Proceedings of the 20" Conference on Computer

DOI: 10.15439/2025F8035

Science and Intelligence Systems (FedCSIS) pp. 357-362 ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

Enhancing API documentation by inter-endpoint
dependency graphs

Panagiotis Papadeas
0009-0003-3012-0089
Software Engineering Lab, National Technical
University of Athens. Zografos 15780, Greece
Email: papadeas@cs.ntua.gr

Christos Hadjichristofi
0009-0000-7976-8749
Software Engineering Lab, National Technical
University of Athens. Zografos 15780, Greece
Email: hadjichristofi_ch@mail.ntua.gr

Abstract—APIs are the main mechanism for integrating het-
erogeneous components in modern software systems. API docu-
mentation typically treats each endpoint as autonomous, leav-
ing out information about other endpoints that produce or con-
sume input or output data, which is useful in rapidly orches-
trating valid call sequences. This makes the development, test-
ing and maintenance of systems that use APIs to internally im-
plement business logic, or integrate with third-party API-based
services, more complex. This paper addresses this gap by intro-
ducing static and dynamic analysis methods to automatically
discover and document inter-endpoint dependencies; static
analysis uses existing API documentation, while dynamic analy-
sis is based on logging API usage. Both methods are integrated
into RADAR, a tool for extracting and visualizing graphs, to il-
lustrate such inter-endpoint dependencies through exchanged
data. Case study on the PayPal API demonstrates the value of
adding dependency graphs to API documentation to support
rapid development and documentation of software systems.

Index Terms—APIs, inter-endpoint dependencies, API docu-
mentation.

1. INTRODUCTION

N MODERN software architectures, Application Program-

ming Interfaces (APIs) serve as the primary mechanism for
exposing the functionalities offered by entire software appli-
cations or even components, to other applications, compo-
nents, or services of any kind. An API exposes a set of end-
points that, when invoked by a consumer, execute specific
server-side functionality, which results in a response sent back
to the client, regardless of the technologies used on either
side.

APIs are developed both for integrating components within
applications and as standalone software products. In either
case, their complexity necessitates comprehensive documen-
tation to support their development, maintenance, and integra-
tion. Typical API documentation usually follows standards
such as OpenAPI', or comes in the form of de-facto formats

" OpenAPI: https://www.openapis.org/

357

Dimitrios Gerokonstantis
0009-0004-0950-8414
Software Engineering Lab, National Technical
University of Athens. Zografos 15780, Greece
Email: dgerokonstantis@cs.ntua.gr

Vassilios Vescoukis
0000-0002-5360-8349
Software Engineering Lab and Geoinformation
Center, National Technical University of Athens.
Zografos 15780, Greece
Email: v.vescoukis@cs.ntua.gr

introduced by tools, such as Postman® collections. Any such
kind of documentation provides the schema of the request and
response of every endpoint, data types and descriptions, and
possibly full examples of API calls with data.

However, it usually treats each endpoint as an indepen-
dent service, whereas an API is a collection of interacting
endpoints that collectively can be used to implement pieces
of business logic. To do this effectively, it is essential that
developers have information not only about how to call each
endpoint, but also about all its possible interactions with
other endpoints that either consume output or provide input
data. This work focuses on the discovery, modeling and rep-
resentation of such interactions in a way that provides addi-
tional practically useful documentation for the integration of
APIs into software components of any kind.

II. Reratep Work

Prior research has explored ways to facilitate the proper
utilization of APIs by identifying the constraints that must
be met when interacting with them. A wide area of research
investigates techniques for identifying interdependencies
among input parameters within (single) API calls, with the
goal of facilitating the construction of syntactically and se-
mantically valid API requests.

