&l

Proceedings of the 20" Conference on Computer

DOI: 10.15439/2025F8280

Science and Intelligence Systems (FedCSIS) pp. 753-758 ISSN 2300-5963 ACSIS, Vol. 43

NPDP programming for RISC multi-core processors

Mateusz Gruzewski, Marek Palkowski
West Pomeranian University of Technology in Szczecin
ul. Zolnierska 49, 71-210 Szczecin, Poland
e-mail: mpalkowski@zut.edu.pl

Abstract—In recent years, parallel architectures have become
ubiquitous due to advancements in AI and cloud computing.
However, parallel processing is not limited to x86 CISC CPUs and
advanced graphics cards, GPUs; it also includes computations on
ARM-based and RISC-V devices. In recent years, ARM proces-
sors have been adapted to incorporate an increasing number of
cores. Today, mobile devices feature at least eight execution units,
typically divided into energy-efficient and performance-oriented
groups. RISC-based parallel processors are also integrated on
development boards supported by the Linux kernel. In this
article, we tested our NPDP Benchmark Suite for non-serial
polyadic dynamic programming, primarily in the field of com-
puter algorithms and bioinformatics, to evaluate the performance
of the RISC processors under study, as well as code locality and
cache efficiency. The benchmark consists of 10 kernels written
in C++ and OpenMP. In the Android environment, we used the
JAVA NDK (Native Development Kit) to port the application. For
Apple machines, we used a port to OpenMP for parallelization.
For the RISC-V native Linux environment, we applied the native
Linux setup for efficient execution. Finally, we summarized the
article and outlined future work.

I. INTRODUCTION

ISC-based parallel processors, including ARM and
RISC-V architectures, are becoming increasingly impor-
tant in modern computing, particularly in mobile, embedded,
and energy-efficient systems. Despite their growing adoption
and multicore capabilities, their performance under complex,
irregular workloads remains less explored compared to tradi-
tional x86-based platforms.
Nonserial Polyadic Dynamic Programming (NPDP) is an
advanced class of dynamic programming techniques charac-
terized by:

« Nonserial dependencies: subproblems do not follow a
strict linear order;

« Polyadic recurrences: subproblems may depend on more
than two others;

« Dynamic behavior: the dependency structure changes
depending on input data or runtime conditions.

Such problems arise in domains like RNA folding, sequence
alignment, and optimal polygon triangulation. Their nontrivial
dependency patterns pose challenges for both parallel execu-
tion and efficient memory access.

Despite progress in compiler optimizations, limited attention
has been paid to the performance of NPDP workloads on
modern RISC-based architectures. In this work, we evalu-
ate the execution-time performance of a 10-kernel NPDP
benchmark suite compiled with OpenMP on several RISC
platforms, including Apple ARM chips, Android smartphones,

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

753

and a RISC-V development board. We apply three polyhedral
compilers—Pluto, Traco, and Dapt—for automatic loop trans-
formation and parallelization.

II. NPDP BENCHMARK SUITE

The Non-serial Polyadic Dynamic Programming (NPDP)
benchmark suite [1] consists of the following ten kernels:

1) Nussinov Algorithm - Predicts RNA secondary structures
by identifying the optimal folding pattern.

2) Zuker Algorithm — An extension of RNA folding predic-
tion that considers free energy minimization.

3) Smith—Waterman (SW) Algorithm — Performs local se-
quence alignment to identify similar regions between two
nucleotide or protein sequences.

4) Needleman—Wunsch (NW) Algorithm — Conducts global
sequence alignment for comparing entire sequences.

5) Smith—-Waterman Algorithm for Three Sequences
(SW3D) — Extends the original algorithm to align three
sequences simultaneously.

6) Counting Algorithm — Used in RNA folding studies to
count specific structural configurations.

7) McCaskill’s Algorithm (Mcc) — Calculates the partition
function and base-pairing probabilities in RNA secondary
structures.

8) Maximum Expected Accuracy (MEA) Algorithm — Pre-
dicts RNA secondary structures based on maximizing
expected accuracy.

9) Knuth’s Algorithm — Determines the optimal binary

search tree, minimizing the search time for a set of keys.

Optimal Polygon Triangulation — Divides a polygon into

triangles to minimize the total edge length or another cost

function.

