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Abstract—This paper presents an Al-based solution for au-
tomated parcel damage detection, combining machine learning
algorithms with a custom-built mobile inspection robot. A mobile
robot was designed and built specifically for this task, equipped
with a vision system and sensing components. We developed
a dataset of over 6,800 images and applied a tailored data
augmentation process to better capture the variability found in
operational environments. Our approach refines a YOLOv11n-
cls-based model, achieving 98.50% accuracy, 97.% precision,
and 99.74% recall on validation data. By optimizing the model
for deployment on widely available hardware via CoreML, we
reached inference speeds exceeding 251 FPS, ensuring rapid
processing. An interactive dashboard was also created to monitor
performance and facilitate comparisons between model iterations.

I. INTRODUCTION

ODERN warehouses are under increasing pressure to

optimize logistics processes, which has led to a growing
interest in automation technologies. Warehouse automation is
evolving toward flexible and intelligent systems that leverage
autonomous mobile robots (AMRs), artificial intelligence (e.g.,
for image analysis to detect damaged packages or support
inventory, demand forecasting, robot path optimization, and
automated quality control), and digital twins to optimize
operations in real time. Increasing emphasis is being placed on
human-machine integration, solution scalability, and the ability
of systems to adapt to dynamic and unpredictable warehouse
environments [13].

One promising application of these technologies is auto-
mated package inspection based on computer vision, which
offers a scalable, consistent, and efficient alternative to manual
quality control. Traditional methods for detecting damaged
packages rely heavily on human inspection, which is time-
consuming, inconsistent, and impractical in high-throughput
environments. Automated inspection robots not only address
these limitations but also serve as valuable platforms for test-
ing and validating modern Al algorithms, effectively bridging
the gap between theoretical research and practical deployment.

This synergy forms the foundation of the project initiated
within the Industrial Data Science (IDS) student research
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group. The main goal of this paper is to design and build
a mobile inspection robot equipped with a computer vision
system capable of detecting damaged packages in real time.
This paper presents the process of constructing such a robot
and implementing a computer vision algorithm for package
damage detection. The contribution of this work is a functional
prototype that demonstrates an Al-based package damage
detection system intended for integration with a mobile robotic
platform. The developed system achieves high classification
accuracy and operates in real time.

The paper is organized as follows. The section I presents
the context of warehouse automation and outlines the main
objective of the project, which is to develop a parcel damage
detection system. The section II reviews current solutions in
computer vision, mobile robotics, and defect detection. The
section III describes the construction and architecture of the
developed mobile inspection platform. The section IV explains
the process of data collection, exploration, and augmentation.
In section V, the use of the YOLO model ("You Only Look
Once"), training configuration, and iterative model improve-
ment are discussed. The section V-B covers the conversion
and preparation of the model for real-time inference. The re-
sults and evaluation section presents the model’s performance
metrics, error analysis, and results under challenging test
conditions. The section VII outlines an interactive interface for
evaluating and comparing model performance. The paper (sec.
VIII, sec.IX) concludes with the future work and conclusion,
which highlight potential directions for further development
and summarize the achieved outcomes.

II. RELATED WORKS

Modern warehouses are increasingly adopting autonomous
mobile robots (AMRs) to automate logistics processes. Unlike
traditional automated guided vehicles (AGVs), AMRs can nav-
igate dynamic environments and make independent decisions
without fixed infrastructure [7]. Advances in sensing, control,
and Al have enabled their use not only for material handling
but also for inspection tasks [16]. A related study describes
a cyber-physical warehouse system for order-picking using
mobile robots, combining LiDAR for obstacle avoidance and
optimized path-planning in dynamic environments [2]
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Several implementations showcase inspection capabilities.
For instance, a MicroAir Vehicle with onboard SLAM and
camera was used to scan QR codes in GPS-denied warehouses
[9]. More advanced approaches integrate YOLO-based object
detection for real-time condition assessment of packages and
infrastructure [12]. Other systems combine LiDAR and depth
cameras to support autonomous inventory validation [11].

