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Abstract—The work is dedicated to the study of drone use in
horticulture, focusing on an example of blackcurrant cultivation.
The research aims to use drones to monitor vegetation in
plantations and to maintain the technological environment of
plants, using traditional agrotechnical field care methods. The
concept offers mapping and instance segmentation followed by
multi-label classification operations, taking into account the
specifics of blackcurrant plantations. The mapping operation
creates blackcurrant plantation maps from images taken by
drones at low altitudes. This ensures the acquisition of high-
quality maps of large areas with the help of simple image
photography cameras. Instance segmentation is intended for
extracting singular leaf instances from mapped images, which
are analyzed using classification methods to detect blackcurrant
diseases, pest spread, nutrient and moisture deficiencies, and
other plant vegetation-related parameters. Classification employs
machine learning techniques and is specific to the cultivation of a
particular plants — blackcurrants. The proposed technology, with
appropriate adjustments, can also be applied to the vegetation
monitoring of other horticultural plants.

I. INTRODUCTION

ODAY, drone manufacturing costs and production vol-
T umes have reached a level that allows their application
in various fields, including precision agriculture. The scientific
reviews available in the literature analyze the latest advances in
drone technology used in precision farming. For example, [1]
compiles 184 publications using Google Scholar and SCOPUS
data, while [2] reviews 164 articles focusing on the application
of AI methods in agriculture.

The authors of these studies unanimously conclude that
drones can be used effectively to monitor plant vegetation,
while agricultural operations should be carried out using
ground-based equipment. During a flight, a drone can capture
images of designated field areas and transmit them to comput-
ers for further analysis. Using machine learning methods, this
enables the detection of vegetation conditions and issues that
determine necessary agronomic actions. Thus, drones allow for
rapid inspection of large agricultural areas and the collection
of crucial data on crop health and required maintenance tasks.

This study adopts a practical approach with the primary
objective of developing a technology that integrates drones
and artificial intelligence techniques to monitor plant vege-
tation. The system is designed to provide early warnings to
farmers regarding plant diseases, pest infestations, nutrient
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deficiencies, and other agronomic issues. A key contribution
of this work is the development of a robust image analysis
system capable of processing leaf images to reliably detect
plant (particularly blackcurrant) diseases, thereby enhancing
the system’s applicability in real-world agricultural settings.

The following chapters provide a description of the technol-
ogy designed to support blackcurrant cultivation using basic
drones and imaging cameras. The proposed technology was
tested on a blackcurrant farm in Latvia, confirming the validity
of the chosen approach.

The structure of this study is as follows: Chapter 1 provides
an overview of drone usage in precision agriculture worldwide.
Chapter 2 focuses specifically on drone applications in horti-
culture. Chapter 3 presents the authors’ proposed methodology
for assessing blackcurrant plantations. Chapter 4 offers a
visualization of blackcurrant plantation conditions. Chapter 5
discusses the results obtained and presents the conclusions.

II. DRONE APPLICATION IN HORTICULTURE

To feed the rapidly growing global population, agricultural
enterprises must produce more food without increasing the
areas of cultivated land. This can be achieved by applying
advanced farming technologies. Some of these technologies
are still in development, while others are already offered by
commercial companies. Today, farms can utilize a variety of
advanced tools, such as satellite data, drones, autonomous
platforms for agricultural operations, sensors, and robots, to
obtain detailed information about crop and soil conditions
and to perform specific agronomic tasks. However, in many
countries, including Latvia, the adoption of drone technology
in agriculture is still in its early stages. Among the various
scientific and technological challenges that are being addressed
to achieve the goals of sustainable development, the use
of new technologies and methodologies in agriculture has
attracted the interest of the engineering research community
([3]). The objective is to develop technologies suitable for
precision agriculture that improve the long-term profitability
and efficiency of agricultural production ([4]).

A. General Overview of Drone Applications

According to [1] and [2], data from the Food and Agricul-
ture Organization (FAO) indicate that global food production
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must increase by 70% by 2050 to support the growing world
population. However, in the European Union, the number of
people employed in agriculture has decreased by 35% over the
past decade, and the expansion of agricultural land is largely
unfeasible.