Oostvogels et al. [1] attempted to analyze and incorporate
inter-parameter constraints within API documentation. These
constraints define rules whereby the existence or valid values
of certain input parameters in an API call depend on the pres-
ence or values of other parameters. To address the absence of
structured representation for such constraints in existing docu-
mentation, a new specification language was created as an ex-
tension to the OpenAPI specification to incorporate this infor-
mation. Martin-Lopez et al. ([2], [3], [4]) also focused on in-
ter-parameter dependencies, proposing a Domain Specific

? Postman: https://www.postman.com/

Topical area: Software, System and Service Engineering

358

Language known as IDL (Inter-parameter Dependency Lan-
guage) to describe these dependencies. Both studies focus on
interdependencies of input parameters for a specific call ra-
ther than on inter-endpoint dependencies which is our area of
interest.

Wau et al. [5] proposed an additional method that detects
“dependency constraints on parameters”, leading to the devel-
opment of the INDICATOR system, which analyzes docu-
mentation and SDKs to identify constraint candidates and
then validates them through testing. The INDICATOR system
investigates these producer-consumer relationships based on
the names and types of parameters. However, it does not focus
on systematically extracting or documenting these relation-
ships.

Another related area of research concentrates on identify-
ing interdependencies across different operations of Web Ser-
vices and APIs for testing. The work of Bai et al. [6] aims to
automatically generate test cases from WSDL specifications
with respect to the dependencies among various operations.
One of the dependency types examined is input/output de-
pendencies (I0OD), which represent inter-endpoint dependen-
cies. However, this approach limits the examination of inter-
endpoint dependencies to aspects directly related to test case
generation, which aligns with the focus of their study.

The study of Atlidakis et al. [7] introduces REST-ler, a tool
that analyzes Swagger specifications for RESTful APIs, auto-
matically identifies object types required by a request that
have been produced by previous ones, generates tests with re-
spect to these dependencies and dynamically infers which re-
quest sequences are valid. However, this inter-endpoint anal-
ysis aims mainly to automatically generate and execute mean-
ingful and correct test cases, while adhering to these depend-
encies. Consequently, no documentation regarding the inter-
endpoint dependencies is generated.

The study conducted by Bertolino et al. [8] aims to extract
behavioral information regarding how users should invoke a
Web Service. This method, called StrawBerry, examines the
WSDL document and identifies dependencies between the
operations of the Web Service based solely on types of input
and output parameters. A behavior protocol automaton is gen-
erated, indicating the dependencies and data transfers among
various operations of the Web Service. However, this analysis
relies on the presence of a WSDL specification.

III.

An "inter-endpoint dependency" is an interaction between
API endpoints. If invoking endpoint Y requires input data re-
ceived from a call to endpoint X, then the required call order
is (X, Y) and thus we say that Y "depends" on X. As an ex-
ample, consider the hypothetical Flight Booking API illus-
trated in Fig 1, along with a sample invocation of its end-
points. The top-level nodes represent API endpoints, while
the corresponding JSON response schemas and the example
responses appear beneath each endpoint. Directed edges indi-
cate the data flow between endpoints.

INTER-ENDPOINT DEPENDENCIES

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

flights
/flig 1:{ D

POST
/flight/
‘——fA————————:ij:::::::?i"‘!l!I!I!!!E%I!II!!!!IIEEE!')

yairpor
|

“reservation_id"
"flight_id"
“departure” :
“arrival”

{ "airport_id":
“name" :

"string", {
"string",

“string",

"string"}

"flight_id" : "string",
"from_airport" : "int",

"string",
"string",

“country": "to_airport" : "int", “timestamp",

meity":

“timestamp",
"string" }

“"departure" :
: “"timestamp"}

"timestamp",

“arrival” "passenger_id" :

"XYZ901", { “reservation id" : "WBE2L"
“flight_id" : "XYZ998",

“"departure” : "FRI 2022-61-62 10:00",
"FRI 2022-01-82 13:30",

"AB123456" }

A
3
L3

“arrival" :
“passenger_id" :

Fig 1. Production and consumption of data in API call sequences

The call to the /airports endpoint returns a list with all avail-
able airports, including their identifiers (airport id). The fol-
lowing call to /flights takes as input, as a path parameter, the
id of one of these airports (102, as shown in the example) and
returns information about available flights departing from that
airport. This is a body-path dependency, as a data element
from the response body of the first call is used as a path pa-
rameter in the second call.

