&l

Proceedings of the 20" Conference on Computer

DOI: 10.15439/2025F8736

Science and Intelligence Systems (FedCSIS) pp. 121-132 ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

A Framework for Model-Driven Al-Assisted Generation of
IT Project Management Plan and Scope Documents

Janis Rihards Blazevics
Riga Technical University,
Institute of Information
Technologies,

Riga, Latvia
Email: janis-
rihards.blazevics@edu.rtu.lv

Abstract—This paper presents a model-driven Al-assisted
approach for generating IT project management plan and
scope documents, aiming to improve efficiency and quality in
software development projects. Effective documentation in the
early project phase is critical, yet often resource-intensive. The
proposed solution consolidates best practices from widely used
project management methodologies and standards to create a
dynamic, adaptable framework for document generation. The
study identifies key components and input data required for
generating high-quality plans using model transformations and
generative Al. A prototype supporting the solution is developed
featuring a local processing engine, integrated with a large lan-
guage model, a vector database, and an embedded model.

Index Terms—IT project management, project documenta-
tion, model-driven development, generative Al, prompt engi-
neering, software development automation, large language
models, Al-assisted tools.

1. INTRODUCTION

IN MODERN IT project development, the demand for ac-
celerated delivery cycles continues to increase, driven by
competitive pressure, agile practices, and customer expecta-
tions [1]. One of the most critical processes in the early
phases of the project lifecycle is the development of project
documentation [2]. Well-structured documentation, such as
project management plans and scope statements, forms the
basis for mutual understanding between clients and delivery
teams, and contributes directly to project success and client
satisfaction [3].

To address the need for speed without compromising
quality, automation tools have been introduced to support
documentation processes. These tools can generate content
based on reusable templates, domain knowledge, and recog-
nized best practices [4]. However, most existing solutions
act as passive assistants, requiring significant manual effort

-This research has been supported by Research and Development grant
No RTU-PA-2024/1-0015 under the EU Recovery and Resilience Facility
funded project No. 5.2.1.1.i.0/2/24/I/CFLA/003 “Implementation of
consolidation and management changes at Riga Technical University,
Liepaja University, Rezekne Academy of Technology, Latvian Maritime
Academy and Liepaja Maritime College for the progress towards excellence
in higher education, science, and innovation”.

121

Oksana Nikiforova
0000-0001-7983-3088
Riga Technical University,
Institute of Information
Technologies,

Riga, Latvia
Email: oksana.nikiforova@rtu.lv

Oscar Pastor
0000-0002-1320-8471
Universitat Politécnica de
Valéncia, Valencia, Spain
Email: opastor@dsic.upv.es

to ensure completeness, consistency, and compliance with
professional standards [5].

Since the emergence of generative artificial intelligence
(AI) technologies around 2020 [6], there has been growing
interest in using Al to automate the creation of project docu-
mentation. Generative models such as large language mod-
els (LLMs) [7] offer promising capabilities for producing
structured, domain-specific texts [8]. However, researchers
should overcome challenges related to the need for precise
prompt formulation, ensuring contextual relevance, manag-
ing data quality, and aligning with industry standards [9].
Addressing these challenges requires not only technical so-
lutions but also methodological guidance.

This raises a fundamental research question: Is it possible
to integrate generative Al into documentation development
without compromising quality and compliance? This paper
investigates this question by proposing an Al-assisted solu-
tion grounded in software engineering principles, aiming to
maintain documentation integrity while leveraging the po-
tential of generative Al. The research goal of the results pre-
sented in this paper is to develop an Al-assisted solution for
generating IT project management plan and scope docu-
ments applicable in software development projects, by con-
solidating best practices in project documentation as defined
across various development methodologies and industry
standards.

The paper is organized as follows. The next section dis-
cusses the research background and summarizes the related
literature. Section 3 presents the foundations used in the so-
lution and Section 4 explains the essence of the solution.
Section 5 demonstrates the practical application of the solu-
tion and comments its validation and improvements. The fi-
nal section summarizes the main research findings and out-
lines directions for future work.

Topical area: Software, System and Service Engineering



122

II. BACKGROUND AND RELATED WORK

Since the emergence of generative artificial intelligence (Al)
technologies around 2020, such as OpenAl’s GPT-3 [6], there
has been growing optimism that Al could dramatically
streamline project documentation by enabling the automatic
generation of high-quality documents in just a few clicks. The
rapid advancement of LLMs has fueled expectations that
these tools could reduce the manual effort required for creat-
ing project specifications, requirement documents, and other
critical deliverables. However, several significant challenges
remain in realizing this vision fully:

1. Generative Al often struggles to capture the spe-
cific organizational context, domain terminology,
and stakeholder expectations that are essential for
meaningful documentation [9].

2. Effective Al-generated documentation depends
heavily on the availability of structured, high-
quality input data. In many real-world projects,
this data may be incomplete, ambiguous, or incon-
sistent [10].

3. Automatically generated content can raise con-
cerns about traceability, authorship, and the re-
sponsibility for errors or omissions in critical doc-
uments [11].

4. Industry-specific methodologies and compliance
requirements (e.g., ISO, IEEE) can be difficult to
encode into generic Al systems without signifi-
cant customization [12].

5. Even advanced generative tools require skilled
human supervision to ensure accuracy, relevance,
and alignment with project goals [13].

These limitations suggest that while generative Al has
strong potential to support project documentation, its role is
currently best viewed as augmentative rather than fully auton-
omous. Future developments may narrow these gaps, but ef-
fective human-Al collaboration remains essential for reliable
outcomes in IT project documentation.

Recent studies have demonstrated the growing potential of
generative Al in enhancing project management processes,
particularly in the areas of documentation, planning, and effi-
ciency. One of the key applications of generative Al is the
automation of project documentation, including project plans
and scope definitions. Al models can consolidate and struc-
ture content from various sources to generate standardized
and coherent documents, ensuring compliance with project
management standards and improving overall consistency
[14]. Additionally, generative Al is increasingly used to gen-
erate meeting summaries, translate technical content, and up-
date project texts, contributing to more accurate and timely
documentation [15].

In project planning, Al tools can support a wide range of
functions such as scope definition, scheduling, cost estima-
tion, resource allocation, stakeholder analysis, and risk as-
sessment. Some studies suggest that generative Al can match
or even outperform human planners in certain structured plan-
ning tasks, while still requiring expert oversight for contextual

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

decisions [16]. Moreover, the integration of Al in Agile meth-
odologies has shown promise in optimizing team workflows,
enhancing collaboration, and automating repetitive tasks
[17]-[18].

The collaboration between human project managers and Al
systems has been identified as a critical factor for success.
Key performance indicators for such collaboration include ef-
ficiency gains in time, cost, and resource usage, as well as
improved quality, clarity, and accuracy of project outputs
[19]. Research also highlights the benefits of using generative
Al in the early stages of innovation, such as digital prototyp-
ing and ideation, where rapid iteration and content generation
are crucial [20].

However, several challenges remain. Effective integration
of Al into project management environments must address is-
sues such as input data quality, compatibility with legacy sys-
tems, and ethical concerns regarding algorithmic transpar-
ency and accountability [21]-[22]. Furthermore, while gener-
ative Al can produce initial drafts of project documentation,
human expertise is still essential to validate and refine the out-
put to ensure relevance, accuracy, and compliance with spe-
cific organizational contexts [16].