These factors have driven an increase in interest in advanced
agricultural technologies, including sensors, robots, drones,
digitalization, and artificial intelligence (AI). Al and machine
learning are considered highly promising for detecting agri-
cultural problems, monitoring crop health, forecasting yields
and prices, mapping harvests, and optimizing pesticide and
fertilizer use.

There are various research directions that discuss the use of
modern technologies in agriculture: Internet of Things (IoT)
technologies in agriculture ([5]), bibliometric analysis of drone
use in agriculture ([6]), deep learning methods for controlled
environment agriculture ([7]), robotic harvesting technologies
(Mail et al., 2023), machine vision applications in agricultural
robot navigation ([8]), Al in agriculture ([9]), Agriculture 4.0
(101, [11]).

Depending on the specific task, drones can offer simi-
lar capabilities to satellite image analysis but with higher
precision and flexibility. They can perform tasks such as
soil analysis ([12], [13], [14]), monitoring sowing density
and crop development ([15], [16]), weed and pest detection
and classification ([17], [18], [19]) and yield prediction and
maturity assessment ([20], [21], [22]).

In rare cases, drones can also be used for harvesting,
precision fertilization ([23], [24], [25]), pesticide spraying
([26], [27], [28]) and even mechanical pest eradication. IoT
and sensor technologies provide farmers with real-time data
on soil parameters, temperature, atmospheric gases, weather
conditions, and many other variables, often processed in cloud-
based IT infrastructures for further analysis and forecasting
([291, [301, [31]).

B. Scope of Drone Applications

The use of artificial intelligence and cloud technology in
drones has brought significant improvements to smart agri-
culture. These new technologies can capture high-resolution
images, aerial maps, and thermal images, which can be utilized
in various agricultural applications, including:

e Soil analysis: Drones can be used for soil sampling,
analyzing soil moisture levels, and assessing soil qual-
ity, helping farmers optimize fertilization and irrigation
processes,

« Planting: Drones can be used for precise seed sowing
and/or seedling planting, reducing labour and planting
material costs,

e Crop spraying: Drones equipped with spraying systems
can be used for the precise distribution of pesticides, her-
bicides, and fertilizers, minimizing environmental impact
while saving time and financial resources,

o Irrigation management: Drones equipped with thermal
sensors and infrared cameras can identify areas needing
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irrigation, helping to optimize water use and reduce
waste,

o Yield mapping: Drones can generate yield maps, assisting
farmers in optimizing crop management and increasing
overall production,

« Livestock monitoring: Drones equipped with cameras can
be used to monitor livestock health and behaviour, as well
as track animal locations,

o Crop monitoring: Drones equipped with sensors and
cameras can collect real-time data on crop health, growth,
and yield, creating crop health maps,

o Field mapping: Drones can create high-resolution field
maps, providing data on soil structure, topography, and
plant populations, which can be used for informed
decision-making regarding planting, fertilization, and
other crop management practices,

« Pest and disease control: Drones can help detect and map
the spread of pests and diseases in crops, helping farmers
take timely action.

These drone applications have gained significant research
attention over the past five years. Studies provide evidence of
the potential of drones in agriculture. However, these results
remain a future vision that is not yet accessible to practitioners.
Implementing such technologies requires the involvement of
highly qualified specialists and the establishment of modern
infrastructure.

III. APPLICATIONS OF MACHINE LEARNING IN PLANT
DISEASE DIAGNOSIS

A. Overview and Summary of Existing Solutions

The authors have reviewed several solutions for diagnosing
plant diseases using images of plant leaves. The works dis-
cussed in this subsection will not be described individually,
but rather grouped according to the nature of the solutions
reviewed, and common features will be highlighted to indicate
current trends in addressing such problems.

The solutions include methods such as the use of convo-
lutional neural networks, the application of transfer learning,
the use of traditional classification methods, the application of
segmentation, object detection, and data augmentation.