Artificial intelligence plays a key role in these systems. A
comprehensive review highlights the impact of Al and com-
puter vision in enabling object recognition, quality control, and
adaptive inspection [13]. Techniques like edge computing and
reinforcement learning further enhance system responsiveness.

The YOLO (You Only Look Once) framework remains
a leading architecture for real-time defect detection. Recent
studies trace its development from v1 to v11, noting improve-
ments like attention modules and deployment readiness on
edge devices [5], [8]. In industrial settings, YOLO has been
successfully applied to detect packaging defects [14], classify
damage types with high accuracy [3], and improve connector
inspection robustness [15].

Beyond warehouses, Al-powered visual inspection is ex-
plored in broader logistics, such as parcel sorting in rail
transport systems [4].

The literature emphasizes the growing importance of ad-
vanced deep learning models, particularly YOLO, for real-
time, accurate, and scalable inspection tasks in warehouse
environments and autonomous mobile robots in tasks related
to package control and inspection in warehouse environments.
The integration of advanced sensors, vision systems, and
Al algorithms with mobile robotic platforms lays a solid
foundation for further developments toward fully automated
warehouse processes and high-quality logistics services.

III. CUSTOM MOBILE INSPECTION ROBOT

A custom mobile inspection robot was developed as part
of a student research initiative to support parcel damage
recognition. The platform integrates key hardware components
and provides mobility, sensing, and computation capabilities
needed for logistics environments.

A. Design Overview

The robot was built with the following core requirements:
compact, modular chassis for easy transport; omnidirectional
mecanum wheels for maneuverability; and onboard sensors for
robust environmental perception. The sensing suite includes an
RGB camera, LiDAR, and ultrasonic distance sensors. Battery
power ensures portability and extended runtime.

B. System Architecture and Integration

The robot is powered by two primary units: an NVIDIA
Jetson Nano and an Arduino microcontroller. The Jetson
handles camera input, sensor processing, and ML inference,
while the Arduino controls motor operations. The RGB cam-
era is mounted on a rotating servo for dynamic inspection,
and LiDAR provides precise obstacle detection. Both units
communicate via USB.
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Fig. 1. Conceptual Model of the Inspection Robot

Fig. 2. 3D Printed Prototype of the Inspection Robot

C. Testing and Validation

The mechanical components were prototyped via 3D print-
ing and tested in laboratory conditions. Functional validation
confirmed smooth omnidirectional movement, stable sensor
integration, and real-time data capture necessary for classi-
fication.

Fig. 3. Robot during LiDAR Testing in Lab Conditions

IV. DATASET DEVELOPMENT

The foundation of our parcel damage classification system
developed for the inspection robot is a comprehensive, high-
quality dataset that accurately represents the problem. This
section details our approach to dataset construction, explo-
ration, and augmentation.

A. Data Collection and Organization

Initial data collection began with a publicly available dataset
from Kaggle [1] which provided a useful starting point but
exhibited several limitations . We used the FiftyOne [10]
framework for extensive dataset exploration and analysis.
FiftyOne provides valuable tools for:
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o Visualizing dataset samples and their distributions
o Identifying potential biases in the data
o Detecting and removing duplicate or near-duplicate im-
ages
o Verifying label quality and consistency
Upon inspection using this framework, we found several
limitations of gathered photos:

o Poor image quality in numerous samples.
« Limited variety in package types and damage patterns.
« Presence of unrealistic or staged damage scenarios

To address these limitations, we supplemented the initial
dataset with custom images captured in realistic environments
in different situations and scenes. This approach improved
the representativeness of the training data with respect to
operational conditions encountered in logistics environments.

This exploration phase was crucial for ensuring dataset
quality prior to model training and helped identify specific
areas that required additional data collection.

P> FiftyOne parcel

Fig. 4. Shows representative samples from our dataset, highlighting the variety
of parcel types, lighting conditions, labeling, and damage patterns.

