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Abstract—This survey reviews AI goals and tools for: (1)
preparing educational materials, (2) interacting with teachers
and students, and (3) assessing the results and providing feedback
with (semi-)automatic methods. As a summary, we provide the
crucial challenges to be tackled and discuss the associated ethical
concerns.
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I. INTRODUCTION

R
ECENT advancements in Artificial Intelligence (AI) and

Natural Language Processing (NLP), particularly the rise

of Large Language Models (LLMs), have transformed human-

computer interaction across domains. Significant changes are

evident in education, where artificial intelligence supports

students in their everyday studies and helps teachers deliver

material more engagingly and effectively [1].

A recent survey indicates that teachers now use AI more

often than students [2]. Our complementary survey reviews

NLP methods for course design, delivery, and personalised as-

sessment, including technical details and their implementation.

We discuss how these solutions are designed, integrated into

higher-education workflows, and evaluate their effectiveness

for both students and teachers. The listed solutions form a

strong basis for fully integrated, technology-aided education,

and we present an example AI-driven engineering course.

Our research questions are:

• What current approaches apply NLP to course design and

delivery?

• How do these methods fit educational settings?

• How can they be integrated into different course aspects?

The survey follows the class flow. Section II reviews NLP

for course-content creation; Section III examines technology

that enhances live teaching. Section V covers automated

assessment, proctoring, and anti-cheat tools, and Section VI,

explores personalised learning systems. Finally, we outline

implementation challenges and ethics.

II. COURSE CONTENT CREATION & MODIFICATION

Designing a university course involves transforming ideas

into course materials that are engaging, academically sound,

and easy-to-follow [3], [4]. AI now supports instructors in this

process. Designing teaching material must consider principles

that support learning [5], [6], and how students learn and are

assessed [7]. In practice, a course is split into several lectures

– seminar, frontal, or interactive. While face-to-face teaching

remains dominant, innovative educational technologies reduce

student passivity, enabling them to interact and actively learn

the class material [8]. Student assessment remains delicate and

error-prone. Modern methods emphasize continuous home-

work and assignments, a mid-term checkpoint, and a final

written, oral, or project-based exam [9]. At course launch,

instructors draft a syllabus, a "contract" that defines objectives,

lecture sequence, assessment, and permitted tools [10]. Some

universities now ban student use of generative AI for home-

work [11]. Rather than prohibiting evolving tools, we advocate

channeling them, e.g., letting chatbots handle low-stakes as-

sessment to save instructor time. AI already cuts preparation

time: a 2024 survey of 144 instructional designers found

that 67% reported moderate-to-significant efficiency gains, and

64% let ChatGPT draft objectives or quizzes first [12].
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Fig. 1. Flowchart of subsequent steps in educational academic course delivery
and students’ assessment, up to the final certification. Note: light yellow are
boxes more in the focus of the instructor, and grey ones are more for students

Figure 1 summarises the course flow. In an AI-enhanced

version, instructors become supervisors and facilitators, while

AI acts as a coach, evaluator, and feedback provider [13].

We will touch especially on the important ethical aspects and

challenges while working on the creation of educational tools.

The crucial questions here are:

1) How can AI/LLMs generate lecture materials and exer-

cises?

2) How can technology structure the course and each

session?

3) How can automated tools improve grading and feed-

back?

4) How do we evaluate the quality of AI-prepared material?

5) What are the pros and cons of teacher–AI collaboration?

A. How can AI/LLMs generate lecture materials and exer-

cises?

AI tools can now draft lesson plans aligned with stan-

dards [14], [15], [16]. By specifying duration, lesson count,

learner profile, and desired outcomes, instructors obtain varied

analogies, examples, and explanations. Prompt engineering

is continually refined [17], and multiple versions can be

generated to suit individual students or fresh perspectives [18].

B. How can we use AI for detailed lesson planning and time

allocation?

ChatGPT-style assistants quickly produce weekly and daily

plans – topics, activities, assignments, assessments [19]. They

can also recommend external videos and readings and link

them to objectives, ensuring self-directed study complements

the course [20]. Beyond text, AI can seed graphic-novel tasks,

game-based projects, and debate topics to deepen engage-

ment [21], [22], [23].

C. Grading and feedback generation

Timely, actionable feedback is hard at scale [24]. AI can

create individualized quizzes and instant comments, drawing

on prior performance, while human oversight preserves fair-

ness and limits bias [25], [26].

D. Materials quality evaluation

AI-generated content still requires a documented two-pass

human review: a subject-matter expert checks accuracy, then

an instructional designer ensures pedagogy and accessibility

[27], [28], [29]. Automated fact-checkers, readability analyz-

ers, and rubric-based scores (e.g., AIGDER ≥ 85/100) flag

issues for revision [30], [31], [32], [33]. Student “muddiest-

point” feedback pinpoints residual confusion for rapid reme-

diation [34], [35], [36], [37], [38].

