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Abstract—This survey reviews Al goals and tools for: (1)
preparing educational materials, (2) interacting with teachers
and students, and (3) assessing the results and providing feedback
with (semi-)automatic methods. As a summary, we provide the
crucial challenges to be tackled and discuss the associated ethical
concerns.

Index Terms—Artificial Intelligence, Automated Assessment,
Higher Education, Large Language Models, Learning Analytics

I. INTRODUCTION

ECENT advancements in Artificial Intelligence (AI) and

Natural Language Processing (NLP), particularly the rise
of Large Language Models (LLMs), have transformed human-
computer interaction across domains. Significant changes are
evident in education, where artificial intelligence supports
students in their everyday studies and helps teachers deliver
material more engagingly and effectively [1].

A recent survey indicates that teachers now use Al more
often than students [2]. Our complementary survey reviews
NLP methods for course design, delivery, and personalised as-
sessment, including technical details and their implementation.
We discuss how these solutions are designed, integrated into
higher-education workflows, and evaluate their effectiveness
for both students and teachers. The listed solutions form a
strong basis for fully integrated, technology-aided education,
and we present an example Al-driven engineering course.

Our research questions are:

o What current approaches apply NLP to course design and

delivery?

o How do these methods fit educational settings?

« How can they be integrated into different course aspects?
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The survey follows the class flow. Section II reviews NLP
for course-content creation; Section III examines technology
that enhances live teaching. Section V covers automated
assessment, proctoring, and anti-cheat tools, and Section VI,
explores personalised learning systems. Finally, we outline
implementation challenges and ethics.

II. COURSE CONTENT CREATION & MODIFICATION

Designing a university course involves transforming ideas
into course materials that are engaging, academically sound,
and easy-to-follow [3], [4]. Al now supports instructors in this
process. Designing teaching material must consider principles
that support learning [5], [6], and how students learn and are
assessed [7]. In practice, a course is split into several lectures
— seminar, frontal, or interactive. While face-to-face teaching
remains dominant, innovative educational technologies reduce
student passivity, enabling them to interact and actively learn
the class material [8]. Student assessment remains delicate and
error-prone. Modern methods emphasize continuous home-
work and assignments, a mid-term checkpoint, and a final
written, oral, or project-based exam [9]. At course launch,
instructors draft a syllabus, a "contract" that defines objectives,
lecture sequence, assessment, and permitted tools [10]. Some
universities now ban student use of generative Al for home-
work [11]. Rather than prohibiting evolving tools, we advocate
channeling them, e.g., letting chatbots handle low-stakes as-
sessment to save instructor time. Al already cuts preparation
time: a 2024 survey of 144 instructional designers found
that 67% reported moderate-to-significant efficiency gains, and
64% let ChatGPT draft objectives or quizzes first [12].
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Fig. 1. Flowchart of subsequent steps in educational academic course delivery
and students’ assessment, up to the final certification. Note: light yellow are
boxes more in the focus of the instructor, and grey ones are more for students

Figure 1 summarises the course flow. In an Al-enhanced
version, instructors become supervisors and facilitators, while
Al acts as a coach, evaluator, and feedback provider [13].
We will touch especially on the important ethical aspects and
challenges while working on the creation of educational tools.
The crucial questions here are:

1) How can AI/LLMs generate lecture materials and exer-

cises?

2) How can technology structure the course and each
session?

3) How can automated tools improve grading and feed-
back?

4) How do we evaluate the quality of Al-prepared material?
5) What are the pros and cons of teacher—Al collaboration?

A. How can AI/LLMs generate lecture materials and exer-
cises?

Al tools can now draft lesson plans aligned with stan-
dards [14], [15], [16]. By specifying duration, lesson count,
learner profile, and desired outcomes, instructors obtain varied
analogies, examples, and explanations. Prompt engineering
is continually refined [17], and multiple versions can be
generated to suit individual students or fresh perspectives [18].

B. How can we use Al for detailed lesson planning and time
allocation?

ChatGPT-style assistants quickly produce weekly and daily
plans — topics, activities, assignments, assessments [19]. They
can also recommend external videos and readings and link
them to objectives, ensuring self-directed study complements
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the course [20]. Beyond text, Al can seed graphic-novel tasks,
game-based projects, and debate topics to deepen engage-
ment [21], [22], [23].

C. Grading and feedback generation

Timely, actionable feedback is hard at scale [24]. Al can
create individualized quizzes and instant comments, drawing
on prior performance, while human oversight preserves fair-
ness and limits bias [25], [26].

D. Materials quality evaluation

Al-generated content still requires a documented two-pass
human review: a subject-matter expert checks accuracy, then
an instructional designer ensures pedagogy and accessibility
[27], [28], [29]. Automated fact-checkers, readability analyz-
ers, and rubric-based scores (e.g., AIGDER > 85/100) flag
issues for revision [30], [31], [32], [33]. Student “muddiest-
point” feedback pinpoints residual confusion for rapid reme-
diation [34], [35], [36], [37], [38].