These findings underscore the dual role of generative Al as
both an accelerator and a collaborator in project management.
The literature suggests that while generative Al tools provide
substantial benefits, their successful implementation relies on
structured prompts, methodological support, and continuous
human oversight.

To address the limitations of generative Al in project doc-
umentation, Nikiforova, et al. [23] proposed a solution based
on the integration of model-driven development (MDD) prin-
ciples. By embedding structured models into the Al-assisted
documentation process, the approach aims to constrain and
guide Al output according to predefined rules, templates, and
domain-specific semantics. This model-driven approach
helps overcome common issues such as contextual incon-
sistency, structural errors, and lack of standard compliance. It
also enhances traceability and maintainability by linking gen-
erated content to formal models that represent project require-
ments and design logic.

In response to the limitations of generative Al tools, re-
searchers and practitioners have increasingly focused on the
field of prompt engineering, which is the practice of crafting
and structuring input prompts in a way that guides Al systems
to produce higher-quality, more relevant outputs [24]. Rather
than relying on generic instructions, prompt engineering em-
phasizes precise formulations, contextual cues, and example-
based guidance to improve the performance of language mod-
els in complex tasks such as project documentation. The
emerging field of prompt engineering aims to optimize
prompt formulation in order to elicit high-quality, contextu-
ally accurate responses from generative models [25].

This emerging discipline is particularly relevant in domains
like IT project management, where document quality is influ-
enced by terminology accuracy, logical structure, and compli-
ance with standards. By experimenting with different prompt



JANIS RIHARDS BLAZEVICS ET AL.: A FRAMEWORK FOR MODEL-DRIVEN AI-ASSISTED GENERATION OF IT PROJECT MANAGEMENT

patterns, researchers aim to understand how to systematically
elicit responses that align with user expectations and domain-
specific requirements.

Early studies and practical experiments indicate that care-
fully designed prompts can significantly enhance the clarity,
completeness, and consistency of Al-generated documents.
As a result, prompt engineering is becoming a critical skill for
those seeking to integrate generative Al into documentation
workflows, bridging the gap between Al capabilities and real-
world needs.

The research presented in this paper builds upon the idea of
constraining generative Al to reduce hallucinations and un-
controlled variability in generated content. The proposed ap-
proach is oriented toward leveraging the strengths of model-
driven engineering by generating as much documentation
content as possible through formal model transformations
[26]. Where model transformation is insufficient, such as in
the generation of narrative or descriptive elements, prompt
engineering is applied, guided by artifacts from the target
model [27]. This ensures that even Al-generated free-text sec-
tions remain contextually relevant, structurally aligned, and
traceable to defined project components. The overall goal is
to balance Al creativity with formal control, reducing risks
while maintaining efficiency and adaptability.

III. RESEARCH METHODOLOGY AND CONCEPTUAL
FRAMEWORK

This research follows the Design Science Research (DSR)
methodology as proposed by Hevner et al. [28], which is
widely used for the development and evaluation of IT arti-
facts. The goal is to create a novel, Al-assisted solution for
generating IT project management plan and scope documen-
tation. This artifact integrates model-driven engineering prin-
ciples with generative Al capabilities to support early-phase
documentation in software development projects.

In accordance with Hevner’s seven guidelines for DSR,
this study:

1. Designs an innovative artifact — a model-driven frame-
work and software prototype for document generation;

2. Addresses a relevant business problem — namely, the inef-
ficiency and inconsistency in early-phase project documenta-
tion;

3. Is evaluated through practical application and iterative re-
finement;

4. Contributes both a utility-focused solution and theoretical
insights into the integration of generative Al with structured
project management models;

5. Applies rigorous methods for modeling, implementation,
and validation;

6. Communicates the research effectively to both academic
and practitioner audiences;

7. Clearly situates the research within the context of infor-
mation systems and project management disciplines.

The proposed approach balances the creative potential of
generative Al with the structural rigor of model-driven devel-

opment. The main objective is to constrain Al-generated con-
tent within well-defined semantic and syntactic boundaries,
ensuring compliance with established project management
standards described in the next subsections.

A. Model-Driven Development Principles

Model-Driven Development (MDD) is a software engi-
neering approach that emphasizes the use of formal models as
the primary artifacts throughout the development lifecycle
[29]. Instead of writing low-level implementation code di-
rectly, developers create abstract models that define system
structure, behavior, and logic [30]. These models are then
transformed into executable code or other technical artifacts
through automated tools. The main goal of MDD is to in-
crease productivity, improve consistency, and reduce human
error by shifting development effort to higher levels of ab-
straction.

MDD was originally developed to address complexity in
large-scale systems and to enable better alignment between
business requirements and technical implementation. It has
proven particularly effective in domains requiring precision,
standardization, and traceability, such as embedded systems,
enterprise architectures, and critical software solutions.

Based on systematic literature mapping of solutions offered
under the MDD idea, Nikiforova ef al. [31] conducted an in-
depth analysis of transformations between key artifacts used
in the early phases of IT projects, that is, before the imple-
mentation stage. The study focused on identifying how differ-
ent project artifacts, such as goal models, process models, use
case models, domain models, and architectural overviews,
can be interrelated through formal transformation rules.

The research highlights that certain artifacts can be auto-
matically derived from others using well-defined transfor-
mation methods, significantly reducing manual effort and in-
creasing consistency across documentation. For instance,
structured requirements can be transformed into initial system
models or project plans with minimal human intervention.
However, not all relationships are fully automatable (shown
as dotted lines in Fig. 1), some transformations still require
manual refinement or validation, especially in cases involving
complex contextual interpretation or stakeholder input. Ex-
actly, these transformations can be assisted with the usage of
generative Al.

An overview of all these artifact transformations and their
interdependencies is illustrated in Fig. 1 [27]. This schema
serves as a foundation for the proposed Al-assisted generation
process, where transformation rules help define the scope of
content that can be automatically constructed and guide the
prompt generation strategy for generative Al components.

Although MDD adoption has declined in recent years,
partly due to the rise of more lightweight, iterative approaches
like Agile [32], the core idea of structuring development
around formalized models remains powerful. In the context of
generative Al, MDD principles offer a unique advantage: they
can provide a well-defined, controlled input structure for
guiding Al outputs.



124

i Project Budget
parameters

Project Cost and
time estimation

A

Stakeholder
requirements

e

User story
”|(prioritization)

1 Business Model [

iInitial (Customer) ’
! Documentation @~ 7’ gy b lag [T
\ Project !
' ! team v
i AL 2 7 4
! Project
documejzntation Sprint backlog < e ey

_____________________________

Process >
Organization

v
. ' Stakeholder

feememmeeeeamoa--1----» documentation/
communication

User story
(estimation)

Y

Risk Management <«—

A4
Quality - - -
Management

Security

Fig 1. Transformation among IT project artifacts

This makes it possible to constrain generative models
within meaningful boundaries, improving the reliability and
quality of generated content. By reintroducing MDD concepts
into Al-assisted documentation generation, this research aims
to combine the rigor of model-driven processes with the flex-
ibility of modern language models, achieving better control,
relevance, and integration in project management documen-
tation workflows.

