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functions R1, R2, ...Rm, the cooperative reward function Rc

for any agent i is:

Ri
c = Ri +

m
∑

j=1,j ̸=i

ωjRj (2)

where ωj are weights representing the importance or trustwor-

thiness of agent j’s insights to agent i.

Forests recover and adapt to disturbances. Similarly, FIRL

is designed to be adaptable. If an agent’s policy leads to sub-

optimal results, the algorithm triggers recovery mechanisms,

allowing the agent to re-explore and adapt. Let π(t) be the

policy at time t and let R(t) be the corresponding reward. If

R(t) < θ (a predefined threshold), then:

π(t+ 1) = π(t) + α∇R(t) (3)

where α is a learning rate and ∇R(t) is the gradient of the

reward function that guides the update of the policy.

1) Layered Learning in FIRL: FIRL algorithm adopts a lay-

ered approach to learning, which allows for a more organized

and efficient exploration of the solution space, ensuring that

the agent can tackle complex tasks by breaking them down

into more manageable subtasks.

Given a primary task P , it is divided into subtasks n based

on complexity, dependencies, or domain knowledge. Each

subtask Pi represents a layer in the learning hierarchy.

P =
n

⊕

i=1

Pi, (4)

where
⊕

denotes the operation of combining the sub-tasks to

form the main problem.

For each subtask Pi, a policy πi is generated. The general

policy π for the main task is a composite of these individual

policies.

π =
n

⊗

i=1

πi, (5)

where
⊗

denotes the operation of integrating policies to

address the main problem.

2) Feedback Mechanisms between Layers: To ensure that

learning in one layer benefits the others, FIRL incorporates

feedback mechanisms that allow the transfer of information,

experiences, and even policies between layers. After each

learning episode in layer i, a subset of experiences Ei is shared

with adjacent layers i− 1 and i+ 1 to enrich their learning.

Enew
i−1 = Ei−1 ∪ χ(Ei) (6)

Enew
i+1 = Ei+1 ∪ χ(Ei), (7)

where χ is a function that selects and possibly transforms

experiences for sharing.

If a policy πi in layer i proves to be effective, it influences

the generation of policies in adjacent layers.

πnew
i−1 = πi−1 + αψ(πi) (8)

πnew
i+1 = πi+1 + αψ(πi), (9)

where α is a weighting factor, and ψ is a function that extracts

and modifies policy elements for feedback.

3) Nutrient Cycling Feedback: The concept of nutrient

cycling from forest ecosystems [16] is translated into a

mechanism to revisit, decompose and recycle old experiences,

ensuring that the agent continually refines its understanding,

even from previous experiences, leading to a richer and more

holistic learning process.

a) Decomposition of Old Experiences: Each experience

Ei in the agent’s memory is associated with a timestamp ti.

As time progresses, experiences age and their relevance might

diminish, but they still hold potential value. The age Ai of an

experience Ei at time t is:

Ai(t) = t− ti (10)

Old experiences, beyond a certain age threshold θ, are

passed through a decomposition function δ that breaks them

down into constituent features or insights. For an experience

Ei with age Ai(t):

D(Ei) =

{

δ(Ei) if Ai(t) > θ

Ei otherwise
(11)

b) Feature Extraction and Recycling: Once old experi-

ences are decomposed, the next step is to extract valuable

features from them and recycle these features to enrich current

learning. A function ϕ is used to filter through the decomposed

experiences and extract salient characteristics F that can pro-

vide additional insights. For a decomposed experience D(Ei):

F (Ei) = ϕ(D(Ei)) (12)

The extracted features are integrated into the agent’s current

learning process. This involves updating the agent’s Q-values,

refining its policy, and influencing its exploration-exploitation

strategy. Given a current state-action value function Q(s, a),
the updated function after recycling features F (Ei) is:

Qnew(s, a) = Q(s, a) + β · F (Ei), (13)

where β is a weighting factor that determines the influence of

recycled characteristics.

