


Abstract—This paper presents a model-driven AI-assisted

approach for generating IT project management plan and

scope documents, aiming to improve efficiency and quality in

software development projects. Effective documentation in the

early project phase is critical, yet often resource-intensive. The

proposed solution consolidates best practices from widely used

project management methodologies and standards to create a

dynamic, adaptable framework for document generation. The

study identifies key components and input data required for

generating high-quality plans using model transformations and

generative AI. A prototype supporting the solution is developed

featuring a local processing engine, integrated with a large lan-

guage model, a vector database, and an embedded model.

Index Terms—IT project management, project documenta-

tion, model-driven development, generative AI, prompt engi-

neering, software development automation, large language

models, AI-assisted tools.

I. INTRODUCTION

N MODERN IT project development, the demand for ac-

celerated delivery cycles continues to increase, driven by

competitive pressure, agile practices, and customer expecta-

tions [1]. One of the most critical processes in the early

phases of the project lifecycle is the development of project

documentation [2]. Well-structured documentation, such as

project management plans and scope statements, forms the

basis for mutual understanding between clients and delivery

teams, and contributes directly to project success and client

satisfaction [3].

I

To address the need for speed without compromising

quality, automation tools have been introduced to support

documentation processes. These tools can generate content

based on reusable templates, domain knowledge, and recog-

nized best practices [4]. However, most existing solutions

act as passive assistants, requiring significant manual effort

This research has been supported by Research and Development grant

No RTU-PA-2024/1-0015 under the EU Recovery and Resilience Facility

funded project No. 5.2.1.1.i.0/2/24/I/CFLA/003 “Implementation of

consolidation and management changes at Riga Technical University,

Liepaja University, Rezekne Academy of Technology, Latvian Maritime

Academy and Liepaja Maritime College for the progress towards excellence

in higher education, science, and innovation”.

to ensure completeness, consistency, and compliance with

professional standards [5].

Since the emergence of generative artificial intelligence

(AI) technologies around 2020 [6], there has been growing

interest in using AI to automate the creation of project docu-

mentation. Generative models such as large language mod-

els (LLMs) [7] offer promising capabilities for producing

structured, domain-specific texts [8]. However, researchers

should overcome challenges related to the need for precise

prompt formulation, ensuring contextual relevance, manag-

ing data quality, and aligning with industry standards [9].

Addressing these challenges requires not only technical so-

lutions but also methodological guidance.

This raises a fundamental research question: Is it possible

to integrate generative AI into documentation development

without compromising quality and compliance? This paper

investigates this question by proposing an AI-assisted solu-

tion grounded in software engineering principles, aiming to

maintain documentation integrity while leveraging the po-

tential of generative AI. The research goal of the results pre-

sented in this paper is to develop an AI-assisted solution for

generating IT project management plan and scope docu-

ments applicable in software development projects, by con-

solidating best practices in project documentation as defined

across various development methodologies and industry

standards.

The paper is organized as follows. The next section dis-

cusses the research background and summarizes the related

literature. Section 3 presents the foundations used in the so-

lution and Section 4 explains the essence of the solution.

Section 5 demonstrates the practical application of the solu-

tion and comments its validation and improvements. The fi-

nal section summarizes the main research findings and out-

lines directions for future work.

A Framework for Model-Driven AI-Assisted Generation of

IT Project Management Plan and Scope Documents

Jānis Rihards Blaževičs
Riga Technical University,

Institute of Information

Technologies,

Riga, Latvia

Email: janis-

rihards.blazevics@edu.rtu.lv

Oksana Nikiforova
0000-0001-7983-3088

Riga Technical University,

Institute of Information

Technologies,

Riga, Latvia

Email: oksana.nikiforova@rtu.lv

Oscar Pastor
0000-0002-1320-8471

Universitat Politècnica de

València, Valencia, Spain

Email: opastor@dsic.upv.es

Proceedings of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 121–132

DOI: 10.15439/2025F8736
ISSN 2300-5963 ACSIS, Vol. 43

IEEE Catalog Number: CFP2585N-ART ©2025, PTI 121 Topical area: Software, System and Service Engineering

II. BACKGROUND AND RELATED WORK

Since the emergence of generative artificial intelligence (AI)

technologies around 2020, such as OpenAI’s GPT-3 [6], there

has been growing optimism that AI could dramatically

streamline project documentation by enabling the automatic

generation of high-quality documents in just a few clicks. The

rapid advancement of LLMs has fueled expectations that

these tools could reduce the manual effort required for creat-

ing project specifications, requirement documents, and other

critical deliverables. However, several significant challenges

remain in realizing this vision fully:

1. Generative AI often struggles to capture the spe-

cific organizational context, domain terminology,

and stakeholder expectations that are essential for

meaningful documentation [9].

2. Effective AI-generated documentation depends

heavily on the availability of structured, high-

quality input data. In many real-world projects,

this data may be incomplete, ambiguous, or incon-

sistent [10].

