
Blackcurrant Plantations Monitoring Using Drones
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Abstract—The work is dedicated to the study of drone use in
horticulture, focusing on an example of blackcurrant cultivation.
The research aims to use drones to monitor vegetation in
plantations and to maintain the technological environment of
plants, using traditional agrotechnical field care methods. The
concept offers mapping and instance segmentation followed by
multi-label classification operations, taking into account the
specifics of blackcurrant plantations. The mapping operation
creates blackcurrant plantation maps from images taken by
drones at low altitudes. This ensures the acquisition of high-
quality maps of large areas with the help of simple image
photography cameras. Instance segmentation is intended for
extracting singular leaf instances from mapped images, which
are analyzed using classification methods to detect blackcurrant
diseases, pest spread, nutrient and moisture deficiencies, and
other plant vegetation-related parameters. Classification employs
machine learning techniques and is specific to the cultivation of a
particular plants – blackcurrants. The proposed technology, with
appropriate adjustments, can also be applied to the vegetation
monitoring of other horticultural plants.

I. INTRODUCTION

T
ODAY, drone manufacturing costs and production vol-

umes have reached a level that allows their application

in various fields, including precision agriculture. The scientific

reviews available in the literature analyze the latest advances in

drone technology used in precision farming. For example, [1]

compiles 184 publications using Google Scholar and SCOPUS

data, while [2] reviews 164 articles focusing on the application

of AI methods in agriculture.

The authors of these studies unanimously conclude that

drones can be used effectively to monitor plant vegetation,

while agricultural operations should be carried out using

ground-based equipment. During a flight, a drone can capture

images of designated field areas and transmit them to comput-

ers for further analysis. Using machine learning methods, this

enables the detection of vegetation conditions and issues that

determine necessary agronomic actions. Thus, drones allow for

rapid inspection of large agricultural areas and the collection

of crucial data on crop health and required maintenance tasks.

This study adopts a practical approach with the primary

objective of developing a technology that integrates drones

and artificial intelligence techniques to monitor plant vege-

tation. The system is designed to provide early warnings to

farmers regarding plant diseases, pest infestations, nutrient

deficiencies, and other agronomic issues. A key contribution

of this work is the development of a robust image analysis

system capable of processing leaf images to reliably detect

plant (particularly blackcurrant) diseases, thereby enhancing

the system’s applicability in real-world agricultural settings.

The following chapters provide a description of the technol-

ogy designed to support blackcurrant cultivation using basic

drones and imaging cameras. The proposed technology was

tested on a blackcurrant farm in Latvia, confirming the validity

of the chosen approach.

The structure of this study is as follows: Chapter 1 provides

an overview of drone usage in precision agriculture worldwide.

Chapter 2 focuses specifically on drone applications in horti-

culture. Chapter 3 presents the authors’ proposed methodology

for assessing blackcurrant plantations. Chapter 4 offers a

visualization of blackcurrant plantation conditions. Chapter 5

discusses the results obtained and presents the conclusions.

II. DRONE APPLICATION IN HORTICULTURE

To feed the rapidly growing global population, agricultural

enterprises must produce more food without increasing the

areas of cultivated land. This can be achieved by applying

advanced farming technologies. Some of these technologies

are still in development, while others are already offered by

commercial companies. Today, farms can utilize a variety of

advanced tools, such as satellite data, drones, autonomous

platforms for agricultural operations, sensors, and robots, to

obtain detailed information about crop and soil conditions

and to perform specific agronomic tasks. However, in many

countries, including Latvia, the adoption of drone technology

in agriculture is still in its early stages. Among the various

scientific and technological challenges that are being addressed

to achieve the goals of sustainable development, the use

of new technologies and methodologies in agriculture has

attracted the interest of the engineering research community

([3]). The objective is to develop technologies suitable for

precision agriculture that improve the long-term profitability

and efficiency of agricultural production ([4]).

A. General Overview of Drone Applications

According to [1] and [2], data from the Food and Agricul-

ture Organization (FAO) indicate that global food production
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must increase by 70% by 2050 to support the growing world

population. However, in the European Union, the number of

people employed in agriculture has decreased by 35% over the

past decade, and the expansion of agricultural land is largely

unfeasible.

