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Abstract—Large Language Models (LLMs) excel at synthe-
sising globally documented knowledge but lack the fine-
grained, real-time awareness required for field-level agricul-
tural and rural-planning decisions. This paper introduces Jack-
Daw, a spatially enabled chat-agent architecture that couples
foundation-model reasoning with multi-modal geospatial data
streams and a retrieval-augmented generation (RAG) pipeline.
JackDaw implements a tool-prefiltering mechanism that selects
only those data connectors whose topical, temporal and spatial
metadata match the current query, thereby mitigating the di-
minishing returns observed when LLMs are exposed to large,
flat toolsets. Through LangChain-based orchestration the plat-
form dynamically assembles workflows that range from light-
weight natural-language processing models to domain-specific
analytic Kernels, while a value-engineering strategy allocates
computationally intensive models (e.g., GPT-4-class) only to
tasks that require broad contextual reasoning. Benchmark ex-
periments on forestry-asset discovery and vineyard-site assess-
ment demonstrate that JackDaw delivers location-specific,
traceable answers that outperform a standalone proprietary
LLM, which provides only generic or spatially misattributed
responses. The results confirm that bridging global language
models with local spatial intelligence markedly reduces halluci-
nation rates and enhances the operational readiness of Al for
sustainable agriculture and rural development.

Index Terms—Large language models; geospatial Al; re-
trieval-augmented generation; context-aware agriculture; spa-
tial decision support; tool prefiltering; JackDaw system; rural
planning.
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1. INTRODUCTION

ARTIFICIAL intelligence (AI) has transitioned from a
niche computational technique to a pervasive epis-
temic lens through which agriculture and rural development
are increasingly interpreted. In agronomic contexts, Al is not
merely a collection of algorithms but a socio-technical appa-
ratus that converts raw environmental signals into actionable
knowledge, thereby mediating the long-standing tension be-
tween global food-system efficiency and local stewardship
of land, labour and biodiversity. By formalising inductive
reasoning at unprecedented spatial and temporal scales, Al
promises to reconcile high-frequency decision support for
producers with broader rural-development directives, re-
silience, equity, sustainability, provided its deployment re-
mains transparent, uncertainty-aware and ethically aligned
[11, 121

Al pipelines now ingest heterogeneous data streams
from in-situ sensors (soil-moisture probes, automated
weather stations), passive and active satellite constellations
(multispectral Sentinel-2 MSI, C-band Sentinel-1 SAR,
DESIS hyperspectral, LiDAR), low-altitude unmanned-
aerial systems [3], and physics-based or statistical climate
re-analyses (GFS, ERA-5-Land). Early studies relied on
single-sensor inputs and shallow classifiers; contemporary
frameworks fuse multi-temporal, multi-modal observations
via machine-and deep-learning architectures optimized for
high-dimensional spatiotemporal covariance structures.
Sentinel-2  reflectance  cubes  harmonised  with
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Sentinel-1 back-scatter underpin continental land-use-
intensification inventories [4] and sub-field crop-type
delineation [5]. Binary classifiers trained on multi-season
Sentinel mosaics further attain F1 > 0.90 for key
commodity classes [6]. Ensemble decision-tree learners,
notably Random Forest, remain baseline regressors for
temperate-cereal yield [7] and national wheat statistics [8],
while deep neural networks gain traction where label
density is sufficient: One study [9] stacked convolutional,
gated-recurrent, and transformer encoders on fused
Sentinel-1/2 sequences for pixel-level classification; The
method proposed in [10] introduced the 3-D — 2-D
HypsLiDNet that couples DESIS voxels with LiDAR-
derived canopy structure; multi-site neural networks now
invert hyperspectral reflectance directly to nitrogen and
leaf-area traits with ~10 % relative RMSE [11]. Research
in [12] demonstrated multimodal convolutional fusion of
Sentinel-2, edaphic layers and mesoscale meteorology for
field-scale yield forecasting. Object-based learning
exploiting explicit geostatistical segmentation persists for
landscape stratification, findings from [13] combined
Sentinel-2A, ALOS DSM, and PALSAR layers with
Random Forest to derive agro-ecological strata lightweight
transformer networks distilled from deep vision models
extend the approach to UAV weed-mapping with reduced
compute overhead [14], and temporal self-attention
mechanisms have been applied to integrated crop-livestock
delineation in the subtropics [15]. Wave-equation-
informed convolutions also elevate spatio-temporal forest-
monitoring accuracy, pointing to transferable architectures
for land-cover dynamics [16].

Operational deployment is constrained by observation
gaps (cloud cover, revisit frequency) and by aleatoric
uncertainty in multi-sensor fusion. Research described in
[17] mitigated these issues by embedding Sentinel-1 SAR
into the UnCRtainTS cloud-removal network, lowering
spectral MAE to ~ 0.025 reflectance units, and enabling
continuous NDVI trajectories across Central-European
croplands. On the prognostic front, high-resolution
climatic forcing has been advanced by up-scaling 0.25°
GFS products to ERA-5-Land resolution via a U-Net
super-resolution model, merging the output with HadISD
station records, and applying CatBoost regression to
reduce 24-h temperature MAE to ~1 °C [18]. Nevertheless,
most agronomic Al studies still rely on internal cross-
validation;  spatially independent or inter-annual
robustness tests remain rare; examples include paddock-
out validation [19] and temporally stratified ten-fold splits
[20]. Consequently, the methodological frontier is defined
by scalable multi-sensor fusion, uncertainty-aware
ensembles or transformers, and rigorous cross-region
benchmarking to support operational use in dynamic
agroecosystems.

