
Abstract—APIs are the main mechanism for integrating het-

erogeneous components in modern software systems. API docu-

mentation typically treats each endpoint as autonomous, leav-

ing out information about other endpoints that produce or con-

sume input or output data, which is useful in rapidly orches-

trating valid call sequences. This makes the development, test-

ing and maintenance of systems that use APIs to internally im-

plement business logic, or integrate with third-party API-based

services, more complex. This paper addresses this gap by intro-

ducing static and dynamic analysis methods to automatically

discover and document inter-endpoint dependencies; static

analysis uses existing API documentation, while dynamic analy-

sis is based on logging API usage. Both methods are integrated

into RADAR, a tool for extracting and visualizing graphs, to il-

lustrate such inter-endpoint dependencies through exchanged

data. Case study on the PayPal API demonstrates the value of

adding dependency graphs to API documentation to support

rapid development and documentation of software systems.

Index Terms—APIs, inter-endpoint dependencies, API docu-

mentation.

I. INTRODUCTION

N MODERN software architectures, Application Program-

ming Interfaces (APIs) serve as the primary mechanism for

exposing the functionalities offered by entire software appli-

cations or even components, to other applications, compo-

nents, or services of any kind. An API exposes a set of end-

points that, when invoked by a consumer, execute specific

server-side functionality, which results in a response sent back

to the client, regardless of the technologies used on either

side.

I

APIs are developed both for integrating components within

applications and as standalone software products. In either

case, their complexity necessitates comprehensive documen-

tation to support their development, maintenance, and integra-

tion. Typical API documentation usually follows standards

such as OpenAPI1, or comes in the form of de-facto formats

1 OpenAPI: https://www.openapis.org/

introduced by tools, such as Postman2 collections. Any such

kind of documentation provides the schema of the request and

response of every endpoint, data types and descriptions, and

possibly full examples of API calls with data.

However, it usually treats each endpoint as an indepen-

dent service, whereas an API is a collection of interacting

endpoints that collectively can be used to implement pieces

of business logic. To do this effectively, it is essential that

developers have information not only about how to call each

endpoint, but also about all its possible interactions with

other endpoints that either consume output or provide input

data. This work focuses on the discovery, modeling and rep-

resentation of such interactions in a way that provides addi-

tional practically useful documentation for the integration of

APIs into software components of any kind.

II. RELATED WORK

Prior research has explored ways to facilitate the proper

utilization of APIs by identifying the constraints that must

be met when interacting with them. A wide area of research

investigates techniques for identifying interdependencies

among input parameters within (single) API calls, with the

goal of facilitating the construction of syntactically and se-

mantically valid API requests.

Oostvogels et al. [1] attempted to analyze and incorporate

inter-parameter constraints within API documentation. These

constraints define rules whereby the existence or valid values

of certain input parameters in an API call depend on the pres-

ence or values of other parameters. To address the absence of

structured representation for such constraints in existing docu-

mentation, a new specification language was created as an ex-

tension to the OpenAPI specification to incorporate this infor-

mation. Martin-Lopez et al. ([2], [3], [4]) also focused on in-

ter-parameter dependencies, proposing a Domain Specific

2 Postman: https://www.postman.com/

Enhancing API documentation by inter-endpoint

dependency graphs

Panagiotis Papadeas
0009-0003-3012-0089

Software Engineering Lab, National Technical

University of Athens. Zografos 15780, Greece

Email: papadeas@cs.ntua.gr

Dimitrios Gerokonstantis
0009-0004-0950-8414

Software Engineering Lab, National Technical

University of Athens. Zografos 15780, Greece

Email: dgerokonstantis@cs.ntua.gr

Christos Hadjichristofi
0009-0000-7976-8749

Software Engineering Lab, National Technical

University of Athens. Zografos 15780, Greece

Email: hadjichristofi_ch@mail.ntua.gr

Vassilios Vescoukis
0000-0002-5360-8349

Software Engineering Lab and Geoinformation

Center, National Technical University of Athens.

Zografos 15780, Greece

Email: v.vescoukis@cs.ntua.gr

Proceedings of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 357–362

DOI: 10.15439/2025F8035
ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI 357 Topical area: Software, System and Service Engineering

Language known as IDL (Inter-parameter Dependency Lan-

guage) to describe these dependencies. Both studies focus on

interdependencies of input parameters for a specific call ra-

ther than on inter-endpoint dependencies which is our area of

interest.