These factors have driven an increase in interest in advanced

agricultural technologies, including sensors, robots, drones,

digitalization, and artificial intelligence (AI). AI and machine

learning are considered highly promising for detecting agri-

cultural problems, monitoring crop health, forecasting yields

and prices, mapping harvests, and optimizing pesticide and

fertilizer use.

There are various research directions that discuss the use of

modern technologies in agriculture: Internet of Things (IoT)

technologies in agriculture ([5]), bibliometric analysis of drone

use in agriculture ([6]), deep learning methods for controlled

environment agriculture ([7]), robotic harvesting technologies

(Mail et al., 2023), machine vision applications in agricultural

robot navigation ([8]), AI in agriculture ([9]), Agriculture 4.0

([10], [11]).

Depending on the specific task, drones can offer simi-

lar capabilities to satellite image analysis but with higher

precision and flexibility. They can perform tasks such as

soil analysis ([12], [13], [14]), monitoring sowing density

and crop development ([15], [16]), weed and pest detection

and classification ([17], [18], [19]) and yield prediction and

maturity assessment ([20], [21], [22]).

In rare cases, drones can also be used for harvesting,

precision fertilization ([23], [24], [25]), pesticide spraying

([26], [27], [28]) and even mechanical pest eradication. IoT

and sensor technologies provide farmers with real-time data

on soil parameters, temperature, atmospheric gases, weather

conditions, and many other variables, often processed in cloud-

based IT infrastructures for further analysis and forecasting

([29], [30], [31]).

B. Scope of Drone Applications

The use of artificial intelligence and cloud technology in

drones has brought significant improvements to smart agri-

culture. These new technologies can capture high-resolution

images, aerial maps, and thermal images, which can be utilized

in various agricultural applications, including:

• Soil analysis: Drones can be used for soil sampling,

analyzing soil moisture levels, and assessing soil qual-

ity, helping farmers optimize fertilization and irrigation

processes,

• Planting: Drones can be used for precise seed sowing

and/or seedling planting, reducing labour and planting

material costs,

• Crop spraying: Drones equipped with spraying systems

can be used for the precise distribution of pesticides, her-

bicides, and fertilizers, minimizing environmental impact

while saving time and financial resources,

• Irrigation management: Drones equipped with thermal

sensors and infrared cameras can identify areas needing

irrigation, helping to optimize water use and reduce

waste,

• Yield mapping: Drones can generate yield maps, assisting

farmers in optimizing crop management and increasing

overall production,

• Livestock monitoring: Drones equipped with cameras can

be used to monitor livestock health and behaviour, as well

as track animal locations,

• Crop monitoring: Drones equipped with sensors and

cameras can collect real-time data on crop health, growth,

and yield, creating crop health maps,

• Field mapping: Drones can create high-resolution field

maps, providing data on soil structure, topography, and

plant populations, which can be used for informed

decision-making regarding planting, fertilization, and

other crop management practices,

• Pest and disease control: Drones can help detect and map

the spread of pests and diseases in crops, helping farmers

take timely action.

These drone applications have gained significant research

attention over the past five years. Studies provide evidence of

the potential of drones in agriculture. However, these results

remain a future vision that is not yet accessible to practitioners.

Implementing such technologies requires the involvement of

highly qualified specialists and the establishment of modern

infrastructure.

III. APPLICATIONS OF MACHINE LEARNING IN PLANT

DISEASE DIAGNOSIS

A. Overview and Summary of Existing Solutions

The authors have reviewed several solutions for diagnosing

plant diseases using images of plant leaves. The works dis-

cussed in this subsection will not be described individually,

but rather grouped according to the nature of the solutions

reviewed, and common features will be highlighted to indicate

current trends in addressing such problems.

The solutions include methods such as the use of convo-

lutional neural networks, the application of transfer learning,

the use of traditional classification methods, the application of

segmentation, object detection, and data augmentation.

