
NPDP programming for RISC multi-core processors

Mateusz Gruzewski, Marek Palkowski

West Pomeranian University of Technology in Szczecin

ul. Zolnierska 49, 71-210 Szczecin, Poland

e-mail: mpalkowski@zut.edu.pl

Abstract—In recent years, parallel architectures have become
ubiquitous due to advancements in AI and cloud computing.
However, parallel processing is not limited to x86 CISC CPUs and
advanced graphics cards, GPUs; it also includes computations on
ARM-based and RISC-V devices. In recent years, ARM proces-
sors have been adapted to incorporate an increasing number of
cores. Today, mobile devices feature at least eight execution units,
typically divided into energy-efficient and performance-oriented
groups. RISC-based parallel processors are also integrated on
development boards supported by the Linux kernel. In this
article, we tested our NPDP Benchmark Suite for non-serial
polyadic dynamic programming, primarily in the field of com-
puter algorithms and bioinformatics, to evaluate the performance
of the RISC processors under study, as well as code locality and
cache efficiency. The benchmark consists of 10 kernels written
in C++ and OpenMP. In the Android environment, we used the
JAVA NDK (Native Development Kit) to port the application. For
Apple machines, we used a port to OpenMP for parallelization.
For the RISC-V native Linux environment, we applied the native
Linux setup for efficient execution. Finally, we summarized the
article and outlined future work.

I. INTRODUCTION

R ISC-based parallel processors, including ARM and

RISC-V architectures, are becoming increasingly impor-

tant in modern computing, particularly in mobile, embedded,

and energy-efficient systems. Despite their growing adoption

and multicore capabilities, their performance under complex,

irregular workloads remains less explored compared to tradi-

tional x86-based platforms.

Nonserial Polyadic Dynamic Programming (NPDP) is an

advanced class of dynamic programming techniques charac-

terized by:

● Nonserial dependencies: subproblems do not follow a

strict linear order;

● Polyadic recurrences: subproblems may depend on more

than two others;

● Dynamic behavior: the dependency structure changes

depending on input data or runtime conditions.

Such problems arise in domains like RNA folding, sequence

alignment, and optimal polygon triangulation. Their nontrivial

dependency patterns pose challenges for both parallel execu-

tion and efficient memory access.

Despite progress in compiler optimizations, limited attention

has been paid to the performance of NPDP workloads on

modern RISC-based architectures. In this work, we evalu-

ate the execution-time performance of a 10-kernel NPDP

benchmark suite compiled with OpenMP on several RISC

platforms, including Apple ARM chips, Android smartphones,

and a RISC-V development board. We apply three polyhedral

compilers—Pluto, Traco, and Dapt—for automatic loop trans-

formation and parallelization.

II. NPDP BENCHMARK SUITE

The Non-serial Polyadic Dynamic Programming (NPDP)

benchmark suite [1] consists of the following ten kernels:

1) Nussinov Algorithm - Predicts RNA secondary structures

by identifying the optimal folding pattern.

2) Zuker Algorithm – An extension of RNA folding predic-

tion that considers free energy minimization.

3) Smith–Waterman (SW) Algorithm – Performs local se-

quence alignment to identify similar regions between two

nucleotide or protein sequences.

4) Needleman–Wunsch (NW) Algorithm – Conducts global

sequence alignment for comparing entire sequences.

5) Smith–Waterman Algorithm for Three Sequences

(SW3D) – Extends the original algorithm to align three

sequences simultaneously.

6) Counting Algorithm – Used in RNA folding studies to

count specific structural configurations.

7) McCaskill’s Algorithm (Mcc) – Calculates the partition

function and base-pairing probabilities in RNA secondary

structures.

8) Maximum Expected Accuracy (MEA) Algorithm – Pre-

dicts RNA secondary structures based on maximizing

expected accuracy.

9) Knuth’s Algorithm – Determines the optimal binary

search tree, minimizing the search time for a set of keys.

10) Optimal Polygon Triangulation – Divides a polygon into

triangles to minimize the total edge length or another cost

function.

III. POLYHEDRAL OPTIMIZATION FOR NPDP LOOP NESTS

The polyhedral model represents loop nests as polyhedra

with affine loop bounds and schedules. This model provides a

foundation for advanced loop transformations and the anal-

ysis of data dependences. By harnessing the power of the

polyhedral model, compilers can automatically optimize loops,

enhance performance (especially in terms of locality with loop

tiling), and exploit parallelism (particularly with loop skewing

for NPDP codes) [2].

