
Automatic Parcel Damage Recognition Module for

an Inspection Robot
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Abstract—This paper presents an AI-based solution for au-
tomated parcel damage detection, combining machine learning
algorithms with a custom-built mobile inspection robot. A mobile
robot was designed and built specifically for this task, equipped
with a vision system and sensing components. We developed
a dataset of over 6,800 images and applied a tailored data
augmentation process to better capture the variability found in
operational environments. Our approach refines a YOLOv11n-
cls-based model, achieving 98.50% accuracy, 97.% precision,
and 99.74% recall on validation data. By optimizing the model
for deployment on widely available hardware via CoreML, we
reached inference speeds exceeding 251 FPS, ensuring rapid
processing. An interactive dashboard was also created to monitor
performance and facilitate comparisons between model iterations.

I. INTRODUCTION

M
ODERN warehouses are under increasing pressure to

optimize logistics processes, which has led to a growing

interest in automation technologies. Warehouse automation is

evolving toward flexible and intelligent systems that leverage

autonomous mobile robots (AMRs), artificial intelligence (e.g.,

for image analysis to detect damaged packages or support

inventory, demand forecasting, robot path optimization, and

automated quality control), and digital twins to optimize

operations in real time. Increasing emphasis is being placed on

human-machine integration, solution scalability, and the ability

of systems to adapt to dynamic and unpredictable warehouse

environments [13].

One promising application of these technologies is auto-

mated package inspection based on computer vision, which

offers a scalable, consistent, and efficient alternative to manual

quality control. Traditional methods for detecting damaged

packages rely heavily on human inspection, which is time-

consuming, inconsistent, and impractical in high-throughput

environments. Automated inspection robots not only address

these limitations but also serve as valuable platforms for test-

ing and validating modern AI algorithms, effectively bridging

the gap between theoretical research and practical deployment.

This synergy forms the foundation of the project initiated

within the Industrial Data Science (IDS) student research
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group. The main goal of this paper is to design and build

a mobile inspection robot equipped with a computer vision

system capable of detecting damaged packages in real time.

This paper presents the process of constructing such a robot

and implementing a computer vision algorithm for package

damage detection. The contribution of this work is a functional

prototype that demonstrates an AI-based package damage

detection system intended for integration with a mobile robotic

platform. The developed system achieves high classification

accuracy and operates in real time.

The paper is organized as follows. The section I presents

the context of warehouse automation and outlines the main

objective of the project, which is to develop a parcel damage

detection system. The section II reviews current solutions in

computer vision, mobile robotics, and defect detection. The

section III describes the construction and architecture of the

developed mobile inspection platform. The section IV explains

the process of data collection, exploration, and augmentation.

In section V, the use of the YOLO model ("You Only Look

Once"), training configuration, and iterative model improve-

ment are discussed. The section V-B covers the conversion

and preparation of the model for real-time inference. The re-

sults and evaluation section presents the model’s performance

metrics, error analysis, and results under challenging test

conditions. The section VII outlines an interactive interface for

evaluating and comparing model performance. The paper (sec.

VIII, sec.IX) concludes with the future work and conclusion,

which highlight potential directions for further development

and summarize the achieved outcomes.

II. RELATED WORKS

Modern warehouses are increasingly adopting autonomous

mobile robots (AMRs) to automate logistics processes. Unlike

traditional automated guided vehicles (AGVs), AMRs can nav-

igate dynamic environments and make independent decisions

without fixed infrastructure [7]. Advances in sensing, control,

and AI have enabled their use not only for material handling

but also for inspection tasks [16]. A related study describes

a cyber-physical warehouse system for order-picking using

mobile robots, combining LiDAR for obstacle avoidance and

optimized path-planning in dynamic environments [2]
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Several implementations showcase inspection capabilities.