Convolutional neural networks dominate plant leaf image

classification in the context of the reviewed studies. In most

of the research reviewed by the authors, convolutional neural

networks are either trained from scratch on specific plant

data or used as part of transfer learning. For example, in

the work by Khalid M. Hosny and co-authors titled “Multi-

Class Classification of Plant Leaf Diseases Using Feature

Fusion of Deep Convolutional Neural Network and Local

Binary Pattern” [32], several examples of convolutional neu-

ral network architectures - AlexNet, VGG16, and GoogLeNet

- are analyzed. These are trained on the PlantVillage dataset

[datasetPlantVillage] and enhanced with the use of local

binary patterns to incorporate texture information. Another

good example of convolutional neural network use is de-

scribed in the work by Prabhjot Kaur and co-authors titled
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“A novel hybrid CNN methodology for automated leaf

disease detection and classification” [33], where a convolu-

tional neural network (ResNet50) is combined with a support

vector machine (replacing the fully connected layers of the

convolutional neural network). An interesting application of

convolutional neural networks is found in the publication by

Rasika Gajendra Patil and Ajit More titled “ Grape Leaf

Disease Diagnosis System Using Fused Deep Learning

Features Based System” [34], where the proposed method

fuses the results obtained from the deep feature layers of two

selected convolutional neural networks.

Similar to convolutional neural networks, transfer learning

approaches are also commonly found in the reviewed solu-

tions. They are widely used because they allow the utilization

of pre-trained networks. An example is the study developed by

Vinay Gautam and co-authors titled A Transfer Learning-

Based Artificial Intelligence Model for Leaf Disease Assess-

ment [35], where transfer learning is applied to models such

as: AlexNet, VGG16, VGG19, InceptionV4, SqueezeNet, and

Xception. The use of transfer learning is particularly important

in situations where data collection is expensive or limited, such

as in the case of rare diseases. A similar situation is observed

in the study by Yan Guo, Jin Zhang, and co-authors titled

“ Plant Disease Identification Based on Deep Learning

Algorithm in Smart Farming” [36], where the solution is

based on pre-trained VGG16 and ResNet101 models. These

models were fine-tuned for specific plant recognition using a

dataset of 1000 images from the China Plant Image Bank.

Although deep learning models dominate the reviewed solu-

tions, some of them still employ classical supervised learning

methods. Techniques such as support vector machines, the

k-nearest neighbors algorithm, and the random forest clas-

sifier are often used in combination with traditional feature

extraction—such as histogram analysis, color moments, and

shape descriptors [37],[38]. For example, in the previously

mentioned work by Rasika Gajendra Patil and Ajit More

[34], a convolutional neural network was initially applied to

the dataset items, but the final classification was determined

using a support vector machine classifier. Such methods are

often easier to interpret and less demanding in terms of

computational resources.

Similar to the use of convolutional neural networks and

transfer learning, a commonly observed trend in solutions is

the use of semantic or instance segmentation prior to classifi-

cation in order to achieve better results. In the publication by

Gangadevi Ganesan and Jayakumar Chinnappan titled “Hy-

bridization of ResNet with YOLO classifier for automated

paddy leaf disease recognition: An optimized model” [39],

segmentation of diseased leaf regions was performed using K-

means clustering. Similarly, in the publications by Muhammad

Sharif and co-authors and by Vinay Gautam and co-authors

[40], [35], semantic segmentation of the diseased regions was

applied. This indicates that, in plant leaf disease diagnosis,

it is valuable to use only the regions showing anomalies for

classification, rather than the entire leaf instance. However,

such an approach is effective only in solutions where the

processed dataset contains images in which each image depicts

only a single leaf instance. In the solution described in the

publication by Marcelo Vassallo-Barco and co-authors titled

“Automatic Detection of Nutritional Deficiencies In Coffee

Tree Leaves Through Shape And Texture Descriptors”

[41], the Otsu thresholding method was used for instance

segmentation, however, the publication does not specify the

exact accuracy achieved by the proposed method, making

it difficult to draw significant conclusions from this study.