Large-language-model =~ (LLM)  research  entered
agricultural informatics only recently, yet adoption is
rapid. A systematic scan identified 26 geospatial-LLM
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papers up to early 2024, almost all post-November 2022,
describing the field as ‘“embryonic but rapidly
accelerating” [21]; a parallel survey of multimodal ag-
LLMs reached similar conclusions and noted rudimentary
benchmarks [22]. Developments have progressed from
demonstration chatbots to end-to-end systems: ChatGeoAl
converts plain-language queries into PyQGIS code [23];
OmniGeo demonstrates zero-shot reasoning over satellite
imagery, vector polygons, and free text using an
instruction-tuned vision-language model [24]. Text-
focused agronomic advisers include a retrieval-augmented
fruit-and-vegetable system coupling Baichuan-2 with
RAG to reduce hallucination rates by 10—40 % [25] and a
cotton-soil engine where a fine-tuned GPT-2 outperforms
LLaMA-2 for nutrient recommendations [26]. Synthetic
data generation is exemplified by an LLM-driven agentic
workflow that fabricates realistic fault patterns for smart-
tractor telemetry, enabling predictive maintenance
testing). Document intelligence pipelines empower
domain-agnostic LLMs to extract structured pest
information from agronomic literature in zero-shot mode
[27]. Complementary graph-generation pipelines capture
pest—symptom ontologies for tea production, easing
structured decision-support [28].

Across these studies, shared hurdles are evident. High-
quality labeled agri-text corpora and paired image—text
datasets remain scarce, forcing reliance on generic
foundation models or few-shot prompting [25] [22].
Factual reliability is fragile, motivating retrieval-
augmented generation [21]. Multimodal grounding across
satellite, drone, sensor, and text streams is largely
heuristic, as shown in [22] [24], while the compute and
energy costs of fine-tuning multi-billion-parameter models
raise sustainability concerns. Explainability, data
governance, and ethical compliance are critical yet under-
explored prerequisites for commercial farm deployment
[21].

Within two harvest seasons, the community has advanced
from isolated demonstrations to retrieval-augmented,
multimodal assistants addressing yield prediction, soil
management, pest intelligence, and equipment
maintenance. Consolidating open data resources, curbing
hallucinations, mastering efficient geo-text fusion, and
delivering transparent, farmer-oriented explanations now
constitute the central agenda for Al-driven rural
development.

1I. MOTIVATION

Large Language Models (LLMs) have significantly
impacted various domains by leveraging vast datasets to
provide comprehensive responses on diverse topics. Their
capability to process global and well-documented
information allows them to efficiently recognize general
trends, interpret historical data patterns, and detail well-
known geographical areas. However, despite these
substantial strengths, LLMs frequently exhibit limitations
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concerning the provision of precise, real-time insights
required for location-specific and dynamic contexts, such
as agriculture and rural development.

In agricultural practices, where decisions rely heavily on
real-time data about local environmental conditions,
precise field-level analytics, and seasonal variability, the
limitations of standalone LLMs become particularly
pronounced. For instance, while an LLM may
comprehensively discuss global agricultural trends or
extensively documented practices, it may lack critical,
timely insights into crop conditions in a less-documented
rural area or the subtle seasonal variations affecting local
agricultural productivity.

Integrating LLMs with geospatial data offers a robust
solution to bridge these gaps. Real-time geospatial data,
encompassing remote sensing imagery from satellites,
drones, weather stations, and in-situ sensors, can
complement the generalized insights of LLMs with
detailed, actionable information at specific locations and
moments in time. By coupling spatial analysis
technologies (already established through remote sensing
platforms such as Sentinel-1 and Sentinel-2, as well as
advanced Al-driven methodologies) with the broad
contextual knowledge offered by LLMs, systems like
JackDaw have demonstrated the potential to significantly
enhance rural-urban planning and agricultural decision-
making.

The JackDaw prototype has underscored the value of
this integrative approach by successfully combining the
power of LLM reasoning with spatial analysis to provide
context-aware insights critical for agriculture and rural
management. Its approach exemplifies how synthesizing
multi-modal data streams with deep-learning architectures
can mitigate the limitations stemming from gaps in sensor
observations or uncertainties in data fusion. Furthermore,
JackDaw exemplifies the potential of multi-modal
integration to improve practical agricultural outcomes by
offering more precise yield forecasts, targeted resource
management recommendations, and improved
environmental monitoring.

Thus, developing an integrative platform that combines
the strengths of LLMs with standard agricultural Al tools
and GIS solutions represents a strategic opportunity. Such
integration promises substantial advancements in rural
agricultural practices, enabling more robust, evidence-
based decision-making, enhancing sustainability, and
ultimately improving rural livelihoods and economic
development.

