
Abstract—Large Language Models (LLMs) excel at synthe-

sising  globally  documented  knowledge  but  lack  the  fine-

grained,  real-time  awareness  required  for  field-level  agricul-

tural and rural-planning decisions. This paper introduces Jack-

Daw, a spatially enabled chat-agent architecture that couples 

foundation-model reasoning with multi-modal geospatial data 

streams and a retrieval-augmented generation (RAG) pipeline. 

JackDaw implements a tool-prefiltering mechanism that selects 

only those data connectors whose topical, temporal and spatial 

metadata match the current query, thereby mitigating the di-

minishing returns observed when LLMs are exposed to large, 

flat toolsets. Through LangChain-based orchestration the plat-

form dynamically assembles workflows that range from light-

weight natural-language processing models to domain-specific 

analytic  kernels,  while  a  value-engineering  strategy  allocates 

computationally  intensive  models  (e.g.,  GPT-4-class)  only  to 

tasks that require broad contextual reasoning. Benchmark ex-

periments on forestry-asset discovery and vineyard-site assess-

ment  demonstrate  that  JackDaw  delivers  location-specific, 

traceable  answers  that  outperform  a  standalone  proprietary 

LLM, which provides only generic or spatially misattributed 

responses.  The results  confirm that  bridging global language 

models with local spatial intelligence markedly reduces halluci-

nation rates and enhances the operational readiness of AI for 

sustainable agriculture and rural development.

Index  Terms—Large  language  models;  geospatial  AI;  re-

trieval-augmented generation; context-aware agriculture; spa-

tial decision support; tool prefiltering; JackDaw system; rural 

planning.

I. INTRODUCTION

RTIFICIAL intelligence (AI) has transitioned from a 
niche  computational  technique  to  a  pervasive  epis-

temic lens through which agriculture and rural development 
are increasingly interpreted. In agronomic contexts, AI is not 
merely a collection of algorithms but a socio-technical appa-
ratus that converts raw environmental signals into actionable 
knowledge, thereby mediating the long-standing tension be-
tween global food-system efficiency and local stewardship 
of land,  labour and biodiversity.  By formalising inductive 
reasoning at unprecedented spatial and temporal scales, AI 
promises  to  reconcile  high-frequency decision  support  for 
producers  with  broader  rural-development  directives,  re-
silience, equity, sustainability, provided its deployment re-
mains  transparent,  uncertainty-aware  and  ethically  aligned 
[1], [2].

A

AI  pipelines  now  ingest  heterogeneous  data  streams 
from  in-situ  sensors  (soil-moisture  probes,  automated 
weather stations), passive and active satellite constellations 
(multispectral  Sentinel-2  MSI,  C-band  Sentinel-1  SAR, 
DESIS  hyperspectral,  LiDAR),  low-altitude  unmanned-
aerial systems [3], and physics-based or statistical climate 
re-analyses  (GFS,  ERA-5-Land).  Early  studies  relied  on 
single-sensor inputs and shallow classifiers; contemporary 
frameworks fuse multi-temporal, multi-modal observations 
via machine-and deep-learning architectures optimized for 
high-dimensional  spatiotemporal  covariance  structures. 
Sentinel-2  reflectance  cubes  harmonised  with
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Sentinel-1 back-scatter underpin continental land-use-
intensification inventories [4] and sub-field crop-type 

delineation [5]. Binary classifiers trained on multi-season 
Sentinel mosaics further attain F1 ≥ 0.90 for key 
commodity classes [6].  Ensemble decision-tree learners, 

notably Random Forest, remain baseline regressors for 
temperate-cereal yield [7] and national wheat statistics [8], 

while deep neural networks gain traction where label 

density is sufficient: One study [9] stacked convolutional, 
gated-recurrent, and transformer encoders on fused 

Sentinel-1/2 sequences for pixel-level classification; The 
method proposed in [10]  introduced the 3-D → 2-D 

HypsLiDNet that couples DESIS voxels with LiDAR-

derived canopy structure; multi-site neural networks now 
invert hyperspectral reflectance directly to nitrogen and 

leaf-area traits with ≈10 % relative RMSE [11]. Research 
in  [12] demonstrated multimodal convolutional fusion of 

Sentinel-2, edaphic layers and mesoscale meteorology for 

field-scale yield forecasting. Object-based learning 
exploiting explicit geostatistical segmentation persists for 

landscape stratification, findings from [13] combined 

Sentinel-2A, ALOS DSM, and PALSAR layers with 
Random Forest to derive agro-ecological strata lightweight 

transformer networks distilled from deep vision models 
extend the approach to UAV weed-mapping with reduced 

compute overhead [14], and temporal self-attention 

mechanisms have been applied to integrated crop-livestock 
delineation in the subtropics [15]. Wave-equation-

informed convolutions also elevate spatio-temporal forest-
monitoring accuracy, pointing to transferable architectures 

for land-cover dynamics [16].  