Instance segmentation is also found in the solution mentioned

in the publication by F. Khan and co-authors titled “A mobile-

based system for maize plant leaf disease detection and

classification using deep learning” [37], where the YOLO

model family is used. In this context, instance segmentation is

applied to identify and classify leaf instances, including their

masks, since the dataset images depict multiple leaves. This

approach provides high data granularity and allows for the

analysis of individual leaves.

Additionally, it should be noted that the analyzed solutions

also include image preprocessing methods and various data

augmentation techniques. Given the frequent lack of data,

different data augmentation methods are used - such as image

rotation, zooming, cropping, and others. These methods help

reduce the risk of overfitting and improve the generalization

ability of the models.[36], [41]

B. Conclusions for the Selection of a Practical Solution

After analyzing and comparing various existing solutions,

the author chose to apply convolutional neural networks

(CNN) for leaf classification and instance segmentation to

separate leaf instances prior to classification in the develop-

ment of a practical solution. Since the previously mentioned

work using YOLO models demonstrated high precision [37],

the author selected the YOLO model family for the instance

segmentation task and, based on the strong performance of

ResNet models [34], chose ResNet models for the classifica-

tion task. At the same time, it can be concluded that for each

plant species, a specifically trained model must be developed

because plants differ visually and various diseases may mani-

fest differently. Therefore, the prototype of the study’s solution

focuses on only one plant species - blackcurrants - on which

the proposed solution is tested.

IV. PROPOSED SOLUTION OF TECHNOLOGY

This section presents the authors’ proposed technology

for monitoring blackcurrant vegetation using simple drones

and artificial intelligence methods. The proposed solution is

applied in a blackcurrant farming operation in Latvia.

A. Informal Description of Solution

The technology is offered to blackcurrant growers to mon-

itor plantations using drones, allowing detection of healthy

blackcurrant plants, fungal diseases, and nutritional deficien-

cies. The system consists of two main functions:

• Mapping: Prepares maps of blackcurrant plantations with

the required precision (scale), links them to GPS (Global
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Fig. 1. Blackcurrant plantation photo from 5 meters height (row spacing –
4 meters).

Positioning System) coordinates, records drone flight

routes, and specifies operations/photography to be per-

formed during flights.

• Analyze and classification: Uses trained neural networks

to extract blackcurrant leaf clusters from the mapped im-

ages. The instance segmentation then identifies individual

blackcurrant leaves, which are passed to the classification

stage for further analysis. As a result, three types of leaves

are identified: healthy leaves, leaves affected by fungal

diseases, and leaves indicating nutrient deficiencies. As

a result, the study provides a blackcurrant plantation

analysis solution that gathers information on plantation

conditions and visualizes it for growers, aiding decision-

making on necessary interventions.

B. Mapping and Planning of Image Capturing Routes for of

Horticultural Areas

The area captured by drones for image analysis is usually

significantly smaller than the cultivated field area in horticul-

ture. This is determined by the technical parameters of the

drone camera and the scale of the captured images Fig. (1). To

obtain complete information about the field, the authors took

multiple photographs every 10 meters. Although the images do

not fully cover the entire field (each image captures an area

of approximately 8×5 meters), they still provide a sufficient

overview of the field as a whole, which typically ranges in

size from 2 to 20 hectares.

To obtain the necessary images, a drone flight route with

a photography plan must be created for each monitored field.

The route can be created using the Mission Planner program

(web-03). The overall image route is calculated on the basis

of the drone’s flight altitude and camera parameters (e.g., the

angle the camera captures). As a result, a route will be obtained

for the drone to follow, an example of which can be seen in

the image prepared by the authors in Fig. 2.

The automatic flight is provided by the Litchi program. It

is available on both the computer’s website (web-04) to create

the route and on mobile phones (web-05) to fly the route.

During the experiments, Dji Mavic Air 2S with a 4k camera

was used. All pictures were taken from a height of 5m. To

Fig. 2. Drone mission plan: route and photography points

carry out the mission plan shown in Fig. 2 (which covered 2.5

hectares), approximately 15 minutes were required (time may

be affected by wind speed), and one drone battery was used

(i.e., the flight was continuous).