LLMS lacks detalled
Knowledge about specific
sector

9
[

Fig 1. The motivation for developing the JackDaw chat agent

I11. SOLUTION

The JackDaw solution is designed to enhance the
functionality of LLMs by addressing their inherent
limitations in accessing and interpreting localized, real-
time data. This enhancement is significant in agricultural
and rural planning professions, where precise localized
knowledge is crucial. The gap between the global
knowledge embedded in LLMs and the need for detailed
local contextual information is significant. JackDaw
attempts to bridge this gap by integrating advanced
geospatial data analysis and specialised Al tools into
conversational Al interfaces. This integration enables
more accurate and contextually aware responses from
LLMs than what is possible with the foundation models.

The conceptual solution underlying JackDaw is
facilitating meaningful conversations about geographical
locations through LLMs. To achieve this, it is essential for
LLMs to be not only aware of the location being discussed
but also to possess an understanding of what specific data
is relevant to that place. Furthermore, to provide useful
responses, JackDaw requires the model to discern which
data sources should be utilised based on the topic, purpose,
and spatial location of the conversation. These LLMs are
expected to engage iteratively with various data sources to
foster an incremental understanding of the context-specific
to each inquiry.

Conceptual workflow of a conversation with the
JackDaw chat agent

JackDaw operates using a systematic workflow that
begins when a user initiates a query related to a specific
geographic location through a user message to the agent.
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The system interprets this query and tries to match it
against a large number of available “tools” that connect the
LLM to a wide range of relevant data sources. These
sources include spatial datasets, such as those defined by
the Infrastructure for Spatial Information in Europe
(INSPIRE), public sector information (PSI), and
specialised Al models optimised for agricultural analytics.

Upon identifying which “tools” may be relevant to
answering the question, JackDaw proceeds to pass them to
the language model, which collects both spatial and tabular
data sets pertinent to the user's query. This includes sensor-
derived field data, satellite imagery, current weather
forecasts, soil properties, and agronomic statistics.
Specialised AI models process these datasets to generate
analytical insights, which are then contextualised and
embedded into the chat interface.

Single LLM call,
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processing capabilities ¢

Query enhancement ]
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Fig 2. Conceptual flow of a conversation with the JackDaw spatial-
enabled chat agent

Visualisations derived from the processed datasets are
integrated into the user interface, providing graphical
context to the inquiries. These visual representations
facilitate clearer insights and more actionable decision-
making. By embedding enriched data insights into the
LLM's reasoning process, JackDaw effectively bridges the
gap between general global knowledge and the need for
localized, actionable information. This approach offers
robust and informed answers to user inquiries, promoting
enhanced decision-making processes tailored specifically
to rural and agricultural contexts.
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Through the innovative integration of geographic
information systems (GIS) and advanced Al-driven data
analytics, JackDaw capitalises on existing expertise within
these domains. This harnessing of advanced technologies
promotes a nuanced and effective decision-making
process, significantly enhancing LLM capabilities in
understanding and responding to location-specific
questions. Consequently, JackDaw transforms the
application of LLMs in agricultural planning and rural
development, making them more responsive and accurate
in addressing context-specific inquiries.

Enhancing Chat Conversations with Spatial Context

Integrating an area of interest into a chat query can
significantly augment user interaction by providing spatial
context to the conversation. This enhancement involves
adding spatial features that encapsulate the geographical
areas users wish to inquire about. The spatial data is
represented using Well-Known Text (WKT) geometry
features, a format allowing a detailed description of
geometric shapes in a human-readable text string. By
incorporating WKT geometry, users can define specific
areas of interest directly within the chat interface.

Ways of Incorporating Spatial Features

Users can add spatial features to a chat query in two
primary ways: through a client interface or via natural
language processing (NLP). When utilising a client
interface, users can directly draw the areas of interest onto
a map. This method relies on graphical tools that allow
precise selection and adjustment of shapes to represent the
desired geographical space accurately. These shapes are
then converted into WKT format, maintaining their
geometric characteristics while enabling text-based
communication in the chat. This method provides users
with a tangible and intuitive way to specify areas of
interest.

Alternatively, spatial features can be derived from NLP
queries. In this approach, a tool or algorithm processes the
user's natural language inputs to extract relevant
geographical information and convert it into WKT
geometry. This method leverages advances in NLP to
interpret user intent and spatial references embedded
within the chat. Such tools can identify place names,
landmarks, or specific directions mentioned by users and
translate them into spatial features. This capability allows
users to describe their areas of interest using everyday
language, simplifying the process and making it accessible
to a broader range of users.

Facilitating Function and Tool Integration

Once the spatial features are integrated into the chat,
they are encapsulated within code blocks. These code
blocks are clearly delineated to distinguish them from
other elements of the chat. This demarcation ensures that



KAREL CHARVAT ET AL.: BRIDGING GLOBAL LANGUAGE MODELS AND LOCAL SPATIAL DATA

the data is accurately identified and processed by
subsequent tools or functions that the chat agent may call
upon. Code blocks serve not only to organise information
but also to maintain data integrity when transferring inputs
across different operational environments.