Operational deployment is constrained by observation 
gaps (cloud cover, revisit frequency) and by aleatoric 

uncertainty in multi-sensor fusion. Research described in 

[17] mitigated these issues by embedding Sentinel-1 SAR 
into the UnCRtainTS cloud-removal network, lowering 

spectral MAE to ≈ 0.025 reflectance units, and enabling 
continuous NDVI trajectories across Central-European 

croplands. On the prognostic front, high-resolution 

climatic forcing has been advanced by up-scaling 0.25° 
GFS products to ERA-5-Land resolution via a U-Net 

super-resolution model, merging the output with HadISD 

station records, and applying CatBoost regression to 
reduce 24-h temperature MAE to ~1 °C [18]. Nevertheless, 

most agronomic AI studies still rely on internal cross-
validation; spatially independent or inter-annual 

robustness tests remain rare; examples include paddock-

out validation [19] and temporally stratified ten-fold splits 
[20]. Consequently, the methodological frontier is defined 

by scalable multi-sensor fusion, uncertainty-aware 
ensembles or transformers, and rigorous cross-region 

benchmarking to support operational use in dynamic 

agroecosystems. 
Large-language-model (LLM) research entered 

agricultural informatics only recently, yet adoption is 

rapid. A systematic scan identified 26 geospatial-LLM 

papers up to early 2024, almost all post-November 2022, 
describing the field as “embryonic but rapidly 

accelerating” [21]; a parallel survey of multimodal ag-
LLMs reached similar conclusions and noted rudimentary 

benchmarks [22]. Developments have progressed from 

demonstration chatbots to end-to-end systems: ChatGeoAI 
converts plain-language queries into PyQGIS code [23]; 

OmniGeo demonstrates zero-shot reasoning over satellite 

imagery, vector polygons, and free text using an 
instruction-tuned vision-language model [24]. Text-

focused agronomic advisers include a retrieval-augmented 
fruit-and-vegetable system coupling Baichuan-2 with 

RAG to reduce hallucination rates by 10–40 % [25] and a 

cotton-soil engine where a fine-tuned GPT-2 outperforms 
LLaMA-2 for nutrient recommendations [26]. Synthetic 

data generation is exemplified by an LLM-driven agentic 
workflow that fabricates realistic fault patterns for smart-

tractor telemetry, enabling predictive maintenance 

testing). Document intelligence pipelines empower 
domain-agnostic LLMs to extract structured pest 

information from agronomic literature in zero-shot mode 

[27].  Complementary graph-generation pipelines capture 
pest–symptom ontologies for tea production, easing 

structured decision-support [28]. 
Across these studies, shared hurdles are evident. High-

quality labeled agri-text corpora and paired image–text 

datasets remain scarce, forcing reliance on generic 
foundation models or few-shot prompting [25] [22]. 

Factual reliability is fragile, motivating retrieval-
augmented generation [21]. Multimodal grounding across 

satellite, drone, sensor, and text streams is largely 

heuristic, as shown in [22] [24], while the compute and 
energy costs of fine-tuning multi-billion-parameter models 

raise sustainability concerns. Explainability, data 

governance, and ethical compliance are critical yet under-
explored prerequisites for commercial farm deployment 

[21]. 
Within two harvest seasons, the community has advanced 

from isolated demonstrations to retrieval-augmented, 

multimodal assistants addressing yield prediction, soil 
management, pest intelligence, and equipment 

maintenance. Consolidating open data resources, curbing 

hallucinations, mastering efficient geo-text fusion, and 
delivering transparent, farmer-oriented explanations now 

constitute the central agenda for AI-driven rural 
development.   

II. MOTIVATION 

Large Language Models (LLMs) have significantly 

impacted various domains by leveraging vast datasets to 
provide comprehensive responses on diverse topics. Their 

capability to process global and well-documented 

information allows them to efficiently recognize general 
trends, interpret historical data patterns, and detail well-

known geographical areas. However, despite these 
substantial strengths, LLMs frequently exhibit limitations 
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concerning the provision of precise, real-time insights 
required for location-specific and dynamic contexts, such 

as agriculture and rural development. 
In agricultural practices, where decisions rely heavily on 

real-time data about local environmental conditions, 

precise field-level analytics, and seasonal variability, the 
limitations of standalone LLMs become particularly 

pronounced. For instance, while an LLM may 

comprehensively discuss global agricultural trends or 
extensively documented practices, it may lack critical, 

timely insights into crop conditions in a less-documented 
rural area or the subtle seasonal variations affecting local 

agricultural productivity. 

Integrating LLMs with geospatial data offers a robust 
solution to bridge these gaps. Real-time geospatial data, 

encompassing remote sensing imagery from satellites, 
drones, weather stations, and in-situ sensors, can 

complement the generalized insights of LLMs with 

detailed, actionable information at specific locations and 
moments in time. By coupling spatial analysis 

technologies (already established through remote sensing 

platforms such as Sentinel-1 and Sentinel-2, as well as 
advanced AI-driven methodologies) with the broad 

contextual knowledge offered by LLMs, systems like 
JackDaw have demonstrated the potential to significantly 

enhance rural-urban planning and agricultural decision-

making. 
The JackDaw prototype has underscored the value of 

this integrative approach by successfully combining the 
power of LLM reasoning with spatial analysis to provide 

context-aware insights critical for agriculture and rural 

management. Its approach exemplifies how synthesizing 
multi-modal data streams with deep-learning architectures 

can mitigate the limitations stemming from gaps in sensor 

observations or uncertainties in data fusion. Furthermore, 
JackDaw exemplifies the potential of multi-modal 

integration to improve practical agricultural outcomes by 
offering more precise yield forecasts, targeted resource 

management recommendations, and improved 

environmental monitoring. 
Thus, developing an integrative platform that combines 

the strengths of LLMs with standard agricultural AI tools 

and GIS solutions represents a strategic opportunity. Such 
integration promises substantial advancements in rural 

agricultural practices, enabling more robust, evidence-
based decision-making, enhancing sustainability, and 

ultimately improving rural livelihoods and economic 

development. 