C. Image Analyzes and Classification

For the analysis of blackcurrant leaf images, the authors

have chosen a solution that combines instance segmentation

and multi-label classification. Instance segmentation ensures

the separation of leaf instances from the background, while

multi-label classification assigns each leaf instance to one or

more of the predefined classes. For instance segmentation,

the authors trained two models from the YOLO family —

YOLOv8n-seg and YOLOv9c-seg. For multi-label classifi-

cation, the authors trained three models from the ResNet

family — ResNet-50, ResNet-101, and ResNet-152. Based

on the training results, the authors selected one model for

each task (instance segmentation, multi-label classification)

and integrated the segmentation and classification models to

form a unified solution for blackcurrant leaf analysis.

1) Image Acquisition: The authors independently per-

formed the acquisition of specific images used to train the

models applied in the proposed solution. All the images used

in the training, validation, and test datasets, as described in

subsection IV-C3, were captured using a Nikon D3300 DSLR

camera equipped with a 24.2 MP DX-format CMOS sensor.

The images (sample image in Fig. 3) were taken from the

same blackcurrant field, capturing photographs from various

angles and under different lighting conditions to ensure dataset

diversity. This diversity can enhance model training results and

improve the robustness of the trained models in non-standard

scenarios.

2) Image Annotation: Image annotation for instance seg-

mentation and multi-class classification was performed using
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Fig. 3. Image of blackcurrant leaves

various methods to support the formats required by the specific

machine learning models.

For the instance segmentation datasets, each image was

manually annotated by outlining the contour of each individual

blackcurrant leaf instance. Annotation was performed using

the open source image and video annotation tool Computer

Vision Annotation Tool (CVAT), developed by Intel. The anno-

tations were then exported as point coordinates in the YOLOv8

segmentation 1.0 format. This type of data annotation is time-

consuming as images of blackcurrant bushes contain a large

number of leaf instances that must be precisely annotated.

Such accuracy is essential for the model to correctly detect and

isolate leaves from the background and overlapping objects,

which is critical for accurate instance segmentation. One of

resulting images is available in Fig. 4)

Fig. 4. Instance segmentation annotation example

For multi-label classification, annotation was performed by

isolating individual instances from blackcurrant leaf images

using the Adobe Photoshop graphic editing software, creating

images where each blackcurrant leaf instance was placed

against a black background (sample Fig. 5). Each resulting

image was then assigned a label indicating its correspondence

to one or more of the predefined blackcurrant health condition

classes. The specific classification scheme — which includes

the classes: healthy leaves (HL), leaves with nutrient defi-

ciency (NDL), and leaves affected by Mycosphaerella ribis

(MRL) — was developed in collaboration with an industry

expert, based on an assessment of the blackcurrant field

available to the author. A more detailed overview of the classes

can be found in subsection IV-C3. All image labels were

compiled into a structured file containing the image names

and their corresponding class assignments.

Fig. 5. Multi-label classification dataset example: leaf with nutrient deficiency

3) Datasets overview: This work utilizes two main datasets

to support different stages of the proposed method: one

for multi-label classification and another for instance seg-

mentation. The multi-label classification dataset contains 287

images, each featuring a single blackcurrant leaf against a

black background. These images are divided into training

(229), validation (49), and test (49) subsets. Each leaf is

labeled according to a classification scheme developed in

collaboration with an industry expert, categorizing them as

healthy leaves (HL), leaves with nutrient deficiency (NDL),

or leaves affected by Mycosphaerella ribis (MRL). Since a

single leaf may exhibit symptoms of multiple classes, a multi-

label classification approach is used. The class distribution is

provided in a Table I, showing that the total number of labeled

instances exceeds the number of images due to overlapping

class characteristics.

The instance segmentation dataset comprises 87 images,

split into 71 for training and 16 for validation. Each image

includes only blackcurrant leaves, and each leaf has been man-

ually annotated with precise contours. This detailed annotation

process is resource-intensive but essential, as it enables the
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TABLE I
DISTRIBUTION OF CLASS OCCURRENCES ACROSS TRAINING, VALIDATION,

AND TEST SETS

Class
Training

(229 images)

Validation

(49 images)

Test

(49 images)

HL 92 21 19
NDL 85 19 16
MRL 80 14 18

Total Labels 257 54 53

segmentation model to accurately detect and isolate individual

leaves from complex backgrounds.