Convolutional neural networks dominate plant leaf image
classification in the context of the reviewed studies. In most
of the research reviewed by the authors, convolutional neural
networks are either trained from scratch on specific plant
data or used as part of transfer learning. For example, in
the work by Khalid M. Hosny and co-authors titled “Multi-
Class Classification of Plant Leaf Diseases Using Feature
Fusion of Deep Convolutional Neural Network and Local
Binary Pattern” [32], several examples of convolutional neu-
ral network architectures - AlexNet, VGG16, and GooglLeNet
- are analyzed. These are trained on the PlantVillage dataset
[datasetPlantVillage] and enhanced with the use of local
binary patterns to incorporate texture information. Another
good example of convolutional neural network use is de-
scribed in the work by Prabhjot Kaur and co-authors titled
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“A novel hybrid CNN methodology for automated leaf
disease detection and classification’ [33], where a convolu-
tional neural network (ResNet50) is combined with a support
vector machine (replacing the fully connected layers of the
convolutional neural network). An interesting application of
convolutional neural networks is found in the publication by
Rasika Gajendra Patil and Ajit More titled * Grape Leaf
Disease Diagnosis System Using Fused Deep Learning
Features Based System” [34], where the proposed method
fuses the results obtained from the deep feature layers of two
selected convolutional neural networks.

Similar to convolutional neural networks, transfer learning
approaches are also commonly found in the reviewed solu-
tions. They are widely used because they allow the utilization
of pre-trained networks. An example is the study developed by
Vinay Gautam and co-authors titled A Transfer Learning-
Based Artificial Intelligence Model for Leaf Disease Assess-
ment [35], where transfer learning is applied to models such
as: AlexNet, VGG16, VGG19, InceptionV4, SqueezeNet, and
Xception. The use of transfer learning is particularly important
in situations where data collection is expensive or limited, such
as in the case of rare diseases. A similar situation is observed
in the study by Yan Guo, Jin Zhang, and co-authors titled
“ Plant Disease Identification Based on Deep Learning
Algorithm in Smart Farming” [36], where the solution is
based on pre-trained VGG16 and ResNet101 models. These
models were fine-tuned for specific plant recognition using a
dataset of 1000 images from the China Plant Image Bank.

Although deep learning models dominate the reviewed solu-
tions, some of them still employ classical supervised learning
methods. Techniques such as support vector machines, the
k-nearest neighbors algorithm, and the random forest clas-
sifier are often used in combination with traditional feature
extraction—such as histogram analysis, color moments, and
shape descriptors [37],[38]. For example, in the previously
mentioned work by Rasika Gajendra Patil and Ajit More
[34], a convolutional neural network was initially applied to
the dataset items, but the final classification was determined
using a support vector machine classifier. Such methods are
often easier to interpret and less demanding in terms of
computational resources.

Similar to the use of convolutional neural networks and
transfer learning, a commonly observed trend in solutions is
the use of semantic or instance segmentation prior to classifi-
cation in order to achieve better results. In the publication by
Gangadevi Ganesan and Jayakumar Chinnappan titled “Hy-
bridization of ResNet with YOLO classifier for automated
paddy leaf disease recognition: An optimized model” [39],
segmentation of diseased leaf regions was performed using K-
means clustering. Similarly, in the publications by Muhammad
Sharif and co-authors and by Vinay Gautam and co-authors
[40], [35], semantic segmentation of the diseased regions was
applied. This indicates that, in plant leaf disease diagnosis,
it is valuable to use only the regions showing anomalies for
classification, rather than the entire leaf instance. However,
such an approach is effective only in solutions where the

processed dataset contains images in which each image depicts
only a single leaf instance. In the solution described in the
publication by Marcelo Vassallo-Barco and co-authors titled
“Automatic Detection of Nutritional Deficiencies In Coffee
Tree Leaves Through Shape And Texture Descriptors”
[41], the Otsu thresholding method was used for instance
segmentation, however, the publication does not specify the
exact accuracy achieved by the proposed method, making
it difficult to draw significant conclusions from this study.
Instance segmentation is also found in the solution mentioned
in the publication by F. Khan and co-authors titled “A mobile-
based system for maize plant leaf disease detection and
classification using deep learning” [37], where the YOLO
model family is used. In this context, instance segmentation is
applied to identify and classify leaf instances, including their
masks, since the dataset images depict multiple leaves. This
approach provides high data granularity and allows for the
analysis of individual leaves.