 

Fig 1. The motivation for developing the JackDaw chat agent 

III. SOLUTION 

The JackDaw solution is designed to enhance the 

functionality of LLMs by addressing their inherent 

limitations in accessing and interpreting localized, real-
time data. This enhancement is significant in agricultural 

and rural planning professions, where precise localized 

knowledge is crucial. The gap between the global 
knowledge embedded in LLMs and the need for detailed 

local contextual information is significant. JackDaw 
attempts to bridge this gap by integrating advanced 

geospatial data analysis and specialised AI tools into 

conversational AI interfaces. This integration enables 
more accurate and contextually aware responses from 

LLMs than what is possible with the foundation models. 
The conceptual solution underlying JackDaw is 

facilitating meaningful conversations about geographical 

locations through LLMs. To achieve this, it is essential for 
LLMs to be not only aware of the location being discussed 

but also to possess an understanding of what specific data 

is relevant to that place. Furthermore, to provide useful 
responses, JackDaw requires the model to discern which 

data sources should be utilised based on the topic, purpose, 
and spatial location of the conversation. These LLMs are 

expected to engage iteratively with various data sources to 

foster an incremental understanding of the context-specific 
to each inquiry. 

 
Conceptual workflow of a conversation with the 

JackDaw chat agent 

JackDaw operates using a systematic workflow that 
begins when a user initiates a query related to a specific 

geographic location through a user message to the agent. 
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The system interprets this query and tries to match it 
against a large number of available “tools” that connect the 

LLM to a wide range of relevant data sources. These 
sources include spatial datasets, such as those defined by 

the Infrastructure for Spatial Information in Europe 

(INSPIRE), public sector information (PSI), and 
specialised AI models optimised for agricultural analytics. 

 

Upon identifying which “tools” may be relevant to 
answering the question, JackDaw proceeds to pass them to 

the language model, which collects both spatial and tabular 
data sets pertinent to the user's query. This includes sensor-

derived field data, satellite imagery, current weather 

forecasts, soil properties, and agronomic statistics. 
Specialised AI models process these datasets to generate 

analytical insights, which are then contextualised and 
embedded into the chat interface. 

 

 

Fig 2. Conceptual flow of a conversation with the JackDaw spatial-

enabled chat agent 

 

Visualisations derived from the processed datasets are 

integrated into the user interface, providing graphical 
context to the inquiries. These visual representations 

facilitate clearer insights and more actionable decision-
making. By embedding enriched data insights into the 

LLM's reasoning process, JackDaw effectively bridges the 

gap between general global knowledge and the need for 
localized, actionable information. This approach offers 

robust and informed answers to user inquiries, promoting 

enhanced decision-making processes tailored specifically 
to rural and agricultural contexts. 

 

Through the innovative integration of geographic 
information systems (GIS) and advanced AI-driven data 

analytics, JackDaw capitalises on existing expertise within 
these domains. This harnessing of advanced technologies 

promotes a nuanced and effective decision-making 

process, significantly enhancing LLM capabilities in 
understanding and responding to location-specific 

questions. Consequently, JackDaw transforms the 

application of LLMs in agricultural planning and rural 
development, making them more responsive and accurate 

in addressing context-specific inquiries. 
 

Enhancing Chat Conversations with Spatial Context 

 

Integrating an area of interest into a chat query can 

significantly augment user interaction by providing spatial 
context to the conversation. This enhancement involves 

adding spatial features that encapsulate the geographical 

areas users wish to inquire about. The spatial data is 
represented using Well-Known Text (WKT) geometry 

features, a format allowing a detailed description of 

geometric shapes in a human-readable text string. By 
incorporating WKT geometry, users can define specific 

areas of interest directly within the chat interface. 
 

Ways of Incorporating Spatial Features 

Users can add spatial features to a chat query in two 
primary ways: through a client interface or via natural 

language processing (NLP). When utilising a client 
interface, users can directly draw the areas of interest onto 

a map. This method relies on graphical tools that allow 

precise selection and adjustment of shapes to represent the 
desired geographical space accurately. These shapes are 

then converted into WKT format, maintaining their 

geometric characteristics while enabling text-based 
communication in the chat. This method provides users 

with a tangible and intuitive way to specify areas of 
interest. 

Alternatively, spatial features can be derived from NLP 

queries. In this approach, a tool or algorithm processes the 
user's natural language inputs to extract relevant 

geographical information and convert it into WKT 

geometry. This method leverages advances in NLP to 
interpret user intent and spatial references embedded 

within the chat. Such tools can identify place names, 
landmarks, or specific directions mentioned by users and 

translate them into spatial features. This capability allows 

users to describe their areas of interest using everyday 
language, simplifying the process and making it accessible 

to a broader range of users. 
 