4) Model training overview: For the instance segmentation

training process, the following models were used: YOLOv8n-

seg and YOLOv9c-seg [42]. These were trained using the

open-source Ultralytics package in Python [43], which pro-

vides an efficient workflow for YOLO models, including

automated hyperparameter configuration such as learning rate

adjustment based on gradient changes, default use of the

Adam optimizer, and automatic batch size selection based on

available GPU memory — set to 8 in this case. Each model

was trained with three different image resolutions: 256x256,

512x512, and 1024x1024. This approach allowed the author to

evaluate model behavior across varying resolutions and assess

the impact of image size on instance segmentation accuracy.

Based on the training loss analysis, 70 epochs were chosen

for the final training.

For the multiclass classification training process, the follow-

ing models were used: ResNet-50, ResNet-101, and ResNet-

152. These models were implemented using the PyTorch

machine learning library in Python and initialized with default

pretrained weights to leverage feature representations learned

from large-scale datasets. The final fully connected layer of

each ResNet model was replaced to enable prediction of three

target classes, making them suitable for the classification of

disease instances on blackcurrant leaves. Input images were

resized to 256×256 pixels and transformed into tensors for

model processing. The models were trained using the BCE-

WithLogitsLoss loss function, combining Sigmoid activation

with binary cross-entropy for numerical stability in multiclass

tasks. The Adam optimizer was chosen for its ability to dy-

namically adjust learning rates and incorporate momentum. To

identify optimal hyperparameters, a grid search was conducted

over the number of epochs, learning rate, and batch size for

each ResNet variant. The best-performing configurations were:

70 epochs, a learning rate of 0.0001, and batch sizes of 16

(ResNet-50 and ResNet-152) or 8 (ResNet-101).

5) Model training results: The training results of the in-

stance segmentation models YOLOv8n-seg and YOLOv9c-seg

are summarized in Tables II and III, showing their perfor-

mance across different image resolutions (256×256, 512×512,

1024×1024). Both box (B) and mask (M) performance metrics

were evaluated, including mAP50, mAP50–95, and precision

(Pre), which together assess the models’ ability to localize and

delineate object instances at the pixel level. The results indi-

cate that YOLOv9c-seg consistently outperformed YOLOv8n-

seg.

across all tested resolutions and metrics. The highest per-

formance was observed at the highest resolution (1024×1024),

where YOLOv9c-seg achieved mAP50 values of 0.72130

for boxes and 0.69930 for masks. Additionally, an increase

in input image resolution correlates with improved model

performance for both architectures, emphasizing the signifi-

cance of higher resolution imagery in enhancing segmentation

precision. This is particularly important within the context

of this study, where precise delineation of blackcurrant leaf

instances from the background is essential for subsequent

classification tasks. Nonetheless, the results are not without

limitations, likely attributable to the relatively small size of

the training dataset employed.

TABLE II
YOLOV8N INSTANCE SEGMENTATION RESULTS

Model YOLOv8n-seg

Image size 256x256 512x512 1024x1024

mAP50 (B) 0.59164 0.65656 0.67211

mAP50-95 (B) 0.38272 0.49653 0.52423

Pre (B) 0.67455 0.73628 0.74736

mAP50 (M) 0.58450 0.65931 0.66956

mAP50-95 (M) 0.34303 0.47840 0.51023

Pre (M) 0.74249 0.76106 0.75789

TABLE III
YOLOV9C-SEG INSTANCE SEGMENTATION RESULTS

Model YOLOv9c-seg

Image size 256x256 512x512 1024x1024

mAP50 (B) 0.64149 0.68866 0.72130

mAP50-95 (B) 0.46194 0.54670 0.68643

Pre (B) 0.74662 0.87470 0.88182

mAP50 (M) 0.65124 0.69849 0.69930

mAP50-95 (M) 0.47340 0.51147 0.53121

Pre (M) 0.72102 0.79023 0.81230

Table IV summarizes the training performance of three

ResNet architectures (ResNet-50, ResNet-101, and ResNet-

152) on a multi-label classification task. Among the evaluated

models, ResNet-152 achieved the highest overall performance,

with accuracy, sensitivity, specificity, and precision reaching

94.0%, 96.7%, 98.8%, and 98.2% respectively. ResNet-101

also demonstrated strong results, attaining 93.1% accuracy

and 96.5% precision, while ResNet-50 showed slightly lower

accuracy (89.6%) but competitive sensitivity and precision,
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and even outperformed ResNet-101 in specificity. The results