Nonserial Polyadic Dynamic Programming (NPDP) applica-

tions are generally easy to parallelize using a loop transforma-

tion technique known as skewing [3]. Skewing is a transforma-

tion applied to nested loops to restructure the iteration space,

Proceedings of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 753–758

DOI: 10.15439/2025F8280
ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI 753 Thematic Session: Computer Aspects of
Numerical Algorithms



ensuring that the dependent computations can be executed in

parallel. It is particularly useful for NPDP problems where

dependencies form a non-trivial pattern.

Consider a standard DP recurrence with dependencies on

previous iterations:

DP (i, j) = f(DP (i − 1, j),DP (i, j − 1))

The corresponding loop structure might be:

for (i = 1; i <= N; i++) {

for (j = 1; j <= N; j++) {

DP[i][j] = f(DP[i-1][j], DP[i][j-1]);

}

}

This loop cannot be directly parallelized because each

iteration (i, j) depends on previous iterations. By applying

the loop skewing transformation:

i′ = i, j′ = i + j

we transform the loop structure into:

for(j’ = 2; j’ <= 2N; j’++) {

lb = max(1, j’-N);

ub = min(N, j’-1);

for(i = lb; i <= ub; i++) {

int j = j’ - i;

DP[i][j] = f(DP[i-1][j], DP[i][j-1]);

}

}

Thus, NPDP problems, despite their complex dependen-

cies, can be efficiently parallelized using loop skewing [3].

However, parallelization alone is not sufficient. Optimal cache

utilization is also crucial, and scheduling blocks in NPDP

remains challenging due to non-uniform dependencies [4], [5],

[6].

NPDP problems, such as the Nussinov algorithm [7], can

often be represented in the polyhedral model, enabling ad-

vanced loop transformations as performed by compilers like

Pluto [8], Dapt [9], and Traco [5].

The polyhedral compilers Pluto [8], Dapt [9], and Traco

[5] are based on affine transformation frameworks (ATF),

space-time tiling, and tile correction, respectively. Pluto excels

in generating well-balanced affine schedules, but for NPDP

codes, the framework can address a set of affine equations

to tile all loop nests [5]. ATF is unable to tile the Nussinov

or SW kernels, and it cannot parallelize the tiled code of

the Mcc kernel [1]. The Traco compiler generates 3D tiles

using the transitive closure of the dependence graph of the

union of loop dependences. For some tasks from the NPDP

benchmark suite, it is not possible to compute the exact

transitive closure of the dependency graph; in such cases,

an over-approximation is applied [1]. Further transformations

for 3D-tiling of NPDP codes were implemented in the Dapt

compiler by dividing the iteration space into timed parallel

spaces. Dapt addresses irregularities in code obtained in Traco,

providing a comprehensive solution to optimize and refine the

generated code [10].

Loop tiling, also referred to as loop blocking or loop

partitioning, is a widely used optimization to improve cache

efficiency [11]. It restructures loops into smaller blocks (tiles),

reducing cache misses and improving memory access locality.

In polyhedral compilation, tiling is often applied in combina-

tion with other transformations, such as skewing, to facilitate

both locality and parallelism.

Ultimately, the compilers generate cache-efficient, paral-

lelized code using the same underlying approaches—primarily

the polyhedral model and its supporting library, ISL (Integer

Set Library)—for both dependency analysis and code gener-

ation. This unified approach ensures that the code generation

aligns with the dependency structure and optimizations ap-

plied.

Along with the original NPDP benchmark codes, the repos-

itory https://github.com/markpal/NPDP Bench also includes

OpenMP code generated by polyhedral compilers, which we

adapted for execution on RISC-based devices.

IV. EXPERIMENTAL STUDY

The experimental evaluation was conducted across three

distinct RISC-based hardware platforms: Apple ARM-based

laptops (M2 Pro, M3, and M4 Pro), a high performance RISC-

V development board (Banana Pi BPI F3 SpacemiT K1), and

an Android-based mobile device (Samsung Galaxy A55). All

experiments focused on executing NPDP kernels compiled

with OpenMP parallelisation support [12].