E. Interaction between instructors and Al

Instructors work in cycles—prompt, review, refine, and em-
bed pedagogy—when collaborating with Al. Attitudes range
from scepticism about bias and deskilling [39] to enthusiasm
for efficiency and creativity [40]. Empirical studies show that
training and guided use shift beliefs and improve outcomes
[41], [42].

ITII. TEACHING

Generative Al tools can create diversified and personalised
teaching materials and even automate routine "paper work"
such as emails, deadline checks and consistency control
[43]. Yet quality is essential; recent studies stress rigorous
evaluation, from re-using credible sources [46] to iterative
assessment protocols [44], [45].

Beyond content creation, Al supports real-time observation
of teaching and learning. A design study [47] foregrounds
learning-analytics dashboards -single screens aggregating key
indicators- for ongoing improvement. Surveys classify mul-
tiple dashboard types and confirm they mainly serve teacher
supervision [48]

A. Interactive content generation

Automatic content or question generation hinges on care-
fully crafted LLM prompts that spell out context, audience,
and difficulty. Retrieval-Augmented Generation can instead
feed the model verified knowledge before output [38].

B. Engaging lecture delivery

During lectures, Al can act as a creative co-
teacher—suggesting analogies or examples [49], powering
avatar instructors that field questions [50], and turning text
into images, videos or podcast teasers for multimedia slides
[51], [52]. Students can critique Al answers to hone critical
thinking and visualise experiments via dynamic images.
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C. Real-time learning process supervision

Real-time supervision captures how, not just what, students
learn. AI dashboards visualise engagement and performance
from digital environments [53]; open-learner models update
each learner’s knowledge profile [54]. Dashboards must stay
interpretable to be actionable [55], [56], [57]. Predictive
analytics within these dashboards can flag at-risk or low-
engagement students for prompt support [58], [59], [60], [61].

D. Al chatbot Q&A summaries and practice

LLM-powered chatbots have spread rapidly across higher
education. Surveys find enthusiasm tempered by doubts: ease
of use is clear, but cognitive gains are still debated [62],
[63]. When offered as optional study partners, chatbots can
scaffold distance or dyslexic learners through personalised
encouragement, summaries and practice prompts [64], [65].

IV. AID IN ACADEMIC ACTIVITIES
A. Coding assistance

One of the core competencies acquired by engineer-
ing and computer-science students is coding. Program-
ming is indispensable for many assessed projects. Require-
ments vary—Mathematical Computation students code in R,
Computer-Science majors in Python or Java, Robotics students
in low-level hardware languages—but all must solve complex
problems. Al-powered coding assistants (ChatGPT, Gemini,
Claude, Grok) now provide instant code generation, refactor-
ing, explanations and debugging via LLMs plus web search.

Recent work compared ChatGPT-assisted learners with self-
directed peers: final scores were similar, but ChatGPT users
debugged more, refined Al code and, citing ease-of-use,
planned to keep using the tool [66].

These findings show how Al tools scaffold programming at
every level, offering step-by-step guidance and fast debugging.
Effectiveness, however, hinges on good prompts and critical
evaluation; instructor-led prompt training markedly boosts
outcomes [67]. LLMs still struggle with large code-bases, may
hallucinate and often default to generic patterns. Over-reliance
can erode academic integrity, so institutions need guardrails
that balance tool use with independent problem-solving.

B. Academic writing aids

A review [68] groups modern Al writing tools into liter-
ature management, drafting, plagiarism checks, data analysis
and other features. They accelerate brainstorming by mining
vast corpora and adding predictive analytics throughout the
research workflow.

V. ASSESSMENT
A. Assessment generation

Automated assessment is now a popular NLP topic because
it saves teachers time and money. Its goal is to achieve scores
similar to human graders with far less effort and cost. Many
methods exist (e.g., semantic similarity), but large language
models (LLMs) currently dominate. Their chief flaw is hallu-
cination—inventing incorrect information, which undermines

reliability. One mitigation is retrieval-augmented generation
(RAG): a standard LLLM linked to a vetted knowledge base.
Retrieving evidence relevant to each question reduces hallu-
cination and equalises scores [69], though irrelevant hits can
still occur. LLMs further support Al-assisted grading [70]; yet
their human-like prose raises doubts about assessment validity.
Human oversight, therefore, remains essential [71].

LLM-generated assessments can still be inconsistent. The
“LLM-as-a-judge” pattern—a second model auditing the
first—adds a control layer that flags misgraded answers and
outliers with high accuracy [72].