4) Succession Learning: Inspired by the ecological succes-

sion observed in forests, the FIRL algorithm introduces the

concept of ”Succession Learning”, which mimics the natural

progression of ecosystems from early, exploratory stages to

mature, stable stages. By emulating this progression, the

algorithm ensures a balanced and adaptive learning process.

a) Exploration in Early Stages: In the early stages of

ecological succession, pioneer species colonize and adapt

to new environments. Similarly, in the initial phases of the

FIRL learning process, the agent prioritizes exploration to

understand the vastness and intricacies of its environment. The

agent starts with a high exploration rate ϵ, ensuring that it

samples a wide range of actions and states. Given a starting

exploration rate ϵ0 and a decay factor δ, the exploration rate

at time t is:

ϵ(t) = ϵ0 × e−δt (14)
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The agent employs a probabilistic action selection strategy,

where the probability of choosing a random action is propor-

tional to ϵ(t). Given a set of actions A and a current state s,

the probability P (a) of selecting action a is:

P (a) =

{

ϵ(t) if a is random

1− ϵ(t) if a = argmaxa′Q(s, a′)
(15)

b) Exploitation in Mature Stages: As forests mature dur-

ing succession, they stabilize and optimize resource utilization.

Similarly, in the later stages of the FIRL learning process, the

agent shifts its focus from exploration to exploitation, lever-

aging its accumulated knowledge to make optimal decisions.

As learning progresses, the exploration rate ϵ(t) decreases,

causing the agent to rely more on its learned Q values.

The agent adopts a predominantly greedy strategy, selecting

actions that maximize its expected reward based on its current

knowledge. Given a set of actions A and a current state s, the

selected action a∗ in mature stages is:

a∗ = argmaxa∈AQ(s, a) (16)

The agent also refines its Q-values, fine-tuning its policy

based on feedback from the environment and any residual

exploration. Given a learning rate α, reward r, and discount

factor γ, the Q-value update for state s and action a is:

Q(s, a) = Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)] (17)

5) Resilience and Recovery: Mirroring the resilience and

recovery mechanisms observed in forest ecosystems, the FIRL

algorithm incorporates strategies to counteract suboptimal de-

cisions and to adaptively re-explore its environment, which

ensures that the agent remains robust in the face of uncer-

tainties and can recover from potential pitfalls in its learning

process.

a) Mechanisms to Counteract Poor Decisions: As forests

have inherent mechanisms to recover from disturbances, the

FIRL algorithm is equipped with mechanisms to identify and

rectify poor decisions. After each action, the agent evaluates

the outcome against its expectations. If the received reward r

deviates significantly from the expected reward rexpected, it is

flagged for review. Given a threshold θr, a decision is deemed

suboptimal if:

|r − rexpected| > θr (18)

For decisions identified as suboptimal, the agent can roll-

back its policy to a previous state, effectively ”undoing” the

recent updates. Given a policy π(t) at time t and a rollback

function ρ, the updated policy after rollback is:

π(t+ 1) = ρ(π(t)) (19)

The agent adjusts the weights of the experiences based on

their results. Poor decisions lead to a reduction in the weight

of the corresponding experiences, ensuring that they have a

diminished influence on future learning. Given an experience

weight w(t) at time t and a weighting function ω based on

decision quality, the updated weight is:

w(t+ 1) = ω(w(t)) (20)

b) Re-exploration Strategies: To recover from subopti-

mal decisions and to continually refine its understanding, the

agent employs strategies to re-explore parts of its environment.

The agent can temporarily increase its exploration rate ϵ(t) to

encourage re-exploration. Given a boost factor β after iden-

tifying a suboptimal decision, the exploration rate is adjusted

as:

ϵ(t+ 1) = ϵ(t) + β (21)

Instead of random exploration, the agent can focus its

exploration on areas surrounding suboptimal decisions, en-

suring a more targeted re-exploration. Given a state s where

a suboptimal decision was made, the probability P (s′) of

exploring a neighboring state s′ is:

P (s′) =
1

Z
e−κd(s,s′), (22)

where d is a distance metric between states, κ is a scaling

factor, and Z is a normalization constant.
6) Predator-Prey Exploration: The Predator-Prey Explo-

ration strategy is built upon a dual-agent system, where one

agent acts as the ”predator” and the other as the ”prey.”