Facilitating Function and Tool Integration 

Once the spatial features are integrated into the chat, 
they are encapsulated within code blocks. These code 

blocks are clearly delineated to distinguish them from 

other elements of the chat. This demarcation ensures that 

510 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



 

 
 

the data is accurately identified and processed by 
subsequent tools or functions that the chat agent may call 

upon. Code blocks serve not only to organise information 
but also to maintain data integrity when transferring inputs 

across different operational environments. 

Incorporating spatial features as part of chat queries 
empowers chat agents to utilise this data in subsequent 

interactions. The defined area of interest can be used as a 

parameter for various function or tool calls. For instance, a 
chat agent might access weather data, perform 

geographical analysis, or retrieve demographic 
information specific to the identified area. This capacity 

expands the functionality of chat agents, enabling more 

sophisticated queries and responses tailored to the user's 
spatial context. 

Adding areas of interest to chat queries through WKT 
geometry represents a meaningful advancement in 

interactive technology. By allowing users to define spatial 

parameters using both graphical interfaces and natural 
language processing, the system becomes more flexible 

and user-centric. Furthermore, the encapsulation of data 

within distinct code blocks facilitates seamless integration 
with other tools and functions. Such enhancements lead to 

more effective and targeted interactions, bridging the gap 
between spatial awareness and conversational interfaces. 

This integration serves as a transformative enhancement in 

fields where geographical context is critical, such as urban 
planning, logistics, and environmental monitoring, thereby 

expanding the utility and applicability of chat-based 
systems in professional and research environments. 

 

Connecting data sources to LLMs 

Implementing knowledge acquisition in large language 

models (LLMs) involves equipping these models with an 

understanding of various "things," or categories of 
information, which can be used to improve the 

applicability and accuracy of chat agents. This 
methodology necessitates the development of versatile 

tools that connect LLMs with relevant data sources. LLM 

tools serve a crucial function in facilitating this connection, 
providing the necessary scaffolding to bridge the gap 

between an LLM's inherent language skills and its access 

to a structured knowledge base. 
Versatility is a fundamental requirement when 

constructing these tools. They must be able to interlink 
effectively with multiple data sources, thereby expanding 

the functional capabilities of chat agents. To achieve this, 

tool prompt engineering is an essential process. This 
involves designing specific prompts that guide the retrieval 

and processing of data in a manner that aligns with the 
operational goals of the LLM. Making each tool available 

through a web service enhances accessibility and usability, 

allowing these tools to be integrated seamlessly into web-
based applications. 

Developing numerous specialised tools can significantly 

enhance the LLM's ability to handle complex inquiries. In 

the realm of geophysical information, for instance, tools 
can analyse terrain by examining landforms, elevation, 

aspect, slope, and surface roughness. This data provides 
essential context for applications ranging from 

environmental monitoring to urban planning. Similarly, 

climatic tools that gather information about temperature, 
wind patterns, cloud cover, precipitation, and solar 

radiation contribute to a comprehensive understanding of 

environmental conditions across different regions and 
times, enriching predictive models and research studies. 

Demographic information represents another vital 
category, enabling insights into population characteristics 

and trends. Tools that analyse demographic data must 

consider population size, growth projections, historical 
trends, and the composition of populations based on gender 

and age. This data supports social dynamics, policy 
making, and economic forecast analyses. Economic tools 

can assess business demography and market sizes, offering 

valuable input for economic modeling, investment 
analysis, and strategic planning. 

Temporal tools are indispensable for temporal analysis, 

which is critical in assessing real-time changes and 
zeitgeist trends. When coupled with historical data, a 

snapshot of current weather conditions enables detailed 
climatic assessments. Moreover, zeitgeist tools, such as 

those utilising the Global Database of Events, Language, 

and Tone (GDELT), are instrumental in capturing 
contemporary socio-political dynamics, offering insights 

into prevailing public sentiment and events affecting 
international relations and market behaviours. 

Incorporating statistical data with georeferenced 

identifiers is instrumental for deriving meaningful insights 
based on location-specific features. By identifying 

Nomenclature of Territorial Units for Statistics (NUTS) 

identifiers for particular locations, it is possible to gather 
relevant demographic and business demography statistics. 

This georeferenced approach enables tailored analyses 
considering local variations, which is essential for targeted 

policymaking and regional development strategies. 

The utilisation of raster and grid data complements this 
analysis by providing detailed spatial information. Sources 

such as the European Space Agency (ESA), the Group on 

Earth Observations (GEO), and Sentinel data offer high-
resolution satellite imagery and derived raster datasets. 

These datasets are optimised for large-scale 
multidimensional queries, allowing users to extract 

information that spans multiple dimensions and scales. 

This capability is particularly useful in applications like 
precision agriculture, land use planning, and disaster 

management. 
Vector data, on the other hand, involves using line and 

polygon data formats typical of traditional Geographic 

Information System (GIS) infrastructures. Adhering to 
standards such as those established by the Infrastructure 

for Spatial Information in the European Community 

(INSPIRE), vector data provides a detailed locational 
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context crucial for detailed mapping and spatial analysis. 
This infrastructure supports a wide array of applications, 

from infrastructure development to environmental 
conservation efforts. 