To ensure consistent and platform-specific testing, two sep-

arate benchmarking projects were developed. The first project,

designed for macOS and the RISC-V platform, was responsi-

ble for executing the benchmarks and recording performance

results to structured output files. The second project was

implemented in Android Studio and dedicated to the Android

operating system. It included a complete test execution sce-

nario, with background task management and result storage

integrated into the application logic.

Across all platforms, the NPDP computational kernels re-

mained identical. Only the system-specific integration layer

differed, adapting the same computational logic to the require-

ments of each operating system.

A. ARM-based Apple Platforms

The first experimental setup involved Apple machines

equipped with ARM-based processors: M2 Pro, M3, and M4

Pro. These platforms feature heterogeneous multi-core ar-

chitectures combining high-performance and energy-efficient

cores. All experiments were conducted natively on macOS.

Specifically, the M2 Pro system ran macOS Sequoia 15.1.1,

the M3 system used macOS Sequoia 15.2, and the M4 Pro

machine operated on macOS Sequoia 15.3. Since the default

Apple Clang compiler does not provide support for OpenMP,

the LLVM toolchain was installed via Homebrew, along with

the necessary runtime library (libomp). The benchmarks were

compiled using the following command:

754 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



/opt/homebrew/opt/llvm/bin/clang++

-fopenmp \

-I/opt/homebrew/opt/llvm/include \

-L/opt/homebrew/opt/llvm/lib \

-o test test.cpp

This configuration allowed for the successful compilation

and execution of OpenMP-parallelized code on macOS. Tests

were conducted in terminal shells with controlled background

activity to minimize external interference. While we initially

considered evaluating performance on iPhones, it was not

possible to execute OpenMP code due to iOS restrictions. The

operating system lacks support for dynamic linking against the

OpenMP runtime, and instead promotes the use of proprietary

concurrency models such as Grand Central Dispatch [13].

B. RISC-V Platform

The second experimental platform was based on the RISC-

V architecture. We employed the Banana Pi BPI-F3 board

[14], featuring an eight-core SpacemiT K1 [15], [16] processor

with 16 GB LPDDR4 RAM and 128 GB of eMMC storage.

The system ran Bianbu Linux 1.0rc1 (codename mantic) [17],

a lightweight RISC-V–oriented distribution based on Ubuntu

23.10, designed for embedded and development use cases.

The board was configured in a headless mode and accessed

remotely via SSH over Ethernet.

Due to limited support for the RISC-V Vector Extension

(RVV) in available prebuilt toolchains, we compiled a custom

cross-compilation toolchain targeting rv64gcv on an external

x86-64 machine. The NPDP benchmark suite was compiled

with OpenMP and vectorization enabled, using the following

command:

riscv64-unknown-linux-gnu-g++ \

-march=rv64gcv -mabi=lp64d -O3 \

-fopenmp -ftree-vectorize \

-fopt-info-vec-optimized \

-o test test.cpp

The compiled binaries were transferred to the Banana Pi board

and executed under Bianbu Linux. This setup enabled the

assessment of OpenMP-parallelized NPDP kernels on a native

RISC-V platform with partial RVV support and a modern,

minimal Linux runtime environment.

C. ARM-based Mobile Platform

The final test environment was a Samsung Galaxy A55

smartphone running Android 13. The device is powered by

an ARM-based octa-core processor, comprising four Cortex-

A78 cores (2.7 GHz) [18] and four Cortex-A55 cores (2.0

GHz) [19]. The NPDP benchmark suite was ported using

the Android Native Development Kit (NDK) [20], allowing

native C++ code to be executed within the Android runtime

environment. The OpenMP-enabled kernels were compiled

into shared libraries and invoked via a Java Native Interface

(JNI) wrapper.

To minimize interference from the graphical interface and

system events, the benchmarks were executed in the back-

ground using a dedicated background thread. This ensured

isolated execution, independent of the UI thread. Results

were written to files in the internal storage and subsequently

retrieved for further analysis. This setup enabled reliable

measurement of kernel performance under realistic condi-

tions on mobile hardware, although variability due to thermal

management and background activity could not be entirely

eliminated. All measurements were repeated multiple times to

ensure consistency.

D. Execution Time Constraints and Omitted Results

In all presented Tables 1-5, certain entries are marked with

the symbol “–”. These indicate cases in which a particular

kernel execution was terminated or skipped due to exceeding

predefined time limits. To maintain practical runtime and result

comparability, thresholds were set at 20 minutes for input size

2200, and 40 minutes for larger sizes (5000 and 10000). If

a kernel exceeded these limits, execution was interrupted and

the result omitted from the final report.