3. Automatically generated content can raise con-

cerns about traceability, authorship, and the re-

sponsibility for errors or omissions in critical doc-

uments [11].

4. Industry-specific methodologies and compliance

requirements (e.g., ISO, IEEE) can be difficult to

encode into generic AI systems without signifi-

cant customization [12].

5. Even advanced generative tools require skilled

human supervision to ensure accuracy, relevance,

and alignment with project goals [13].

These limitations suggest that while generative AI has

strong potential to support project documentation, its role is

currently best viewed as augmentative rather than fully auton-

omous. Future developments may narrow these gaps, but ef-

fective human-AI collaboration remains essential for reliable

outcomes in IT project documentation.

Recent studies have demonstrated the growing potential of

generative AI in enhancing project management processes,

particularly in the areas of documentation, planning, and effi-

ciency. One of the key applications of generative AI is the

automation of project documentation, including project plans

and scope definitions. AI models can consolidate and struc-

ture content from various sources to generate standardized

and coherent documents, ensuring compliance with project

management standards and improving overall consistency

[14]. Additionally, generative AI is increasingly used to gen-

erate meeting summaries, translate technical content, and up-

date project texts, contributing to more accurate and timely

documentation [15].

In project planning, AI tools can support a wide range of

functions such as scope definition, scheduling, cost estima-

tion, resource allocation, stakeholder analysis, and risk as-

sessment. Some studies suggest that generative AI can match

or even outperform human planners in certain structured plan-

ning tasks, while still requiring expert oversight for contextual

decisions [16]. Moreover, the integration of AI in Agile meth-

odologies has shown promise in optimizing team workflows,

enhancing collaboration, and automating repetitive tasks

[17]-[18].

The collaboration between human project managers and AI

systems has been identified as a critical factor for success.

Key performance indicators for such collaboration include ef-

ficiency gains in time, cost, and resource usage, as well as

improved quality, clarity, and accuracy of project outputs

[19]. Research also highlights the benefits of using generative

AI in the early stages of innovation, such as digital prototyp-

ing and ideation, where rapid iteration and content generation

are crucial [20].

However, several challenges remain. Effective integration

of AI into project management environments must address is-

sues such as input data quality, compatibility with legacy sys-

tems, and ethical concerns regarding algorithmic transpar-

ency and accountability [21]-[22]. Furthermore, while gener-

ative AI can produce initial drafts of project documentation,

human expertise is still essential to validate and refine the out-

put to ensure relevance, accuracy, and compliance with spe-

cific organizational contexts [16].

These findings underscore the dual role of generative AI as

both an accelerator and a collaborator in project management.

The literature suggests that while generative AI tools provide

substantial benefits, their successful implementation relies on

structured prompts, methodological support, and continuous

human oversight.

To address the limitations of generative AI in project doc-

umentation, Nikiforova, et al. [23] proposed a solution based

on the integration of model-driven development (MDD) prin-

ciples. By embedding structured models into the AI-assisted

documentation process, the approach aims to constrain and

guide AI output according to predefined rules, templates, and

domain-specific semantics. This model-driven approach

helps overcome common issues such as contextual incon-

sistency, structural errors, and lack of standard compliance. It

also enhances traceability and maintainability by linking gen-

erated content to formal models that represent project require-

ments and design logic.

In response to the limitations of generative AI tools, re-

searchers and practitioners have increasingly focused on the

field of prompt engineering, which is the practice of crafting

and structuring input prompts in a way that guides AI systems

to produce higher-quality, more relevant outputs [24]. Rather

than relying on generic instructions, prompt engineering em-

phasizes precise formulations, contextual cues, and example-

based guidance to improve the performance of language mod-

els in complex tasks such as project documentation. The

emerging field of prompt engineering aims to optimize

prompt formulation in order to elicit high-quality, contextu-

ally accurate responses from generative models [25].

This emerging discipline is particularly relevant in domains

like IT project management, where document quality is influ-

enced by terminology accuracy, logical structure, and compli-

ance with standards. By experimenting with different prompt

122 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

patterns, researchers aim to understand how to systematically

elicit responses that align with user expectations and domain-

specific requirements.

Early studies and practical experiments indicate that care-

fully designed prompts can significantly enhance the clarity,

completeness, and consistency of AI-generated documents.

As a result, prompt engineering is becoming a critical skill for

those seeking to integrate generative AI into documentation

workflows, bridging the gap between AI capabilities and real-

world needs.

The research presented in this paper builds upon the idea of

constraining generative AI to reduce hallucinations and un-

controlled variability in generated content. The proposed ap-

proach is oriented toward leveraging the strengths of model-

driven engineering by generating as much documentation

content as possible through formal model transformations

[26]. Where model transformation is insufficient, such as in

the generation of narrative or descriptive elements, prompt

engineering is applied, guided by artifacts from the target

model [27]. This ensures that even AI-generated free-text sec-

tions remain contextually relevant, structurally aligned, and

traceable to defined project components. The overall goal is

to balance AI creativity with formal control, reducing risks

while maintaining efficiency and adaptability.