Document data serves an integral role in the holistic use 

of LLM tools, particularly in contexts that require the 
retrieval of legal documents, plans, reports, and other 

contextual information. Access to such documents allows 

LLMs to provide informed responses that are grounded in 
the regulatory and historical framework of the area in 

question. For instance, in urban development scenarios, 
understanding zoning laws and historical city planning 

documents is essential to delivering relevant insights and 

recommendations. 
 

Limiting the number of tools made available to the 

LLM for improved accuracy and efficiency 

 

A significant aspect of working with these models 
involves the invocation of external tools to enhance their 

problem-solving capabilities. However, as the number of 

tools accessible to an LLM increases, the efficiency and 
effectiveness of these tool invocations tend to diminish. To 

address this issue, it is critical to develop a robust method 
for prefiltering tools based on the specific requirements of 

a query or question. 

LLMs are inherently equipped with flat tool invocation 
capabilities. This means that they can be supplied with a 

limited set of tools to assist in fulfilling a task. However, 
as the array of available tools expands, the efficiency of the 

model’s capacity to appropriately call upon these tools 

declines. This is mainly due to the overwhelming number 
of potential options, which can obscure the model's 

decision-making process and reduce its ability to select the 

most pertinent tools for a given task. Therefore, a 
prefiltering step becomes necessary to manage tool 

selection effectively. 
Prefiltering tools is an essential process that relies on 

structural metadata to determine which tools should be 

considered by the model in relation to the question at hand. 
This step ensures that only relevant tools are available for 

use, thereby optimising the model's performance and 

reducing computational overhead. The prefiltering step 
can be executed by employing several criteria, each aimed 

at ensuring the model’s proficiency in addressing the 
specific nuances of the question. 

The initial criterion for filtering tools involves sorting by 

topic relevance. This means identifying tools that align 
with the subject matter of the inquiry. Questions often 

pertain to specific topics, and tools designed with an 
understanding of these subjects can offer more accurate 

and precise insights. For instance, if a question relates to 

environmental science, the prefiltering system would 
bypass tools irrelevant to this field and focus on those 

offering insights or functionality that complement 

environmental studies. 

Another critical filtering criterion is temporal resolution. 
Questions may address events or data related to particular 

time periods, and not all tools possess the capability to 
handle temporal queries comprehensively. The prefiltering 

system must, therefore, identify and prioritise tools that are 

equipped to deal with the specified temporal context. For 
example, if a query involves historical climate data from 

the 1980s, the system should filter out tools that only 

provide contemporary data, ensuring the most temporally 
relevant tools are selected. 

In addition to temporal relevance, the selection of tools 
may also hinge on determining the best source of 

information, especially in scenarios with overlapping data 

coverage. This means the system should favour tools that 
offer the most precise or contextually appropriate data. For 

example, if a model for Norway offers superior data 
specificity compared to a broader European model for a 

particular question, the prefiltering mechanism should 

select the Norwegian model. This ensures that the data 
used is both relevant and of the highest quality possible for 

the query. 

Spatial resolution is another determinant in the 
prefiltering process. Many questions necessitate specific 

spatial data resolutions, and tools may vary greatly in the 
granularity of their data. It is essential to filter tools based 

on the spatial requirements specified in the question. If a 

question demands high-resolution spatial data, such as a 1-
meter resolution for detailed topographic analysis, the 

prefiltering mechanism should prioritise those tools 
capable of fulfilling such needs. Conversely, for less 

detailed queries, tools offering broader, 100-meter 

resolution data may suffice. 
The implementation of a structured prefiltering step 

enhances the ability of LLMs to select and utilise tools 

effectively, leading to more accurate and efficient 
outcomes. By categorising tools based on topic, temporal 

and spatial capabilities, and data quality, the system 
reduces the cognitive load on the model and ensures that 

only the most relevant tools are engaged. This not only 

improves the model's response time and accuracy but also 
conserves computational resources. 

 

Agent implementation using Langchain for Python 

 

The integration and orchestration of calls to various 
machine learning models constitute a key component in the 

efficient deployment and utilisation of these models in 

real-world applications. Among the technologies 
facilitating this process, Langchain emerges as a pivotal 

tool. It offers an interface designed specifically for 
dynamic interaction with language models, significantly 

enhancing applied solutions' flexibility and 

maintainability. 
Langchain serves as an abstraction layer that simplifies 

the setup of client calls to large language models (LLMs). 

Through its design, Langchain provides a mechanism by 
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which these models can be interacted with seamlessly, 
ensuring that the underlying complexities of each model 

are effectively managed. The abstraction layer 
implemented by Langchain allows developers to perform 

model orchestration in a manner that separates the business 

logic from model-specific code. This, in turn, supports the 
ease of integration and modular development, facilitating 

a more structured approach to software development that 

incorporates these advanced models. 
Further, the abstraction layer not only supports seamless 

communication with a single LLM but also allows for the 
straightforward replacement of one model with another. 