Incorporating spatial features as part of chat queries
empowers chat agents to utilise this data in subsequent
interactions. The defined area of interest can be used as a
parameter for various function or tool calls. For instance, a
chat agent might access weather data, perform
geographical analysis, or retrieve demographic
information specific to the identified area. This capacity
expands the functionality of chat agents, enabling more
sophisticated queries and responses tailored to the user's
spatial context.

Adding areas of interest to chat queries through WKT
geometry represents a meaningful advancement in
interactive technology. By allowing users to define spatial
parameters using both graphical interfaces and natural
language processing, the system becomes more flexible
and user-centric. Furthermore, the encapsulation of data
within distinct code blocks facilitates seamless integration
with other tools and functions. Such enhancements lead to
more effective and targeted interactions, bridging the gap
between spatial awareness and conversational interfaces.
This integration serves as a transformative enhancement in
fields where geographical context is critical, such as urban
planning, logistics, and environmental monitoring, thereby
expanding the utility and applicability of chat-based
systems in professional and research environments.

Connecting data sources to LLMs

Implementing knowledge acquisition in large language
models (LLMs) involves equipping these models with an
understanding of various "things," or categories of
information, which can be used to improve the
applicability and accuracy of chat agents. This
methodology necessitates the development of versatile
tools that connect LLMs with relevant data sources. LLM
tools serve a crucial function in facilitating this connection,
providing the necessary scaffolding to bridge the gap
between an LLM's inherent language skills and its access
to a structured knowledge base.

Versatility is a fundamental requirement when
constructing these tools. They must be able to interlink
effectively with multiple data sources, thereby expanding
the functional capabilities of chat agents. To achieve this,
tool prompt engineering is an essential process. This
involves designing specific prompts that guide the retrieval
and processing of data in a manner that aligns with the
operational goals of the LLM. Making each tool available
through a web service enhances accessibility and usability,
allowing these tools to be integrated seamlessly into web-
based applications.

Developing numerous specialised tools can significantly
enhance the LLM's ability to handle complex inquiries. In

the realm of geophysical information, for instance, tools
can analyse terrain by examining landforms, elevation,
aspect, slope, and surface roughness. This data provides
essential context for applications ranging from
environmental monitoring to urban planning. Similarly,
climatic tools that gather information about temperature,
wind patterns, cloud cover, precipitation, and solar
radiation contribute to a comprehensive understanding of
environmental conditions across different regions and
times, enriching predictive models and research studies.

Demographic information represents another vital
category, enabling insights into population characteristics
and trends. Tools that analyse demographic data must
consider population size, growth projections, historical
trends, and the composition of populations based on gender
and age. This data supports social dynamics, policy
making, and economic forecast analyses. Economic tools
can assess business demography and market sizes, offering
valuable input for economic modeling, investment
analysis, and strategic planning.

Temporal tools are indispensable for temporal analysis,
which is critical in assessing real-time changes and
zeitgeist trends. When coupled with historical data, a
snapshot of current weather conditions enables detailed
climatic assessments. Moreover, zeitgeist tools, such as
those utilising the Global Database of Events, Language,
and Tone (GDELT), are instrumental in capturing
contemporary socio-political dynamics, offering insights
into prevailing public sentiment and events affecting
international relations and market behaviours.

Incorporating statistical data with georeferenced
identifiers is instrumental for deriving meaningful insights
based on location-specific features. By identifying
Nomenclature of Territorial Units for Statistics (NUTS)
identifiers for particular locations, it is possible to gather
relevant demographic and business demography statistics.
This georeferenced approach enables tailored analyses
considering local variations, which is essential for targeted
policymaking and regional development strategies.

The utilisation of raster and grid data complements this
analysis by providing detailed spatial information. Sources
such as the European Space Agency (ESA), the Group on
Earth Observations (GEO), and Sentinel data offer high-
resolution satellite imagery and derived raster datasets.
These datasets are optimised for large-scale
multidimensional queries, allowing users to extract
information that spans multiple dimensions and scales.
This capability is particularly useful in applications like
precision agriculture, land use planning, and disaster
management.

Vector data, on the other hand, involves using line and
polygon data formats typical of traditional Geographic
Information System (GIS) infrastructures. Adhering to
standards such as those established by the Infrastructure
for Spatial Information in the European Community
(INSPIRE), vector data provides a detailed locational
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context crucial for detailed mapping and spatial analysis.
This infrastructure supports a wide array of applications,
from infrastructure development to environmental
conservation efforts.

Document data serves an integral role in the holistic use
of LLM tools, particularly in contexts that require the
retrieval of legal documents, plans, reports, and other
contextual information. Access to such documents allows
LLMs to provide informed responses that are grounded in
the regulatory and historical framework of the area in
question. For instance, in urban development scenarios,
understanding zoning laws and historical city planning
documents is essential to delivering relevant insights and
recommendations.

Limiting the number of tools made available to the
LLM for improved accuracy and efficiency

A significant aspect of working with these models
involves the invocation of external tools to enhance their
problem-solving capabilities. However, as the number of
tools accessible to an LLM increases, the efficiency and
effectiveness of these tool invocations tend to diminish. To
address this issue, it is critical to develop a robust method
for prefiltering tools based on the specific requirements of
a query or question.