10)

III. POLYHEDRAL OPTIMIZATION FOR NPDP LOOP NESTS

The polyhedral model represents loop nests as polyhedra
with affine loop bounds and schedules. This model provides a
foundation for advanced loop transformations and the anal-
ysis of data dependences. By harnessing the power of the
polyhedral model, compilers can automatically optimize loops,
enhance performance (especially in terms of locality with loop
tiling), and exploit parallelism (particularly with loop skewing
for NPDP codes) [2].

Nonserial Polyadic Dynamic Programming (NPDP) applica-
tions are generally easy to parallelize using a loop transforma-
tion technique known as skewing [3]. Skewing is a transforma-
tion applied to nested loops to restructure the iteration space,

Thematic Session: Computer Aspects of
Numerical Algorithms

754

ensuring that the dependent computations can be executed in
parallel. It is particularly useful for NPDP problems where
dependencies form a non-trivial pattern.

Consider a standard DP recurrence with dependencies on
previous iterations:

DP(i,j) = f(DP(i-1,j),DP(i,j - 1))

The corresponding loop structure might be:

for (i = 1; 1 <= N; i++) {
for (j = 1; j <= N; J++) {
DP[i][Jj] = £(DP[i-1][J], DP[i][3J-11);
}

This loop cannot be directly parallelized because each
iteration (i, Jj) depends on previous iterations. By applying
the loop skewing transformation:

i'=i, j'=i+j

we transform the loop structure into:

for (3" = 2; 3’ <= 2N; J'++) |
1b = max (1, 3’'-N);
ub = min (N, j’-1);
for(i = 1lb; 1 <= ub; i++) {
int 3 = 3" - 1;
DP[i]1[Jj] = £(DP[i-11[3J1, DP[i]1[3-11);
}

Thus, NPDP problems, despite their complex dependen-
cies, can be efficiently parallelized using loop skewing [3].
However, parallelization alone is not sufficient. Optimal cache
utilization is also crucial, and scheduling blocks in NPDP
remains challenging due to non-uniform dependencies [4], [5],
[6].

NPDP problems, such as the Nussinov algorithm [7], can
often be represented in the polyhedral model, enabling ad-
vanced loop transformations as performed by compilers like
Pluto [8], Dapt [9], and Traco [5].

The polyhedral compilers Pluto [8], Dapt [9], and Traco
[5] are based on affine transformation frameworks (ATF),
space-time tiling, and tile correction, respectively. Pluto excels
in generating well-balanced affine schedules, but for NPDP
codes, the framework can address a set of affine equations
to tile all loop nests [5]. ATF is unable to tile the Nussinov
or SW kernels, and it cannot parallelize the tiled code of
the Mcc kernel [1]. The Traco compiler generates 3D tiles
using the transitive closure of the dependence graph of the
union of loop dependences. For some tasks from the NPDP
benchmark suite, it is not possible to compute the exact
transitive closure of the dependency graph; in such cases,
an over-approximation is applied [1]. Further transformations
for 3D-tiling of NPDP codes were implemented in the Dapt
compiler by dividing the iteration space into timed parallel
spaces. Dapt addresses irregularities in code obtained in Traco,

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

providing a comprehensive solution to optimize and refine the
generated code [10].

Loop tiling, also referred to as loop blocking or loop
partitioning, is a widely used optimization to improve cache
efficiency [11]. It restructures loops into smaller blocks (tiles),
reducing cache misses and improving memory access locality.
In polyhedral compilation, tiling is often applied in combina-
tion with other transformations, such as skewing, to facilitate
both locality and parallelism.

Ultimately, the compilers generate cache-efficient, paral-
lelized code using the same underlying approaches—primarily
the polyhedral model and its supporting library, ISL (Integer
Set Library)—for both dependency analysis and code gener-
ation. This unified approach ensures that the code generation
aligns with the dependency structure and optimizations ap-
plied.

Along with the original NPDP benchmark codes, the repos-
itory https://github.com/markpal/NPDP_Bench also includes
OpenMP code generated by polyhedral compilers, which we
adapted for execution on RISC-based devices.

IV. EXPERIMENTAL STUDY

The experimental evaluation was conducted across three
distinct RISC-based hardware platforms: Apple ARM-based
laptops (M2 Pro, M3, and M4 Pro), a high performance RISC-
V development board (Banana Pi BPI F3 SpacemiT K1), and
an Android-based mobile device (Samsung Galaxy ASS). All
experiments focused on executing NPDP kernels compiled
with OpenMP parallelisation support [12].