E. Interaction between instructors and AI

Instructors work in cycles—prompt, review, refine, and em-

bed pedagogy—when collaborating with AI. Attitudes range

from scepticism about bias and deskilling [39] to enthusiasm

for efficiency and creativity [40]. Empirical studies show that

training and guided use shift beliefs and improve outcomes

[41], [42].

III. TEACHING

Generative AI tools can create diversified and personalised

teaching materials and even automate routine "paper work"

such as emails, deadline checks and consistency control

[43]. Yet quality is essential; recent studies stress rigorous

evaluation, from re-using credible sources [46] to iterative

assessment protocols [44], [45].

Beyond content creation, AI supports real-time observation

of teaching and learning. A design study [47] foregrounds

learning-analytics dashboards -single screens aggregating key

indicators- for ongoing improvement. Surveys classify mul-

tiple dashboard types and confirm they mainly serve teacher

supervision [48]

A. Interactive content generation

Automatic content or question generation hinges on care-

fully crafted LLM prompts that spell out context, audience,

and difficulty. Retrieval-Augmented Generation can instead

feed the model verified knowledge before output [38].

B. Engaging lecture delivery

During lectures, AI can act as a creative co-

teacher—suggesting analogies or examples [49], powering

avatar instructors that field questions [50], and turning text

into images, videos or podcast teasers for multimedia slides

[51], [52]. Students can critique AI answers to hone critical

thinking and visualise experiments via dynamic images.
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C. Real-time learning process supervision

Real-time supervision captures how, not just what, students

learn. AI dashboards visualise engagement and performance

from digital environments [53]; open-learner models update

each learner’s knowledge profile [54]. Dashboards must stay

interpretable to be actionable [55], [56], [57]. Predictive

analytics within these dashboards can flag at-risk or low-

engagement students for prompt support [58], [59], [60], [61].

D. AI chatbot Q&A summaries and practice

LLM-powered chatbots have spread rapidly across higher

education. Surveys find enthusiasm tempered by doubts: ease

of use is clear, but cognitive gains are still debated [62],

[63]. When offered as optional study partners, chatbots can

scaffold distance or dyslexic learners through personalised

encouragement, summaries and practice prompts [64], [65].

IV. AID IN ACADEMIC ACTIVITIES

A. Coding assistance

One of the core competencies acquired by engineer-

ing and computer-science students is coding. Program-

ming is indispensable for many assessed projects. Require-

ments vary—Mathematical Computation students code in R,

Computer-Science majors in Python or Java, Robotics students

in low-level hardware languages—but all must solve complex

problems. AI-powered coding assistants (ChatGPT, Gemini,

Claude, Grok) now provide instant code generation, refactor-

ing, explanations and debugging via LLMs plus web search.

Recent work compared ChatGPT-assisted learners with self-

directed peers: final scores were similar, but ChatGPT users

debugged more, refined AI code and, citing ease-of-use,

planned to keep using the tool [66].

These findings show how AI tools scaffold programming at

every level, offering step-by-step guidance and fast debugging.

Effectiveness, however, hinges on good prompts and critical

evaluation; instructor-led prompt training markedly boosts

outcomes [67]. LLMs still struggle with large code-bases, may

hallucinate and often default to generic patterns. Over-reliance

can erode academic integrity, so institutions need guardrails

that balance tool use with independent problem-solving.

B. Academic writing aids

A review [68] groups modern AI writing tools into liter-

ature management, drafting, plagiarism checks, data analysis

and other features. They accelerate brainstorming by mining

vast corpora and adding predictive analytics throughout the

research workflow.

V. ASSESSMENT

A. Assessment generation

Automated assessment is now a popular NLP topic because

it saves teachers time and money. Its goal is to achieve scores

similar to human graders with far less effort and cost. Many

methods exist (e.g., semantic similarity), but large language

models (LLMs) currently dominate. Their chief flaw is hallu-

cination—inventing incorrect information, which undermines

reliability. One mitigation is retrieval-augmented generation

(RAG): a standard LLM linked to a vetted knowledge base.

Retrieving evidence relevant to each question reduces hallu-

cination and equalises scores [69], though irrelevant hits can

still occur. LLMs further support AI-assisted grading [70]; yet

their human-like prose raises doubts about assessment validity.

Human oversight, therefore, remains essential [71].

LLM-generated assessments can still be inconsistent. The

“LLM-as-a-judge” pattern—a second model auditing the

first—adds a control layer that flags misgraded answers and

outliers with high accuracy [72].

B. Automated final exam / exam proctoring

AI-driven NLP already handles full exams—multiple-choice

and essay tasks. Studies confirm feasibility [73] but show score

distributions can narrow, and domain-knowledge gaps (e.g.,

biomedical items) cut accuracy [74]. Essay scoring benefits

from LLM text processing [75], yet quality hinges on prompt

tuning: focusing on different rubric points shifts grades [76].