LLMs are inherently equipped with flat tool invocation
capabilities. This means that they can be supplied with a
limited set of tools to assist in fulfilling a task. However,
as the array of available tools expands, the efficiency of the
model’s capacity to appropriately call upon these tools
declines. This is mainly due to the overwhelming number
of potential options, which can obscure the model's
decision-making process and reduce its ability to select the
most pertinent tools for a given task. Therefore, a
prefiltering step becomes necessary to manage tool
selection effectively.

Prefiltering tools is an essential process that relies on
structural metadata to determine which tools should be
considered by the model in relation to the question at hand.
This step ensures that only relevant tools are available for
use, thereby optimising the model's performance and
reducing computational overhead. The prefiltering step
can be executed by employing several criteria, each aimed
at ensuring the model’s proficiency in addressing the
specific nuances of the question.

The initial criterion for filtering tools involves sorting by
topic relevance. This means identifying tools that align
with the subject matter of the inquiry. Questions often
pertain to specific topics, and tools designed with an
understanding of these subjects can offer more accurate
and precise insights. For instance, if a question relates to
environmental science, the prefiltering system would
bypass tools irrelevant to this field and focus on those
offering insights or functionality that complement
environmental studies.
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Another critical filtering criterion is temporal resolution.
Questions may address events or data related to particular
time periods, and not all tools possess the capability to
handle temporal queries comprehensively. The prefiltering
system must, therefore, identify and prioritise tools that are
equipped to deal with the specified temporal context. For
example, if a query involves historical climate data from
the 1980s, the system should filter out tools that only
provide contemporary data, ensuring the most temporally
relevant tools are selected.

In addition to temporal relevance, the selection of tools
may also hinge on determining the best source of
information, especially in scenarios with overlapping data
coverage. This means the system should favour tools that
offer the most precise or contextually appropriate data. For
example, if a model for Norway offers superior data
specificity compared to a broader European model for a
particular question, the prefiltering mechanism should
select the Norwegian model. This ensures that the data
used is both relevant and of the highest quality possible for
the query.

Spatial resolution is another determinant in the
prefiltering process. Many questions necessitate specific
spatial data resolutions, and tools may vary greatly in the
granularity of their data. It is essential to filter tools based
on the spatial requirements specified in the question. If a
question demands high-resolution spatial data, such as a 1-
meter resolution for detailed topographic analysis, the
prefiltering mechanism should prioritise those tools
capable of fulfilling such needs. Conversely, for less
detailed queries, tools offering broader, 100-meter
resolution data may suffice.

The implementation of a structured prefiltering step
enhances the ability of LLMs to select and utilise tools
effectively, leading to more accurate and efficient
outcomes. By categorising tools based on topic, temporal
and spatial capabilities, and data quality, the system
reduces the cognitive load on the model and ensures that
only the most relevant tools are engaged. This not only
improves the model's response time and accuracy but also
conserves computational resources.

Agent implementation using Langchain for Python

The integration and orchestration of calls to various
machine learning models constitute a key component in the
efficient deployment and utilisation of these models in
real-world applications. Among the technologies
facilitating this process, Langchain emerges as a pivotal
tool. It offers an interface designed specifically for
dynamic interaction with language models, significantly
enhancing  applied  solutions'  flexibility  and
maintainability.

Langchain serves as an abstraction layer that simplifies
the setup of client calls to large language models (LLMs).
Through its design, Langchain provides a mechanism by
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which these models can be interacted with seamlessly,
ensuring that the underlying complexities of each model
are effectively managed. The abstraction layer
implemented by Langchain allows developers to perform
model orchestration in a manner that separates the business
logic from model-specific code. This, in turn, supports the
ease of integration and modular development, facilitating
a more structured approach to software development that
incorporates these advanced models.

Further, the abstraction layer not only supports seamless
communication with a single LLM but also allows for the
straightforward replacement of one model with another.
This feature is essential in today's rapidly evolving
machine-learning landscape, where the rapid development
of new models can often leave practitioners with outdated
tools. By using Langchain, developers can efficiently swap
out LLMs at any workflow stage to achieve improved
performance, accuracy, or other desirable traits inherent in
more advanced models.

The utility of this abstraction layer extends beyond the
wholesale replacement of models. It also permits granular
control over individual steps within the model workflow.
This means that each component of the process can be
optimised by integrating the most suitable model for that
specific task. Such granular control is invaluable, as it
provides the opportunity to tailor each step of the
interaction with the LLM to align with specific
requirements or constraints. Consequently, applications
deploying these models become more robust and targeted
in their outcomes.

Langchain's design enhances the portability and
scalability of machine learning systems, allowing for
simple expansion in scope and scale. Abstracting model
interactions enables systems to cater to increased demand
or incorporate complex functionalities  without
significantly reengineering existing systems. The ability to
efficiently manage and organise various LLMs through
Langchain allows developers to create more sophisticated
applications that can handle a wider range of tasks and
challenges.