B. Software Engineering Standards

The implementation of software engineering standards
plays a vital role in ensuring consistency, quality, and tracea-
bility in IT project documentation. Given the increasing com-
plexity of software development projects and the integration
of Al-assisted tools, aligning documentation processes with
internationally recognized standards becomes not only bene-
ficial but necessary. The proposed solution leverages the fol-
lowing software engineering standards:

1. ISO/IEC/TEEE 29148:2018 Systems and software engi-
neering — Life cycle processes — Requirement’s engineer-
ing [33];

2. ISO/IEC/TEEE 16326:2019 Systems and software engi-
neering — Life cycle processes — Project management, 2019
[34];

3. ISO 21502:2020, Project, programme and portfolio man-
agement — Guidance on project management, 2020 [35];

4. Corresponding elements of SWEBOK [36];

5. Corresponding elements of PMBOK [37].

Software engineering standards are used in two ways. The
first, they define the macrostructure of the document (like in
the way presented in Fig. 2) [31].

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Product vision and
roadmap

IT Poject Management
Plan (Initiation phase)

Backlog management
Scope
management Definition of done
—| Sprint planning
Schedule | |
management -
Task dependencies

Sprint execution and
| Daily standups

Execution and

delivery User stories and
1 acceptance criteria
Testing and
continuous integration
Metrics (cycle time,
Performance burndov(;vrs: charts)
and risk
management Sprint review

Managing risks

Quality and
improvements

Fig 2. IT project documentation structure and content

The standards’ instructions are used to guide the structure
and content of generated project documents. These standards
provide clear expectations regarding the format, terminology,
and required content of artifacts such as project charters, re-
quirement specifications, and management plans.

And, the second, the standards shape the micro-level in-
structions that guide the Al in generating specific paragraphs
or sections. Rather than embedding static prompts into the
generative Al component, this solution dynamically generates
prompts based on structured input, specifically utilizing con-
tent derived from model transformations. The Al model is
thus directed by prompts that are themselves informed by
software engineering standards and documentation guide-
lines. This ensures that generated outputs are not only linguis-
tically fluent but also semantically aligned with professional
project management practices.

For example, prompts for requirement specification gener-
ation integrate instructional content drawn directly from
ISO/IEC/IEEE 29148:2018, such as the need for complete-
ness, verifiability, traceability, and feasibility.

Additionally, content expected from model transfor-
mations, such as stakeholder roles, system goals, and compo-
nent descriptions, is automatically fed into the prompt gener-
ation process. This staged approach enables the Al to act
within clearly defined semantic boundaries while maintaining
flexibility for natural language output. This mechanism rep-
resents a hybrid strategy that combines the strength of model-



JANIS RIHARDS BLAZEVICS ET AL.: A FRAMEWORK FOR MODEL-DRIVEN AI-ASSISTED GENERATION OF IT PROJECT MANAGEMENT

driven development with the adaptive capabilities of genera-
tive Al. By grounding prompt generation in formal standards
and structured content, the solution significantly reduces the
risk of hallucinations and irrelevant output, ensuring higher
reliability and usability of project documentation.

In summary, the integration of software engineering stand-
ards serves as a scaffolding for both the structure and seman-
tics of Al-generated project artifacts. It bridges the gap be-
tween free-form generative models and formal documentation
requirements, resulting in outputs that are both technically
valid and aligned with industry expectations.

IV. SOLUTION DESIGN AND APPROACH

This section presents the formal framework and implemen-
tation of the proposed approach for Al-assisted generation of
project documentation. The solution is built on a hybrid meth-
odology, combining model-driven development (MDD),
prompt engineering, and alignment with software engineering
standards listed in previous sections.

The proposed solution is based on the principle that struc-
tured artifacts (i.e., models, templates, and metadata) should
guide document generation. When natural language output is
required, prompt engineering is applied, combining structured
artifacts and guidance to direct the language model. This hy-
brid approach reduces hallucinations and improves con-
sistency. The solution operates through several stages:

o Input Stage: Project-specific structured artifacts, such as
project artifacts, are provided as input. Wherever possible,
content is derived from model transformations, using ap-
proaches and tools like [38] [39].

o Instruction Stage: Documentation structure and content
expectations are sourced from industry standards. These
sources serve as a foundation for structuring both the overall
layout and the content of the generated documentation. Ex-
cerpts from standards, such as definitions, guidelines, and sec-
tion requirements, are used as instructional cues within
prompts to ensure that the generated text aligns with profes-
sional expectations.

e Transformation Stage: Input artifacts and instruction
templates are combined through structured transformation
logic (defined in JSON), which dynamically generates task-
specific prompts.

¢ Generation Stage: These dynamic prompts are used to
control a language model (LLM) that generates natural lan-
guage output. Furthermore, in the proposed solution, the
prompts used by the generative Al component are not static
or hardcoded. Instead, they are dynamically generated based
on software engineering standards and best-practice "instruc-
tions," as well as content defined through model transfor-
mations. This means that the system first interprets structured
input, such as elements derived from project models, and then
constructs a tailored prompt to guide the language model.

e Validation Stage: Output is validated against structural
schemas and evaluated on semantic alignment, completeness,
and relevance.

A key innovation is the dynamic generation of prompts
based on model-driven and SE standards-based inputs. In-
stead of using static instructions, the approach uses structured
data to generate a prompt, which in turn is used to generate
the final documentation text. This “generative Al powering
generative AI” approach ensures that outputs are both contex-
tually relevant and semantically accurate, thus allowing pre-
cise alignment between structured models and natural lan-
guage output and reducing the likelihood of irrelevant or hal-
lucinated content. It is like a controlled pipeline that leverages
automation while maintaining contextual fidelity and compli-
ance with documentation standards.

The system is implemented in Python using the Ollama
framework. A locally hosted LLaMA 3.2:3b model handles
language generation, while ChromaDB stores embedded vec-
tor representations of source content. The conceptual schema
of the solutions architecture is shown in Fig. 3. Following the
outlined stages, a generative Al-based solution was devel-
oped, structured around three key modules: the Input Module,
the Processing Module, and the Output Module.

The Input Module validates and processes user-provided
files, including contextual documents and control JSONs. Up-
loaded PDF content is split into fragments using token limits
and overlap parameters to preserve context. Each fragment is
embedded as a vector and stored in ChromaDB, along with
metadata such as file type and source ID. Instruction files are
parsed into stepwise JSON objects for controlled processing.

The Processing Module executes semantic queries based
on the instruction steps. Each step retrieves relevant frag-
ments using vector similarity and uses them as input for the
next step. This enables incremental generation of documenta-
tion components, where each output builds on previous re-
sults. The final output is compiled into structured sections
based on a predefined JSON schema.

The Output Module formats the completed documenta-
tion into a standards-compliant structure, ready for export or
integration.

Processing Module

Input Module

|

|

I

Project |
artifacts |
|

|

I

|

Vector

Instructions Database

from Standards

—N

Processing
JSON

[

\
N :
[ |1
\

\

I

!

Processing
Engine

Documentation
Fragments

Output
JSON

Fig 3. IT project documentation structure and content
The prototype screenshot is shown in Fig. 4. The user in-
terface enables uploading project artifacts and control JSON
files based on engineering standards. It supports “Process”
and “Generate” actions to trigger analysis and document cre-
ation via a lightweight, Python-based framework.



126

== Upload and Process
Files

Upload Context PDFs

Drag and drop files here

Limit 200M8 perfile » PDF

Browse files

fss_charter_sample (1)....