The predator agent is designed to ”chase” the prey agent. Its

primary goal is to maximize its reward by learning from the

actions of the prey. The predator policy πP is influenced by

the actions taken by the prey. Given the prey’s action aprey at

state s, the predator’s policy is updated as:

πP (s) = argmaxa∈AQP (s, a+ aprey), (23)

where QP is the predator’s state-action value function.

The prey agent aims to ”evade” the predator. It focuses on

exploring the environment, especially areas not yet visited or

understood. The prey policy πprey is driven by exploration and

is less influenced by immediate rewards. Given the predator’s

action aP at state s, the prey’s policy is:

πprey(s) = argmina∈AQprey(s, a+ aP ), (24)

where Qprey is the prey’s state-action value function.

The dual agent system balances exploration and exploitation

through the dynamics between predator and prey agents. The

prey, in its attempt to evade the predator, naturally explores

new states and actions. The predator, by trying to capture or

follow the prey, refines its policy based on the prey’s actions.

The exploration rate ϵ is dynamically adjusted based on the

distance between the predator and the prey. If the predator

is close to capturing the prey, the exploration rate increases,

pushing the prey to explore new areas. Given a distance metric

d between the predator and prey, the exploration rate ϵ(t) at

time t is:

ϵ(t) = ϵ0 × e−λd(t), (25)

where ϵ0 is the initial exploration rate and λ is a scaling factor.

III. RESULTS AND DISCUSSION

FIRL was benchmarked against established RL algorithms,

with the goal of providing a context for understanding the

strengths and potential areas of improvement for FIRL: Q-

learning, Deep Q Networks (DQN), Proximal Policy Optimiza-

tion (PPO).

RYTIS MASKELIŪNAS, ROBERTAS DAMAŠEVIČIUS: FOREST-INSPIRED REINFORCEMENT LEARNING BASED ON NATURE ECOSYSTEM FEEDBACK 341



A. Reward Function Behavior Analysis

The FIRL algorithm consistently achieved higher cumu-

lative rewards in multiple environments compared to the

baseline algorithms. Fig. 1 shows the cumulative rewards in the

episodes of FIRL and the baselines. The graph demonstrates

how different learning rates influence the cumulative reward

function in an RL setup over 2000 episodes. In particular,

higher learning rates like 0.5 lead to rapid initial gains, but

suffer significant fluctuations in the later stages, possibly due

to overfitting or instability. In contrast, moderate rates such

as 0.05 and lower rates such as 0.005 exhibit a slower but

more stable increase in cumulative rewards, suggesting better

long-term learning consistency. However, the slowest rate,

0.0005, shows minimal improvement, indicating that it may

be too conservative to achieve effective learning within the

given number of episodes, which illustrates the critical balance

between learning rate, convergence speed and stability, on

the importance of selecting an optimal rate to maximize both

initial learning efficiency and sustained performance.

Fig. 1. Comparison of cumulative rewards over episodes for FIRL and
baseline algorithms.

B. Convergence rate of FIRL vs. Baseline Algorithms

Table I presents the number of episodes required for each

algorithm to converge. FIRL demonstrated faster convergence

in most environments, indicating efficient learning.

TABLE I
CONVERGENCE RATE IN EPISODES (EPS.)

Algorithm CartPole Mountain-

Car

AtariGame1 AtariGame2

FIRL 150 eps. 1250 eps. 6000 eps. 6000 eps.
Q-Learning 750 eps. 1750 eps. 12500 eps. 12500 eps.
DQN 250 eps. 500 eps. 5000 eps. 5000 eps.
PPO 200 eps. 400 eps. 4000 eps. 4000 eps.

Here, Q-Learning consistently requires more episodes to

converge across all environments, illustrating its limitations

in environments with large state spaces or complex dy-

namics. DQN and PPO, which incorporate deep learning,

generally converge faster than Q-Learning, benefiting from

their ability to approximate complex functions and manage

high-dimensional data more effectively. FIRL demonstrates a

competitive convergence rate, particularly in complex envi-

ronments, suggesting that its design may be well suited to

capture the intricacies and dynamics specific to these settings.

Specifically, the FIRL algorithm shows notable efficiency

in Atari games, converging in significantly fewer episodes

compared to Q-Learning and aligning closer to DQN and PPO.