Subsequently, the /flight endpoint call takes as input, as the
request body this time, all the details of one of the flights re-
turned by the second call (the one with id=XYZ990, in the
example) along with a path parameter that points to a passen-
ger and performs the booking for that flight and passenger.
This represents a body-body dependency, as the request body
of the third call requires a data object included in the response
body of the second call. Similarly, in body-query dependen-
cies the value of a query parameter comes from a value con-
tained in some attribute of a response body from a previous
call. Notably, inter-endpoint dependencies can be identified
by more than one attributes.

Examining inter-endpoint dependencies goes beyond typi-
cal API documentation by revealing the correct sequences and
prerequisites of API calls. This knowledge eases the imple-
mentation of requests with valid inputs and helps discover en-
tire paths that indicate the semantically correct order of end-
point invocation. As such, it can accelerate integration with
third-party APIs by identifying valid call sequences. In mi-
croservice architectures, it also supports—and can even par-
tially automate—the orchestration control flow. Finally, for
API developers, it serves as a valuable reference for under-
standing data flow, maintaining consistency, and onboarding
new team members.

This work focuses on the discovery and documentation of
API inter-endpoint dependencies by introducing algorithms
as well as a tool to discover, analyze, and visualize them using
a directed graph, whose nodes represent the API endpoints
and each directed edge represents the complete or partial con-
sumption of data returned by the origin, by the destination
endpoint.

PANAGIOTIS PAPADEAS ET AL.: ENHANCING API DOCUMENTATION BY INTER-ENDPOINT DEPENDENCY GRAPHS

IV. DISCOVERY OF DEPENDENCIES

Two approaches are demonstrated for discovering and an-
alyzing inter-endpoint dependencies: static and dynamic, in-
troduced in the diploma theses of Papadeas [9] and Gerokon-
stantis [10], respectively. The static approach is based on ex-
isting API documentation, whereas the dynamic captures and
analyzes API calls made during the real-world utilization of
the APL

4.1Static analysis

Static analysis is entirely based on the information included
in the API documentation. It aims to identify inter-endpoint
dependencies using this documentation (structure, types),
which typically contains details about the input and output pa-
rameters of each endpoint. The goal is to identify dependen-
cies and generate a directed graph that shows all possible end-
point call sequences.

Static analysis takes its input from any standard API docu-
mentation, such as OpenAPI, or even from ad-hoc documen-
tation such as Postman, Apidog®, Firecamp* or other similar
tools. It infers the proper sequence of API calls by analyzing
the results of pre-executed calls included in the documenta-
tion examples. Lack of pre-executed calls and insufficient ex-
amples reduces the capability of this analysis to discover de-
pendencies.

In our implementation, static analysis takes its input from
a Postman collection to create a representation of the directed
dependency graph. The Postman collection comes in as a
JSON file that contains information about responses, request
body, path and query parameters of each endpoint. The use of
Postman collections has been chosen for illustration purposes
only: any structured parsable object containing the same data
can be used instead, and the results will still rely on the com-
pleteness of metadata included in the documentation.

A typical context where static analysis can be performed,
is when we have some kind of documentation about an API,
and we don’t know anything about the proper sequence of
endpoint calls or possible use cases of the API. The graph pro-
duced by the static analysis helps us get a first view of the API
usage flow, as it shows how endpoints relate to each other.

The algorithm of the static analysis takes as input a post-
man collection file (Algorithm 1). For every endpoint of the
API it stores information about its parameters including name,
value and type of each parameter in a set named Parameters-
Set (lines 1-5 Algorithm 1). It also stores the response of each
endpoint in a separate set named AttributesSet including the
name, value and type of each attribute in the response (lines
6-10 Algorithm 1). Then it proceeds to compare the two sets
to discover dependencies (lines 11-12 Algorithm 1).