210.3KB

Upload Instructions JSON

Drag and drop file here

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Deploy

Generate Artefact from Document

User Prompt (additional comments):

Generate

Generated Output

{
"item": [
{

w1
Limit 200MB per file + JSON
M "name": "Identify Initial Vendor List and Issue RFI to Selected Vendors Including Internal Build
Option"
Browse files ?
{
new_whbs_instr.json >< "id": "1.1%
3.4KB "name": "Selection of Local Contacts and SME Representatives"
%
Upload Structure JSON {

" 11117,
Drag and drop file here

Limit 200MB per file - JSON

Browse files

Fig 4. Solutions supporting prototype UL

V.SOLUTION DEMONSTRATION AND VALIDATION

The developed solution focuses on the generation of docu-
mentation for the project initiation phase, which primarily are
the project scope, requirements, and stakeholder register.
However, the overall architecture and methodology are inher-
ently adaptable to other types of software project artifacts
(e.g., test strategies, change logs), provided that the step-
based instruction approach is followed.

The design of the approach was informed by a critical anal-
ysis of limitations in existing Al-based documentation meth-
ods [41]. A key technical constraint was the limited token pro-
cessing capacity of large language models (LLMs). Supplying
the model with excessive or poorly structured context, even
within token limits, can degrade output quality. This chal-
lenge was especially relevant due to the decision to implement
the entire solution locally, without access to commercial API-
based models.

To overcome these constraints, the solution relies on a hy-
brid generation process that combines model-driven input
with structured prompt engineering techniques. The system
employs dynamic prompt construction, where instructions are
derived from formal templates and merged with input arti-
facts. This enables semantic precision and output consistency,
while minimizing hallucinations.

A. Prompt Construction and Input Engineering

Prompt engineering is a critical set of techniques aimed at
improving the precision, relevance, and structural integrity of
instructions provided to large language models (LLMs).

Given the inherent token limits and sensitivity to vague or am-
biguous inputs, effective prompt design plays a key role in
achieving high-quality, context-aware results.

While most modern LLMs can process both natural lan-
guage and semi-structured formats, generating well-struc-
tured outputs, such as formal documentation artifacts, re-
mains challenging. This is especially true when using general-
purpose models that are not fine-tuned for technical or proce-
dural content. To address this, researchers and practitioners
have explored strategies such as zero-shot prompting, few-
shot prompting, chain-of-thought prompting, and input injec-
tion, where contextual cues are embedded into the prompt to
guide the generation process more effectively.

An increasingly popular and effective technique, particu-
larly in software engineering and academic contexts, is
schema-based prompting. In this method, the input is orga-
nized into clearly defined data segments or templates, ena-
bling the model to recognize expected content categories and
follow predefined output structures. This improves both the
model’s contextual understanding and its ability to maintain
the desired format over longer outputs [41].

In the proposed solution, prompt and input engineering
form the core of the generation workflow. Instruction files are
parsed into stepwise key-value pairs and stored in session
memory. During generation, the system performs iterative
prompting, combining each instruction step with previously
generated content.

Fig. 5 presents an example of the JSON-based prompt
structure, and Figure 6 shows the resulting generated output.



JANIS RIHARDS BLAZEVICS ET AL.: A FRAMEWORK FOR MODEL-DRIVEN AI-ASSISTED GENERATION OF IT PROJECT MANAGEMENT

<Context=
1 am creating a local generative Al solution using Llama 3 2:3b model together with embedding
model and local vector database ChromDE. The emvrionment will not have access to the
internet.
2. Model purpose is to be a local penemative text assistant that handles input data based on
provided instructions.
</Context=
<Instructions>
1. The model will receive following inputs interatively as prompt
a. fragments from the main document,
b.  instruction describing what to do with the fragments. This instruction changes for
each iteration
¢ Result from previeus iterations
2. The model should only use information received as context fragments or previous resulis as
source. Instructions are the task what model should achieve
3. Take into account that the prompt cannot be too long due o token Emitations of the moded i
used for every interaction.
4. Write me a coprehensive prompt to use as system prompt for Llama 3 2:3b model te set if's
main pupose
</Instructions>
<Examples>
1. ou are a document generator llama 3.2:3b that generates answers based on context.
2. Main re : You only can wse context and previous cutputs as source of information
</Examples>

Fig 5. A prompt for prompt generation on GPT-4-mini model

### CistEmas ievade
systerm_prompt ="

‘fou are a document generation assistant local moded llama3.2-3b.
‘fou will receive:
<Context=: You will receive text fragments for context nput
<Instructions=: JSON
im_prompt_instructions’.
<Qutput structure>: JSOMN payload defining ‘output_structure’.
<User input=: optional additional information.

payload with processing nubes umder

Tashks

1. Precess <Context> according to <hstrucbons> JZ0ON

2. Generate output sirictly follewing <Output structure® JSOM keys and hierarchy.

3. K <Context> lacks any required field, mseri a placeholder in the form
<MISSING_field_name>.

4_ Do not add information not present in <Context=:,

Master rule: i you do not find information based on specific <Instructions™>:. Leave cutput
empty.

Fig 6. The generation result: a prompt for Llama 3.2:3b model

Additionally, semantic retrieval is supported through a lo-
cal vector database queried via Retrieval-Augmented Gener-
ation (RAG). Relevant context fragments are injected into
each prompt, ensuring that the model's output is both seman-
tically grounded and contextually accurate.

So far, the instruction is processed as part of the iterative
prompting loop, where the system performs the following
steps:

1. Retrieves relevant fragments from the vector database us-
ing tags such as "stakeholder goals" and "deliverables".

2. Constructs a prompt that integrates retrieved content, the
instruction goal, and global generation rules (e.g., tone, struc-
ture).

3. Executes the prompt using the LLM, producing a scoped
and semantically grounded section.

The resulting output typically begins with a structured sum-
mary of project boundaries, highlights included and excluded
deliverables, and clarifies key stakeholder expectations,

which all are grounded in the source context provided by the
uploaded artifacts.

This process ensures that generated text is not only gram-
matically correct and coherent, but also aligned with input
data, methodologically consistent, and easy to validate. If any
relevant data is missing (e.g., no deliverables listed), the
model leaves the section incomplete or explicitly notes the
absence, avoiding hallucinated content.

The core task defined for the model was text generation
based on structured input instructions. An example of the in-
structions given for the Project Scope is shown in Fig. 7. Cru-
cially, each iteration updates the prompt dynamically, pre-
serving prior results and refining the context. This strategy
has shown to be highly effective in reducing hallucinations
and ensuring continuity across output sections. The base sys-
tem prompt (or system message) is used to define global con-
text and behavior for all interactions with the LLM.

To optimize prompt formulation, OpenAl’s GPT-4-turbo
model (May 2024 version) was used to assist in designing the
system-level prompts for the local LLaMA 3.2:3b model.
These instructions define the system’s role, generation bound-
aries, and output expectations based on the runtime environ-
ment and technologies used in this project [41]-[42].

These instructions clarified the expected format and explic-
itly emphasized that the context PDF file is the sole source of
truth for content generation. The model was also guided to
respect the limitations of the local environment and its own
processing capacity, discouraging overly long or ambiguous
prompts.