Performance also depends on language coverage [77], and

research now extends LLM scoring to oral exams [78]. Item-

response theory (IRT) frameworks could anchor AI scoring,

replacing today’s opaque heuristics [?].

C. Anti-cheat solutions

Anti-cheat tools remain vital [79]. Traditional detectors

such as Turnitin catch plagiarism [80], while stylometric

authorship checks compare writing style [81]. These methods

falter on short answers. GPT-based classifiers now spot AI-

generated text but still produce false positives. The most

reliable—though intrusive—approaches monitor cursor or

keystrokes during exams [82], [83].

VI. PERSONALIZED LEARNING

Personalized learning represents a fundamental shift in the

educational process, aiming to replace the singular, stan-

dardized educational experience with a customised, learner-

centred one delivered via intelligent tutoring systems, content

recommendations or adaptive assessments.

A. Adaptive assessments

This protocol first creates a large RAG-based question bank,

each item labelled for difficulty and topic. The instructor

sets the time window, duration, item count and proctoring;

the system then randomises—or adaptively selects—questions

for every student. Learners log in while camera, safe-browser

and image-recognition tools safeguard integrity. Built-in timers

show time left and auto-submit; real-time alerts flag suspicious

activity. After all submissions, RAG compares answers with

a rubric, awards partial credit and exports grades to the LMS.

Plagiarism scans and on-the-fly follow-up questions protect

originality, while analytics refine subsequent tests.

Considerably less research views these tests from the

learner’s side. Co-designing AI-based assessments with stu-

dents can boost critical thinking and creativity [?], and meta-

awareness that items are machine-generated maps to Bloom’s

highest levels—analysis, synthesis and evaluation [85].
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B. Personalized feedback

Providing reasonable feedback is a crucial part of the whole

AI-supported exam-conducting ecosystem. It helps students fill

gaps in knowledge, focus on the right areas, and understand

the material faster. Research shows that the best feedback

is timely, specific, and actionable [86]. Equally important

is wording it pedagogically so it truly motivates learning.

The most common solution today is a data-driven approach:

transformer models (e.g., BERT) can evaluate many aspects

of an answer through their understanding of context [87]. Yet

merging expert knowledge with AI feedback is challenging;

LLM comments are often generic and miss key details [86].

LLMs may also hallucinate—studies report that about 15%

of feedback can be totally incorrect [86]. Prompt design,

therefore, matters: telling a model to “behave as a teacher,”

giving step-by-step instructions, and asking it to analyse first

and comment second all raise quality.

Despite these gains, the model is still far from perfect,

so retrieval-augmented generation (RAG) can further improve

performance. RAG combines an LLM with local data sources

such as presentations or notes, ensuring feedback stays strictly

aligned with course material [88]. A complementary method

splits the task among several specialised agents, each handling

a smaller part; this helps catch mistakes and adjust tone [88].

Feedback during learning is tentative diagnostic informa-

tion, so a relationship of mutual trust between learner and

instructor is essential. When automation intervenes, its effect

on that relationship must be monitored; simple chatbots can

bore users and discourage sustained dialogue.

LLM-based feedback systems have now been piloted in

real courses, and learner perceptions are being evaluated [89].

Careful messaging can promote reflection on one’s learning

situation [90], and design choices—topic coverage, timing,

tone—must be optimised for each activity [91].

VII. CHALLENGES & FUTURE DIRECTIONS

In recent years, many studies have explored the possibilities,

challenges and threats of AI tools in education. Yet most

merely list what AI can do; few run carefully designed

experiments to test usability and reliability. The key task

now is to conduct comparative studies—contrasting AI-based

recommendations, testing, grading and feedback with long-

standing practices. For instance, we should compare LLM re-

sources with earlier crowd-sourcing platforms used by students

before chatbots.

We must also continuously measure how well up-to-date,

fine-tuned and well-prompted LLMs acquire and refresh

knowledge.

Moreover, ethical challenges loom large; automated tools

must remain especially sensitive to educational contexts. As

AI is introduced, we must be aware of data and algorithmic

biases. Models trained on large corpora can mirror societal,

cultural or institutional prejudices, prioritising students by past

performance or learning style and producing unfair outcomes

tied to race, language, socioeconomic status or disability.

Thus transparency and explainability are needed for every

recommendation or assessment, yet remain elusive because

LLMs are inherently opaque.

Student privacy is also at stake, particularly under learning

surveillance. Over-reliance on automation, coupled with inad-

equate informed consent, can erode professional judgement on

both sides of the classroom. Unequal digital access—whether

through language or technology—may widen existing educa-

tional gaps.

Mitigation demands careful design: human-in-the-loop over-

sight, informed student choice, and channels for learner voice.

Done well, AI frees teachers to spend more quality, person-

alised time with each student.
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