Moreover, Langchain plays a significant role in
encouraging best practices in software engineering and
model deployment. Enforcing separation of concerns
ensures that the model logic does not hinder the
development of other software components. Developers
are encouraged to engage in clean code practices and
modular development, which enhances the maintainability
and longevity of software systems. Using an abstraction
layer thus aids in creating a more streamlined development
process, where different teams can work on separate
components without interference, leading to a more
collaborative and efficient workflow.

In addition to improving development processes,
Langchain may also contribute to the reduction of
deployment risks. It allows testing new models within
existing infrastructures without extensive overhauls,

facilitating smoother transitions and updates. This capacity
to swap models quickly and without significant downtime
is especially critical in environments where continuous
integration and deployment are essential requirements.

Fostering an ecosystem where evolving models can be
integrated without friction is fundamental to maintaining a
competitive edge in fields relying heavily on machine
learning. Langchain thus acts as a linchpin in the
operational management of these models, aligning
technological capabilities with business objectives.
Organisations are thereby empowered to harness the full
potential of LLM advancements with minimal disruption
to their existing systems.

Value engineering in the back-end solution

Back-end value engineering is a crucial aspect in the
development of computational tools, particularly tools like
JackDaw that involve complex model interactions. This
discipline focuses on the optimal allocation of
computational resources to enhance performance and
reduce operational costs. Within the context of back-end
value engineering, a nuanced approach to model selection
and implementation can lead to substantial improvements
in efficiency and effectiveness.

At its core, the process of back-end value engineering
involves the strategic use of different models for varying
steps within a computational sequence. By tailoring the
choice of model to the specific requirements of each task,
developers can achieve better resource allocation,
ultimately enhancing the tool's performance.

For initial tasks requiring basic language processing
capabilities, models possessing natural language
processing (NLP) capacity are sufficient. Such tasks often
involve identifying appropriate arguments to be passed to
a function. NLP models excel in understanding linguistic
input, making them ideal for these preliminary steps. Their
use ensures that computational resources are not expended
unnecessarily on more complex models when simpler ones
suffice.

In contrast, certain steps necessitate the employment of
a base model with a comprehensive understanding of
diverse knowledge areas. Models like GPT-4po serve this
purpose effectively. These models are designed to possess
a wide-ranging repository of generic knowledge, thereby
enabling them to tackle tasks that demand a broad
understanding. Their utility lies in their ability to provide
insights and execute functions that require a generalist
perspective.

Moreover, some stages in a computational process
necessitate the application of bespoke models with
domain-specific expertise. An example might be a model
engineered to handle species tolerance parameters. These
custom models are tailored to address specialised tasks,
offering insights and solutions that generic models might
overlook. Their usage is particularly advantageous in niche
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applications where precision and specialised knowledge
are critical.

By implementing an optimised model selection strategy,
the overall cost associated with complex tool-calling
chains can be significantly mitigated. This approach entails
identifying the most suitable model for any given task and
deploying it accordingly. Such strategic allocation not only
reduces computational expenses but also enhances the
tool's efficacy in performing its designated functions.

The process of determining the optimal model for each
step involves several considerations. These include the
computational requirements of the task, the desired level
of accuracy, and the potential impact on overall
performance. By weighing these factors, developers can
make informed choices that align with both technical
objectives and budgetary constraints.

There is a crucial balance to be struck between
leveraging the simplicity and efficiency of NLP models
and harnessing the expansive capabilities of base models
like GPT-4po. Additionally, the precision offered by
customised models with specialised knowledge must be
integrated judiciously to maximise effectiveness. Such
decisions require careful assessment and strategic planning
to ensure that the right model is deployed at the right stage.

In scenarios where tasks are relatively straightforward,
deploying simpler models can free up computational
resources, thereby allowing more complex models to be
reserved for tasks that truly necessitate their capabilities.
Conversely, when tasks demand a more in-depth
understanding or specialised insight, more sophisticated
models are utilised to achieve the desired outcomes.

Furthermore, this tiered approach to model selection
also facilitates scalability. As computational demands
evolve, new models can be integrated, or existing models
can be updated to reflect the latest advancements and
requirements. This adaptability ensures the system remains
robust and responsive to changing needs without requiring
complete overhauls or excessive expenditure.

Integrating diverse models in back-end processes also
fosters innovation, as developers are encouraged to explore
novel combinations and applications to enhance
performance. By considering how different models can
interact and complement one another, new solutions can be
devised that push the boundaries of current capabilities, all
while keeping resource use and costs in check.

Through careful analysis and planning, back-end value
engineering plays an instrumental role in the development
and deployment of computational tools. By strategically
selecting and implementing models tailored to specific
tasks, developers can transform their systems into more
efficient and cost-effective solutions. This calculated
approach not only optimises performance but also paves
the way for ongoing innovation and refinement.
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While of lesser scientific value, value engineering is
critical to ensuring adoption and a realistic path to a real
and tangible market.

RAG module

One of the key components that enables JackDaw to
deliver more credible and less hallucination-prone
responses is the Retrieval Augmented Generation (RAG)
module, illustrated in Figure 3. This module enhances
JackDaw’s responses by grounding them in external
references and supporting the ingestion of new data
sources. The RAG module consists of three main
components:

1.  Embedding Model - Transforms input text into
high-dimensional vector embeddings, enabling semantic
search within a vector database.