This feature is essential in today's rapidly evolving 

machine-learning landscape, where the rapid development 
of new models can often leave practitioners with outdated 

tools. By using Langchain, developers can efficiently swap 
out LLMs at any workflow stage to achieve improved 

performance, accuracy, or other desirable traits inherent in 

more advanced models. 
The utility of this abstraction layer extends beyond the 

wholesale replacement of models. It also permits granular 

control over individual steps within the model workflow. 
This means that each component of the process can be 

optimised by integrating the most suitable model for that 
specific task. Such granular control is invaluable, as it 

provides the opportunity to tailor each step of the 

interaction with the LLM to align with specific 
requirements or constraints. Consequently, applications 

deploying these models become more robust and targeted 
in their outcomes. 

Langchain's design enhances the portability and 

scalability of machine learning systems, allowing for 
simple expansion in scope and scale. Abstracting model 

interactions enables systems to cater to increased demand 

or incorporate complex functionalities without 
significantly reengineering existing systems. The ability to 

efficiently manage and organise various LLMs through 
Langchain allows developers to create more sophisticated 

applications that can handle a wider range of tasks and 

challenges. 
Moreover, Langchain plays a significant role in 

encouraging best practices in software engineering and 

model deployment. Enforcing separation of concerns 
ensures that the model logic does not hinder the 

development of other software components. Developers 
are encouraged to engage in clean code practices and 

modular development, which enhances the maintainability 

and longevity of software systems. Using an abstraction 
layer thus aids in creating a more streamlined development 

process, where different teams can work on separate 
components without interference, leading to a more 

collaborative and efficient workflow. 

In addition to improving development processes, 
Langchain may also contribute to the reduction of 

deployment risks. It allows testing new models within 

existing infrastructures without extensive overhauls, 

facilitating smoother transitions and updates. This capacity 
to swap models quickly and without significant downtime 

is especially critical in environments where continuous 
integration and deployment are essential requirements. 

Fostering an ecosystem where evolving models can be 

integrated without friction is fundamental to maintaining a 
competitive edge in fields relying heavily on machine 

learning. Langchain thus acts as a linchpin in the 

operational management of these models, aligning 
technological capabilities with business objectives. 

Organisations are thereby empowered to harness the full 
potential of LLM advancements with minimal disruption 

to their existing systems. 

 
Value engineering in the back-end solution 

 

Back-end value engineering is a crucial aspect in the 

development of computational tools, particularly tools like 

JackDaw that involve complex model interactions. This 
discipline focuses on the optimal allocation of 

computational resources to enhance performance and 

reduce operational costs. Within the context of back-end 
value engineering, a nuanced approach to model selection 

and implementation can lead to substantial improvements 
in efficiency and effectiveness. 

At its core, the process of back-end value engineering 

involves the strategic use of different models for varying 
steps within a computational sequence. By tailoring the 

choice of model to the specific requirements of each task, 
developers can achieve better resource allocation, 

ultimately enhancing the tool's performance. 

For initial tasks requiring basic language processing 
capabilities, models possessing natural language 

processing (NLP) capacity are sufficient. Such tasks often 

involve identifying appropriate arguments to be passed to 
a function. NLP models excel in understanding linguistic 

input, making them ideal for these preliminary steps. Their 
use ensures that computational resources are not expended 

unnecessarily on more complex models when simpler ones 

suffice. 
In contrast, certain steps necessitate the employment of 

a base model with a comprehensive understanding of 

diverse knowledge areas. Models like GPT-4po serve this 
purpose effectively. These models are designed to possess 

a wide-ranging repository of generic knowledge, thereby 
enabling them to tackle tasks that demand a broad 

understanding. Their utility lies in their ability to provide 

insights and execute functions that require a generalist 
perspective. 

Moreover, some stages in a computational process 
necessitate the application of bespoke models with 

domain-specific expertise. An example might be a model 

engineered to handle species tolerance parameters. These 
custom models are tailored to address specialised tasks, 

offering insights and solutions that generic models might 

overlook. Their usage is particularly advantageous in niche 
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applications where precision and specialised knowledge 
are critical. 

 
By implementing an optimised model selection strategy, 

the overall cost associated with complex tool-calling 

chains can be significantly mitigated. This approach entails 
identifying the most suitable model for any given task and 

deploying it accordingly. Such strategic allocation not only 

reduces computational expenses but also enhances the 
tool's efficacy in performing its designated functions. 

The process of determining the optimal model for each 
step involves several considerations. These include the 

computational requirements of the task, the desired level 

of accuracy, and the potential impact on overall 
performance. By weighing these factors, developers can 

make informed choices that align with both technical 
objectives and budgetary constraints. 

There is a crucial balance to be struck between 

leveraging the simplicity and efficiency of NLP models 
and harnessing the expansive capabilities of base models 

like GPT-4po. Additionally, the precision offered by 

customised models with specialised knowledge must be 
integrated judiciously to maximise effectiveness. Such 

decisions require careful assessment and strategic planning 
to ensure that the right model is deployed at the right stage. 