Each dependency can be identified either by matching the
values of parameters with the values of responses exchanged
between endpoints in call examples (Algorithm 2), or by
matching keys instead (Algorithm 3).

The algorithm compares the two sets to find every pair of
attributes and parameters that have the same value (or name,

3 Apidog: API Development Tool - https://apidog.com

respectively), type and are not part of the same endpoint (lines
1-4 Algorithm 2 and Algorithm 3 respectively). For each case
where a match has been identified, a new edge is added to the
graph, along with the relevant information regarding the de-
pendent endpoints (lines 5-8 Algorithm 2, 3).

Algorithm 1. Static inter-endpoint dependency analysis

. Read postman_collection.json as Input

foreach parameter in endpoint do
ADD(parameter(name, value, type)) TO SET
named ParametersSet

1
2.
3. foreach endpoint in Input do
4
5

8.

9. foreach endpoint in Input do

10. foreach response in endpoint do

11. ADD(attribute(name, value, type)) TO SET
named AttributesSet

14.

15. DependencyGraphByValues(ParametersSet, AttributesSet)
16. DependencyGraphByNames(ParametersSet, AttributesSet)

Algorithm 2. DependencyGraphByValues

Procedure DependencyGraphByValues

foreach parameter in ParametersSet do
foreach attribute in AttributesSet do
if parameter.value == attribute.value AND
parameter.type == attribute.type AND
endpoint(parameter) != endpoint(attribute)
then
6. ADD (dependency (endpoint(parameter),
endpoint(attribute)))
TO LIST named Dependencies

uih wN B

00

return Dependencies

Algorithm 3. DependencyGraphByNames

Procedure DependencyGraphByNames

foreach parameter in ParametersSet do
foreach attribute in AttributesSet do
if parameter.name == attribute.name AND
parameter.type == attribute.type AND
endpoint(parameter) != endpoint(attribute)
then
8. ADD(dependency(endpoint(parameter),
endpoint(attribute)))
TO LIST named Dependencies

NoOuhs, wNnBRE

12.
13. return Dependencies

The second way of dependency identification, by compar-
ing only the keys of parameters, has been proven to be useful
in cases where the collection does not contain many examples
of pre-executed calls and there isn’t enough information re-
garding each endpoint. In that case, the only way a depend-
ency could be inferred is by comparing keys between param-
eters and responses assuming that common keys could also
imply dependent values.

Static analysis will usually discover a greater-than-actual
number of inter-endpoint dependencies due to common key-
value patterns across endpoints. For example, the frequent use
of generic keys like “ID” can falsely suggest dependencies
between unrelated endpoints. These findings are often hard to
evaluate without access to actual API calls or a good under-
standing of the API's semantics. The goal of this analysis is to

4 Firecamp: Open Source Postman Alternative - https://firecamp.io

360

identify all possible dependencies, including dependencies
which are considered “noise”.

Dynamic analysis

The dynamic analysis takes a different approach, aiming to
discover inter-endpoint dependencies without using any kind
of documentation. It collects information from HTTP requests
and responses, by monitoring actual calls using a "man-in-
the-middle" agent that captures HTTP traffic. The API traffic
is logged and then the extraction of inter-endpoint dependen-
cies is possible. Notably, this method follows a reverse engi-
neering approach, analyzing already implemented but still un-
documented APIs, to infer inter-endpoint dependencies.

Dynamic analysis also identifies all types of dependencies,
just as static analysis does. However, in the case of body-path
dependencies, since it is unclear which segments of a URL
correspond to path parameters, the algorithm treats all URL
segments as such. This allows it to identify the corresponding
dependencies, introducing minimal noise.

In cases where the API is consumed through a web
frontend, API calls can be captured by executing use cases
while interacting with the frontend in a browser. In the context
of an API ecosystem implementing orchestration, as in a mi-
croservices architecture, it is possible to capture API calls as
part of the interaction between the orchestrator component
and the internal components of the architecture.