To ensure consistent and platform-specific testing, two sep-
arate benchmarking projects were developed. The first project,
designed for macOS and the RISC-V platform, was responsi-
ble for executing the benchmarks and recording performance
results to structured output files. The second project was
implemented in Android Studio and dedicated to the Android
operating system. It included a complete test execution sce-
nario, with background task management and result storage
integrated into the application logic.

Across all platforms, the NPDP computational kernels re-
mained identical. Only the system-specific integration layer
differed, adapting the same computational logic to the require-
ments of each operating system.

A. ARM-based Apple Platforms

The first experimental setup involved Apple machines
equipped with ARM-based processors: M2 Pro, M3, and M4
Pro. These platforms feature heterogeneous multi-core ar-
chitectures combining high-performance and energy-efficient
cores. All experiments were conducted natively on macOS.
Specifically, the M2 Pro system ran macOS Sequoia 15.1.1,
the M3 system used macOS Sequoia 15.2, and the M4 Pro
machine operated on macOS Sequoia 15.3. Since the default
Apple Clang compiler does not provide support for OpenMP,
the LLVM toolchain was installed via Homebrew, along with
the necessary runtime library (libomp). The benchmarks were
compiled using the following command:

MAREK PALKOWSKI, MATEUSZ GRUZEWSKI: NPDP PROGRAMMING FOR RISC MULTI-CORE PROCESSORS

/opt/homebrew/opt/llvm/bin/clang++
—fopenmp \
-I/opt/homebrew/opt/llvm/include \
-L/opt/homebrew/opt/1lvm/1ib \

-0 test test.cpp

This configuration allowed for the successful compilation
and execution of OpenMP-parallelized code on macOS. Tests
were conducted in terminal shells with controlled background
activity to minimize external interference. While we initially
considered evaluating performance on iPhones, it was not
possible to execute OpenMP code due to iOS restrictions. The
operating system lacks support for dynamic linking against the
OpenMP runtime, and instead promotes the use of proprietary
concurrency models such as Grand Central Dispatch [13].

B. RISC-V Platform

The second experimental platform was based on the RISC-
V architecture. We employed the Banana Pi BPI-F3 board
[14], featuring an eight-core SpacemiT K1 [15], [16] processor
with 16 GB LPDDR4 RAM and 128 GB of eMMC storage.
The system ran Bianbu Linux 1.0rcl (codename mantic) [17],
a lightweight RISC-V—-oriented distribution based on Ubuntu
23.10, designed for embedded and development use cases.
The board was configured in a headless mode and accessed
remotely via SSH over Ethernet.

Due to limited support for the RISC-V Vector Extension
(RVV) in available prebuilt toolchains, we compiled a custom
cross-compilation toolchain targeting rv64gcv on an external
x86-64 machine. The NPDP benchmark suite was compiled
with OpenMP and vectorization enabled, using the following
command:

riscvé64-unknown-linux-gnu-g++ \
-march=rv64dgcv -mabi=lp64d -03 \
—fopenmp -ftree-vectorize \
—fopt-info-vec-optimized \
-0 test test.cpp

The compiled binaries were transferred to the Banana Pi board
and executed under Bianbu Linux. This setup enabled the
assessment of OpenMP-parallelized NPDP kernels on a native
RISC-V platform with partial RVV support and a modern,
minimal Linux runtime environment.

C. ARM-based Mobile Platform

The final test environment was a Samsung Galaxy AS5S5
smartphone running Android 13. The device is powered by
an ARM-based octa-core processor, comprising four Cortex-
A78 cores (2.7 GHz) [18] and four Cortex-A55 cores (2.0
GHz) [19]. The NPDP benchmark suite was ported using
the Android Native Development Kit (NDK) [20], allowing
native C++ code to be executed within the Android runtime
environment. The OpenMP-enabled kernels were compiled
into shared libraries and invoked via a Java Native Interface
(JNI) wrapper.

To minimize interference from the graphical interface and
system events, the benchmarks were executed in the back-
ground using a dedicated background thread. This ensured
isolated execution, independent of the UI thread. Results
were written to files in the internal storage and subsequently
retrieved for further analysis. This setup enabled reliable
measurement of kernel performance under realistic condi-
tions on mobile hardware, although variability due to thermal
management and background activity could not be entirely
eliminated. All measurements were repeated multiple times to
ensure consistency.