This limitation was observed across all platforms and test

configurations. Algorithms such as Knuth, McCaskill, Trian-

gulation, and Zuker frequently exhibited prohibitive execution

times, especially in the original and Traco-generated code

variants. Additionally, computationally complex kernels such

as SW3D and MEA consistently demonstrated exceedingly

long runtimes and were therefore excluded from measurement.

As a result of preliminary testing, the input sizes used

for RISC-V and Android platforms were deliberately limited

to 500, 1000, and 2200. This decision was made to ensure

feasibility on resource-constrained devices. Moreover, certain

algorithms such as Knuth and Zuker were excluded entirely

from tests on these two platforms due to previously observed

stability and performance issues during execution, including

excessive runtimes or failures. These exclusions were applied

consistently across both platforms as a conservative measure

to preserve experimental integrity.

The exclusion of the Knuth and Zuker algorithms was driven

by consistent and reproducible performance issues. The Zuker

kernel, which involves complex free-energy minimization and

deeply nested loop structures, incurred high computational

overhead. On several platforms, particularly those using Traco-

generated variants, execution times exceeded predefined limits

for larger input sizes. The Knuth algorithm, in turn, triggered

instability on resource-constrained RISC-V systems, including

segmentation faults and abnormal termination, likely due to

its memory access patterns and recursive structure. These

issues rendered reliable benchmarking infeasible and led to

the omission of these kernels from the reported results.

It is important to note that all benchmarked algorithms

were based on identical NPDP kernel implementations. The

only platform-specific differences resided in the build system,

integration method, and runtime environment.

MAREK PALKOWSKI, MATEUSZ GRUŻEWSKI: NPDP PROGRAMMING FOR RISC MULTI-CORE PROCESSORS 755



TABLE I: Execution times of algorithms on M2 Pro (in seconds)

Org Traco Pluto Dapt

Algorithm 2200 5000 10000 2200 5000 10000 2200 5000 10000 2200 5000 10000

Nussinov 1.10 35.61 362.59 0.53 4.72 36.28 0.24 5.83 56.14 0.31 3.24 23.89
Counting 4.38 85.47 1010.36 0.67 10.41 135.36 0.94 10.34 97.47 0.65 11.72 135.67
Knuth 1.65 45.62 - 2.50 41.46 - 0.33 8.50 - 0.26 7.64 -
Mcc 7.96 195.77 - 1.56 31.55 - 3.40 162.98 - 1.21 43.64 -
Triang 2.74 99.51 - 0.93 14.87 - 0.57 24.22 - 0.69 23.97 -
Zuker 392.47 - - 43.91 - - 15.17 - - 16.47 - -
NW 5.81 249.22 2299.86 0.96 62.34 500.14 2.04 71.42 569.67 1.09 69.79 576.01
SW 6.26 267.26 - 1.20 61.78 505.01 1.79 72.21 585.32 1.13 72.06 576.97

TABLE II: Execution times of algorithms on M3 (in seconds)

Org Traco Pluto Dapt

Algorithm 2200 5000 10000 2200 5000 10000 2200 5000 10000 2200 5000 10000

Nussinov 1.13 34.40 336.34 0.60 6.41 52.73 0.29 6.43 67.48 0.58 5.54 40.64
Counting 4.22 57.26 739.27 1.12 14.10 198.04 1.21 12.08 135.17 0.97 13.75 197.44
Knuth 1.94 51.16 - 1.70 26.49 - 0.35 10.46 - 0.38 11.57 -
Mcc 1.14 8.48 - 0.25 1.63 - 0.64 2.76 - 0.29 1.91 -
Triang 3.37 178.10 - 0.92 25.25 - 0.72 40.42 - 1.02 50.82 -
Zuker 288.26 - - 54.67 - - 25.71 - - 32.68 - -
NW 6.81 351.05 2483.51 1.50 67.36 678.42 1.59 115.30 1192.05 2.06 96.08 857.60
SW 8.37 494.12 - 2.11 83.54 864.38 1.55 104.24 1087.03 1.87 79.62 830.81

TABLE III: Execution times of algorithms on M4 Pro (in seconds)