In scenarios where tasks are relatively straightforward, 

deploying simpler models can free up computational 
resources, thereby allowing more complex models to be 

reserved for tasks that truly necessitate their capabilities. 
Conversely, when tasks demand a more in-depth 

understanding or specialised insight, more sophisticated 

models are utilised to achieve the desired outcomes. 
Furthermore, this tiered approach to model selection 

also facilitates scalability. As computational demands 

evolve, new models can be integrated, or existing models 
can be updated to reflect the latest advancements and 

requirements. This adaptability ensures the system remains 
robust and responsive to changing needs without requiring 

complete overhauls or excessive expenditure. 

Integrating diverse models in back-end processes also 
fosters innovation, as developers are encouraged to explore 

novel combinations and applications to enhance 

performance. By considering how different models can 
interact and complement one another, new solutions can be 

devised that push the boundaries of current capabilities, all 
while keeping resource use and costs in check. 

Through careful analysis and planning, back-end value 

engineering plays an instrumental role in the development 
and deployment of computational tools. By strategically 

selecting and implementing models tailored to specific 
tasks, developers can transform their systems into more 

efficient and cost-effective solutions. This calculated 

approach not only optimises performance but also paves 
the way for ongoing innovation and refinement. 

While of lesser scientific value, value engineering is 
critical to ensuring adoption and a realistic path to a real 

and tangible market. 
 

RAG module 

 

One of the key components that enables JackDaw to 

deliver more credible and less hallucination-prone 

responses is the Retrieval Augmented Generation (RAG) 
module, illustrated in Figure 3. This module enhances 

JackDaw’s responses by grounding them in external 
references and supporting the ingestion of new data 

sources. The RAG module consists of three main 

components: 
1. Embedding Model - Transforms input text into 

high-dimensional vector embeddings, enabling semantic 
search within a vector database. 

2. PDF-to-Markdown Conversion Tool - Parses 

user-submitted PDF files and extracts both content and 
structure. It converts the documents into clean, structured 

Markdown, preserving key elements such as headings, 

paragraphs, tables, and lists to maintain readability and 
information integrity. 

3. RAG Application - The core service that handles 
user queries, retrieves relevant content from the vector 

database, and compiles the results for response generation. 

The module uses a microservices architecture to support 
scalability and simplify maintenance. At its core is the 

RAG Application, which orchestrates the query processing 
and retrieval workflow. 

 

Fig 3. Overview of the RAG module architecture 

 
The RAG module interfaces with the JackDaw system 

through a reverse proxy, facilitating secure external 

communication. Internally, the reverse proxy routes 
requests to two main components: the RAG Application 

and the PDF-to-Markdown Conversion tool. The RAG 

Application acts as the central component, orchestrating 
interactions with both the PDF-to-Markdown Conversion 

tool and the Embedding Model. All communication 
between these components occurs internally, ensuring 

efficient data flow within the system. 
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Before deployment, the system was seeded with trusted 
content - policy documents and scientific articles. These 

documents were processed using the same PDF-to-
Markdown tool described above. This tool utilized Docling 

Library [29] to perform the parsing. The resulting 

Markdown files were segmented into smaller units of 
approximately 500 tokens, referred to as chunks. 

Each chunk was embedded using the Alibaba-NLP/gte-

Qwen2-1.5B-instruct Model [30], a high-performing 
multilingual language model. The resulting embeddings, 

along with their corresponding text chunks, were stored in 
ChromaDB, an open-source vector database optimized for 

similarity search. 

At runtime, when a user submits a query, the RAG 
Application first generates an embedding of the query. 

This embedding is then used to retrieve semantically 
similar chunks from the vector database. These passages 

are returned to JackDaw along with metadata that includes 

source information, enabling more accurate responses and 
full traceability. This approach ensures that users can 

access the original documents from which answers are 

derived, promoting transparency and trust. 
Currently, the PDF-to-Markdown tool is limited to 

processing individual PDF files and returning the parsed 
content directly to JackDaw. This setup is designed for 

scenarios where users want assistance understanding or 

extracting information from specific documents. 
In the future, the tool will be expanded to support the 

creation of personalized knowledge bases. Users will be 
able to upload multiple PDF files, effectively building a 

private vector database similar to the existing global one. 

This personal database can then be used to enrich the 
responses generated by the language model, resulting in 

more context-aware, tailored, and useful interactions. 

Moreover, this setup will support the continuous growth of 
the data source, enabling users to expand and evolve their 

assistant’s knowledge over time incrementally. 

IV. RESULTS 

We tested the performance of JackDaw on various 
scenarios related to geospatial data tasks in agriculture and 

forestry and compared its solutions with standard 
proprietary LLMs to determine its benefits and limitations. 

For each user’s query, our system invokes tools with 

information about the geographical area of interest and 
reasons over the retrieved content to provide a final 

answer. To make the comparison more balanced, we 

include the geographical area in the form of bounding box 
coordinates in the input query so that the standard LLM 

has some information about the location. Without this 
information, the standard LLM would have no way of 

providing relevant information. The following scenarios 

showcase that JackDaw is able to provide location-specific 
relevant information, whereas the standard LLM can only 

give general advice, sometimes not even related to the area 
of interest. We used GPT-4o-mini as the LLM. 