B. Automated final exam / exam proctoring

Al-driven NLP already handles full exams—multiple-choice
and essay tasks. Studies confirm feasibility [73] but show score
distributions can narrow, and domain-knowledge gaps (e.g.,
biomedical items) cut accuracy [74]. Essay scoring benefits
from LLM text processing [75], yet quality hinges on prompt
tuning: focusing on different rubric points shifts grades [76].
Performance also depends on language coverage [77], and
research now extends LLM scoring to oral exams [78]. Item-
response theory (IRT) frameworks could anchor Al scoring,
replacing today’s opaque heuristics [?].

C. Anti-cheat solutions

Anti-cheat tools remain vital [79]. Traditional detectors
such as Turnitin catch plagiarism [80], while stylometric
authorship checks compare writing style [81]. These methods
falter on short answers. GPT-based classifiers now spot Al-
generated text but still produce false positives. The most
reliable—though intrusive—approaches monitor cursor or
keystrokes during exams [82], [83].

VI. PERSONALIZED LEARNING

Personalized learning represents a fundamental shift in the
educational process, aiming to replace the singular, stan-
dardized educational experience with a customised, learner-
centred one delivered via intelligent tutoring systems, content
recommendations or adaptive assessments.

A. Adaptive assessments

This protocol first creates a large RAG-based question bank,
each item labelled for difficulty and topic. The instructor
sets the time window, duration, item count and proctoring;
the system then randomises—or adaptively selects—questions
for every student. Learners log in while camera, safe-browser
and image-recognition tools safeguard integrity. Built-in timers
show time left and auto-submit; real-time alerts flag suspicious
activity. After all submissions, RAG compares answers with
a rubric, awards partial credit and exports grades to the LMS.
Plagiarism scans and on-the-fly follow-up questions protect
originality, while analytics refine subsequent tests.

Considerably less research views these tests from the
learner’s side. Co-designing Al-based assessments with stu-
dents can boost critical thinking and creativity [?], and meta-
awareness that items are machine-generated maps to Bloom’s
highest levels—analysis, synthesis and evaluation [85].
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B. Personalized feedback

Providing reasonable feedback is a crucial part of the whole
Al-supported exam-conducting ecosystem. It helps students fill
gaps in knowledge, focus on the right areas, and understand
the material faster. Research shows that the best feedback
is timely, specific, and actionable [86]. Equally important
is wording it pedagogically so it truly motivates learning.
The most common solution today is a data-driven approach:
transformer models (e.g., BERT) can evaluate many aspects
of an answer through their understanding of context [87]. Yet
merging expert knowledge with Al feedback is challenging;
LLM comments are often generic and miss key details [86].
LLMs may also hallucinate—studies report that about 15%
of feedback can be totally incorrect [86]. Prompt design,
therefore, matters: telling a model to “behave as a teacher,”
giving step-by-step instructions, and asking it to analyse first
and comment second all raise quality.

Despite these gains, the model is still far from perfect,
so retrieval-augmented generation (RAG) can further improve
performance. RAG combines an LLM with local data sources
such as presentations or notes, ensuring feedback stays strictly
aligned with course material [88]. A complementary method
splits the task among several specialised agents, each handling
a smaller part; this helps catch mistakes and adjust tone [88].

Feedback during learning is tentative diagnostic informa-
tion, so a relationship of mutual trust between learner and
instructor is essential. When automation intervenes, its effect
on that relationship must be monitored; simple chatbots can
bore users and discourage sustained dialogue.

LLM-based feedback systems have now been piloted in
real courses, and learner perceptions are being evaluated [89].
Careful messaging can promote reflection on one’s learning
situation [90], and design choices—topic coverage, timing,
tone—must be optimised for each activity [91].

VII. CHALLENGES & FUTURE DIRECTIONS

In recent years, many studies have explored the possibilities,
challenges and threats of AI tools in education. Yet most
merely list what Al can do; few run carefully designed
experiments to test usability and reliability. The key task
now is to conduct comparative studies—contrasting Al-based
recommendations, testing, grading and feedback with long-
standing practices. For instance, we should compare LLM re-
sources with earlier crowd-sourcing platforms used by students
before chatbots.

We must also continuously measure how well up-to-date,
fine-tuned and well-prompted LLMs acquire and refresh
knowledge.

Moreover, ethical challenges loom large; automated tools
must remain especially sensitive to educational contexts. As
Al is introduced, we must be aware of data and algorithmic
biases. Models trained on large corpora can mirror societal,
cultural or institutional prejudices, prioritising students by past
performance or learning style and producing unfair outcomes
tied to race, language, socioeconomic status or disability.
Thus transparency and explainability are needed for every
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recommendation or assessment, yet remain elusive because
LLMs are inherently opaque.

Student privacy is also at stake, particularly under learning
surveillance. Over-reliance on automation, coupled with inad-
equate informed consent, can erode professional judgement on
both sides of the classroom. Unequal digital access—whether
through language or technology—may widen existing educa-
tional gaps.

Mitigation demands careful design: human-in-the-loop over-
sight, informed student choice, and channels for learner voice.
Done well, Al frees teachers to spend more quality, person-
alised time with each student.
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