For instance, a MicroAir Vehicle with onboard SLAM and

camera was used to scan QR codes in GPS-denied warehouses

[9]. More advanced approaches integrate YOLO-based object

detection for real-time condition assessment of packages and

infrastructure [12]. Other systems combine LiDAR and depth

cameras to support autonomous inventory validation [11].

Artificial intelligence plays a key role in these systems. A

comprehensive review highlights the impact of AI and com-

puter vision in enabling object recognition, quality control, and

adaptive inspection [13]. Techniques like edge computing and

reinforcement learning further enhance system responsiveness.

The YOLO (You Only Look Once) framework remains

a leading architecture for real-time defect detection. Recent

studies trace its development from v1 to v11, noting improve-

ments like attention modules and deployment readiness on

edge devices [5], [8]. In industrial settings, YOLO has been

successfully applied to detect packaging defects [14], classify

damage types with high accuracy [3], and improve connector

inspection robustness [15].

Beyond warehouses, AI-powered visual inspection is ex-

plored in broader logistics, such as parcel sorting in rail

transport systems [4].

The literature emphasizes the growing importance of ad-

vanced deep learning models, particularly YOLO, for real-

time, accurate, and scalable inspection tasks in warehouse

environments and autonomous mobile robots in tasks related

to package control and inspection in warehouse environments.

The integration of advanced sensors, vision systems, and

AI algorithms with mobile robotic platforms lays a solid

foundation for further developments toward fully automated

warehouse processes and high-quality logistics services.

III. CUSTOM MOBILE INSPECTION ROBOT

A custom mobile inspection robot was developed as part

of a student research initiative to support parcel damage

recognition. The platform integrates key hardware components

and provides mobility, sensing, and computation capabilities

needed for logistics environments.

A. Design Overview

The robot was built with the following core requirements:

compact, modular chassis for easy transport; omnidirectional

mecanum wheels for maneuverability; and onboard sensors for

robust environmental perception. The sensing suite includes an

RGB camera, LiDAR, and ultrasonic distance sensors. Battery

power ensures portability and extended runtime.

B. System Architecture and Integration

The robot is powered by two primary units: an NVIDIA

Jetson Nano and an Arduino microcontroller. The Jetson

handles camera input, sensor processing, and ML inference,

while the Arduino controls motor operations. The RGB cam-

era is mounted on a rotating servo for dynamic inspection,

and LiDAR provides precise obstacle detection. Both units

communicate via USB.

Fig. 1. Conceptual Model of the Inspection Robot

Fig. 2. 3D Printed Prototype of the Inspection Robot

C. Testing and Validation

The mechanical components were prototyped via 3D print-

ing and tested in laboratory conditions. Functional validation

confirmed smooth omnidirectional movement, stable sensor

integration, and real-time data capture necessary for classi-

fication.

Fig. 3. Robot during LiDAR Testing in Lab Conditions

IV. DATASET DEVELOPMENT

The foundation of our parcel damage classification system

developed for the inspection robot is a comprehensive, high-

quality dataset that accurately represents the problem. This

section details our approach to dataset construction, explo-

ration, and augmentation.

A. Data Collection and Organization

Initial data collection began with a publicly available dataset

from Kaggle [1] which provided a useful starting point but

exhibited several limitations . We used the FiftyOne [10]

framework for extensive dataset exploration and analysis.

FiftyOne provides valuable tools for:
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• Visualizing dataset samples and their distributions

• Identifying potential biases in the data

• Detecting and removing duplicate or near-duplicate im-

ages

• Verifying label quality and consistency

Upon inspection using this framework, we found several

limitations of gathered photos:

• Poor image quality in numerous samples.

• Limited variety in package types and damage patterns.

• Presence of unrealistic or staged damage scenarios

To address these limitations, we supplemented the initial

dataset with custom images captured in realistic environments

in different situations and scenes. This approach improved

the representativeness of the training data with respect to

operational conditions encountered in logistics environments.

This exploration phase was crucial for ensuring dataset

quality prior to model training and helped identify specific

areas that required additional data collection.