Additionally, it should be noted that the analyzed solutions
also include image preprocessing methods and various data
augmentation techniques. Given the frequent lack of data,
different data augmentation methods are used - such as image
rotation, zooming, cropping, and others. These methods help
reduce the risk of overfitting and improve the generalization
ability of the models.[36], [41]

B. Conclusions for the Selection of a Practical Solution

After analyzing and comparing various existing solutions,
the author chose to apply convolutional neural networks
(CNN) for leaf classification and instance segmentation to
separate leaf instances prior to classification in the develop-
ment of a practical solution. Since the previously mentioned
work using YOLO models demonstrated high precision [37],
the author selected the YOLO model family for the instance
segmentation task and, based on the strong performance of
ResNet models [34], chose ResNet models for the classifica-
tion task. At the same time, it can be concluded that for each
plant species, a specifically trained model must be developed
because plants differ visually and various diseases may mani-
fest differently. Therefore, the prototype of the study’s solution
focuses on only one plant species - blackcurrants - on which
the proposed solution is tested.

IV. PROPOSED SOLUTION OF TECHNOLOGY

This section presents the authors’ proposed technology
for monitoring blackcurrant vegetation using simple drones
and artificial intelligence methods. The proposed solution is
applied in a blackcurrant farming operation in Latvia.

A. Informal Description of Solution

The technology is offered to blackcurrant growers to mon-
itor plantations using drones, allowing detection of healthy
blackcurrant plants, fungal diseases, and nutritional deficien-
cies. The system consists of two main functions:

o Mapping: Prepares maps of blackcurrant plantations with
the required precision (scale), links them to GPS (Global
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Fig. 1. Blackcurrant plantation photo from 5 meters height (row spacing —
4 meters).

Positioning System) coordinates, records drone flight
routes, and specifies operations/photography to be per-
formed during flights.

« Analyze and classification: Uses trained neural networks
to extract blackcurrant leaf clusters from the mapped im-
ages. The instance segmentation then identifies individual
blackcurrant leaves, which are passed to the classification
stage for further analysis. As a result, three types of leaves
are identified: healthy leaves, leaves affected by fungal
diseases, and leaves indicating nutrient deficiencies. As
a result, the study provides a blackcurrant plantation
analysis solution that gathers information on plantation
conditions and visualizes it for growers, aiding decision-
making on necessary interventions.

B. Mapping and Planning of Image Capturing Routes for of
Horticultural Areas

The area captured by drones for image analysis is usually
significantly smaller than the cultivated field area in horticul-
ture. This is determined by the technical parameters of the
drone camera and the scale of the captured images Fig. (1). To
obtain complete information about the field, the authors took
multiple photographs every 10 meters. Although the images do
not fully cover the entire field (each image captures an area
of approximately 8x5 meters), they still provide a sufficient
overview of the field as a whole, which typically ranges in
size from 2 to 20 hectares.

To obtain the necessary images, a drone flight route with
a photography plan must be created for each monitored field.
The route can be created using the Mission Planner program
(web-03). The overall image route is calculated on the basis
of the drone’s flight altitude and camera parameters (e.g., the
angle the camera captures). As a result, a route will be obtained
for the drone to follow, an example of which can be seen in
the image prepared by the authors in Fig. 2.

The automatic flight is provided by the Litchi program. It
is available on both the computer’s website (web-04) to create
the route and on mobile phones (web-05) to fly the route.

During the experiments, Dji Mavic Air 25 with a 4k camera
was used. All pictures were taken from a height of Sm. To

Fig. 2.

Drone mission plan: route and photography points

carry out the mission plan shown in Fig. 2 (which covered 2.5
hectares), approximately 15 minutes were required (time may
be affected by wind speed), and one drone battery was used
(i.e., the flight was continuous).