D. Execution Time Constraints and Omitted Results

In all presented Tables 1-5, certain entries are marked with
the symbol “~”. These indicate cases in which a particular
kernel execution was terminated or skipped due to exceeding
predefined time limits. To maintain practical runtime and result
comparability, thresholds were set at 20 minutes for input size
2200, and 40 minutes for larger sizes (5000 and 10000). If
a kernel exceeded these limits, execution was interrupted and
the result omitted from the final report.

This limitation was observed across all platforms and test
configurations. Algorithms such as Knuth, McCaskill, Trian-
gulation, and Zuker frequently exhibited prohibitive execution
times, especially in the original and Traco-generated code
variants. Additionally, computationally complex kernels such
as SW3D and MEA consistently demonstrated exceedingly
long runtimes and were therefore excluded from measurement.

As a result of preliminary testing, the input sizes used
for RISC-V and Android platforms were deliberately limited
to 500, 1000, and 2200. This decision was made to ensure
feasibility on resource-constrained devices. Moreover, certain
algorithms such as Knuth and Zuker were excluded entirely
from tests on these two platforms due to previously observed
stability and performance issues during execution, including
excessive runtimes or failures. These exclusions were applied
consistently across both platforms as a conservative measure
to preserve experimental integrity.

The exclusion of the Knuth and Zuker algorithms was driven
by consistent and reproducible performance issues. The Zuker
kernel, which involves complex free-energy minimization and
deeply nested loop structures, incurred high computational
overhead. On several platforms, particularly those using Traco-
generated variants, execution times exceeded predefined limits
for larger input sizes. The Knuth algorithm, in turn, triggered
instability on resource-constrained RISC-V systems, including
segmentation faults and abnormal termination, likely due to
its memory access patterns and recursive structure. These
issues rendered reliable benchmarking infeasible and led to
the omission of these kernels from the reported results.

It is important to note that all benchmarked algorithms
were based on identical NPDP kernel implementations. The
only platform-specific differences resided in the build system,
integration method, and runtime environment.

755

756

TABLE I: Execution times

of algorithms on M2 Pro (in seconds)

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Org Traco Pluto Dapt
Algorithm 2200 5000 10000 2200 5000 10000 2200 5000 10000 2200 5000 10000
Nussinov 1.10 35.61 362.59 0.53 4.72 36.28 0.24 5.83 56.14 0.31 3.24 23.89
Counting 4.38 85.47 1010.36 0.67 10.41 135.36 0.94 10.34 97.47 0.65 11.72 135.67
Knuth 1.65 45.62 - 2.50 41.46 - 0.33 8.50 - 0.26 7.64 -
Mcc 7.96 195.77 - 1.56 31.55 - 3.40 162.98 - 1.21 43.64 -
Triang 2.74 99.51 - 0.93 14.87 - 0.57 24.22 - 0.69 23.97 -
Zuker 392.47 - - 4391 - - 15.17 - - 16.47 - -
NwW 5.81 249.22 2299.86 0.96 62.34 500.14 2.04 71.42 569.67 1.09 69.79 576.01
SW 6.26 267.26 - 1.20 61.78 505.01 1.79 72.21 585.32 1.13 72.06 576.97

TABLE II: Execution times of algorithms on M3 (in seconds)

Org Traco Pluto Dapt
Algorithm 2200 5000 10000 2200 5000 10000 2200 5000 10000 2200 5000 10000
Nussinov 1.13 34.40 336.34 0.60 6.41 52.73 0.29 6.43 67.48 0.58 5.54 40.64
Counting 4.22 57.26 739.27 1.12 14.10 198.04 1.21 12.08 135.17 0.97 13.75 197.44
Knuth 1.94 51.16 - 1.70 26.49 - 0.35 10.46 - 0.38 11.57 -
Mcc 1.14 8.48 - 0.25 1.63 - 0.64 2.76 - 0.29 1.91 -
Triang 3.37 178.10 - 0.92 25.25 - 0.72 40.42 - 1.02 50.82 -
Zuker 288.26 - - 54.67 - - 25.71 - - 32.68 - -
NwW 6.81 351.05 2483.51 1.50 67.36 678.42 1.59 115.30 1192.05 2.06 96.08 857.60
SW 8.37 494.12 - 2.11 83.54 864.38 1.55 104.24 1087.03 1.87 79.62 830.81

TABLE III: Execution times of algorithms on M4 Pro (in seconds)