Org Traco Pluto Dapt

Algorithm 2200 5000 10000 2200 5000 10000 2200 5000 10000 2200 5000 10000

Nussinov 0.92 20.32 244.97 0.49 3.28 21.11 0.20 2.75 28.44 0.29 2.56 17.85
Counting 4.54 61.70 718.30 0.62 7.09 84.69 1.07 12.08 112.15 0.54 6.38 80.93
Knuth 1.61 56.41 - 1.59 25.15 - 0.21 6.98 - 0.20 6.72 -
Mcc 7.63 360.85 - 1.21 56.16 - 4.57 276.38 - 0.95 52.85 -
Triang 4.74 126.24 - 0.48 14.32 - 0.93 17.60 - 0.64 15.90 -
Zuker 238.54 - - 23.16 - - 12.16 - - 11.57 - -
NW 11.06 606.88 - 1.12 87.72 490.37 2.04 98.99 516.79 1.21 131.91 768.41
SW 12.89 599.46 - 1.19 182.67 1195.24 2.06 97.16 594.67 1.31 176.46 981.69

TABLE IV: Execution times of algorithms on Risc-V (in seconds)

Org Traco Pluto Dapt

Algorithm 500 1000 2200 500 1000 2200 500 1000 2200 500 1000 2200

Nussinov 0.28 5.26 98.36 0.19 1.34 9.35 0.07 0.74 20.63 0.11 0.74 8.89
Counting 0.64 4.77 68.33 0.15 0.70 11.9 0.30 1.44 11.35 0.14 0.72 10.89
Knuth - - - - - - - - - - - -
Mcc 9.42 17.52 272.59 1.20 3.33 51.96 1.69 8.54 100.66 1.78 4.04 100.99
Triang 5.12 42.38 490.66 1.12 7.71 71.36 1.17 8.65 105.52 1.02 7.60 98.06
Zuker - - - - - - - - - - - -
NW 1.99 26.77 382.56 0.37 5.47 106.47 0.91 9.58 159.87 0.37 6.30 131.24
SW 1.98 26.37 381.60 0.39 5.30 104.66 0.40 6.52 124.30 0.38 5.97 124.12

E. Result Discussion

Tables I–V present execution times for all kernels across

four code variants (Org, Traco, Pluto, Dapt) and five hard-

ware platforms. Overall, the results confirm that polyhedral

compilation significantly improves performance, and that Dapt

frequently produces the fastest code across most tested con-

figurations.

On Apple ARM platforms (M2–M4), the Dapt-generated

code consistently outperforms both the original and other

compiler variants. For example, on the M4 Pro (Table III),

Dapt executes the Nussinov kernel in 17.85s for input size

10000, while the original version requires 244.97s. This trend

is visible across most kernels and input sizes. However, it

is worth noting that Apple systems are based on a het-

erogeneous architecture not explicitly designed for HPC-like

parallel workloads. Their strong performance stems primarily

from advanced chip design, high memory bandwidth, and

aggressive power management at the cost of being proprietary

and expensive.

Although Dapt yields strong results overall, certain kernels

like Counting show comparable or even better performance

with Traco on selected platforms. This may be due to Traco’s

tile correction approach occasionally producing layouts with

better cache fit for specific iteration spaces [10]. While Dapt

generally provides more consistent tiling across irregular

kernels, localized cache effects may favor Traco in select

scenarios.

The RISC-V platform, represented by the low-cost Banana

Pi BPI-F3 board, completed all tests but with significantly

756 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



TABLE V: Execution times of algorithms on Samsung Galaxy A55 (in seconds)

Org Traco Pluto Dapt

Algorithm 500 1000 2200 500 1000 2200 500 1000 2200 500 1000 2200

Nussinov 0.14 1.17 13.11 0.15 2.18 17.16 0.19 0.87 4.13 0.20 0.83 7.27
Counting 0.38 2.83 36.07 0.22 1.76 10.15 0.33 2.83 20.45 0.16 1.18 8.63
Knuth - - - - - - - - - - - -
Mcc 0.42 3.59 72.35 0.31 2.28 22.37 0.28 2.37 29.69 0.23 1.50 16.76
Triang 1.05 8.04 127.95 0.80 5.80 43.78 0.89 3.74 37.60 0.82 3.42 35.75
Zuker - - - - - - - - - - - -
NW 0.88 7.16 111.91 0.49 2.75 27.49 0.67 2.99 30.64 0.82 2.91 28.98
SW 1.00 8.09 124.30 0.55 3.13 27.36 0.78 3.04 32.49 0.79 2.97 34.10

higher execution times. This reflects both early-stage toolchain

maturity and the limited performance of the tested hardware.