2. PDF-to-Markdown Conversion Tool - Parses
user-submitted PDF files and extracts both content and
structure. It converts the documents into clean, structured
Markdown, preserving key elements such as headings,
paragraphs, tables, and lists to maintain readability and
information integrity.

3. RAG Application - The core service that handles
user queries, retrieves relevant content from the vector
database, and compiles the results for response generation.

The module uses a microservices architecture to support
scalability and simplify maintenance. At its core is the
RAG Application, which orchestrates the query processing
and retrieval workflow.

/[\ External

: communication

\4

Internal

communication Internal

communication

Internal
communication

" Internal
communication

Fig 3. Overview of the RAG module architecture

The RAG module interfaces with the JackDaw system
through a reverse proxy, facilitating secure external
communication. Internally, the reverse proxy routes
requests to two main components: the RAG Application
and the PDF-to-Markdown Conversion tool. The RAG
Application acts as the central component, orchestrating
interactions with both the PDF-to-Markdown Conversion
tool and the Embedding Model. All communication
between these components occurs internally, ensuring
efficient data flow within the system.
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Before deployment, the system was seeded with trusted
content - policy documents and scientific articles. These
documents were processed using the same PDF-to-
Markdown tool described above. This tool utilized Docling
Library [29] to perform the parsing. The resulting
Markdown files were segmented into smaller units of
approximately 500 tokens, referred to as chunks.

Each chunk was embedded using the Alibaba-NLP/gte-
Qwen2-1.5B-instruct Model [30], a high-performing
multilingual language model. The resulting embeddings,
along with their corresponding text chunks, were stored in
ChromaDB, an open-source vector database optimized for
similarity search.

At runtime, when a user submits a query, the RAG
Application first generates an embedding of the query.
This embedding is then used to retrieve semantically
similar chunks from the vector database. These passages
are returned to JackDaw along with metadata that includes
source information, enabling more accurate responses and
full traceability. This approach ensures that users can
access the original documents from which answers are
derived, promoting transparency and trust.

Currently, the PDF-to-Markdown tool is limited to
processing individual PDF files and returning the parsed
content directly to JackDaw. This setup is designed for
scenarios where users want assistance understanding or
extracting information from specific documents.

In the future, the tool will be expanded to support the
creation of personalized knowledge bases. Users will be
able to upload multiple PDF files, effectively building a
private vector database similar to the existing global one.
This personal database can then be used to enrich the
responses generated by the language model, resulting in
more context-aware, tailored, and useful interactions.
Moreover, this setup will support the continuous growth of
the data source, enabling users to expand and evolve their
assistant’s knowledge over time incrementally.

IV. RESULTS

We tested the performance of JackDaw on various
scenarios related to geospatial data tasks in agriculture and
forestry and compared its solutions with standard
proprietary LLMs to determine its benefits and limitations.
For each user’s query, our system invokes tools with
information about the geographical area of interest and
reasons over the retrieved content to provide a final
answer. To make the comparison more balanced, we
include the geographical area in the form of bounding box
coordinates in the input query so that the standard LLM
has some information about the location. Without this
information, the standard LLM would have no way of
providing relevant information. The following scenarios
showcase that JackDaw is able to provide location-specific
relevant information, whereas the standard LLM can only
give general advice, sometimes not even related to the area
of interest. We used GPT-40-mini as the LLM.

Scenario 1

In this scenario, we asked about a partially forested area;
the user query was: “Is this area forested, and are there any
specific utilities regarding forestry?”. Figure 4 shows
responses from JackDaw and a standard LLM. It also
contains the selected area of interest. GPT-40-mini
managed to offer general advice and derived the location
from the coordinates as close to Pilsen, which is true, but
it was unable to determine the real location. JackDaw
retrieved data by utilizing tools and was able to list existing
facilities related to forestry and also determine the
distribution of land in the area.

Scenario 2

In this scenario, we asked whether an area in the Czech
Republic is suitable for vineyards. The user query was:
“Determine if this area is suitable for a vineyard and
provide a concise answer.” Figure 5 shows both responses
together with the area of interest. This time, JackDaw
provided a concise answer consisting of climate, land
cover, and elevation analysis. The standard LLM wrongly
determined the area to be in Austria, with a general
recommendation for the area for vineyards without any
backing data.

JackDaw response

The area you are inquiring about has a significant amount of forest cover, specifically:
«  Broad-leaved forest occupies approximately 32.4% of the area, which translates to about 1.31 km?.
« Thereisalso asmall presence of coniferous forest, although itis less than 0.1% of the total area
Utilities Related to Forestry

In terms of forestry-related utilities, the area includes:

+ Forests/Woodlands: There are four designated forest areas, y natural and manag
« Nature Reserves: There are two nature reserves, indicating areas that are protected for their ecological significance, which often
includes forested regions.

« Recycling Facilities: There are seven recycling centers, which may handle materials related to forestry, such as wood waste.

“This combination of forested land and associated utilities suggests that the area is not only forested but also has infrastructure that

and

GPT-40-mini response

To determine f the area defined by the bounding box (49.702835, 13.495879, 49.719319, 13.526455) is forested, you would typically need
to consult geographic information systems (G15) data, satellite imagery, or local land use maps.