Org Traco Pluto Dapt
Algorithm 2200 5000 10000 2200 5000 10000 2200 5000 10000 2200 5000 10000
Nussinov 0.92 20.32 24497 0.49 3.28 21.11 0.20 2.75 28.44 0.29 2.56 17.85
Counting 4.54 61.70 718.30 0.62 7.09 84.69 1.07 12.08 112.15 0.54 6.38 80.93
Knuth 1.61 56.41 - 1.59 25.15 - 0.21 6.98 - 0.20 6.72 -
Mcc 7.63 360.85 - 1.21 56.16 - 4.57 276.38 - 0.95 52.85 -
Triang 4.74 126.24 - 0.48 14.32 - 0.93 17.60 - 0.64 15.90 -
Zuker 238.54 - - 23.16 - - 12.16 - - 11.57 - -
NwW 11.06 606.88 - 1.12 87.72 490.37 2.04 98.99 516.79 1.21 131.91 768.41
SW 12.89 599.46 - 1.19 182.67 1195.24 2.06 97.16 594.67 1.31 176.46 981.69

TABLE IV: Execution times of algorithms on Risc-V (in seconds)

Org Traco Pluto Dapt
Algorithm 500 1000 2200 500 1000 2200 500 1000 2200 500 1000 2200
Nussinov 0.28 5.26 98.36 0.19 1.34 9.35 0.07 0.74 20.63 0.11 0.74 8.89
Counting 0.64 4.77 68.33 0.15 0.70 11.9 0.30 1.44 11.35 0.14 0.72 10.89
Knuth - - - - - - - - - - - -
Mcc 9.42 17.52 272.59 1.20 3.33 51.96 1.69 8.54 100.66 1.78 4.04 100.99
Triang 5.12 42.38 490.66 1.12 7.71 71.36 1.17 8.65 105.52 1.02 7.60 98.06
Zuker - - - - - - - - - - - -
NwW 1.99 26.77 382.56 0.37 5.47 106.47 0.91 9.58 159.87 0.37 6.30 131.24
SW 1.98 26.37 381.60 0.39 5.30 104.66 0.40 6.52 124.30 0.38 5.97 124.12

E. Result Discussion

Tables I-V present execution times for all kernels across
four code variants (Org, Traco, Pluto, Dapt) and five hard-
ware platforms. Overall, the results confirm that polyhedral
compilation significantly improves performance, and that Dapt
frequently produces the fastest code across most tested con-
figurations.

On Apple ARM platforms (M2-M4), the Dapt-generated
code consistently outperforms both the original and other
compiler variants. For example, on the M4 Pro (Table III),
Dapt executes the Nussinov kernel in 17.85s for input size
10000, while the original version requires 244.97s. This trend
is visible across most kernels and input sizes. However, it
is worth noting that Apple systems are based on a het-

erogeneous architecture not explicitly designed for HPC-like
parallel workloads. Their strong performance stems primarily
from advanced chip design, high memory bandwidth, and
aggressive power management at the cost of being proprietary
and expensive.

Although Dapt yields strong results overall, certain kernels
like Counting show comparable or even better performance
with Traco on selected platforms. This may be due to Traco’s
tile correction approach occasionally producing layouts with
better cache fit for specific iteration spaces [10]. While Dapt
generally provides more consistent tiling across irregular
kernels, localized cache effects may favor Traco in select
scenarios.

The RISC-V platform, represented by the low-cost Banana
Pi BPI-F3 board, completed all tests but with significantly

MAREK PALKOWSKI, MATEUSZ GRUZEWSKI: NPDP PROGRAMMING FOR RISC MULTI-CORE PROCESSORS

TABLE V: Execution times of algorithms on Samsung Galaxy AS55 (in seconds)

Org Traco Pluto Dapt

Algorithm 500 1000 2200 500 1000 2200 500 1000 2200 500 1000 2200
Nussinov 0.14 1.17 13.11 0.15 2.18 17.16 0.19 0.87 4.13 0.20 0.83 7.27
Counting 0.38 2.83 36.07 0.22 1.76 10.15 0.33 2.83 20.45 0.16 1.18 8.63
Knuth - - - - - - - - - - - -

Mcce 0.42 3.59 72.35 0.31 2.28 22.37 0.28 2.37 29.69 0.23 1.50 16.76
Triang 1.05 8.04 127.95 0.80 5.80 43.78 0.89 3.74 37.60 0.82 3.42 35.75
Zuker - - - - - - - - - - - -

NwW 0.88 7.16 111.91 0.49 2.75 27.49 0.67 2.99 30.64 0.82 291 28.98
SW 1.00 8.09 124.30 0.55 3.13 27.36 0.78 3.04 32.49 0.79 2.97 34.10

higher execution times. This reflects both early-stage toolchain
maturity and the limited performance of the tested hardware.
RISC-V remains promising due to its openness and Linux
compatibility, and future work will explore more capable
boards.