suggest that increasing model complexity yields diminish-

ing returns, as the simpler ResNet-50 architecture delivered

satisfactory performance. The similar metric values across

architectures imply that dataset characteristics, such as size

and class distribution, may exert greater influence on model

efficacy than network depth. Consequently, ResNet-50 offers

a favorable balance between accuracy and computational effi-

ciency, making it a practical choice for this classification task.

TABLE IV
MULTI-LABEL CLASSIFICATION RESULTS TABLE

Model ResNet-50 ResNet-101 ResNet-152

Acc (%) 89.6 93.1 94.0

Sen (%) 91.3 94.8 96.7

Spe (%) 98.2 98.1 98.8

Pre (%) 91.3 96.5 98.2

Epochs 70 70 70

Batch size 16 8 16

Lr 0.0001 0.0001 0.0001

Summarizing the instance segmentation and multilabel

classification model training results, the authors selected

YOLOv9c-seg for instance segmentation and ResNet-50 for

multilabel classification as the final practical solution.

V. HISTORY OF FIELDS

For every farm, it is beneficial to maintain a field record

journal that logs all activities within a specific agricultural

area, including completed horticultural operations, the use of

crop materials, and plant protection products. Several infor-

mation systems already exist to support such functionalities.

However, this study focuses on collecting field images,

offering a different perspective on historical data, both visually

and through insights derived from image analysis. The goal

of our research is to develop a solution that allows visual

tracking of field changes over time while also providing

timely detection of plant health issues identified through image

analysis.

To ensure field history tracking:

• identify the surveyed fields (this information is used to

plan drone flight and photography routes),

• conduct field surveys using drones to capture images and

link them to specific geolocations,

• analyze the images to identify plant health issues,

• visualize the extracted information on a map for better

interpretation and decision-making.

The results of the image analysis conducted on a single day

are presented in Fig. 6. As shown, within the selected location,

6.51% of the identified leaves were classified as diseased,

0.38% exhibited signs of nutrient deficiency, and 93.10% were

determined to be healthy.

This type of solution is designed for horticulturists. Their

main interest is tracking long-term changes in fields, espe-

cially in crop cultivation involving perennial plants such as

Fig. 6. Blackcurrant field condition analysis result

blackcurrants. In such cases, even historical images taken

from the same vantage point can provide valuable insights

into field conditions, moisture levels, pest infestations, disease

development, and more.

Although the functionalities may seem simple, this type

of solution comes with certain technical challenges. Even if

the captured images do not cover the entire field area, their

number is sufficiently large, and storing historical images can

be space-intensive, considering that blackcurrant plantations

typically cover between 2 to 20 hectares. Moreover, analyzing

such a vast number of images is time-consuming as it involves

identifying and classifying thousands of leaves.

The problem can be partially solved by increasing the

decreasing of the image capture grid, e.g., from 10 to 20

meters. A similar approach is used in the evaluation of soil

fertility, where the sampling is carried out systematically at

predetermined intervals. In this case of 20 meters, evaluating

one hectare would require only 36 images, significantly re-

ducing storage and analysis demands. This approach would

still provide sufficiently representative information about the

field’s condition and the spread of potential issues.

VI. DISCUSSION

The study results demonstrate new technologies for moni-

toring blackcurrant vegetation. Instead of traditional visual as-

sessments by horticulturists, an automated system is proposed,

offering several advantages: precise plant evaluation using

AI methods, applicability to large blackcurrant plantations,

economic efficiency, and ease of implementation.