C. Image Analyzes and Classification

For the analysis of blackcurrant leaf images, the authors
have chosen a solution that combines instance segmentation
and multi-label classification. Instance segmentation ensures
the separation of leaf instances from the background, while
multi-label classification assigns each leaf instance to one or
more of the predefined classes. For instance segmentation,
the authors trained two models from the YOLO family —
YOLOv8n-seg and YOLOvV9c-seg. For multi-label classifi-
cation, the authors trained three models from the ResNet
family — ResNet-50, ResNet-101, and ResNet-152. Based
on the training results, the authors selected one model for
each task (instance segmentation, multi-label classification)
and integrated the segmentation and classification models to
form a unified solution for blackcurrant leaf analysis.

1) Image Acquisition: The authors independently per-
formed the acquisition of specific images used to train the
models applied in the proposed solution. All the images used
in the training, validation, and test datasets, as described in
subsection IV-C3, were captured using a Nikon D3300 DSLR
camera equipped with a 24.2 MP DX-format CMOS sensor.
The images (sample image in Fig. 3) were taken from the
same blackcurrant field, capturing photographs from various
angles and under different lighting conditions to ensure dataset
diversity. This diversity can enhance model training results and
improve the robustness of the trained models in non-standard
scenarios.

2) Image Annotation: Image annotation for instance seg-
mentation and multi-class classification was performed using
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Fig. 3. Image of blackcurrant leaves

various methods to support the formats required by the specific
machine learning models.

For the instance segmentation datasets, each image was
manually annotated by outlining the contour of each individual
blackcurrant leaf instance. Annotation was performed using
the open source image and video annotation tool Computer
Vision Annotation Tool (CVAT), developed by Intel. The anno-
tations were then exported as point coordinates in the YOLOvS
segmentation 1.0 format. This type of data annotation is time-
consuming as images of blackcurrant bushes contain a large
number of leaf instances that must be precisely annotated.
Such accuracy is essential for the model to correctly detect and
isolate leaves from the background and overlapping objects,
which is critical for accurate instance segmentation. One of
resulting images is available in Fig. 4)

Fig. 4.

Instance segmentation annotation example

For multi-label classification, annotation was performed by
isolating individual instances from blackcurrant leaf images
using the Adobe Photoshop graphic editing software, creating
images where each blackcurrant leaf instance was placed
against a black background (sample Fig. 5). Each resulting
image was then assigned a label indicating its correspondence

to one or more of the predefined blackcurrant health condition
classes. The specific classification scheme — which includes
the classes: healthy leaves (HL), leaves with nutrient defi-
ciency (NDL), and leaves affected by Mycosphaerella ribis
(MRL) — was developed in collaboration with an industry
expert, based on an assessment of the blackcurrant field
available to the author. A more detailed overview of the classes
can be found in subsection IV-C3. All image labels were
compiled into a structured file containing the image names
and their corresponding class assignments.

Fig. 5. Multi-label classification dataset example: leaf with nutrient deficiency

3) Datasets overview: This work utilizes two main datasets
to support different stages of the proposed method: one
for multi-label classification and another for instance seg-
mentation. The multi-label classification dataset contains 287
images, each featuring a single blackcurrant leaf against a
black background. These images are divided into training
(229), validation (49), and test (49) subsets. Each leaf is
labeled according to a classification scheme developed in
collaboration with an industry expert, categorizing them as
healthy leaves (HL), leaves with nutrient deficiency (NDL),
or leaves affected by Mycosphaerella ribis (MRL). Since a
single leaf may exhibit symptoms of multiple classes, a multi-
label classification approach is used. The class distribution is
provided in a Table I, showing that the total number of labeled
instances exceeds the number of images due to overlapping
class characteristics.

The instance segmentation dataset comprises 87 images,
split into 71 for training and 16 for validation. Each image
includes only blackcurrant leaves, and each leaf has been man-
ually annotated with precise contours. This detailed annotation
process is resource-intensive but essential, as it enables the
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TABLE I
DISTRIBUTION OF CLASS OCCURRENCES ACROSS TRAINING, VALIDATION,
AND TEST SETS

Class Training Validation Test
(229 images) | (49 images) | (49 images)
HL 92 21 19
NDL 85 19 16
MRL 80 14 18
Total Labels 257 54 53

segmentation model to accurately detect and isolate individual
leaves from complex backgrounds.