Fig. 4. Shows representative samples from our dataset, highlighting the variety
of parcel types, lighting conditions, labeling, and damage patterns.

B. Augmentation Strategy

Data enhancement plays a critical role in improving the

robustness of the model. Rather than applying generic aug-

mentation techniques, we developed a domain-specific aug-

mentation pipeline using the Albumentations library. Our

pipeline was carefully designed to simulate realistic variations

that parcels might encounter in logistics environments while

avoiding unrealistic transformations that could harm model

performance. We applied:

• Conservative spatial transformations to simulate realistic

camera angle variations:

– Slight rotations (±10°) with a 50% probability

– Small affine transforms (scale factor 0.95-1.05, trans-

lation ±3%)

– Horizontal flips with a 30% probability

– No-op spatial transformations with a 20% probability

• To simulate different indoor lighting conditions com-

monly found in warehouses and sorting facilities:

– Random brightness/contrast adjustments (±10%)

with a 50% probability

– Color temperature shifts (brightness ±5%, contrast

±5%, saturation ±5%, hue ±5%) with a 30% proba-

bility

– No lighting modifications with a 20% probability

• Shadow Effects To simulate natural lighting conditions:

– Very mild random shadows with a 20% probability

– No shadow effect with a 80% probability

The final pipeline included consistent resizing to 640×640

pixels while maintaining aspect ratio, implemented through a

combination of LongestMaxSize and PadIfNeeded transforma-

tions with constant border padding. This pipeline was applied

10 times to each of the original photos.

The final dataset was organized into a structured format with

two primary categories:

• Damaged: 2,372 training images and 903 validation im-

ages

• Undamaged: 2,600 training images and 1,000 validation

images

Fig. 5. Illustrates examples of our augmentation pipeline applied to sample
images, demonstrating the realistic nature of the transformations.

V. TRAINING CLASSIFIER

For our parcel damage detection task, we selected the

YOLOv11n-cls model [6], a classification variant of the YOLO

(You Only Look Once) family. This approach was chosen for

several reasons:

• Efficient inference speed, critical for real-time applica-

tions in logistics

• Strong feature extraction capabilities from the backbone

network

• Successful track record in related computer vision tasks

• Flexibility to be deployed on various hardware platforms

A. Training Methodology

The model was trained using the Ultralytics framework [6],

which provides an efficient implementation of YOLO models

with several optimizations for training and inference. The

training configuration used the following parameters:

• Input image size: 640×640 pixels

• Training epochs: 100

• Model architecture: YOLOv11n-cls.pt
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Other hyperparameters such as batch size, optimizer set-

tings, and learning rate schedule were automatically deter-

mined by the Ultralytics framework based on dataset char-

acteristics and hardware capabilities. This approach leverages

the expertise embedded in the framework to achieve optimal

training results without manual hyperparameter tuning reduc-

ing manual workload and streamlining the training process.

Our model development followed an iterative improvement

process with following steps:

1) Initial training with the training part of created dataset

resulted in our baseline model (best0)

2) Performance analysis of best0. That revealed a specific

weakness: opened boxes were frequently misclassified

as undamaged

3) Additional data collection focused specifically on

opened boxes, labeled as damaged

4) Dataset augmentation with the new samples

5) Re-training with the enhanced dataset resulted in our

improved model (best1)

6) Performance analysis of best1. That revealed no major

weaknesses in classification

This iterative approach allowed us to improve the model per-

formance. The figure 6 presents a visualization of the training

Fig. 6. Comparison of the training process between two YOLOv11-cls models
(Best0 vs Best1) based on loss, accuracy, and F1 score for both training and
validation datasets. Model Best1 demonstrates better convergence and higher
classification performance overall.

process of the YOLOv11-cls classification model, comparing

two model variants: Best0 and Best1. Based on the charts,

Best1 consistently achieves better results than Best0 across

all key metrics—loss, accuracy, and F1 score. Both accuracy

and F1 score increase with each epoch, approaching a value

of 1.0, while the loss steadily decreases. The convergence

point occurs at epoch 72, after which the model performance

stabilizes. Throughout most of the training process, Best1

shows lower loss and higher accuracy and F1 score, indicating

its superior classification performance compared to Best0.