Wu et al. [5] proposed an additional method that detects

“dependency constraints on parameters”, leading to the devel-

opment of the INDICATOR system, which analyzes docu-

mentation and SDKs to identify constraint candidates and

then validates them through testing. The INDICATOR system

investigates these producer-consumer relationships based on

the names and types of parameters. However, it does not focus

on systematically extracting or documenting these relation-

ships.

Another related area of research concentrates on identify-

ing interdependencies across different operations of Web Ser-

vices and APIs for testing. The work of Bai et al. [6] aims to

automatically generate test cases from WSDL specifications

with respect to the dependencies among various operations.

One of the dependency types examined is input/output de-

pendencies (IOD), which represent inter-endpoint dependen-

cies. However, this approach limits the examination of inter-

endpoint dependencies to aspects directly related to test case

generation, which aligns with the focus of their study.

The study of Atlidakis et al. [7] introduces REST-ler, a tool

that analyzes Swagger specifications for RESTful APIs, auto-

matically identifies object types required by a request that

have been produced by previous ones, generates tests with re-

spect to these dependencies and dynamically infers which re-

quest sequences are valid. However, this inter-endpoint anal-

ysis aims mainly to automatically generate and execute mean-

ingful and correct test cases, while adhering to these depend-

encies. Consequently, no documentation regarding the inter-

endpoint dependencies is generated.

The study conducted by Bertolino et al. [8] aims to extract

behavioral information regarding how users should invoke a

Web Service. This method, called StrawBerry, examines the

WSDL document and identifies dependencies between the

operations of the Web Service based solely on types of input

and output parameters. A behavior protocol automaton is gen-

erated, indicating the dependencies and data transfers among

various operations of the Web Service. However, this analysis

relies on the presence of a WSDL specification.

III. INTER-ENDPOINT DEPENDENCIES

An "inter-endpoint dependency" is an interaction between

API endpoints. If invoking endpoint Y requires input data re-

ceived from a call to endpoint X, then the required call order

is (X, Y) and thus we say that Y "depends" on X. As an ex-

ample, consider the hypothetical Flight Booking API illus-

trated in Fig 1, along with a sample invocation of its end-

points. The top-level nodes represent API endpoints, while

the corresponding JSON response schemas and the example

responses appear beneath each endpoint. Directed edges indi-

cate the data flow between endpoints.

Fig 1. Production and consumption of data in API call sequences

The call to the /airports endpoint returns a list with all avail-

able airports, including their identifiers (airport_id). The fol-

lowing call to /flights takes as input, as a path parameter, the

id of one of these airports (102, as shown in the example) and

returns information about available flights departing from that

airport. This is a body-path dependency, as a data element

from the response body of the first call is used as a path pa-

rameter in the second call.

Subsequently, the /flight endpoint call takes as input, as the

request body this time, all the details of one of the flights re-

turned by the second call (the one with id=XYZ990, in the

example) along with a path parameter that points to a passen-

ger and performs the booking for that flight and passenger.

This represents a body-body dependency, as the request body

of the third call requires a data object included in the response

body of the second call. Similarly, in body-query dependen-

cies the value of a query parameter comes from a value con-

tained in some attribute of a response body from a previous

call. Notably, inter-endpoint dependencies can be identified

by more than one attributes.

Examining inter-endpoint dependencies goes beyond typi-

cal API documentation by revealing the correct sequences and

prerequisites of API calls. This knowledge eases the imple-

mentation of requests with valid inputs and helps discover en-

tire paths that indicate the semantically correct order of end-

point invocation. As such, it can accelerate integration with

third-party APIs by identifying valid call sequences. In mi-

croservice architectures, it also supports—and can even par-

tially automate—the orchestration control flow. Finally, for

API developers, it serves as a valuable reference for under-

standing data flow, maintaining consistency, and onboarding

new team members.

This work focuses on the discovery and documentation of

API inter-endpoint dependencies by introducing algorithms

as well as a tool to discover, analyze, and visualize them using

a directed graph, whose nodes represent the API endpoints

and each directed edge represents the complete or partial con-

sumption of data returned by the origin, by the destination

endpoint.

358 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

IV. DISCOVERY OF DEPENDENCIES

Two approaches are demonstrated for discovering and an-

alyzing inter-endpoint dependencies: static and dynamic, in-

troduced in the diploma theses of Papadeas [9] and Gerokon-

stantis [10], respectively. The static approach is based on ex-

isting API documentation, whereas the dynamic captures and

analyzes API calls made during the real-world utilization of

the API.