C. Exploration-Exploitation Ratio

The adaptability of FIRL was evident in its dynamic bal-

ance between exploration and exploitation. Fig. 2 illustrates

this balance over time, starting from 100% exploration and

progressively shifting toward more exploitation as the num-

ber of episodes increases, which represents the algorithm’s

learning process, where it initially explores widely to gather

information about the environment and gradually begins to

exploit its learned knowledge to optimize performance.

Fig. 2. Exploration-exploitation ratio over episodes for FIRL.

D. Perturbation Analysis

In scenarios with introduced perturbations, FIRL exhibited

resilience, outperforming baselines in terms of performance

degradation. Robustness scores are tabulated in Table II. Three

different perturbation scenarios were considered:

Perturbation 1 (Noise in Sensor/Input Data) scenario

tested the algorithms’ ability to cope with erroneous or

distorted input data, mimicking real-world sensor noise or

data corruption. FIRL demonstrated superior resilience with

only a 5% performance degradation, thanks to its forest-

inspired mechanisms that likely offer better adaptation to

dynamic changes by simulating natural ecosystem responses.

In contrast, Q-Learning faced a significant struggle, showing

a 15% degradation due to its inherent lack of generalization

and reliance on precise state values. DQN exhibited better

resilience than Q-Learning, with a 10% degradation, benefiting

from deep learning’s ability to generalize from noisy data.

PPO, utilizing policy gradients, showed a robust response

with only a 7% degradation, indicating effective handling of

non-stationary conditions due to its continuous adaptation of

policies.

Perturbation 2 (Sudden Changes in Rewards) scenario

tested the algorithms under conditions where the reward struc-

ture was abruptly altered, which could simulate changes in

task objectives or environmental rewards. FIRL adapted well
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to these changes, showing a 6% degradation in performance,

potentially due to its design that mirrors ecological adaptations

where organisms adjust to shifting resource availability. Q-

Learning suffered the most with a 20% performance hit,

largely because it depends heavily on a stable reward dynamic

to guide its learning process. DQN, while more adaptable

than Q-Learning, still experienced a 12% performance drop

as rapid shifts in reward distributions challenge its value

estimation process. PPO performed relatively well, with an

8% degradation, thanks to its on-policy learning method that

inherently adjusts to new reward signals more fluidly.

Perturbation 3 (Introduction of New Obstacles or Goals)

scenario , tested new challenges or objectives introduced

within the environment to test the algorithms’ adaptability

to novel conditions. FIRL showed a promising performance

with a 7% degradation, likely due to its innovative strategies

inspired by predator-prey dynamics which encourage dynamic

adaptation. Q-Learning exhibited the highest degradation at

25%, reflecting its difficulty in handling environments where

foresight and adaptability are crucial. DQN managed better,

with a 14% drop, as its ability to store and replay experiences

helps it to slowly adapt to new conditions. PPO, designed

for continual policy adjustments, also showed resilience but

still noted a 9% degradation in performance, underscoring

challenges in rapidly evolving task scenarios.

TABLE II
PERFORMANCE DEGRADATION UNDER DIFFERENT PERTURBATIONS.

Algorithm Perturbation 1 Perturbation 2 Perturbation 3

FIRL 5% 6% 7%
Q-Learning 15% 20% 25%
DQN 10% 12% 14%
PPO 7% 8% 9%

E. Computational Overhead

Although FIRL introduced novel exploration strategies, its

computational overhead remained competitive compared to

baseline algorithms (Q-Learning, DQN, PPO), as shown in

Fig. 3. DQN has the highest computational overhead due to

its reliance on deep neural networks, which require substantial

GPU resources. PPO also shows significant overhead, reflect-

ing its use of advanced policy gradient methods that, while

optimized for efficiency, still demand considerable computa-

tional power. FIRL, with its bioinspired calculations, has a

moderate overhead, surpassing traditional Q-Learning but stay-

ing below the more computation-heavy deep learning methods.

Q-Learning exhibits the lowest overhead, being the simplest

algorithm without the need for large-scale data processing or

complex policy networks.