RISC-V remains promising due to its openness and Linux

compatibility, and future work will explore more capable

boards.

The Android platform (Samsung Galaxy A55) exhibits

intermediate results. Despite using a modern ARM-based SoC,

the performance is limited by the operating system, which

does not prioritize background computation. For instance,

thermal throttling and restricted OpenMP threading in the

ART environment reduce the potential gains from polyhedral

optimizations. Android also introduces unpredictable perfor-

mance variability due to dynamic task scheduling and user-

space constraints. As a result, OpenMP kernels run slower

and less deterministically compared to Linux-based systems.

While the Dapt compiler provides robust performance

across all platforms, the relative gains vary depending on

the architecture. Moreover, some kernels (e.g., Knuth, Zuker,

SW3D, MEA) were excluded due to excessive runtimes or

instability, especially in Traco or original versions. This was

consistent across all environments and input sizes.

In summary, the results highlight the benefits of polyhedral

compilation techniques for NPDP workloads and expose the

current disparity between platform classes. These results are in

line with earlier work on multi-core systems, where OpenMP-

based parallelization and loop restructuring also led to notable

performance improvements in geospatial workloads [21]. Ap-

ple systems deliver the highest raw performance but are closed

and costly. RISC-V is significantly slower on current boards

but offers openness, modularity, and full Linux support —

key advantages for long-term research. Android devices, while

architecturally capable, suffer from system-level limitations

that reduce usable compute throughput. These findings justify

the need for continued testing on new RISC-V platforms and

more refined kernel-level optimization.

V. CONCLUSION

When comparing research conducted on RISC processors,

it is essential to consider factors such as cost, licensing

model, and the intended application of the processing unit

itself. In terms of raw performance, the fastest processors

currently available are undoubtedly the high-end Apple M4

Pro units, although they also come at a significantly higher

cost. However, Apple and Cortex processors are based on

closed architectures, which limits their utility in development

and research contexts. In contrast, RISC-V processors, due to

their open-source architecture, offer far greater flexibility and

potential for innovation.

Unfortunately, the studied Banana chip performance still

lags behind ARM-based solutions. While Linux kernel support

exists, substantial work remains to improve overall efficiency.

Features such as vector processing are still in the develop-

mental stage, and compilers require significant refinement to

reach production-grade maturity. Nonetheless, the open-source

nature of the platform and the dedicated efforts of volunteer

contributors suggest a promising future—potentially more so

than the long-standing but limited Android NDK.

In terms of performance at the same price point, it is

currently easier to utilize older CISC CPUs or other types of

RISC-based GPUs. While multi-board computers like Banana,

Leeche, or other RISC-V developer boards are becoming

more widespread, especially among emerging manufacturers

from countries affected by U.S. sanctions, their performance

capabilities are still maturing and not yet competitive with

mainstream alternatives. However, the performance of RISC-

V may improve in the future—the question is how rapidly this

improvement will occur. We also plan to evaluate emerging

high-performance RISC-V platforms, including 64-core devel-

opment boards that are now becoming commercially available

[22].

In future work, we will extend our research framework

to include other polyhedral benchmark suites and a detailed

analysis of the energy consumption on these devices.

REFERENCES

[1] M. Palkowski and W. Bielecki, “NPDP benchmark suite for
the evaluation of the effectiveness of automatic optimizing
compilers,” Parallel Computing, vol. 116, p. 103016, Jul.
2023. doi: 10.1016/j.parco.2023.103016. [Online]. Available:
https://doi.org/10.1016/j.parco.2023.103016

[2] S. Verdoolaege, “Integer set library - manual,” www.kotnet.org/∼skimo/
/isl/manual.pdf, 2011, accessed on: 2024-01-11.

[3] L. Liu, M. Wang, J. Jiang, R. Li, and G. Yang, “Efficient nonserial
polyadic dynamic programming on the cell processor.” in IPDPS Work-

shops. Anchorage, Alaska: IEEE, 2011, pp. 460–471.

[4] R. T. Mullapudi and U. Bondhugula, “Tiling for dynamic scheduling,”
in Proceedings of the 4th International Workshop on Polyhedral Com-

pilation Techniques, S. Rajopadhye and S. Verdoolaege, Eds., Vienna,
Austria, Jan. 2014.