4.1 Static analysis

Static analysis is entirely based on the information included

in the API documentation. It aims to identify inter-endpoint

dependencies using this documentation (structure, types),

which typically contains details about the input and output pa-

rameters of each endpoint. The goal is to identify dependen-

cies and generate a directed graph that shows all possible end-

point call sequences.

Static analysis takes its input from any standard API docu-

mentation, such as OpenAPI, or even from ad-hoc documen-

tation such as Postman, Apidog3, Firecamp4 or other similar

tools. It infers the proper sequence of API calls by analyzing

the results of pre-executed calls included in the documenta-

tion examples. Lack of pre-executed calls and insufficient ex-

amples reduces the capability of this analysis to discover de-

pendencies.

In our implementation, static analysis takes its input from

a Postman collection to create a representation of the directed

dependency graph. The Postman collection comes in as a

JSON file that contains information about responses, request

body, path and query parameters of each endpoint. The use of

Postman collections has been chosen for illustration purposes

only: any structured parsable object containing the same data

can be used instead, and the results will still rely on the com-

pleteness of metadata included in the documentation.

A typical context where static analysis can be performed,

is when we have some kind of documentation about an API,

and we don’t know anything about the proper sequence of

endpoint calls or possible use cases of the API. The graph pro-

duced by the static analysis helps us get a first view of the API

usage flow, as it shows how endpoints relate to each other.

The algorithm of the static analysis takes as input a post-

man collection file (Algorithm 1). For every endpoint of the

API it stores information about its parameters including name,

value and type of each parameter in a set named Parameters-

Set (lines 1-5 Algorithm 1). It also stores the response of each

endpoint in a separate set named AttributesSet including the

name, value and type of each attribute in the response (lines

6-10 Algorithm 1). Then it proceeds to compare the two sets

to discover dependencies (lines 11-12 Algorithm 1).

Each dependency can be identified either by matching the

values of parameters with the values of responses exchanged

between endpoints in call examples (Algorithm 2), or by

matching keys instead (Algorithm 3).

The algorithm compares the two sets to find every pair of

attributes and parameters that have the same value (or name,

3 Apidog: API Development Tool - https://apidog.com

respectively), type and are not part of the same endpoint (lines

1-4 Algorithm 2 and Algorithm 3 respectively). For each case

where a match has been identified, a new edge is added to the

graph, along with the relevant information regarding the de-

pendent endpoints (lines 5-8 Algorithm 2, 3).

Algorithm 1. Static inter-endpoint dependency analysis

 1. Read postman_collection.json as Input
 2.

 3. foreach endpoint in Input do

 4. foreach parameter in endpoint do
 5. ADD(parameter(name, value, type)) TO SET

 named ParametersSet
 8.

 9. foreach endpoint in Input do

10. foreach response in endpoint do
11. ADD(attribute(name, value, type)) TO SET

 named AttributesSet
14.

15. DependencyGraphByValues(ParametersSet, AttributesSet)

16. DependencyGraphByNames(ParametersSet, AttributesSet)

Algorithm 2. DependencyGraphByValues

 1. Procedure DependencyGraphByValues

 2.

 3. foreach parameter in ParametersSet do
 4. foreach attribute in AttributesSet do

 5. if parameter.value == attribute.value AND
 parameter.type == attribute.type AND

 endpoint(parameter) != endpoint(attribute)

 then
 6. ADD(dependency(endpoint(parameter),

 endpoint(attribute)))
 TO LIST named Dependencies

 7.

 8. return Dependencies

Algorithm 3. DependencyGraphByNames

 1. Procedure DependencyGraphByNames

 2.
 3. foreach parameter in ParametersSet do

 4. foreach attribute in AttributesSet do

 5. if parameter.name == attribute.name AND
 6. parameter.type == attribute.type AND

 7. endpoint(parameter) != endpoint(attribute)
 then

 8. ADD(dependency(endpoint(parameter),

 endpoint(attribute)))
 TO LIST named Dependencies

12.

13. return Dependencies

The second way of dependency identification, by compar-

ing only the keys of parameters, has been proven to be useful

in cases where the collection does not contain many examples

of pre-executed calls and there isn’t enough information re-

garding each endpoint. In that case, the only way a depend-

ency could be inferred is by comparing keys between param-

eters and responses assuming that common keys could also

imply dependent values.