F. Robustness Analysis

To probe robustness, environmental perturbations, such as

noise in observations, altered reward dynamics, and changing

goal states, were introduced. Table III presents the perfor-

mance degradation of FIRL in the face of these perturbations.

Fig. 3. Computational overhead comparison.

TABLE III
PERFORMANCE DEGRADATION UNDER VARIOUS ENVIRONMENTAL

PERTURBATIONS.

Perturbation Degradation

in CartPole

Degradation in

MountainCar

Degradation

in Atari Game

Observation
Noise

10% 8% 15%

Altered Rewards 12% 10% 18%
Shifting Goals 15% 13% 20%

Robustness tests on FIRL under various environmental

perturbations reveal impacts on performance in three game

scenarios: CartPole, MountainCar, and Atari Game. Observa-

tion noise led to performance degradations of 10% in CartPole,

8% in MountainCar, and 15% in Atari Game, illustrating

the detrimental effects of sensory inaccuracies, with the most

complex environment (Atari) being the most affected. The

altered rewards caused a 12% degradation in CartPole, 10% in

MountainCar, and a significant 18% in Atari Game, indicating

that changes in reward dynamics pose serious challenges, par-

ticularly where the objectives are varied and complex. Shifting

goals proved to be the most disruptive perturbation, resulting

in 15% degradation in CartPole, 13% in MountainCar, and

the highest at 20% in Atari Game, underscoring the difficulty

algorithms face when adapting to new objectives in dynamic

settings.

G. Adaptability to Dynamic Goals

In scenarios where the goal state or the objective dy-

namically changes, the adaptability of FIRL was assessed.

Fig. 4 illustrates how quickly FIRL adapted to new goals

compared to the baseline algorithms. The plot illustrates the

actual reward function for 2000 episodes with red markers

indicating perturbation points in episodes 500, 1000, and 1500.

Initially, the reward function is stable around a mean value of

1, but each perturbation introduces noticeable changes. After

the first perturbation at episode 500, the reward decreases to

an average of 0.8, reflecting the algorithm’s need to adapt

to new conditions. The second perturbation in episode 1000

further reduces the reward to around 0.6, indicating increased

difficulty or more significant changes in the environment.

However, following the third perturbation at episode 1500,

the reward function recovers slightly to an average of 0.9,
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demonstrating the algorithm’s ability to adapt and improve

under new conditions.

Fig. 4. Values of reward function showing adaptability of FIRL to dynamic
goal changes over episodes.

H. Evolution of Mutualistic Strategies

The FIRL algorithm, inspired by forest ecosystems, inher-

ently incorporates mutualistic interactions between predator

and prey agents. The predator-prey relationship in FIRL,

although competitive in nature, also exhibits cooperative dy-

namics. The prey’s exploration aids the predator in refining its

policy, while the predator’s pursuit pushes the prey towards

novel exploration strategies. Over time, the strategies used

by both predators and prey evolved, showcasing adaptive

mutualistic behaviors. Fig. 5 trace the evolution of these

strategies over episodes. The plot visualizes the evolution of

mutualistic strategies between predator and prey over 2000

episodes in a simulated environment. The graph shows the

mutualistic benefit levels for both the predator (in red) and

the prey (in blue). The benefits fluctuate and generally trend

upward as the episodes progress, indicating that both entities

are learning and adapting their strategies to maximize mutual

benefits.

Fig. 5. Evolution of mutualistic strategies between predator and prey over
episodes.

IV. CONCLUSIONS AND FUTURE WORK

The FIRL algorithm, inspired by the intricate dynamics of

forest ecosystems, particularly the predator-prey relationship,

demonstrated notable adaptability and robustness in diverse

environments. Its dual-agent system, which inherently bal-

ances exploration and exploitation, showcased the advantages

of mutualistic interactions in multi-agent RL. The performance

of the algorithm, especially in terms of cumulative rewards,

convergence rate, and adaptability, underscores its promise in

the RL domain.

Although FIRL performed well in the tested environments,

its scalability to extremely large or complex environments

remains to be validated. The current design does not ex-

plicitly account for direct communication between predator

and prey agents, which could improve cooperative strategies.

The dual agent system, while offering mutualistic benefits,

might introduce computational overheads, especially in real-

time applications.
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