“mstruction_id”: "project_scope_statement”,
“document_type™ "Project Scope Statement”
“descnption”: "Using the project charier as input, build a Project Scope
Staternent.”
“input_type": “project_charter”,
“Bm_prompt_instructions™: {
“goal”: “Create a valid Project Scope Statement JSOM, contaning only the
elements defined bebow, drawn solely from the input charter.”,
"steps” [

1. Project Overview: Extract from the charter a concise statement of project
purpose, objectives, and expected outcomes. Insert data inte ProjectMame, high-
level Objectives, SummanyDescription fields.”

"2. Product Scope Description: Detad what will be built or delvered. List the key
features, functions, and performance characteristics of the final product or senice
as described in the charter Insert dafa into ProductScopeDesaription fields

"3. Deliverable Breakdown: Enumerate each major deliverable the project will
produce. For each deliverable, assign a unigue identifier and a brief description. Do
not include any tasks, only end-products or results. Insert data into id, description
fields ",

4. Scope Boundaries: Define what is in scope (specific indusions) and what is
out of scope (specific exclusions). Use two separate lists: one for inchesions and
one for exclusions. Insert data into Scopeinclusions, ScopeBxdusions fields”,

5. Acceptance Criteria; For each deliverable, specify the measurable conditions.
or tests that must be satisfied for formal acceptance. Insert data into deliverableld,
criteria fiskds if data exists. If missing, use "<MISSING_AcceptaneCriterias "%,

6. Assurmnptions: List all assumptions from the charter (conditions believed to be
true). Each assumption must have a unigue |D and description. Insert data info id,
description fields if data exists. if missing. use "<MISSING_Assumgtions=>"",

7. Constraints: List all project constraints from the charter (limiations on time
budget. resources, or technology). Each constraint must have a unique ID and
description. Insert data into id, description fields  data exists. f missing, use
"<MISSING_Constraints>"."

"B, Qutput: Combine all the previous output_result into 3 single JSOMN object
miatching the template structure (fiekds: ProjectOverview, ProductScopeDescription,
Deliverables, Scopeincesions, ScopeExclusions, AcceptanceCriteria, Assumptions
Constraints). Ensure valid J30ON and no additional fields.”

1
}
}

Fig 7. The instructions for Project Scope Statement

127



128

As a part of the development process, a system prompt was
iteratively refined and formatted using OpenAl tools, result-
ing in a stable, high-level instruction set. This ensures more
predictable and consistent model behavior across varying in-
put scenarios. To reduce hallucinations, a key rule was intro-
duced: if essential information is missing from the context,
the model must leave the corresponding field blank rather
than fabricate content.

This strict constraint not only improves trust in the Al-gen-
erated output but also allows for easier human validation. It
encourages transparent failure handling rather than mislead-
ing completions, which is critical for professional documen-
tation processes. As a result, the JSON files of the required
documentation fragments are generated.

Upload Context PDFs

Drag and drop files here

Limit 200MB per file « POF

Browse files

Project_Charter_erp.pdf

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

The examples of outputs for project scope, requirements un
stakeholder register are shown in Fig. 8-10.

The solution supports structured evaluation of generated
documents based on two perspectives. First, document-level
criteria assess completeness, terminology, and traceability to
source inputs. Second, project-specific context examines con-
tent relevance and adaptability based on the detail of provided
artifacts. Testing with varied project samples confirmed that
output quality improves with richer inputs. Detailed project
charters produced precise and tailored documentation, while
minimal inputs resulted in more generic, though structurally
valid, content. This demonstrates that the system adapts to in-
put complexity while maintaining consistent structure, mak-
ing it suitable for diverse documentation scenarios across dif-
ferent project environments.

Deploy

Generate Artefact from Document

User Prompt {additianal comments):

x
0.5MB
Upload Instructions JSON
Drag and drop file here
Limit 200ME per file « JSON Generate
Browse files Generated Output
. {
new_scope.json X "ProjectOverview": {
EoRs "Projectame": ",
"Objectives™ ],
Upload Structure JSON "SummaryDescription”: "
Drag and drop file h b
Tag anc crop Tl nere. "ProductScopeDescription”: "The scope of work is specific to the assessment and planning phase
Limit 200MB per file « JSON only,
"Deliverables": [
Browse files i
"id": "<MISSING_deliverable_id>",
new_scope_outputjson descriptont
0.5K8 )
Process
Fig 8.A fragment of output JSON for project scope
Upload Context PDFs
Deploy
Drag and drop files here
Limie 200M perle- Generate Artefact from Document
Biowse fles User Prompt (additional comments):
Project_Charter_erp.pdf
0.6MB
Upload Instructions JSON -
Generate
Drag and drop file here
e —— 5985 Generated Output
Browse files d
"BusinessRequirements": [
"To increase operational efficiency”,
project_requirements_i... s "To improve customer satisfaction”,
3KE "To enhance revenue growth"
1
Upload Structure JSON "StakeholderRequirements": [
"Ensure alignment with organizational goals",
Drag and drop file here "Meet the expectations of key stakeholders",
Limit 200MB per file » JSON "Provide regular progress updates"
1
Browse files "FunctionalRequirements": [
"Develop a user-friendly interface",
project_requirement_o... X

Process

Fig 9. A fragment of output JSON for requirements



JANIS RIHARDS BLAZEVICS ET AL.: A FRAMEWORK FOR MODEL-DRIVEN AI-ASSISTED GENERATION OF IT PROJECT MANAGEMENT

Upload Context PDFs.

Drag and drop files here

mit 200MB per file « PDF

Deploy

Generate Artefact from Document

Browse files

User Prompt {additional comments):

Project_Charter_erppdf o,

0.5MB

Upload Instructions JSON

Drag and drop file here Generate

Limit 200MB per file » JSON
Generated Output
Browse files
{
"Stakeholders": [
X {
vigh; ms 1,

stake_holder_input.json

1.7KB

"name": "John Doe",

Upload Structure JSON

“role"; "Project Spansor”,

"contact": "(123) 456-7890",

Drag and drop file here
Limit 200MB per file » JSON

“"type": "External”
Browse files }

{
stake_holder_output.json "id"; "s2",

X

Process

“influence": "High",
“interest": "Project outcomes and timelines",

Fig 10. A fragment of output JSON for stakeholders

B. Solution Testing

The proposed approach was evaluated using two large lan-
guage models (LLMs): LLaMA 3.2:3b and OpenAl GPT-4-
mini. Both models received a unified instruction template and
identical context limits. To ensure fairness, GPT-4-mini was
restricted from using any external tools or accessing the web,
relying solely on the provided input. To avoid priming effects,
methodologies behind the instruction design were deliber-
ately excluded from the prompt.

Each model processed 200-token segments with 50-token
overlaps. For each evaluation step, five context fragments
were drawn from the source document to ensure relevant yet
limited context. Every instruction tied to an artifact was exe-
cuted ten times, and outputs were stored for later analysis. To
preserve neutrality, LLaMA’s vector database was refreshed
after each run, while GPT-4-mini was instructed to disregard
prior outputs and treat each prompt as new.

Model performance was assessed using a rubric-based
method, evaluating outputs across five dimensions. Each di-
mension was rated on a scale from 0.00 to 1.00, as detailed in
Table 1.