In any of the approaches mentioned above, to capture the
HTTP traffic resulting from real-world interactions with the
API, a "mediator" is required, that can be implemented in sev-
eral ways, such as the following:

1. a standalone mediator component to which API calls
would be directed, responsible for forwarding the requests to
the API server, returning the responses to the client, and re-
cording information about the API calls; such a system was
implemented in the context of this paper,

2. a browser extension that captures the incoming and out-
going traffic between the browser and the API while the user
navigates through the User Interface interacting with the API,

3. an internal component within API Gateways, enabling
the collection of multi-client data derived from the interac-
tions of multiple external entities with the API.

Similar to the static method, the outcome of the dynamic
analysis is a directed dependency graph of the same type. The
input is a log file generated by the mediator, which contains
information about the executed API calls.

The dynamic analysis algorithm comprises two main com-
ponents: the parsing of the log file and extraction of value-
specific information (Algorithm 4), and the identification of
matches among the extracted values (Algorithm 5). Specifi-
cally, Algorithm 4 processes the input log file, assigns a se-
quence number to each API Call reflecting its execution order
within the use case it belongs to, and constructs two diction-
aries, REQUEST VALUES and RESPONSE VALUES,
which store information about every value encountered in
API request and response messages respectively. For each
identified value, the dictionaries record the associated API
call’s URL and sequence number, the identifier ("tag") of the

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

corresponding use case, the value’s name, and its inferred data
type.

The dictionaries constructed in Algorithm 4 serve as inputs
to Algorithm 5, which is responsible for identifying matches
between values appearing in request and response messages.
Specifically, for each value V found in the response body of
an API call RES, the algorithm examines whether V also ap-
pears as a request parameter (of any type) in any subsequent
API calls (REQi, REQs, ..., REQ,) within the same use case.

If such matches are found, the algorithm adds a directed
dependency edge from RES to each matching REQ;, provided
the following conditions are met:

+ the data type of V matches in both RES and REQ; as
determined by type inference,

* RES and REQ; correspond to distinct API endpoints, and

* REQ:; occurs after RES in the execution order of the use
case.

Algorithm 4. Dynamic inter-endpoint dependency analysis

1. Initialization: Assign sequence numbers to the
calls of every use case

2.

3. foreach call in Input do

4. if call.body then

5. foreach parameter in call.body do

6. REQ_VALUES[parameter.value].APPEND({

7. url: call.url, seq: call.sequence_number,
8. tag: call.tag, paramName: parameter.name,
9. paramType: parameter.type})
10.
11. if call.response then
12. foreach attribute in call.response do
13. RES_VALUES[attribute.value].APPEND({
14. url: call.url, seq: call.sequence_number,
15. tag: call.tag, attrName: attribute.name,
16. attrType: attribute.type})
17.

18. ComputeDependencyGraph(REQ_VALUES, RES_VALUES)

Algorithm 5. ComputeDependencyGraph

1. Procedure ComputeDependencyGraph
2. foreach value in RES_VALUES do
3. if value in REQ_VALUES then
4. foreach appearRes in RES_VALUES[value] do
5. foreach appearReq in REQ_VALUES[value] do
6. if appearRes.paramType ==

appearReq.paramType and
7 appearRes.url # appearReq.url and
8. appearRes.seq < appearReq.seq and
9. appearRes.tag == appearReq.tag
1e. then
11. DEPENDENCY_GRAPH[

(appearRes.url, appearReq.url)
1.APPEND({

12. fromAttribute: appearRes.paramName,
13. toAttribute: appearReq.paramName
14. b

A key difference from the static method is that dynamic
analysis restricts comparisons to subsequent API calls of the
same use case, focusing on the dependencies most likely to be
semantically correct within the context of the specific APL.

While dynamic analysis can generate dependency docu-
mentation even for completely undocumented APIs, it also
has several challenges, with the primary one being that the
discovery of all dependencies requires the execution of calls
between all dependent endpoints, which may not occur during
the logging.