4) Model training overview: For the instance segmentation
training process, the following models were used: YOLOv8n-
seg and YOLOvO9c-seg [42]. These were trained using the
open-source Ultralytics package in Python [43], which pro-
vides an efficient workflow for YOLO models, including
automated hyperparameter configuration such as learning rate
adjustment based on gradient changes, default use of the
Adam optimizer, and automatic batch size selection based on
available GPU memory — set to 8 in this case. Each model
was trained with three different image resolutions: 256x256,
512x512, and 1024x1024. This approach allowed the author to
evaluate model behavior across varying resolutions and assess
the impact of image size on instance segmentation accuracy.
Based on the training loss analysis, 70 epochs were chosen
for the final training.

For the multiclass classification training process, the follow-
ing models were used: ResNet-50, ResNet-101, and ResNet-
152. These models were implemented using the PyTorch
machine learning library in Python and initialized with default
pretrained weights to leverage feature representations learned
from large-scale datasets. The final fully connected layer of
each ResNet model was replaced to enable prediction of three
target classes, making them suitable for the classification of
disease instances on blackcurrant leaves. Input images were
resized to 256x256 pixels and transformed into tensors for
model processing. The models were trained using the BCE-
WithLogitsLoss loss function, combining Sigmoid activation
with binary cross-entropy for numerical stability in multiclass
tasks. The Adam optimizer was chosen for its ability to dy-
namically adjust learning rates and incorporate momentum. To
identify optimal hyperparameters, a grid search was conducted
over the number of epochs, learning rate, and batch size for
each ResNet variant. The best-performing configurations were:
70 epochs, a learning rate of 0.0001, and batch sizes of 16
(ResNet-50 and ResNet-152) or 8 (ResNet-101).

5) Model training results: The training results of the in-
stance segmentation models YOLOv8n-seg and YOLOv9c-seg
are summarized in Tables II and III, showing their perfor-
mance across different image resolutions (256x256, 512x512,
1024x1024). Both box (B) and mask (M) performance metrics
were evaluated, including mAP50, mAP50-95, and precision
(Pre), which together assess the models’ ability to localize and
delineate object instances at the pixel level. The results indi-
cate that YOLOV9c-seg consistently outperformed YOLOv8n-
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seg.

across all tested resolutions and metrics. The highest per-
formance was observed at the highest resolution (1024x1024),
where YOLOv9c-seg achieved mAP50 values of 0.72130
for boxes and 0.69930 for masks. Additionally, an increase
in input image resolution correlates with improved model
performance for both architectures, emphasizing the signifi-
cance of higher resolution imagery in enhancing segmentation
precision. This is particularly important within the context
of this study, where precise delineation of blackcurrant leaf
instances from the background is essential for subsequent
classification tasks. Nonetheless, the results are not without
limitations, likely attributable to the relatively small size of
the training dataset employed.

TABLE 1II
YOLOV8N INSTANCE SEGMENTATION RESULTS
Model YOLOVS8n-seg
Image size 256x256 | 512x512 | 1024x1024
mAP50 (B) 0.59164 | 0.65656 0.67211
mAP50-95 (B) | 0.38272 | 0.49653 0.52423
Pre (B) 0.67455 | 0.73628 0.74736
mAP50 (M) 0.58450 | 0.65931 0.66956
mAP50-95 (M) | 0.34303 | 0.47840 0.51023
Pre (M) 0.74249 | 0.76106 0.75789
TABLE III
YOLOV9C-SEG INSTANCE SEGMENTATION RESULTS
Model YOLOV9c-seg
Image size 256x256 | 512x512 | 1024x1024
mAP50 (B) 0.64149 | 0.68866 0.72130
mAP50-95 (B) | 0.46194 | 0.54670 0.68643
Pre (B) 0.74662 | 0.87470 0.88182
mAP50 (M) 0.65124 | 0.69849 0.69930
mAP50-95 (M) | 0.47340 | 0.51147 0.53121
Pre (M) 0.72102 | 0.79023 0.81230