TABLE L.
RUBRIC SCORE SCALE
Score Rubric Criteria

0.00 Output contains incorrect or fabricated data

0.25 Output is mostly empty or contains only
fragments

0.50 Output contains at least one correct element per
section

0.75 Output aligns with dimensional expectations but
lacks details

1.00 Output fully meets dimensional expectations

Each dimension was further weighted according to its sig-
nificance in the evaluation, with the highest weights assigned
to hallucination prevention and instruction compliance, given
their criticality in constrained local environments [43]. Output
clarity and consistency were assigned lower weights due to
their less critical impact. The dimension weights are shown in
Table 2.

TABLE II.
EVALUATION DIMENSIONS AND WEIGHTS

Evaluation Dimension Weight
Data Hallucinations 0.30
Contextual Relevance 0.20
Output Consistency 0.10
Instruction Compliance 0.30
Output Clarity 0.10

A similar dimensional evaluation approach has been ob-
served in empirical research investigating hallucinations
across popular large language models. One such study as-
sessed the hallucination rates of various LLMs by processing
1,000 documents, with results reported by [44]. Notably, the
LLaMA 3.2:3b model demonstrated a hallucination rate of
7.9% in this evaluation.

In this study, simulation results were aggregated by assign-
ing weights to each evaluation dimension, calculating average
scores for each output fragment. The outcomes of the ten re-
peated iterations per instruction were averaged, and the di-
mension-specific results are presented in Table 3. Despite
architectural and operational differences, that is, LLaMA
3.2:3b running locally and GPT-4-mini hosted via cloud ser-
vices, both models produced comparable top results.

129



130

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

TABLE III.
EVALUATION DIMENSIONS AND WEIGHTS (1- HALLUCINATIONS, 2 - CONTEXT USE, 3 - CONSISTENCY , 4 - INSTRUCTION COMPLIANCE, 5 —
CLARITY)
Artifact Model 1 2 3 4 5 Overall Scenario
Scope Statement LLaMA 3.2:3b 0.7 0.5 0.45 0.6 0.75 0.61 One Washington
GPT-4-mini 0.9 075 0.8 0.8 1.0 0.84
Requirements Document LLaMA 3.2:3b 0.6 0.45 0.35 0.5 0.75 0.53
GPT-4-mini 0.8 075 0.8 0.8 1.0 0.81
Work Breakdown LLaMA 3.2:3b 0.5 0.4 0.3 0.35 0.5 0.42
Structure GPT-4-mini 08 075 |065 |07 1.0 0.77
Stakeholder Register LLaMA 3.2:3b 0.5 0.5 0.3 0.4 0.5 0.45
GPT-4-mini 0.7 0.7 0.65 (0.7 1.0 0.725
Scope Statement LLaMA 3.2:3b 0.5 0.5 0.45 0.4 0.75 0.49 Work Reports
GPT-4-mini 0.8 075 0.8 0.6 1.0 0.75
Requirements Document LLaMA 3.2:3b 0.5 0.25 0.35 0.3 0.7 0.4
GPT-4-mini 0.7 075 0.8 0.6 1.0 0.71
Work Breakdown LLaMA 3.2:3b 0.4 0.2 0.3 0.25 0.3 0.3
Structure GPT-4-mini 07 |06 1065 |05 |10 0.64
Stakeholder Register LLaMA 3.2:3b 0.35 0.35 0.3 0.3 0.4 0.34
GPT-4-mini 0.6 0.5 0.65 |05 1.0 0.59
Scope Statement LLaMA 3.2:3b 0.6 0.5 0.45 0.5 0.75 0.55 Average
GPT-4-mini 085 [0.75 |08 0.7 1.0 0.79
Requirements Document LLaMA 3.2:3b 0.55 0.35 0.35 0.4 0.725 0.46
GPT-4-mini 075 [0.75 |08 0.7 1.0 0.76
Work Breakdown LLaMA 3.2:3b 0.45 0.3 0.3 0.3 0.4 0.36
Structure GPT-4-mini 075 068 1065 |06 |10 0.7
Stakeholder Register LLaMA 3.2:3b 0.43 0.43 0.3 0.35 0.45 0.39
GPT-4-mini 0.65 0.6 0.65 (0.6 1.0 0.66

The local model performed well when processing frag-
ments closely matching the prompt, but it struggled with se-
mantically diverse expressions. For instance, in requirement
analysis or stakeholder registers, the instructions required ex-
tracting detailed information implied in the text. Here, GPT-
4-mini showed superior performance in delivering more con-
sistent and contextually aligned outputs. A notable gap was
observed between the models’ ability to interpret instructions,
particularly in the LLaMA model. For example, when pro-
cessing a scope statement, LLaMA inferred a resource plan-
ning system implementation based solely on the vague refer-
ence to a “system.”

An analysis of the results revealed that both models per-
formed better on the One Washington sample. This document
was more structured, contained instruction-aligned headings,
and used less academic language. These factors are beneficial
especially for the local model.

In contrast, higher hallucination rates were observed when
processing the productivity project charter. For instance, the
scope description included a false claim, whereas the delivery
items correctly referenced the convening of a steering com-
mittee. Similarly, the “Out of Scope” section was accurate.
However, in the assumptions section expected to list six ele-
ments the model included only two, of which only one was
correct. This may be attributed to the token limitation, which

possibly resulted in incomplete sentence inputs that the model
extrapolated upon.

Evaluation of GPT-4-mini’s results showed tendencies to-
ward verbosity, as the model often expanded text to produce
grammatically complete phrases. While linguistically correct,
these expansions altered the intended meaning, thus reducing
factual accuracy. For example, among the three output goals,
only the first two were valid; the third, referencing real-time
reporting, was not present in the source text. Similar incon-
sistencies and hallucinations were noted across other sections,
including deliverables and assumptions.

C. Solution Drawback and Improvements

Another key observation during evaluation was the differ-
ence in how the models responded to insufficient or ambigu-
ous information. LLaMA 3.2:3b tended to return empty or
partial outputs when it could not confidently locate the re-
quested data. In contrast, GPT-4-mini frequently attempted to
complete outputs regardless, even when context was lacking.
Often generating fabricated content in direct violation of the
provided instructions.

In the context of this study, where data integrity is of high
importance, LLaMA’s behavior was actually preferable.
Empty outputs are easier to verify, as they indicate uncer-
tainty rather than assumed correctness, which reduces the risk



JANIS RIHARDS BLAZEVICS ET AL.: A FRAMEWORK FOR MODEL-DRIVEN AI-ASSISTED GENERATION OF IT PROJECT MANAGEMENT

of unintentionally integrating hallucinated data into down-
stream processes.

The results suggest that smaller, locally hosted models like
LLaMA 3.2:3b, when given clearly defined instructions and
constrained environments, are capable of producing viable
outputs, particularly when a human reviewer is involved in
validation. Although GPT-4-mini demonstrated superior gen-
eralization abilities, its tendency to confidently fabricate data
limited its advantage in this controlled use case.

The test design used small input samples and short text
fragments. In several cases, both models failed to retrieve rel-
evant content and instead included false or unrelated claims.
LLaMA also demonstrated high variability between runs: in
multiple cycles, it returned empty or low-information re-
sponses, likely due to how fragments were selected via the
nearest-neighbor search over the vector database using
Ollama embeddings.