PANAGIOTIS PAPADEAS ET AL.: ENHANCING API DOCUMENTATION BY INTER-ENDPOINT DEPENDENCY GRAPHS

For visualizing the resulting dependency graph, a tool
named RADAR?® (REST API Dependencies and Analysis of
Relationships) was implemented [11] and is available at ra-
dar.softlab.ntua.gr. RADAR takes as input either the Postman
Collection of the API or a log file containing records of actual
API calls, for static and dynamic analysis, respectively. After
the user configures certain analysis parameters, RADAR per-
forms either static or dynamic analysis to detect inter-end-
point dependencies, and generates a directed dependency
graph, as discussed above.

V.CASE STUDY

The two dependency analysis methods were applied,
among others, to the PayPal API sandbox environment®.

The PayPal API provides a wide range of functionalities,
including the creation and management of products, orders,
invoices, subscriptions, payments, and disputes. The com-
plexity and size of such an API necessitate conducting de-
pendency analysis to facilitate and guide its utilization. Be-
low, we examine how static and dynamic inter-endpoint de-
pendency analysis can assist a user of this API in creating and
tracking a product order.

Static

For static analysis, we supply RADAR with the Postman
Collection of the PayPal API’, as downloaded from the Post-
man Public API Network, without any modifications. The
section of the resulting dependency graph including endpoints
related to product orders is shown in Fig 2 below. While the
identified dependency path facilitates the process of creating
an order and handling the payment, it lacks details regarding
order tracking. Static analysis was unable to identify depend-
encies between the tracking endpoints and the others in the
graph, as the examples in the Postman Collection were not
adequate. Additionally, the static analysis graph contains
some edges that are either redundant for executing the specific
use case or even semantically incorrect.

C1

C2

Fig 2. Order creation and tracking use case - Static dependency graph
For instance, displaying product details before creating a
new product (Fig 2, edge C1—1) offers no practical value in
the context of the “order management” use case, while author-
izing a payment for an order before the order itself has been
created, as the graph suggests (Fig 2, edge C2—2), seems not

3 R.A.D.A.R by NTUA Softlab: https://radar.softlab.ntua.gr
¢ PayPal REST APIs: https://developer.paypal.com/api/rest
(date accessed: 05/2024)

correct and should rather be classified as noise. As demon-
strated below, dynamic analysis mitigates these issues.
Dynamic

Dynamic analysis involves logging interactions with the
API relevant to product orders. To do this, we set up an ex-
ample use case, in which we begin by creating/updating a
product and generating an order for this. After that, we initiate
the payment process by authorizing and capturing the pay-
ment, and conclude by adding tracking information for the or-
der. This sequence is illustrated in Fig 3.

T Postman-backend

| 15 POST Create product(createProductReqBody : Create product |
| request = Create product request) : Create product response |

*Catalog
Products APL
T

*Payments | [Orders
APL APL
T

*Shipment
Tracking APT

2: (Create product response): 201 Created

3: GET Show product detais(product_id string = id :
string) : Show product detais response

5: PATCH Update product(product id : string = id string,
updateProductRegBody : UpdatePath = UpdatePath)

6: 204 No Content

|
|
|
|
|
|
|
|
4: (Show product detal response): 200 OK !
|
|
|
|
|
|
|
|
|

i |
7: POST Create order(createOrderReqBody : Create Order Request = Create Order Request) : Create Order Response
T T

8: (Create Order Response): 201 Created | |

1 T
9: PATCH Update order(order id : string = id : sring, updateOrderRegBody : Update Order Request = Update Order ...

0 201N Corent T T
[} I

11: GET Show order detals(order_id : string = i : string) : Show order details response (with shipping)

12: Show order detal response (with shipping)): 200 OK
i
13: POST Authorize payment for order(order_id: string = id :string) : Authorize payment for order
s

14 for ponse): 201 Created

15: GET Show details for authorized payment(authorization_id string = id : string) :
Detalls for authorized payment