B. Model Optimization

During testing with real-time inference the PyTorch model’s

frames per second (FPS) was around 30, meaning that it can

process that number of sample pictures in one second. After

converting to CoreML format the model reached 251+ FPS.

We converted our models to ONNX format to address two

primary objectives: first, to enable robust metric extraction and

validation within our performance monitoring dashboard, as

the standardized ONNX format provides more predictable pa-

rameter access patterns compared to native PyTorch. Secondly,

changing model’s format allowed us to establish a framework-

agnostic model representation that enhances deployment flex-

ibility and ensures consistent inference behavior across differ-

ent runtime environments. The training process was monitored

using metrics that included training loss, validation loss, and

top-1 accuracy, which were recorded every epoch.

We achieved this using the following process:

1) Export of the trained PyTorch model to ONNX format

2) Conversion from ONNX to CoreML using the coreml-

tools library

3) Optimization of the CoreML model for the Apple Neural

Engine

The high inference speed makes the model suitable for in-

tegration into high-throughput logistics environments where

real-time processing is critical.

Fig. 7. Optimization process maintained model accuracy while significantly
improving inference speed, achieving over 251 FPS on Apple M1 hardware
during real-time testing.

VI. RESULTS AND EVALUATION

A. Performance Metrics

We evaluated our models using classification metrics includ-

ing accuracy, precision, recall, and F1 score.

The best0 and best1 models achieved results as presented in

Table I. The best1 model consistently outperformed the base-

line (best0) across all evaluation metrics, indicating successful
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mitigation of the identified dataset weaknesses. The enhance-

ments in precision are particularly notable, indicating that our

approach successfully reduced false-positive classifications.

TABLE I
SHOWS THE TRAINING STATISTICS FOR BOTH MODELS, ILLUSTRATING

THE IMPROVEMENT IN FINAL PERFORMANCE ACHIEVED BY THE BEST1
MODEL AFTER ADDRESSING THE IDENTIFIED WEAKNESSES IN THE

DATASET.

Metric best0 model best1 model Improvement

Accuracy 97.00% 98.50% +1.50pp

Precision 94.80% 97.04% +2.24pp

Recall 98.81% 99.74% +0.93pp

F1 Score 96.76% 98.37% +1.61pp

We also evaluated our models under real-life conditions,

such as too dark or too light environment. These results

suggest that our models performance can be increased by

hyper-tuning or changing the augmentation parameters for

images. Scores achieved by both models in this scenario are

presented in Table II.

TABLE II
SHOWS STATISTICS FOR BOTH MODELS IN BOTH DARKER AND LIGHTER

ENVIROMENTS USING REAL-LIFE IMAGES AND AUGMENTATIONS

Metric best0 model best1 model Improvement

Accuracy 92.06% 94.44% +2.38pp

Precision 89.74% 91.14% +1.4pp

Recall 97.22% 100% +2.78pp

F1 Score 93.33% 95.36% +2.03pp

B. Confusion Matrix and Precision-Recall analysis

Detailed analysis of these matrices reveals:

• True Positives (Damaged correctly classified): Increased

from 747 to 754

• False Negatives (Damaged classified as Undamaged):

Decreased from 9 to 2, representing a 77.8% reduction

• True Negatives (Undamaged correctly classified): In-

creased from 871 to 889

• False Positives (Undamaged classified as Damaged): De-

creased from 41 to 23, representing a 43.9% reduction

The substantial reduction in false negatives is particularly

important for our application context. In parcel damage de-

tection, false negatives (missed damages) typically have a

greater business impact than false positives, as they can lead

to damaged items being delivered to customers, resulting in

customer dissatisfaction and potential financial losses.