[5] M. Palkowski and W. Bielecki, “Parallel tiled Nussinov RNA folding
loop nest generated using both dependence graph transitive closure and
loop skewing,” BMC Bioinformatics, vol. 18, no. 1, p. 290, 2017. doi:
10.1186/s12859-017-1707-8

MAREK PALKOWSKI, MATEUSZ GRUŻEWSKI: NPDP PROGRAMMING FOR RISC MULTI-CORE PROCESSORS 757



[6] V. K. Tchendji, F. I. K. Youmbi, C. T. Djamegni, and J. L. Zeutouo,
“A parallel tiled and sparsified Four-Russians algorithm for Nussinov's
RNA folding,” IEEE/ACM Transactions on Computational Biology and

Bioinformatics, pp. 1–12, 2022. doi: 10.1109/tcbb.2022.3216826
[7] R. Nussinov et al., “Algorithms for loop matchings,” SIAM Journal on

Applied mathematics, vol. 35, no. 1, pp. 68–82, 1978.
[8] U. Bondhugula et al., “A practical automatic polyhedral parallelizer and

locality optimizer,” SIGPLAN Not., vol. 43, no. 6, pp. 101–113, Jun.
2008. doi: 10.1145/1379022.1375595

[9] W. Bielecki and M. Poliwoda, “Automatic parallel tiled code generation
based on dependence approximation,” in Parallel Computing Technolo-

gies, V. Malyshkin, Ed. Cham: Springer International Publishing, 2021,
pp. 260–275.

[10] M. Palkowski and M. Gruzewski, “Time and energy benefits of
using automatic optimization compilers for NPDP tasks,” Electronics,
vol. 12, no. 17, p. 3579, Aug. 2023. doi: 10.3390/electronics12173579.
[Online]. Available: http://dx.doi.org/10.3390/electronics12173579

[11] J. Xue, Loop Tiling for Parallelism. Norwell, MA, USA: Kluwer
Academic Publishers, 2000. ISBN 0-7923-7933-0

[12] OpenMP Architecture Review Board, “OpenMP application program
interface version 5.2,” https://www.openmp.org/specifications, 2021, ac-
cessed on: 2023-10-22.

[13] Apple Inc., “Grand central dispatch (gcd),” https://developer.apple.com/
documentation/dispatch, 2009, accessed: 2025-05-05.

[14] Banana Pi Team, “Banana pi bpi-f3 documentation,” https://docs.

banana-pi.org/en/BPI-F3/BananaPi BPI-F3, 2025, accessed: 2025-05-
05.

[15] SpacemiT, “Spacemit key stone k1 – octa-core 64-bit risc-v ai cpu,”
https://www.spacemit.com/en/key-stone-k1/, 2024, accessed: 2025-05-
05.

[16] Banana Pi Team, “Spacemit k1 8-core risc-v chip brief,” https://docs.
banana-pi.org/en/BPI-F3/SpacemiT K1, 2024, accessed: 2025-05-05.

[17] SpacemiT, “Bianbu linux,” https://bianbu.spacemit.com/en/, 2024, ac-
cessed: 2025-05-05.

[18] Arm Ltd., “Arm cortex-a78 processor,” https://developer.arm.com/
Processors/Cortex-A78, 2020, accessed: 2025-05-05.

[19] ——, “Arm cortex-a55 processor,” https://developer.arm.com/
Processors/Cortex-A55, 2017, accessed: 2025-05-05.

[20] Google LLC, “Android ndk – native development kit,” https://developer.
android.com/ndk, 2024, accessed: 2025-05-05.

[21] B. Bylina, J. Potiopa, M. Klisowski, and J. Bylina, “The impact of
vectorization and parallelization of the slope algorithm on performance
and energy efficiency on multi-core architecture,” in Proceedings of

the 16th Conference on Computer Science and Intelligence Systems

(FedCSIS), ser. Annals of Computer Science and Information Systems,
vol. 25. PTI, 2021. doi: 10.15439/2021F68 pp. 283–290.

[22] Sophgo, “Sg2042 risc-v 64-core soc,” 2025, accessed on: 2024-07-13.
[Online]. Available: https://en.sophgo.com/sophon-u/product/introduce/
sg2042.html

758 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025