16: (Details for authorized payment): 200 0K

T
|
1
|
17: POST Capture authorized payment(authorization_id : string = id : string,

Ca t= h
Payment Request) : Capture Authorized Payment Response

18: (Capture Authorized Payment Response): 201 Created |
l

|
19: GET Show captured payment details(capture_d : sting = d : string) : Captured Payment Details
T

20: (Captured Payment Details): 200 OK

|
1

| W
| |

21: POST Add for

22: (AddTrackinglnformationResponse): 200 0K ! !
] T T
|

| |
23: GET Show tracking information(tracking_id : string = tracking_number : string) : Show tracking information response

24: (Show tradking information response): 200 OK. | |

i 1 i
25: PUT Update for Paypal)id: string = tracking_number : string,
updateCarrierReqBody : Update carrer request = Update carrer request)

26: 204 No Content 1

Fig 3. Order creation and tracking use case - sequence diagram
The dependency graph resulting from the dynamic analysis
of the log file for this use case is shown in Fig 4, where API
calls are enumerated based on their numbering in the se-
quence diagram above, and a key dependency path is high-

lighted.
15
13 =%

17
1
1
/ 21 -
19

Fig 4. Order creation and tracking use case - dynamic dependency
graph

7 PayPal API Postman Collection (date accessed: 05/2024):
https://www.postman.com/paypal/paypal-public-api-workspace/overview

The highlighted dependency path can be traced back to
the reference use case sequence diagram, providing the API
user with guidance on how to use the API to implement the
logic of the "order management" use case.

Specifically, the generated graph guides the user to first
create a product and optionally retrieve information about it
(calls 1, 3), then create an order for this product and possibly
retrieve relative details (calls 7, 11), authorize and capture
the payment (calls 13—19), and finally add and potentially
update tracking information (calls 21, 23). In contrast to
static analysis, the dynamic dependency graph proved to be
more comprehensive while avoiding misleading edges.

VI. DiscussioN

Like all software documentation, API documentation
must be complete, detailed, and kept up to date to support
communication among technical staff and stakeholders. As
APIs play a central role in software integration, better docu-
mentation leads to more efficient development and fewer er-
rors and backtracks.

This work aims to enhance API documentation by adding
information on data producers and consumers among end-
points, representing their dependencies. Such an "endpoint
dependency graph" helps developers better understand and
integrate complex third-party or in-house APIs. We propose
two methods to identify these dependencies based on avail-
able documentation and runtime access, providing a
roadmap to accelerate API integration.

The effectiveness of static analysis in identifying depen-
dencies relies on the information in the API’s static docu-
mentation, particularly the examples included. On the other
hand, the effectiveness of dynamic analysis in the same task
depends on the extent to which the executed use cases cover
a broad range of the API’s functionalities, theoretically all of
them.

Generally, the dynamic approach produces less, yet not
zero, noise, particularly in body-path dependencies derived
from URL segments that are not actually path parameters. In
static analysis, which runs exhaustive comparisons between
every pair of endpoints, noise is created by ambiguities that
do not allow to filter out irrelevant dependencies.

Overall, considering the statistics derived from the results
of the two analyses across several APIs—including the Ope-
nAl API and the previously examined PayPal API—we ob-
serve that dynamic analysis detects fewer edges in the gener-
ated graph: 52 vs. 92 for OpenAl and 209 vs. 724 for Pay-
Pal. Furthermore, dynamic analysis identifies more depen-
dent attributes for each edge, offering a deeper understand-
ing of how two endpoints are interdependent. For example,
for the OpenAl API, an average of 1.22 dependent attributes
per edge was found in the static analysis and 2.53 in the dy-
namic analysis, while for the PayPal API, 2.13 dependent at-
tributes per edge were found in the static analysis and 14.19
in the dynamic analysis.