Static analysis will usually discover a greater-than-actual

number of inter-endpoint dependencies due to common key-

value patterns across endpoints. For example, the frequent use

of generic keys like “ID” can falsely suggest dependencies

between unrelated endpoints. These findings are often hard to

evaluate without access to actual API calls or a good under-

standing of the API's semantics. The goal of this analysis is to

4 Firecamp: Open Source Postman Alternative - https://firecamp.io

PANAGIOTIS PAPADEAS ET AL.: ENHANCING API DOCUMENTATION BY INTER-ENDPOINT DEPENDENCY GRAPHS 359

identify all possible dependencies, including dependencies

which are considered “noise”.

Dynamic analysis

The dynamic analysis takes a different approach, aiming to

discover inter-endpoint dependencies without using any kind

of documentation. It collects information from HTTP requests

and responses, by monitoring actual calls using a "man-in-

the-middle" agent that captures HTTP traffic. The API traffic

is logged and then the extraction of inter-endpoint dependen-

cies is possible. Notably, this method follows a reverse engi-

neering approach, analyzing already implemented but still un-

documented APIs, to infer inter-endpoint dependencies.

Dynamic analysis also identifies all types of dependencies,

just as static analysis does. However, in the case of body-path

dependencies, since it is unclear which segments of a URL

correspond to path parameters, the algorithm treats all URL

segments as such. This allows it to identify the corresponding

dependencies, introducing minimal noise.

In cases where the API is consumed through a web

frontend, API calls can be captured by executing use cases

while interacting with the frontend in a browser. In the context

of an API ecosystem implementing orchestration, as in a mi-

croservices architecture, it is possible to capture API calls as

part of the interaction between the orchestrator component

and the internal components of the architecture.

In any of the approaches mentioned above, to capture the

HTTP traffic resulting from real-world interactions with the

API, a "mediator" is required, that can be implemented in sev-

eral ways, such as the following:

1. a standalone mediator component to which API calls

would be directed, responsible for forwarding the requests to

the API server, returning the responses to the client, and re-

cording information about the API calls; such a system was

implemented in the context of this paper,

2. a browser extension that captures the incoming and out-

going traffic between the browser and the API while the user

navigates through the User Interface interacting with the API,

3. an internal component within API Gateways, enabling

the collection of multi-client data derived from the interac-

tions of multiple external entities with the API.

Similar to the static method, the outcome of the dynamic

analysis is a directed dependency graph of the same type. The

input is a log file generated by the mediator, which contains

information about the executed API calls.

The dynamic analysis algorithm comprises two main com-

ponents: the parsing of the log file and extraction of value-

specific information (Algorithm 4), and the identification of

matches among the extracted values (Algorithm 5). Specifi-

cally, Algorithm 4 processes the input log file, assigns a se-

quence number to each API Call reflecting its execution order

within the use case it belongs to, and constructs two diction-

aries, REQUEST_VALUES and RESPONSE_VALUES,

which store information about every value encountered in

API request and response messages respectively. For each

identified value, the dictionaries record the associated API

call’s URL and sequence number, the identifier ("tag") of the

corresponding use case, the value’s name, and its inferred data

type.

The dictionaries constructed in Algorithm 4 serve as inputs

to Algorithm 5, which is responsible for identifying matches

between values appearing in request and response messages.

Specifically, for each value V found in the response body of

an API call RES, the algorithm examines whether V also ap-

pears as a request parameter (of any type) in any subsequent

API calls (REQ₁, REQ₂, ..., REQₙ) within the same use case.

If such matches are found, the algorithm adds a directed

dependency edge from RES to each matching REQᵢ, provided

the following conditions are met:

• the data type of V matches in both RES and REQᵢ, as

determined by type inference,

• RES and REQᵢ correspond to distinct API endpoints, and

• REQᵢ occurs after RES in the execution order of the use

case.

Algorithm 4. Dynamic inter-endpoint dependency analysis

 1. Initialization: Assign sequence numbers to the
 calls of every use case

 2.
 3. foreach call in Input do

 4. if call.body then

 5. foreach parameter in call.body do
 6. REQ_VALUES[parameter.value].APPEND({

 7. url: call.url, seq: call.sequence_number,
 8. tag: call.tag, paramName: parameter.name,

 9. paramType: parameter.type})

10.
11. if call.response then

12. foreach attribute in call.response do
13. RES_VALUES[attribute.value].APPEND({

14. url: call.url, seq: call.sequence_number,
15. tag: call.tag, attrName: attribute.name,

16. attrType: attribute.type})

17.