B. Augmentation Strategy

Data enhancement plays a critical role in improving the
robustness of the model. Rather than applying generic aug-
mentation techniques, we developed a domain-specific aug-
mentation pipeline using the Albumentations library. Our
pipeline was carefully designed to simulate realistic variations
that parcels might encounter in logistics environments while
avoiding unrealistic transformations that could harm model
performance. We applied:

« Conservative spatial transformations to simulate realistic

camera angle variations:
Slight rotations (x10°) with a 50% probability
Small affine transforms (scale factor 0.95-1.05, trans-
lation +3%)
Horizontal flips with a 30% probability
No-op spatial transformations with a 20% probability

o To simulate different indoor lighting conditions com-
monly found in warehouses and sorting facilities:
— Random brightness/contrast adjustments (£10%)

with a 50% probability

— Color temperature shifts (brightness +5%, contrast
+5%, saturation +5%, hue +5%) with a 30% proba-
bility

— No lighting modifications with a 20% probability

o Shadow Effects To simulate natural lighting conditions:

— Very mild random shadows with a 20% probability
— No shadow effect with a 80% probability
The final pipeline included consistent resizing to 640x640
pixels while maintaining aspect ratio, implemented through a
combination of LongestMaxSize and PadlfNeeded transforma-
tions with constant border padding. This pipeline was applied
10 times to each of the original photos.
The final dataset was organized into a structured format with
two primary categories:

o Damaged: 2,372 training images and 903 validation im-
ages

o Undamaged: 2,600 training images and 1,000 validation
images

Fig. 5. Tllustrates examples of our augmentation pipeline applied to sample
images, demonstrating the realistic nature of the transformations.

V. TRAINING CLASSIFIER

For our parcel damage detection task, we selected the
YOLOvV11n-cls model [6], a classification variant of the YOLO
(You Only Look Once) family. This approach was chosen for
several reasons:

« Efficient inference speed, critical for real-time applica-
tions in logistics

« Strong feature extraction capabilities from the backbone
network

o Successful track record in related computer vision tasks

« Flexibility to be deployed on various hardware platforms

A. Training Methodology

The model was trained using the Ultralytics framework [6],
which provides an efficient implementation of YOLO models
with several optimizations for training and inference. The
training configuration used the following parameters:

« Input image size: 640x640 pixels

o Training epochs: 100

e Model architecture: YOLOVI In-cls.pt
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Other hyperparameters such as batch size, optimizer set-
tings, and learning rate schedule were automatically deter-
mined by the Ultralytics framework based on dataset char-
acteristics and hardware capabilities. This approach leverages
the expertise embedded in the framework to achieve optimal
training results without manual hyperparameter tuning reduc-
ing manual workload and streamlining the training process.

Our model development followed an iterative improvement
process with following steps:

1) Initial training with the training part of created dataset
resulted in our baseline model (best0)

2) Performance analysis of bestO. That revealed a specific
weakness: opened boxes were frequently misclassified
as undamaged

3) Additional data collection focused specifically on
opened boxes, labeled as damaged

4) Dataset augmentation with the new samples

5) Re-training with the enhanced dataset resulted in our
improved model (bestl)

6) Performance analysis of bestl. That revealed no major
weaknesses in classification

This iterative approach allowed us to improve the model per-
formance. The figure 6 presents a visualization of the training

YOLOv11-cls Training Process Visualization

Based on Actua Result: Besto vs Besti Madel Comparison
Training & Validation Loss Training & Validation Accuracy
T A

Loss
Accuracy

Loss Comparison Between Models

F1 Score

Accuracy

Fig. 6. Comparison of the training process between two YOLOvV1 1-cls models
(Best0 vs Bestl) based on loss, accuracy, and F1 score for both training and
validation datasets. Model Bestl demonstrates better convergence and higher
classification performance overall.

process of the YOLOv11-cls classification model, comparing
two model variants: Best0 and Bestl. Based on the charts,
Bestl consistently achieves better results than BestO across
all key metrics—Iloss, accuracy, and F1 score. Both accuracy
and F1 score increase with each epoch, approaching a value
of 1.0, while the loss steadily decreases. The convergence
point occurs at epoch 72, after which the model performance
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stabilizes. Throughout most of the training process, Bestl
shows lower loss and higher accuracy and F1 score, indicating
its superior classification performance compared to Best0.