The Android platform (Samsung Galaxy AS5S5) exhibits
intermediate results. Despite using a modern ARM-based SoC,
the performance is limited by the operating system, which
does not prioritize background computation. For instance,
thermal throttling and restricted OpenMP threading in the
ART environment reduce the potential gains from polyhedral
optimizations. Android also introduces unpredictable perfor-
mance variability due to dynamic task scheduling and user-
space constraints. As a result, OpenMP kernels run slower
and less deterministically compared to Linux-based systems.

While the Dapt compiler provides robust performance
across all platforms, the relative gains vary depending on
the architecture. Moreover, some kernels (e.g., Knuth, Zuker,
SW3D, MEA) were excluded due to excessive runtimes or
instability, especially in Traco or original versions. This was
consistent across all environments and input sizes.

In summary, the results highlight the benefits of polyhedral
compilation techniques for NPDP workloads and expose the
current disparity between platform classes. These results are in
line with earlier work on multi-core systems, where OpenMP-
based parallelization and loop restructuring also led to notable
performance improvements in geospatial workloads [21]. Ap-
ple systems deliver the highest raw performance but are closed
and costly. RISC-V is significantly slower on current boards
but offers openness, modularity, and full Linux support —
key advantages for long-term research. Android devices, while
architecturally capable, suffer from system-level limitations
that reduce usable compute throughput. These findings justify
the need for continued testing on new RISC-V platforms and
more refined kernel-level optimization.

V. CONCLUSION

When comparing research conducted on RISC processors,
it is essential to consider factors such as cost, licensing
model, and the intended application of the processing unit
itself. In terms of raw performance, the fastest processors
currently available are undoubtedly the high-end Apple M4
Pro units, although they also come at a significantly higher
cost. However, Apple and Cortex processors are based on
closed architectures, which limits their utility in development

and research contexts. In contrast, RISC-V processors, due to
their open-source architecture, offer far greater flexibility and
potential for innovation.

Unfortunately, the studied Banana chip performance still
lags behind ARM-based solutions. While Linux kernel support
exists, substantial work remains to improve overall efficiency.
Features such as vector processing are still in the develop-
mental stage, and compilers require significant refinement to
reach production-grade maturity. Nonetheless, the open-source
nature of the platform and the dedicated efforts of volunteer
contributors suggest a promising future—potentially more so
than the long-standing but limited Android NDK.

In terms of performance at the same price point, it is
currently easier to utilize older CISC CPUs or other types of
RISC-based GPUs. While multi-board computers like Banana,
Leeche, or other RISC-V developer boards are becoming
more widespread, especially among emerging manufacturers
from countries affected by U.S. sanctions, their performance
capabilities are still maturing and not yet competitive with
mainstream alternatives. However, the performance of RISC-
V may improve in the future—the question is how rapidly this
improvement will occur. We also plan to evaluate emerging
high-performance RISC-V platforms, including 64-core devel-
opment boards that are now becoming commercially available
[22].

In future work, we will extend our research framework
to include other polyhedral benchmark suites and a detailed
analysis of the energy consumption on these devices.

REFERENCES

[1] M. Palkowski and W. Bielecki, “NPDP benchmark suite for
the evaluation of the effectiveness of automatic optimizing
compilers,” Parallel Computing, vol. 116, p. 103016, Jul.
2023. doi: 10.1016/j.parco.2023.103016. [Online]. Available:
https://doi.org/10.1016/j.parco.2023.103016

S. Verdoolaege, “Integer set library - manual,” www.kotnet.org/~skimo/

/isl/manual.pdf, 2011, accessed on: 2024-01-11.

[3] L. Liu, M. Wang, J. Jiang, R. Li, and G. Yang, “Efficient nonserial
polyadic dynamic programming on the cell processor.” in IPDPS Work-
shops. Anchorage, Alaska: IEEE, 2011, pp. 460—471.