18. ComputeDependencyGraph(REQ_VALUES, RES_VALUES)

Algorithm 5. ComputeDependencyGraph

 1. Procedure ComputeDependencyGraph

 2. foreach value in RES_VALUES do

 3. if value in REQ_VALUES then

 4. foreach appearRes in RES_VALUES[value] do

 5. foreach appearReq in REQ_VALUES[value] do

 6. if appearRes.paramType ==

 appearReq.paramType and

 7. appearRes.url ≠ appearReq.url and

 8. appearRes.seq < appearReq.seq and

 9. appearRes.tag == appearReq.tag

10. then

11. DEPENDENCY_GRAPH[

 (appearRes.url, appearReq.url)

].APPEND({

12. fromAttribute: appearRes.paramName,

13. toAttribute: appearReq.paramName

14. })

A key difference from the static method is that dynamic

analysis restricts comparisons to subsequent API calls of the

same use case, focusing on the dependencies most likely to be

semantically correct within the context of the specific API.

While dynamic analysis can generate dependency docu-

mentation even for completely undocumented APIs, it also

has several challenges, with the primary one being that the

discovery of all dependencies requires the execution of calls

between all dependent endpoints, which may not occur during

the logging.

360 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

For visualizing the resulting dependency graph, a tool

named RADAR5 (REST API Dependencies and Analysis of

Relationships) was implemented [11] and is available at ra-

dar.softlab.ntua.gr. RADAR takes as input either the Postman

Collection of the API or a log file containing records of actual

API calls, for static and dynamic analysis, respectively. After

the user configures certain analysis parameters, RADAR per-

forms either static or dynamic analysis to detect inter-end-

point dependencies, and generates a directed dependency

graph, as discussed above.

V. CASE STUDY

The two dependency analysis methods were applied,

among others, to the PayPal API sandbox environment6.

The PayPal API provides a wide range of functionalities,

including the creation and management of products, orders,

invoices, subscriptions, payments, and disputes. The com-

plexity and size of such an API necessitate conducting de-

pendency analysis to facilitate and guide its utilization. Be-

low, we examine how static and dynamic inter-endpoint de-

pendency analysis can assist a user of this API in creating and

tracking a product order.

Static

For static analysis, we supply RADAR with the Postman

Collection of the PayPal API7, as downloaded from the Post-

man Public API Network, without any modifications. The

section of the resulting dependency graph including endpoints

related to product orders is shown in Fig 2 below. While the

identified dependency path facilitates the process of creating

an order and handling the payment, it lacks details regarding

order tracking. Static analysis was unable to identify depend-

encies between the tracking endpoints and the others in the

graph, as the examples in the Postman Collection were not

adequate. Additionally, the static analysis graph contains

some edges that are either redundant for executing the specific

use case or even semantically incorrect.

Fig 2. Order creation and tracking use case - Static dependency graph

For instance, displaying product details before creating a

new product (Fig 2, edge C1→1) offers no practical value in

the context of the “order management” use case, while author-

izing a payment for an order before the order itself has been

created, as the graph suggests (Fig 2, edge C2→2), seems not

5 R.A.D.A.R by NTUA Softlab: https://radar.softlab.ntua.gr
6 PayPal REST APIs: https://developer.paypal.com/api/rest

(date accessed: 05/2024)

correct and should rather be classified as noise. As demon-

strated below, dynamic analysis mitigates these issues.

 Dynamic

Dynamic analysis involves logging interactions with the

API relevant to product orders. To do this, we set up an ex-

ample use case, in which we begin by creating/updating a

product and generating an order for this. After that, we initiate

the payment process by authorizing and capturing the pay-

ment, and conclude by adding tracking information for the or-

der. This sequence is illustrated in Fig 3.

Fig 3. Order creation and tracking use case - sequence diagram

The dependency graph resulting from the dynamic analysis

of the log file for this use case is shown in Fig 4, where API

calls are enumerated based on their numbering in the se-

quence diagram above, and a key dependency path is high-

lighted.