B. Model Optimization

During testing with real-time inference the PyTorch model’s
frames per second (FPS) was around 30, meaning that it can
process that number of sample pictures in one second. After
converting to CoreML format the model reached 251+ FPS.
We converted our models to ONNX format to address two
primary objectives: first, to enable robust metric extraction and
validation within our performance monitoring dashboard, as
the standardized ONNX format provides more predictable pa-
rameter access patterns compared to native PyTorch. Secondly,
changing model’s format allowed us to establish a framework-
agnostic model representation that enhances deployment flex-
ibility and ensures consistent inference behavior across differ-
ent runtime environments. The training process was monitored
using metrics that included training loss, validation loss, and
top-1 accuracy, which were recorded every epoch.

We achieved this using the following process:

1) Export of the trained PyTorch model to ONNX format
2) Conversion from ONNX to CoreML using the coreml-
tools library
3) Optimization of the CoreML model for the Apple Neural
Engine
The high inference speed makes the model suitable for in-
tegration into high-throughput logistics environments where
real-time processing is critical.

DAMAGED: 1.00

Fig. 7. Optimization process maintained model accuracy while significantly
improving inference speed, achieving over 251 FPS on Apple M1 hardware
during real-time testing.

VI. RESULTS AND EVALUATION
A. Performance Metrics

We evaluated our models using classification metrics includ-
ing accuracy, precision, recall, and F1 score.

The bestO and best]l models achieved results as presented in
Table I. The bestl model consistently outperformed the base-
line (best0) across all evaluation metrics, indicating successful



WIKTOR GOSZCZYNSKI ET AL.: AUTOMATIC PARCEL DAMAGE RECOGNITION MODULE FOR AN INSPECTION ROBOT

mitigation of the identified dataset weaknesses. The enhance-
ments in precision are particularly notable, indicating that our
approach successfully reduced false-positive classifications.

TABLE 1
SHOWS THE TRAINING STATISTICS FOR BOTH MODELS, ILLUSTRATING
THE IMPROVEMENT IN FINAL PERFORMANCE ACHIEVED BY THE BEST1
MODEL AFTER ADDRESSING THE IDENTIFIED WEAKNESSES IN THE

DATASET.

Metric best0 model | bestl model | Improvement
Accuracy 97.00% 98.50% +1.50pp
Precision 94.80% 97.04% +2.24pp

Recall 98.81% 99.74% +0.93pp
F1 Score 96.76% 98.37% +1.61pp

We also evaluated our models under real-life conditions,
such as too dark or too light environment. These results
suggest that our models performance can be increased by
hyper-tuning or changing the augmentation parameters for
images. Scores achieved by both models in this scenario are
presented in Table II.

TABLE I
SHOWS STATISTICS FOR BOTH MODELS IN BOTH DARKER AND LIGHTER
ENVIROMENTS USING REAL-LIFE IMAGES AND AUGMENTATIONS

Metric best0 model | bestl model | Improvement
Accuracy 92.06% 94.44% +2.38pp
Precision 89.74% 91.14% +1.4pp

Recall 97.22% 100% +2.78pp
F1 Score 93.33% 95.36% +2.03pp

B. Confusion Matrix and Precision-Recall analysis

Detailed analysis of these matrices reveals:

o True Positives (Damaged correctly classified): Increased
from 747 to 754

o False Negatives (Damaged classified as Undamaged):
Decreased from 9 to 2, representing a 77.8% reduction

o True Negatives (Undamaged correctly classified): In-
creased from 871 to 889

« False Positives (Undamaged classified as Damaged): De-
creased from 41 to 23, representing a 43.9% reduction

The substantial reduction in false negatives is particularly
important for our application context. In parcel damage de-
tection, false negatives (missed damages) typically have a
greater business impact than false positives, as they can lead
to damaged items being delivered to customers, resulting in
customer dissatisfaction and potential financial losses.