C. Visual Inspection of Classification Results

Beyond quantitative metrics, we conducted a qualitative

analysis of classification results to identify patterns in the

remaining misclassifications. For the best1 model, we observed

the following:

• False negatives (2 instances): Both cases involved parcels

with minor damage that was partially obscured or at the

edge of the package.

Fig. 8. Confusion matrices for both models

Fig. 9. Shows the precision-recall curves, where the best1 model (blue
line) maintains higher precision across all recall values than best0 (red line).
These analyses provide a more comprehensive view of model performance
beyond the single operating point represented by the confusion matrix,
demonstrating that the best1 model achieves superior performance across
various classification thresholds.

• False positives (23 instances): Primarily involved parcels

with heavy tape reinforcement or unusual packaging

materials that resembled damage patterns.

These observations provide valuable insights for future im-

provements, suggesting that focusing on capturing more ex-

amples of minor/obscured damage and diverse packaging

materials could further enhance model performance. Fig. 8

VII. DASHBOARD FOR VISUALIZATION AND ANALYSIS

To support model evaluation and facilitate comparisons, we

developed a lightweight web-based dashboard using Dash and

Plotly. The interface allows users to select between model

versions (e.g., best0 vs best1), inspect performance metrics

(accuracy, precision, recall, F1 score), and visualize confusion

matrices and precision-recall curves. Users can also upload

custom images or specify test folders for evaluation.

The dashboard supports real-time testing with side-by-side

model predictions, along with confidence scores displayed via

intuitive visual indicators. All visualizations are interactive,

supporting threshold-independent assessments and flexible

data exploration.

This interface enables rapid prototyping, debugging, and

demonstration of classification results without requiring deep

technical expertise. The tool has proven useful for both offline

analysis and on-site testing scenarios.

VIII. FUTURE WORKS

Although the developed parcel damage classification system

achieves high performance, several promising directions re-

main for further development, both in terms of visual analysis
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Fig. 10. Comprehensive dashboard presenting all the important information
about currently selected model. It also give option for real-time image testing.

and integration with the mobile inspection platform. The key

next steps include:

1) Damage Localization: Extending the system to not only

classify parcels as damaged but also localize and high-

light specific damaged areas.

2) Damage Type Classification: Developing a multi-class

model that can distinguish between different types of

damage (e.g., tears, water damage, crushing) to provide

more detailed information.

3) Integration with Mobile Robot: Combining the visual

inspection system with the custom-built mobile platform

will enable fully autonomous parcel inspection within

warehouse environments.

4) Edge Deployment: Further optimization for deployment

on edge devices directly on conveyor systems using

techniques like model quantization.

5) Multi-View Integration: Combining predictions from

multiple camera angles to improve detection accuracy

for damages that might only be visible from certain

perspectives.

6) Continuous Learning Framework: Implementing a sys-

tem for ongoing model improvement based on opera-

tional feedback and new data collection.

IX. CONCLUSION

This paper presents a complete parcel damage detection

system based on machine learning, covering data preparation,

dataset enrichment, model development, and real-time opti-

mization. A key component of the solution is the custom-

designed and built mobile inspection robot, tailored for use in

warehouse environments.

The system achieved a very high recall rate (99.74%),

demonstrating its ability to detect parcel damage reliably,

an essential requirement in logistics to minimize customer

complaints and reduce financial losses. The inference speed

supports deployment in high-throughput environments, and the

custom dashboard enables real-time performance monitoring

and model comparison.

The integration of both components, the mobile robotic

platform and the vision-based classification system, lays the

foundation for a fully autonomous, real-time parcel inspec-

tion solution. This project demonstrates that the thoughtful

application of computer vision techniques, combined with

domain-specific considerations and high-quality data, can yield

practical and effective solutions to real-world challenges in

logistics automation.
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