However, based on the coordinates provided, this area i located in the Czech Republic, near the town of Pilsen. The region around Pilsen
does have forested areas, particularly in the surrounding hills and protected landscapes.

Regarding specific uilities related to forestry, these can include:

L i ing timber harvesting, reforestat
efforts,

2 Py

ecosystems.

d at preserving and 3

3. Recreational Opportunities: Many forested areas offer trails for hiking, biking, and other outdoor activities, which can be beneficial
forlocal tourism.
4 Education: U

d research tudies on forest ecology, biodiversity, and climate

change impacts in these areas.

5. Conservation Programs: I
government or non-profit organizations.

d at protecting from development , often supported by

For preci bout the specific area in question, local would be the best

sources to consult.

Fig 4. Comparison of responses regarding a query about forestry

Context and Visualisation Imperatives

In the years leading up to generative Al becoming
“public property”, the volume of text emerging from
argumentative sources such as consultancy reports was
already expanding noticeably. The increase was often
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characterised by esoteric industry language and
overcomplicated sentence structures, far beyond what was
necessary for effective communication. Reports usually
offered vague reasoning and inconclusive advice.
Consequently, readers, typically non-scientific, technically
oriented professionals had to develop new approaches to
extract key ideas or recommendations from these wordy
passages, which again led to altered reading habits and
gave root to the scientifically unjustified and yet not
entirely unfounded maxim that “nobody reads”.

Following the advent of the Language Model (LLM),
the creation of well-structured text is now within reach of
literally anyone, leading to a further accelerated growth in
well-padded textual content, resulting in a situation where
now not only “nobody reads” but neither does anyone
write. While this is anecdotal and should not be considered
a scientific finding, it does describe a situation where
visualisation remains as important as ever to reveal and
convey trends and exceptions in data in a manner that
makes it more easily accessible to readers who may find a
good-looking block of text deceptively attractive without
taking into consideration what it actually says.

Effective visualisation in this context means applying
the building blocks derived from the more traditional
analytical tool suites, such as geoportals (maps, 2D, 3D)
and business intelligence (charts, tables), as well as more
advanced forms of visualisation.

LLMs generate text and often use the "markdown"
language to include formatting. This includes the
capability of outputting code blocks that can contain
structured data intermixed with the text. A code block may
contain any text-based or text-representable format, such
as GeoJSON or GeoCSV, making rendering LLM output
as any of the above visual indicators easy. JackDaw utilises
custom markdown renderers to accomplish render tables,
charts, and maps.

Selectan area of interest

JackDaw response

2 al{o w1 +

nd agricultura land use.

GPT-40-mini response

‘The area defined by the coordinates (48.623593, 16.351496, 48.867651, 16.469335) i located in Austria,

grape growing. Therefore, this area s suitable for a vineyard.

Fig 5. Comparison of responses to an area analysis query related to
vineyards
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V.

This paper has demonstrated that a language-model
agent can be made spatially competent by constraining its
reasoning to a query-specific subset of geospatial tools and
by grounding each answer in an external retrieval layer.
The proposed JackDaw architecture contributes three
principal advances:

1. Structured tool pre-filtering. Tools are surfaced to the
LLM only when their topical, temporal and spatial
metadata intersect the user’s query, avoiding the accuracy
and latency penalties that arise from flat tool lists.

2. Value-engineered model orchestration. A LangChain
abstraction allocates lightweight NLP models to syntactic
steps, reserves foundation models for broad-context
reasoning, and inserts domain-specific kernels where
specialised knowledge is required.

3. Retrieval-augmented generation with transparent
provenance. A micro-service RAG layer embeds trusted
documents in a vector store and returns source passages
with every response, enabling fact-checking and reducing
hallucinations.

Benchmark experiments on forestry-asset discovery and
vineyard-site assessment show that JackDaw delivers
concise, location-specific answers, whereas a baseline
proprietary LLM produces only generic or spatially
misattributed guidance. These findings confirm that
coupling global language understanding with local spatial
intelligence materially improves decision support in
agriculture and rural planning.

Limitations. The evaluation covered two use-cases
within Central Europe and a single growing season; cross-
regional transferability, additional thematic domains and
longer temporal windows remain untested. The current
RAG pipeline ingests individual PDF documents but does
not yet support user-specific knowledge bases or large-
scale cloud retrieval, and cost modelling excluded vector-
query overheads.

Future work. Planned extensions include (i) adaptive
ontology-driven tool selection to further shrink the action
space, (ii) ingestion of multimodal sensor streams (e.g.,
hyperspectral cubes, [oT telemetry), (iii) private vector
databases for institutional users, and (iv) benchmarking
against emerging geospatial-LLM test suites. Governance
requirements—explainability, bias auditing and energy
accounting—will be addressed to ensure regulatory
compliance and sustainable operation.

In summary, the results substantiate that an architecture
which bridges foundation-scale language models with
dynamically selected, high-resolution spatial data streams
is a viable path toward reliable, context-aware Al services
for agriculture and rural development.

CONCLUSION
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