C. Visual Inspection of Classification Results

Beyond quantitative metrics, we conducted a qualitative
analysis of classification results to identify patterns in the
remaining misclassifications. For the best] model, we observed
the following:

« False negatives (2 instances): Both cases involved parcels
with minor damage that was partially obscured or at the
edge of the package.

Confusion Matrices

Current Model (best1.onnx) Previous Model (best0.onnx)

Pred Undmg

Pred Dmg

Pred Undmg

Pred Dmg

Act Dmg Act Dmg

Act Undmg Act Undmg

Fig. 8. Confusion matrices for both models

Precision-Recall Curves Comparison

Precision-Recall Curve Comparison

Fig. 9. Shows the precision-recall curves, where the bestl model (blue
line) maintains higher precision across all recall values than bestO (red line).
These analyses provide a more comprehensive view of model performance
beyond the single operating point represented by the confusion matrix,
demonstrating that the bestl model achieves superior performance across
various classification thresholds.

« False positives (23 instances): Primarily involved parcels
with heavy tape reinforcement or unusual packaging
materials that resembled damage patterns.

These observations provide valuable insights for future im-
provements, suggesting that focusing on capturing more ex-
amples of minor/obscured damage and diverse packaging
materials could further enhance model performance. Fig. 8

VII. DASHBOARD FOR VISUALIZATION AND ANALYSIS

To support model evaluation and facilitate comparisons, we
developed a lightweight web-based dashboard using Dash and
Plotly. The interface allows users to select between model
versions (e.g., bestO0 vs bestl), inspect performance metrics
(accuracy, precision, recall, F1 score), and visualize confusion
matrices and precision-recall curves. Users can also upload
custom images or specify test folders for evaluation.

The dashboard supports real-time testing with side-by-side
model predictions, along with confidence scores displayed via
intuitive visual indicators. All visualizations are interactive,
supporting threshold-independent assessments and flexible
data exploration.

This interface enables rapid prototyping, debugging, and
demonstration of classification results without requiring deep
technical expertise. The tool has proven useful for both offline
analysis and on-site testing scenarios.

VIII. FUTURE WORKS

Although the developed parcel damage classification system
achieves high performance, several promising directions re-
main for further development, both in terms of visual analysis
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Fig. 10. Comprehensive dashboard presenting all the important information
about currently selected model. It also give option for real-time image testing.

and integration with the mobile inspection platform. The key
next steps include:

1) Damage Localization: Extending the system to not only
classify parcels as damaged but also localize and high-
light specific damaged areas.

2) Damage Type Classification: Developing a multi-class
model that can distinguish between different types of
damage (e.g., tears, water damage, crushing) to provide
more detailed information.

3) Integration with Mobile Robot: Combining the visual
inspection system with the custom-built mobile platform
will enable fully autonomous parcel inspection within
warehouse environments.

4) Edge Deployment: Further optimization for deployment
on edge devices directly on conveyor systems using
techniques like model quantization.

5) Multi-View Integration: Combining predictions from
multiple camera angles to improve detection accuracy
for damages that might only be visible from certain
perspectives.

6) Continuous Learning Framework: Implementing a sys-
tem for ongoing model improvement based on opera-
tional feedback and new data collection.

IX. CONCLUSION

This paper presents a complete parcel damage detection
system based on machine learning, covering data preparation,
dataset enrichment, model development, and real-time opti-
mization. A key component of the solution is the custom-
designed and built mobile inspection robot, tailored for use in
warehouse environments.

The system achieved a very high recall rate (99.74%),
demonstrating its ability to detect parcel damage reliably,
an essential requirement in logistics to minimize customer
complaints and reduce financial losses. The inference speed
supports deployment in high-throughput environments, and the
custom dashboard enables real-time performance monitoring
and model comparison.

The integration of both components, the mobile robotic
platform and the vision-based classification system, lays the
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foundation for a fully autonomous, real-time parcel inspec-
tion solution. This project demonstrates that the thoughtful
application of computer vision techniques, combined with
domain-specific considerations and high-quality data, can yield
practical and effective solutions to real-world challenges in
logistics automation.
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