 
Scenario 1 

 

In this scenario, we asked about a partially forested area; 

the user query was: “Is this area forested, and are there any 

specific utilities regarding forestry?”. Figure 4 shows 
responses from JackDaw and a standard LLM. It also 

contains the selected area of interest. GPT-4o-mini 

managed to offer general advice and derived the location 
from the coordinates as close to Pilsen, which is true, but 

it was unable to determine the real location. JackDaw 
retrieved data by utilizing tools and was able to list existing 

facilities related to forestry and also determine the 

distribution of land in the area. 
 

Scenario 2 

 

In this scenario, we asked whether an area in the Czech 

Republic is suitable for vineyards. The user query was: 
“Determine if this area is suitable for a vineyard and 

provide a concise answer.” Figure 5 shows both responses 

together with the area of interest. This time, JackDaw 
provided a concise answer consisting of climate, land 

cover, and elevation analysis. The standard LLM wrongly 
determined the area to be in Austria, with a general 

recommendation for the area for vineyards without any 

backing data. 

Fig 4. Comparison of responses regarding a query about forestry  

 
Context and Visualisation Imperatives 

In the years leading up to generative AI becoming 

“public property”, the volume of text emerging from 
argumentative sources such as consultancy reports was 

already expanding noticeably. The increase was often 
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characterised by esoteric industry language and 
overcomplicated sentence structures, far beyond what was 

necessary for effective communication. Reports usually 
offered vague reasoning and inconclusive advice. 

Consequently, readers, typically non-scientific, technically 

oriented professionals had to develop new approaches to 
extract key ideas or recommendations from these wordy 

passages, which again led to altered reading habits and 

gave root to the scientifically unjustified and yet not 
entirely unfounded maxim that “nobody reads”. 

Following the advent of the Language Model (LLM), 
the creation of well-structured text is now within reach of 

literally anyone, leading to a further accelerated growth in 

well-padded textual content, resulting in a situation where 
now not only “nobody reads” but neither does anyone 

write. While this is anecdotal and should not be considered 
a scientific finding, it does describe a situation where 

visualisation remains as important as ever to reveal and 

convey trends and exceptions in data in a manner that 
makes it more easily accessible to readers who may find a 

good-looking block of text deceptively attractive without 

taking into consideration what it actually says. 
Effective visualisation in this context means applying 

the building blocks derived from the more traditional 
analytical tool suites, such as geoportals (maps, 2D, 3D) 

and business intelligence (charts, tables), as well as more 

advanced forms of visualisation. 
LLMs generate text and often use the "markdown" 

language to include formatting. This includes the 
capability of outputting code blocks that can contain 

structured data intermixed with the text. A code block may 

contain any text-based or text-representable format, such 
as GeoJSON or GeoCSV, making rendering LLM output 

as any of the above visual indicators easy. JackDaw utilises 

custom markdown renderers to accomplish render tables, 
charts, and maps. 

 

Fig 5. Comparison of responses to an area analysis query related to 

vineyards  

V. CONCLUSION  

This paper has demonstrated that a language-model 
agent can be made spatially competent by constraining its 

reasoning to a query-specific subset of geospatial tools and 

by grounding each answer in an external retrieval layer. 
The proposed JackDaw architecture contributes three 

principal advances: 
1. Structured tool pre-filtering. Tools are surfaced to the 

LLM only when their topical, temporal and spatial 

metadata intersect the user’s query, avoiding the accuracy 
and latency penalties that arise from flat tool lists. 

2. Value-engineered model orchestration. A LangChain 

abstraction allocates lightweight NLP models to syntactic 
steps, reserves foundation models for broad-context 

reasoning, and inserts domain-specific kernels where 
specialised knowledge is required. 

3. Retrieval-augmented generation with transparent 

provenance. A micro-service RAG layer embeds trusted 
documents in a vector store and returns source passages 

with every response, enabling fact-checking and reducing 
hallucinations. 

Benchmark experiments on forestry-asset discovery and 

vineyard-site assessment show that JackDaw delivers 
concise, location-specific answers, whereas a baseline 

proprietary LLM produces only generic or spatially 

misattributed guidance. These findings confirm that 
coupling global language understanding with local spatial 

intelligence materially improves decision support in 
agriculture and rural planning. 

Limitations. The evaluation covered two use-cases 

within Central Europe and a single growing season; cross-
regional transferability, additional thematic domains and 

longer temporal windows remain untested. The current 

RAG pipeline ingests individual PDF documents but does 
not yet support user-specific knowledge bases or large-

scale cloud retrieval, and cost modelling excluded vector-
query overheads. 

Future work. Planned extensions include (i) adaptive 

ontology-driven tool selection to further shrink the action 
space, (ii) ingestion of multimodal sensor streams (e.g., 

hyperspectral cubes, IoT telemetry), (iii) private vector 
databases for institutional users, and (iv) benchmarking 

against emerging geospatial-LLM test suites. Governance 

requirements—explainability, bias auditing and energy 
accounting—will be addressed to ensure regulatory 

compliance and sustainable operation. 

In summary, the results substantiate that an architecture 
which bridges foundation-scale language models with 

dynamically selected, high-resolution spatial data streams 
is a viable path toward reliable, context-aware AI services 

for agriculture and rural development.   
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