Table IV summarizes the training performance of three
ResNet architectures (ResNet-50, ResNet-101, and ResNet-
152) on a multi-label classification task. Among the evaluated
models, ResNet-152 achieved the highest overall performance,
with accuracy, sensitivity, specificity, and precision reaching
94.0%, 96.7%, 98.8%, and 98.2% respectively. ResNet-101
also demonstrated strong results, attaining 93.1% accuracy
and 96.5% precision, while ResNet-50 showed slightly lower
accuracy (89.6%) but competitive sensitivity and precision,
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and even outperformed ResNet-101 in specificity. The results
suggest that increasing model complexity yields diminish-
ing returns, as the simpler ResNet-50 architecture delivered
satisfactory performance. The similar metric values across
architectures imply that dataset characteristics, such as size
and class distribution, may exert greater influence on model
efficacy than network depth. Consequently, ResNet-50 offers
a favorable balance between accuracy and computational effi-
ciency, making it a practical choice for this classification task.

TABLE IV
MULTI-LABEL CLASSIFICATION RESULTS TABLE

Model ResNet-50 | ResNet-101 | ResNet-152
Acc (%) 89.6 93.1 94.0
Sen (%) 91.3 94.8 96.7
Spe (%) 98.2 98.1 98.8
Pre (%) 91.3 96.5 98.2
Epochs 70 70 70
Batch size 16 8 16
Lr 0.0001 0.0001 0.0001

Summarizing the instance segmentation and multilabel
classification model training results, the authors selected
YOLOV9c-seg for instance segmentation and ResNet-50 for
multilabel classification as the final practical solution.

V. HISTORY OF FIELDS

For every farm, it is beneficial to maintain a field record
journal that logs all activities within a specific agricultural
area, including completed horticultural operations, the use of
crop materials, and plant protection products. Several infor-
mation systems already exist to support such functionalities.

However, this study focuses on collecting field images,
offering a different perspective on historical data, both visually
and through insights derived from image analysis. The goal
of our research is to develop a solution that allows visual
tracking of field changes over time while also providing
timely detection of plant health issues identified through image
analysis.

To ensure field history tracking:

« identify the surveyed fields (this information is used to

plan drone flight and photography routes),

« conduct field surveys using drones to capture images and

link them to specific geolocations,

« analyze the images to identify plant health issues,

o visualize the extracted information on a map for better

interpretation and decision-making.

The results of the image analysis conducted on a single day
are presented in Fig. 6. As shown, within the selected location,
6.51% of the identified leaves were classified as diseased,
0.38% exhibited signs of nutrient deficiency, and 93.10% were
determined to be healthy.

This type of solution is designed for horticulturists. Their
main interest is tracking long-term changes in fields, espe-
cially in crop cultivation involving perennial plants such as

Fig. 6.

Blackcurrant field condition analysis result

blackcurrants. In such cases, even historical images taken
from the same vantage point can provide valuable insights
into field conditions, moisture levels, pest infestations, disease
development, and more.

Although the functionalities may seem simple, this type
of solution comes with certain technical challenges. Even if
the captured images do not cover the entire field area, their
number is sufficiently large, and storing historical images can
be space-intensive, considering that blackcurrant plantations
typically cover between 2 to 20 hectares. Moreover, analyzing
such a vast number of images is time-consuming as it involves
identifying and classifying thousands of leaves.

The problem can be partially solved by increasing the
decreasing of the image capture grid, e.g., from 10 to 20
meters. A similar approach is used in the evaluation of soil
fertility, where the sampling is carried out systematically at
predetermined intervals. In this case of 20 meters, evaluating
one hectare would require only 36 images, significantly re-
ducing storage and analysis demands. This approach would
still provide sufficiently representative information about the
field’s condition and the spread of potential issues.

VI. DISCUSSION

The study results demonstrate new technologies for moni-
toring blackcurrant vegetation. Instead of traditional visual as-
sessments by horticulturists, an automated system is proposed,
offering several advantages: precise plant evaluation using
Al methods, applicability to large blackcurrant plantations,
economic efficiency, and ease of implementation.