[4] R. T. Mullapudi and U. Bondhugula, “Tiling for dynamic scheduling,”
in Proceedings of the 4th International Workshop on Polyhedral Com-
pilation Techniques, S. Rajopadhye and S. Verdoolaege, Eds., Vienna,
Austria, Jan. 2014.

[S] M. Palkowski and W. Bielecki, “Parallel tiled Nussinov RNA folding
loop nest generated using both dependence graph transitive closure and
loop skewing,” BMC Bioinformatics, vol. 18, no. 1, p. 290, 2017. doi:
10.1186/s12859-017-1707-8

2

758

[6]

(7]

[8]

[91

(10]

(11]

[12]

[13]

(14]

V. K. Tchendji, F. I. K. Youmbi, C. T. Djamegni, and J. L. Zeutouo,
“A parallel tiled and sparsified Four-Russians algorithm for Nussinov's
RNA folding,” IEEE/ACM Transactions on Computational Biology and
Bioinformatics, pp. 1-12, 2022. doi: 10.1109/tcbb.2022.3216826

R. Nussinov et al., “Algorithms for loop matchings,” SIAM Journal on
Applied mathematics, vol. 35, no. 1, pp. 68-82, 1978.

U. Bondhugula et al., “A practical automatic polyhedral parallelizer and
locality optimizer,” SIGPLAN Not., vol. 43, no. 6, pp. 101-113, Jun.
2008. doi: 10.1145/1379022.1375595

W. Bielecki and M. Poliwoda, “Automatic parallel tiled code generation
based on dependence approximation,” in Parallel Computing Technolo-
gies, V. Malyshkin, Ed. Cham: Springer International Publishing, 2021,
pp. 260-275.

M. Palkowski and M. Gruzewski, “Time and energy benefits of
using automatic optimization compilers for NPDP tasks,” Electronics,
vol. 12, no. 17, p. 3579, Aug. 2023. doi: 10.3390/electronics12173579.
[Online]. Available: http://dx.doi.org/10.3390/electronics12173579

J. Xue, Loop Tiling for Parallelism. Norwell, MA, USA: Kluwer
Academic Publishers, 2000. ISBN 0-7923-7933-0

OpenMP Architecture Review Board, “OpenMP application program
interface version 5.2,” https://www.openmp.org/specifications, 2021, ac-
cessed on: 2023-10-22.

Apple Inc., “Grand central dispatch (gcd),” https://developer.apple.com/
documentation/dispatch, 2009, accessed: 2025-05-05.

Banana Pi Team, “Banana pi bpi-f3 documentation,” https://docs.

[15]

[16]
[17]
[18]
[19]
[20]

[21]

[22]

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

banana-pi.org/en/BPI-F3/BananaPi_BPI-F3, 2025, accessed: 2025-05-
05.

SpacemiT, “Spacemit key stone k1 — octa-core 64-bit risc-v ai cpu,”
https://www.spacemit.com/en/key-stone-k1/, 2024, accessed: 2025-05-
05.

Banana Pi Team, “Spacemit k1 8-core risc-v chip brief,” https://docs.
banana-pi.org/en/BPI-F3/SpacemiT_K1, 2024, accessed: 2025-05-05.
SpacemiT, “Bianbu linux,” https://bianbu.spacemit.com/en/, 2024, ac-
cessed: 2025-05-05.

Arm Ltd.,, “Arm cortex-a78 processor,” https://developer.arm.com/
Processors/Cortex-A78, 2020, accessed: 2025-05-05.

“Arm cortex-a55 processor,” https://developer.arm.com/
Processors/Cortex-A55, 2017, accessed: 2025-05-05.

Google LLC, “Android ndk — native development kit,” https://developer.
android.com/ndk, 2024, accessed: 2025-05-05.

B. Bylina, J. Potiopa, M. Klisowski, and J. Bylina, “The impact of
vectorization and parallelization of the slope algorithm on performance
and energy efficiency on multi-core architecture,” in Proceedings of
the 16th Conference on Computer Science and Intelligence Systems
(FedCSIS), ser. Annals of Computer Science and Information Systems,
vol. 25. PTI, 2021. doi: 10.15439/2021F68 pp. 283-290.

Sophgo, “Sg2042 risc-v 64-core soc,” 2025, accessed on: 2024-07-13.
[Online]. Available: https://en.sophgo.com/sophon-u/product/introduce/
$g2042.html