Each processing step queried only five top-matching frag-
ments, assuming semantic accuracy in the embedding model.
However, no additional validation of the relevance of re-
trieved fragments was performed. Furthermore, the model’s
iterative process continuously appended data to key/value
stores without restriction, potentially leading to overwriting
or compounding errors in later stages.

In summary, while GPT-4-mini showed superior fluency
and semantic approximation, it introduced more hallucina-
tions than expected. LLaMA 3.2:3b, though less consistent,
adhered more strictly to constraints and demonstrated a con-
servative generation strategy more suitable for high-integrity
documentation workflows in local Al-assisted systems.

VI. CONCLUSION

This study demonstrates that the integration of generative
Al into IT project documentation processes is not only feasi-
ble but also valuable, which is provided by the frame within a
model-driven and standards-aligned architecture. By combin-
ing the expressive capabilities of large language models with
the structural rigor of model-driven development, the pro-
posed solution supports the generation of high-quality, se-
mantically consistent documentation artifacts during the early
phases of IT projects.

From a theoretical perspective, this work contributes to the
design science research body of knowledge by introducing a
novel artifact: a model-based framework that constrains and
guides generative Al outputs. It builds upon the principles of
semantic control in Al-assisted software engineering, show-
ing that MDD structures can serve as effective scaffolds for
LLM behavior. Additionally, it expands on prior work in doc-
umentation automation by demonstrating how prompt engi-
neering, semantic traceability, and formal process alignment
can mitigate common challenges such as hallucinations and
incoherence.

In terms of practical implications, the solution enables pro-
ject teams, especially in resource-constrained environments,
to accelerate and standardize documentation workflows with-
out compromising methodological integrity. The prototype

shows that even with local infrastructure, it is possible to har-
ness generative Al tools securely and effectively. Reusable,
cross-method instruction sets and alignment with common
standards further enhance the applicability and scalability of
the approach in varied project contexts.

Several key findings of the research are as follows:

1. Structured inputs and well-defined transformation rules
significantly improve the quality and reliability of Al-gener-
ated documents.

2. Embedding documentation within a model-driven frame-
work allows for semantic validation, traceability, and reduced
ambiguity.

3. Local deployment of LLM-based tools is technically fea-
sible and aligns with data governance requirements in many
organizations.

4. Standard elements (e.g., objectives, risks, assumptions)
can be reused across methods, enabling cross-framework con-
sistency in documentation practices.

This research opens new avenues for extending the frame-
work to other documentation types and domains (e.g., test
plans, architecture overviews, compliance checklists), and for
integrating dynamic feedback loops to iteratively refine gen-
erated content based on stakeholder input or project evolution.

Future work could explore as follows:

1. Comparative evaluation across multiple LLMs and do-
main contexts;

2. Deeper integration with enterprise modeling tools or agile
project platforms;

3. Automated validation mechanisms for Al-generated arti-
facts.

In conclusion, the results affirm that generative Al, when
properly constrained and guided, can enhance formal docu-
mentation practices in IT project management. Rather than re-
placing human expertise, such tools augment human capabil-
ities, i.e., improving efficiency, consistency, and knowledge
transfer in complex project environments.

REFERENCES

[1] X. Zhang and B. Dorn, “Accelerating software development through
agile practices: A case study of a small-scale, time-intensive web de-
velopment project at a college-level IT competition,” *J. Inf. Technol.
Educ.*, vol. 11, pp. 1-12, 2012, doi: 10.28945/1545.

[2] H. Kerzner, “Project Management: A Systems Approach to Planning,
Scheduling, and Controlling”, 13th ed. Hoboken, NJ, USA: Wiley, Mar.
2022, ISBN 978-1119805373.

[3] B. Habib and R. Romli, "A Systematic Mapping Study on Issues and
Importance of Documentation in Agile," 2021 IEEE 12th International
Conference on Software Engineering and Service Science (ICSESS),
Beijing, China, 2021, pp- 198-202, doi:
10.1109/ICSESS52187.2021.9522254

[4] W.Behutiye, P. Seppénen, P. Rodriguez, and M. Oivo, "Documentation
of quality requirements in agile software development," in Evaluation
and Assessment in Software Engineering (EASE’ 20), Trondheim, Nor-
way, Apr. 15-17, 2020, ACM, New York, NY, USA, pp. 1-10, doi:
10.1145/3383219.3383245

[5] A. Ataman, “Data quality in Al: Challenges, importance & best prac-
tices,” AlMultiple. [Online]. Available: https:/research.aimulti-
ple.com/data-quality-ai/

[6] T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhari-
wal, et al., “Language models are few-shot learners,” Adv. Neural Inf.
Process.  Syst., vol. 33, pp. 1877-1901, 2020, doi:
10.48550/arXiv.2005.14165



132

(1]

(3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

P. Liang, R. Bommasani, D. Tsipras, et al., “Holistic evaluation of lan-
guage models,” arXiv preprint arXiv:2211.09110, 2022, doi:
10.48550/arXiv.2211.09110.

OpenAl, “GPT-4 Technical Report,” OpenAl, Mar. 2023. [Online].
Available: https://openai.com/research/gpt-4

F. Nafz, M. Krajinovic, and M. Ley, “Artificial intelligence in soft-
ware documentation: Embracing the documentation as code para-
digm,” in “Go Where the Bugs Are”, G. Ernst et al., Eds., “Lecture
Notes in Computer Science”, vol. 15765, Cham, Switzerland:
Springer, 2025, doi: 10.1007/978-3-031-92196-4_14.

K. J. Ajeigbe and O. Emma, “Dynamic Documentation Generation
with AL” 2024. Available at: https://www.researchgate.net/publica-
tion/390265865 Dynamic_Documentation_Generation_with Al

K. Dearstyne, A. Rodriguez, and J. Cleland-Huang, “Supporting Soft-
ware Maintenance with Dynamically Generated Document Hierar-
chies,” arXiv preprint arXiv:2408.05829, Aug. 2024, doi: 10.48550/
arXiv.2408.05829

S. Mehta, A. Rogers, and T. Gilbert, “Dynamic Documentation for Al
Systems,” arXiv preprint arXiv:2303.10854, Mar. 2023, doi:
10.48550/arXiv.2303.10854.

C. Leyh, A. Lorenz, M. J. Faruga, and L. Koller, “Critical Success
Factors for ERP Projects Revisited: An Update of Literature
Reviews,” in Proc. 19th Conf. on Computer Science and Intelligence
Systems (FedCSIS), vol. 39, Annals of Computer Science and Infor-
mation Systems, pp. 131-140, 2024, doi: 10.15439/2024F6271

T. Vetriselvi, M. Mathur, and M. Bhuvaneswari, “Applying Genera-
tive Al to Create SOP, Reducing API Costs Through Prompt Com-
pression and Evaluating LLM Responses with Tonic Validate RAG
Metrics,” in Proc. 4th Int. Conf. Ubiquitous Comput. Intell. Inf. Syst.
(ICUIS), 2024, doi: 10.1109/ICUIS64676.2024.10867024

S. Tsuchiwata, Y. Tanabe, Y. Hosoya, and K. Aoyama, “Generative
Al Driven Clinical Drug Development,” Japanese Journal of Clinical
Pharmacology and Therapeutics, 2025, doi: 10.3999/jscpt.56.2_109
A. Barcaui and A. Monat, “Who is better in project planning? Genera-
tive artificial intelligence or project managers?,” Project Leadership
and Society, vol. 4, 2023. 10.1016/j.plas.2023.100101