Fig 4. Order creation and tracking use case - dynamic dependency

graph

7 PayPal API Postman Collection (date accessed: 05/2024):

https://www.postman.com/paypal/paypal-public-api-workspace/overview

: Postman-backend : Catalog

Products API

: Orders

API

: Payments

API

: Shipment

Tracking API

1: POST Create product(createProductReqBody : Create product

request = Create product request) : Create product response

26: 204 No Content

25: PUT Update or cancel tracking information for PayPal transaction(tracking_id : string = tracking_number : string,

updateCarrierReqBody : Update carrier request = Update carrier request)

24: (Show tracking information response): 200 OK

23: GET Show tracking information(tracking_id : string = tracking_number : string) : Show tracking information response

22: (AddTrackingInformationResponse): 200 OK

21: POST Add tracking information for multiple PayPal transactions(AddTrackingInfoReqBody : AddTrackingInformationRequest =

AddTrackingInformationRequest) : AddTrackingInformationResponse

20: (Captured Payment Details): 200 OK

19: GET Show captured payment details(capture_id : string = id : string) : Captured Payment Details

18: (Capture Authorized Payment Response): 201 Created

17: POST Capture authorized payment(authorization_id : string = id : string,

CaptureAuthPaymentReqBody : Capture Authorized Payment Request = Capture Authorized

Payment Request) : Capture Authorized Payment Response

16: (Details for authorized payment): 200 OK

15: GET Show details for authorized payment(authorization_id : string = id : string) :

Details for authorized payment

14: (Authorize payment for order response): 201 Created

13: POST Authorize payment for order(order_id : string = id : string) : Authorize payment for order

response

12: (Show order details response (with shipping)): 200 OK

11: GET Show order details(order_id : string = id : string) : Show order details response (with shipping)

10: 204 No Content

9: PATCH Update order(order_id : string = id : string, updateOrderReqBody : Update Order Request = Update Order . ..

8: (Create Order Response): 201 Created

7: POST Create order(createOrderReqBody : Create Order Request = Create Order Request) : Create Order Response

6: 204 No Content

5: PATCH Update product(product_id : string = id : string,

updateProductReqBody : UpdatePath = UpdatePath)

4: (Show product details response): 200 OK

3: GET Show product details(product_id : string = id :

string) : Show product details response

2: (Create product response): 201 Created

PANAGIOTIS PAPADEAS ET AL.: ENHANCING API DOCUMENTATION BY INTER-ENDPOINT DEPENDENCY GRAPHS 361

The highlighted dependency path can be traced back to

the reference use case sequence diagram, providing the API

user with guidance on how to use the API to implement the

logic of the "order management" use case.

Specifically, the generated graph guides the user to first

create a product and optionally retrieve information about it

(calls 1, 3), then create an order for this product and possibly

retrieve relative details (calls 7, 11), authorize and capture

the payment (calls 13–19), and finally add and potentially

update tracking information (calls 21, 23). In contrast to

static analysis, the dynamic dependency graph proved to be

more comprehensive while avoiding misleading edges.

VI. DISCUSSION

Like all software documentation, API documentation

must be complete, detailed, and kept up to date to support

communication among technical staff and stakeholders. As

APIs play a central role in software integration, better docu-

mentation leads to more efficient development and fewer er-

rors and backtracks.

This work aims to enhance API documentation by adding

information on data producers and consumers among end-

points, representing their dependencies. Such an "endpoint

dependency graph" helps developers better understand and

integrate complex third-party or in-house APIs. We propose

two methods to identify these dependencies based on avail-

able documentation and runtime access, providing a

roadmap to accelerate API integration.

The effectiveness of static analysis in identifying depen-

dencies relies on the information in the API’s static docu-

mentation, particularly the examples included. On the other

hand, the effectiveness of dynamic analysis in the same task

depends on the extent to which the executed use cases cover

a broad range of the API’s functionalities, theoretically all of

them.

Generally, the dynamic approach produces less, yet not

zero, noise, particularly in body-path dependencies derived

from URL segments that are not actually path parameters. In

static analysis, which runs exhaustive comparisons between

every pair of endpoints, noise is created by ambiguities that

do not allow to filter out irrelevant dependencies.

Overall, considering the statistics derived from the results

of the two analyses across several APIs—including the Ope-

nAI API and the previously examined PayPal API—we ob-

serve that dynamic analysis detects fewer edges in the gener-

ated graph: 52 vs. 92 for OpenAI and 209 vs. 724 for Pay-

Pal. Furthermore, dynamic analysis identifies more depen-

dent attributes for each edge, offering a deeper understand-

ing of how two endpoints are interdependent. For example,

for the OpenAI API, an average of 1.22 dependent attributes

per edge was found in the static analysis and 2.53 in the dy-

namic analysis, while for the PayPal API, 2.13 dependent at-

tributes per edge were found in the static analysis and 14.19

in the dynamic analysis.