However, these achievements should be considered a first

step toward precision agriculture in blackcurrant cultivation,

requiring further development. The proposed approach relies

on blackcurrant leaf analysis, which means it can only detect

diseases affecting leaves, while issues affecting roots and

stems - such as blackcurrant clearwing moth (Synanthedon

tipuliformis) and blackcurrant bud mite (Eriophyes ribis) -

remain undetected. Similarly, yield prediction requires an
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alternative approach, possibly analyzing entire blackcurrant

bushes rather than just leaves. Pest infestations can also only

be partially identified through leaf analysis. Nevertheless, other

blackcurrant cultivation challenges, such as crown rust, can be

identified using similar methods by analyzing different plant

parts, segmenting them in images, and classifying them based

on the specific problem being addressed.

A. Additional Applications of the Method

A diligent horticulturist monitors not only the spread

of blackcurrant diseases but also frost damage, flowering

progress, yield ripening time and volume predictions, and

other vegetation-related events. Although these aspects were

not the primary focus of this study, they could be addressed by

modifying the proposed method—for example, by segmenting

and classifying flower buds and berry clusters accordingly.

Beyond plant vegetation monitoring, the method can also

be applied to optimizing agricultural operations. By identi-

fying disease-affected field areas, maintenance tasks such as

targeted spraying can be carried out only in infected regions.

This would lead to significant savings in materials and labor

resources.

A promising direction for further development is integrating

the method into dynamic robotic management. By transferring

real-time data from the blackcurrant plant analysis module to

an agricultural operations execution robot, it would be possible

to perform precise interventions only where necessary, further

increasing efficiency and sustainability.

B. Limitations of the Method’s Application

When analyzing the benefits of the proposed method, it is

also important to highlight its limitations.

One key limitation is the lack of precision in determining

nutrient deficiencies. While the method can detect a deficiency,

it cannot specify which particular nutrient — potassium,

phosphorus, or nitrogen — is lacking. Currently, this type

of analysis is performed using soil and plant agrochemical

testing, which involves manually collecting soil and leaf

samples. This process requires significant labor resources.

A more advanced approach involves spectral analysis of

plants, which can provide more precise diagnosis of nutrient

deficiency. However, this requires more complex imaging

cameras.

In addition, leaves are only one indicator of plant health, but

they do not reveal all potential problems. For example, pest

infestations, such as the blackcurrant clearwing moth, which

primarily affects the stems rather than the leaves, cannot be

detected using this method.

VII. CONCLUSIONS

Key conclusions of the conducted research and its applica-

tion results:

1) Blackcurrant plantation monitoring is recommended to

be carried out in two stages: (1) field mapping – cap-

turing plantation field images with the required preci-

sion; (2) image instance segmentation and multi-label

classification – an instance segmentation model extracts

individual leaf instances from the mapped images, and

a multi-label classification model employs a trained

neural network to identify fungal diseases and nutrient

deficiencies by assigning one or more class labels to

each leaf.

2) Mapping functions can be implemented using stan-

dard solutions available in commercial drone systems

or by adapting open source solutions for blackcurrant

cultivation. Segmentation solutions must be developed

individually in collaboration with industry experts, in

the case of this project, blackcurrant growers. This

includes training a neural network for leaf recogni-

tion and transmitting the identified leaf information for

classification. The classification task involves training

a neural network to recognize specific characteristics of

blackcurrant leaves, which is the final goal of the project

and is of interest to horticulturists.

3) The final result consists of blackcurrant field images

that visually distinguish between healthy areas, fungal

disease-affected zones, and nutrient-deficient regions.

The field history application provides horticulturists with

an intuitive tool to monitor blackcurrant crop develop-

ment over time

4) Scientific literature and practical experience confirm

that drone-based plant condition monitoring is effective.

Collected crop image datasets have significant potential

for machine learning applications.

Following the identification of fungal diseases and nutrient

deficiencies, future potential applications include prediction

of yield, detection of pests, and identification of other plant

diseases. A key challenge remains in improving the speed

of image analysis, as computational demands can exceed the

capabilities of simple and inexpensive hardware.
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