A. Bahi, J. Gharib, and Y. Gahi, “Integrating Generative Al for Ad-
vancing Agile Software Development and Mitigating Project Manage-
ment Challenges,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 1,
2024, doi: 10.14569/IJACSA.2024.0150306

Z. Alliata, T. Singhal, and A.-M. Bozagiu, “The Al Scrum Master: Us-
ing Large Language Models (LLMs) to Automate Agile Project Man-
agement Tasks,” in Lect. Notes Bus. Inf. Process., 2025, doi:
10.1007/978-3-031-72781-8_12

M. AbuAlfateh, M. Ali, and M. Messaadia, “Establishing Key Perfor-
mance Indicators for Human-Generative Al Collaboration,” Studies in
Big Data, vol. 110, 2025, doi: 10.1007/978-3-031-83911-5_42

V. Bilgram and F. Laarmann, “Accelerating Innovation With Genera-
tive Al: AI-Augmented Digital Prototyping and Innovation Methods,”
IEEE Eng. Manag. Rev., vol. 51, no. 2, pp. 4047, 2023, doi:
10.1109/EMR.2023.3272799

N. Ibadildin, Z. Kenzhin, G. Yeshenkulova, and A. Kadyrova, “Artifi-
cial Intelligence in Project Management: A Bibliometric Analysis,”
Problems and Perspectives in Management, vol. 23, no. 1, pp. 130-
142, 2025, doi: 10.21511/ppm.23(2).2025.17

S. Salimimoghadam, A. N. Ghanbaripour, R. J. Tumpa, and M. Skit-
more, “The Rise of Artificial Intelligence in Project Management: A
Systematic Literature Review of Current Opportunities, Enablers, and
Barriers,” Buildings, vol. 15, no. 2, 2025. 10.3390/buildings15071130
O. Nikiforova, J. Grabis, O. Pastor, K. Babris, M. K. Miltne, and R.
Bobkovs, “Model-Based Methodology for Development of IT Project
Management Plan and Scope Using Artificial Intelligence: Project in
Progress,” in Proc. 19th Int. Conf. on Research Challenges in Informa-
tion Science (RCIS), CEUR Workshop Proc., 2025 (in press).

J. White, C. Kirchner, T. Paschal, S. Hays, A. Kazerouni, T. Mytkow-
icz, and M. Monperrus, “A Prompt Pattern Catalog to Enhance Prompt
Engineering with ChatGPT,” arXiv preprint arXiv:2302.11382, 2023,
doi: 10.48550/arXiv.2302.11382

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]
[27]

(28]

[29]

[30]

(311

[32]

[33]

[34]

[33]

[36]

[37]

[38]

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, Prompt, and Predict: A Systematic Survey of Prompting Meth-
ods in Natural Language Processing,” ACM Comput. Surv., vol. 55,
no. 9, Art. no. 195, pp. 1-35, Sep. 2023, doi: 10.1145/3560815

O. Nikiforova, K. Babris, U. Karlovs-Karlovskis, M. Narigina, A. Ro-
manovs, A. Jansone, J. Grabis, and O. Pastor, “Model Transformations
Used in IT Project Initial Phases: Systematic Literature Review,”
Computers, vol. 14, no. 2, p. 40, 2025, doi: 10.3390/comput-
ers14020040

0. Nikiforova, K. Babris, M. K. Miltine, N. Tanguturi, and O. Pastor,
“Key Artefacts in the Initial Phases of IT Project Management: Sys-
tematic Mapping Study,” in Proc. 20th Int. Conf. Evaluation of Novel
Approaches to Software Engineering (ENASE), SciTePress, 2025, pp.
773-781, doi: 10.5220/0013471000003928

A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in
Information Systems Research,” *MIS Quarterly*, vol. 28, no. 1, pp.
75-105, 2004, doi: 10.2307/25148625.

M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software En-
gineering in Practice, 2nd ed. Cham, Switzerland: Springer, 2017.

O. Pastor and J. Molina, Model-Driven Architecture in Practice: A
Software Production Environment Based on Conceptual Modeling.
Berlin/Heidelberg, Germany: Springer, 2007. [Online]. Available:
https://doi.org/10.1007/978-3-540-71868-0

0. Nikiforova, M. K. Miliine, K. Babris, and O. Pastor, “Generation of
IT Project Documentation Elements from a Model Transformation
Chain,” in Proc. Int. Conf. on Software Technologies (ICSOFT),
2025, pp. 1-10, DOI: 10.5220/0013568300003964

Agile Manifesto (2001) https://agilemanifesto.org/

ISO/IEC/IEEE, Systems and software engineering — Life cycle pro-
cesses — Requirements engineering, ISO/IEC/IEEE 29148:2018, In-
ternational Organization for Standardization, Geneva, Switzerland,
2018

ISO/IEC/IEEE, Systems and software engineering — Life cycle pro-
cesses — Project management, ISO/IEC/IEEE 16326:2019, Interna-
tional Organization for Standardization, Geneva, Switzerland, 2019
ISO, Project, programme and portfolio management — Guidance on
project management, ISO 21502:2020, International Organization for
Standardization, Geneva, Switzerland, 2020.

P. Bourque and R. E. Fairley, Eds., Guide to the Software Engineering
Body of Knowledge (SWEBOK Guide), Version 4.0, IEEE Computer
Society, 2024. [Online]. Available: https://www.computer.org/educa-
tion/bodies-of-knowledge/software-engineering

Project Management Institute, A Guide to the Project Management
Body of Knowledge (PMBOK® Guide), 7th ed., Newtown Square,
PA, USA: PMI, 2021

O. Nikiforova, M. Kirikova, and N. Pavlova, “Two-hemisphere driven
approach: Application for knowledge modeling,” in Proc. 7th Int.
Baltic Conf. Databases and Information Systems, 2006, pp. 244-250,
art. no. 1678503. [Online]. Available: https://www.scopus.com/in-
ward/record.uri?eid=2-s2.0-34250753483

O. Nikiforova and K. Gusarovs, “Comparison of BrainTool to other
UML modeling and model transformation tools”, AIP Conf. Proc.,
vol. 1863, art. no. 330005, 2017. doi: 10.1063/1.4992503

J. He, M. Rungta, D. Koleczek, A. Sekhon, F. X. Wang, and S. Hasan,
“Does Prompt Formatting Have Any Impact on LLM Performance?,”
arXiv  preprint  arXiv:2411.10541, 2024, doi: 10.48550/
arXiv.2411.10541

A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, et
al., “Self-Refine: Iterative Refinement with Self-Feedback,” arXiv
preprint arXiv:2303.17651, 2023, doi: 10.48550/arXiv.2303.17651
OpenAl, ChatGPT (May 2024 version) [Large Language Model].
Auvailable: https://chat.openai.com/

T. Bao, J. Yang, Y. Yang, and Y. Yin, "RM2Doc: A tool for automatic
generation of requirements documents from requirements models," in
Proc. ACM/IEEE 44th Int. Conf. Softw. Eng.: Companion Proc.
(ICSE °22), New York, NY, USA, 2022, pp. 188-192, doi:
10.1145/3510454.3516850.

Vectara. (2024). Hallucination leaderboard [Computer software].
GitHub. https://github.com/vectara/hallucination-leaderboard