Considering the limitations of each method, as well as the

conclusions drawn from their comparative study and appli-

cation to the API examined, it becomes clear when each

method is most suitable: when any static documentation

such as a Postman Collection with enough examples is avail-

able, dependency documentation for the API can be gener-

ated using static analysis. When logging is possible, dy-

namic analysis can offer higher accuracy and completeness

of the results in the context of the observed use cases, but at

the cost of greater effort that comes with logging. RADAR

supports both methods and although it has space for im-

provement, it produces useful data and visualizations of in-

ter-endpoint API dependencies.

REFERENCES

[1] N. Oostvogels, J. De Koster, and W. De Meuter, “Inter-parameter

Constraints in Contemporary Web APIs,” 2017, pp. 323–335. doi:

10.1007/978-3-319-60131-1_18.

[2] A. Martin-Lopez, “Automated analysis of inter-parameter dependen-

cies in web APIs,” in Proceedings of the ACM/IEEE 42nd Interna-

tional Conference on Software Engineering: Companion Proceedings,

New York, NY, USA: ACM, Jun. 2020, pp. 140–142. doi:

10.1145/3377812.3382173.

[3] A. Martin-Lopez, S. Segura, C. Muller, and A. Ruiz-Cortes, “Specifi-

cation and Automated Analysis of Inter-Parameter Dependencies in

Web APIs,” IEEE Trans Serv Comput, vol. 15, no. 4, pp. 2342–2355,

Jul. 2022, doi: 10.1109/TSC.2021.3050610.

[4] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “A Catalogue of In-

ter-parameter Dependencies in RESTful Web APIs,” in Service-Ori-

ented Computing: 17th International Conference, ICSOC 2019,

Toulouse, France, October 28–31, 2019, Proceedings, Berlin, Heidel-

berg: Springer-Verlag, 2019, pp. 399–414. doi: 10.1007/978-3-030-

33702-5_31.

[5] Q. Wu, L. Wu, G. Liang, Q. Wang, T. Xie, and H. Mei, “Inferring de-

pendency constraints on parameters for web services,” in Proceedings

of the 22nd international conference on World Wide Web, in WWW

’13. New York, NY, USA: ACM, May 2013, pp. 1421–1432. doi:

10.1145/2488388.2488512.

[6] Xiaoying Bai, Wenli Dong, Wei-Tek Tsai, and Yinong Chen,

“WSDL-Based Automatic Test Case Generation for Web Services

Testing,” in IEEE International Workshop on Service-Oriented Sys-

tem Engineering (SOSE’05), IEEE, 2005, pp. 215–220. doi: 10.1109/

SOSE.2005.43.

[7] V. Atlidakis, P. Godefroid, and M. Polishchuk, “RESTler: Stateful

REST API Fuzzing,” in 2019 IEEE/ACM 41st International Confer-

ence on Software Engineering (ICSE), IEEE, May 2019, pp. 748–758.

doi: 10.1109/ICSE.2019.00083.

[8] A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli, “Automatic

synthesis of behavior protocols for composable web-services,” in Pro-

ceedings of the 7th joint meeting of the European software engineer-

ing conference and the ACM SIGSOFT symposium on The founda-

tions of software engineering, in ESEC/FSE ’09. New York, NY,

USA: ACM, Aug. 2009, pp. 141–150. doi: 10.1145/1595696.1595719.

[9] P. Papadeas, “Automatic generation of dependency documentation be-

tween endpoint calls of a REST API,” National Technical University

of Athens, 2023. Accessed: Apr. 27, 2025. [Online]. Available:

http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/18728

[10] D.-D. Gerokonstantis, “Dynamic Analysis of Inter-endpoint Depen-

dencies in RESTful APIs,” National Technical University of Athens,

2024. Accessed: Apr. 27, 2025. [Online]. Available: http://artemis.c-

slab.ece.ntua.gr:8080/jspui/handle/123456789/19419

[11] D. Lalias, “Web application for visualizing dependencies between

endpoints of a REST interface,” National Technical University of

Athens, 2024. Accessed: Apr. 27, 2025. [Online]. Available: http://

artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/19020

362 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