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Considering the limitations of each method, as well as the
conclusions drawn from their comparative study and appli-
cation to the API examined, it becomes clear when each
method is most suitable: when any static documentation
such as a Postman Collection with enough examples is avail-
able, dependency documentation for the API can be gener-
ated using static analysis. When logging is possible, dy-
namic analysis can offer higher accuracy and completeness
of the results in the context of the observed use cases, but at
the cost of greater effort that comes with logging. RADAR
supports both methods and although it has space for im-
provement, it produces useful data and visualizations of in-
ter-endpoint API dependencies.

REFERENCES

[11 N. Oostvogels, J. De Koster, and W. De Meuter, “Inter-parameter
Constraints in Contemporary Web APIs,” 2017, pp. 323-335. doi:
10.1007/978-3-319-60131-1_18.

[2] A. Martin-Lopez, “Automated analysis of inter-parameter dependen-
cies in web APIs,” in Proceedings of the ACM/IEEE 42nd Interna-
tional Conference on Software Engineering: Companion Proceedings,
New York, NY, USA: ACM, Jun. 2020, pp. 140-142. doi:
10.1145/3377812.3382173.

[31 A. Martin-Lopez, S. Segura, C. Muller, and A. Ruiz-Cortes, “Specifi-
cation and Automated Analysis of Inter-Parameter Dependencies in
Web APIs,” [EEE Trans Serv Comput, vol. 15, no. 4, pp. 2342-2355,
Jul. 2022, doi: 10.1109/TSC.2021.3050610.

[4] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “A Catalogue of In-
ter-parameter Dependencies in RESTful Web APIs,” in Service-Ori-
ented Computing: 17th International Conference, ICSOC 2019,
Toulouse, France, October 28-31, 2019, Proceedings, Berlin, Heidel-
berg: Springer-Verlag, 2019, pp. 399-414. doi: 10.1007/978-3-030-
33702-5_31.

[51 Q. Wu, L. Wu, G. Liang, Q. Wang, T. Xie, and H. Mei, “Inferring de-
pendency constraints on parameters for web services,” in Proceedings
of the 22nd international conference on World Wide Web, in WWW
’13. New York, NY, USA: ACM, May 2013, pp. 1421-1432. doi:
10.1145/2488388.2488512.

[6] Xiaoying Bai, Wenli Dong, Wei-Tek Tsai, and Yinong Chen,
“WSDL-Based Automatic Test Case Generation for Web Services
Testing,” in IEEE International Workshop on Service-Oriented Sys-
tem Engineering (SOSE’05), IEEE, 2005, pp. 215-220. doi: 10.1109/
SOSE.2005.43.

[7] V. Atlidakis, P. Godefroid, and M. Polishchuk, “RESTler: Stateful
REST API Fuzzing,” in 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering (ICSE), IEEE, May 2019, pp. 748-758.
doi: 10.1109/ICSE.2019.00083.

[8] A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli, “Automatic
synthesis of behavior protocols for composable web-services,” in Pro-
ceedings of the 7th joint meeting of the European software engineer-
ing conference and the ACM SIGSOFT symposium on The founda-
tions of software engineering, in ESEC/FSE ’09. New York, NY,
USA: ACM, Aug. 2009, pp. 141-150. doi: 10.1145/1595696.1595719.

[9] P. Papadeas, “Automatic generation of dependency documentation be-
tween endpoint calls of a REST APL” National Technical University
of Athens, 2023. Accessed: Apr. 27, 2025. [Online]. Available:
http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/18728

[10] D.-D. Gerokonstantis, “Dynamic Analysis of Inter-endpoint Depen-
dencies in RESTful APIs,” National Technical University of Athens,
2024. Accessed: Apr. 27, 2025. [Online]. Available: http://artemis.c-
slab.ece.ntua.gr:8080/jspui/handle/123456789/19419

[11] D. Lalias, “Web application for visualizing dependencies between
endpoints of a REST interface,” National Technical University of
Athens, 2024. Accessed: Apr. 27, 2025. [Online]. Available: http://
artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19020