However, these achievements should be considered a first
step toward precision agriculture in blackcurrant cultivation,
requiring further development. The proposed approach relies
on blackcurrant leaf analysis, which means it can only detect
diseases affecting leaves, while issues affecting roots and
stems - such as blackcurrant clearwing moth (Synanthedon
tipuliformis) and blackcurrant bud mite (Eriophyes ribis) -
remain undetected. Similarly, yield prediction requires an
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alternative approach, possibly analyzing entire blackcurrant
bushes rather than just leaves. Pest infestations can also only
be partially identified through leaf analysis. Nevertheless, other
blackcurrant cultivation challenges, such as crown rust, can be
identified using similar methods by analyzing different plant
parts, segmenting them in images, and classifying them based
on the specific problem being addressed.

A. Additional Applications of the Method

A diligent horticulturist monitors not only the spread
of blackcurrant diseases but also frost damage, flowering
progress, yield ripening time and volume predictions, and
other vegetation-related events. Although these aspects were
not the primary focus of this study, they could be addressed by
modifying the proposed method—for example, by segmenting
and classifying flower buds and berry clusters accordingly.

Beyond plant vegetation monitoring, the method can also
be applied to optimizing agricultural operations. By identi-
fying disease-affected field areas, maintenance tasks such as
targeted spraying can be carried out only in infected regions.
This would lead to significant savings in materials and labor
resources.

A promising direction for further development is integrating
the method into dynamic robotic management. By transferring
real-time data from the blackcurrant plant analysis module to
an agricultural operations execution robot, it would be possible
to perform precise interventions only where necessary, further
increasing efficiency and sustainability.

B. Limitations of the Method’s Application

When analyzing the benefits of the proposed method, it is
also important to highlight its limitations.

One key limitation is the lack of precision in determining
nutrient deficiencies. While the method can detect a deficiency,
it cannot specify which particular nutrient — potassium,
phosphorus, or nitrogen — is lacking. Currently, this type
of analysis is performed using soil and plant agrochemical
testing, which involves manually collecting soil and leaf
samples. This process requires significant labor resources.

A more advanced approach involves spectral analysis of
plants, which can provide more precise diagnosis of nutrient
deficiency. However, this requires more complex imaging
cameras.

In addition, leaves are only one indicator of plant health, but
they do not reveal all potential problems. For example, pest
infestations, such as the blackcurrant clearwing moth, which
primarily affects the stems rather than the leaves, cannot be
detected using this method.

VII. CONCLUSIONS

Key conclusions of the conducted research and its applica-

tion results:

1) Blackcurrant plantation monitoring is recommended to
be carried out in two stages: (1) field mapping — cap-
turing plantation field images with the required preci-
sion; (2) image instance segmentation and multi-label
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classification — an instance segmentation model extracts
individual leaf instances from the mapped images, and
a multi-label classification model employs a trained
neural network to identify fungal diseases and nutrient
deficiencies by assigning one or more class labels to
each leaf.

2) Mapping functions can be implemented using stan-
dard solutions available in commercial drone systems
or by adapting open source solutions for blackcurrant
cultivation. Segmentation solutions must be developed
individually in collaboration with industry experts, in
the case of this project, blackcurrant growers. This
includes training a neural network for leaf recogni-
tion and transmitting the identified leaf information for
classification. The classification task involves training
a neural network to recognize specific characteristics of
blackcurrant leaves, which is the final goal of the project
and is of interest to horticulturists.

3) The final result consists of blackcurrant field images
that visually distinguish between healthy areas, fungal
disease-affected zones, and nutrient-deficient regions.
The field history application provides horticulturists with
an intuitive tool to monitor blackcurrant crop develop-
ment over time

4) Scientific literature and practical experience confirm
that drone-based plant condition monitoring is effective.
Collected crop image datasets have significant potential
for machine learning applications.

Following the identification of fungal diseases and nutrient
deficiencies, future potential applications include prediction
of yield, detection of pests, and identification of other plant
diseases. A key challenge remains in improving the speed
of image analysis, as computational demands can exceed the
capabilities of simple and inexpensive hardware.
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