III. RESEARCH METHODOLOGY AND CONCEPTUAL
FRAMEWORK

This research follows the Design Science Research (DSR)

methodology as proposed by Hevner et al. [28], which is

widely used for the development and evaluation of IT arti-

facts. The goal is to create a novel, AI-assisted solution for

generating IT project management plan and scope documen-

tation. This artifact integrates model-driven engineering prin-

ciples with generative AI capabilities to support early-phase

documentation in software development projects.

In accordance with Hevner’s seven guidelines for DSR,

this study:

1. Designs an innovative artifact – a model-driven frame-

work and software prototype for document generation;

2. Addresses a relevant business problem – namely, the inef-

ficiency and inconsistency in early-phase project documenta-

tion;

3. Is evaluated through practical application and iterative re-

finement;

4. Contributes both a utility-focused solution and theoretical

insights into the integration of generative AI with structured

project management models;

5. Applies rigorous methods for modeling, implementation,

and validation;

6. Communicates the research effectively to both academic

and practitioner audiences;

7. Clearly situates the research within the context of infor-

mation systems and project management disciplines.

The proposed approach balances the creative potential of

generative AI with the structural rigor of model-driven devel-

opment. The main objective is to constrain AI-generated con-

tent within well-defined semantic and syntactic boundaries,

ensuring compliance with established project management

standards described in the next subsections.

A. Model-Driven Development Principles

Model-Driven Development (MDD) is a software engi-

neering approach that emphasizes the use of formal models as

the primary artifacts throughout the development lifecycle

[29]. Instead of writing low-level implementation code di-

rectly, developers create abstract models that define system

structure, behavior, and logic [30]. These models are then

transformed into executable code or other technical artifacts

through automated tools. The main goal of MDD is to in-

crease productivity, improve consistency, and reduce human

error by shifting development effort to higher levels of ab-

straction.

MDD was originally developed to address complexity in

large-scale systems and to enable better alignment between

business requirements and technical implementation. It has

proven particularly effective in domains requiring precision,

standardization, and traceability, such as embedded systems,

enterprise architectures, and critical software solutions.

Based on systematic literature mapping of solutions offered

under the MDD idea, Nikiforova et al. [31] conducted an in-

depth analysis of transformations between key artifacts used

in the early phases of IT projects, that is, before the imple-

mentation stage. The study focused on identifying how differ-

ent project artifacts, such as goal models, process models, use

case models, domain models, and architectural overviews,

can be interrelated through formal transformation rules.

The research highlights that certain artifacts can be auto-

matically derived from others using well-defined transfor-

mation methods, significantly reducing manual effort and in-

creasing consistency across documentation. For instance,

structured requirements can be transformed into initial system

models or project plans with minimal human intervention.

However, not all relationships are fully automatable (shown

as dotted lines in Fig. 1), some transformations still require

manual refinement or validation, especially in cases involving

complex contextual interpretation or stakeholder input. Ex-

actly, these transformations can be assisted with the usage of

generative AI.

An overview of all these artifact transformations and their

interdependencies is illustrated in Fig. 1 [27]. This schema

serves as a foundation for the proposed AI-assisted generation

process, where transformation rules help define the scope of

content that can be automatically constructed and guide the

prompt generation strategy for generative AI components.

Although MDD adoption has declined in recent years,

partly due to the rise of more lightweight, iterative approaches

like Agile [32], the core idea of structuring development

around formalized models remains powerful. In the context of

generative AI, MDD principles offer a unique advantage: they

can provide a well-defined, controlled input structure for

guiding AI outputs.

JĀNIS RIHARDS BLAZEVIČS ET AL.: A FRAMEWORK FOR MODEL-DRIVEN AI-ASSISTED GENERATION OF IT PROJECT MANAGEMENT 123

Fig 1. Transformation among IT project artifacts

This makes it possible to constrain generative models

within meaningful boundaries, improving the reliability and

quality of generated content. By reintroducing MDD concepts

into AI-assisted documentation generation, this research aims

to combine the rigor of model-driven processes with the flex-

ibility of modern language models, achieving better control,

relevance, and integration in project management documen-

tation workflows.

B. Software Engineering Standards

The implementation of software engineering standards

plays a vital role in ensuring consistency, quality, and tracea-

bility in IT project documentation. Given the increasing com-

plexity of software development projects and the integration

of AI-assisted tools, aligning documentation processes with

internationally recognized standards becomes not only bene-

ficial but necessary. The proposed solution leverages the fol-

lowing software engineering standards:

1. ISO/IEC/IEEE 29148:2018 Systems and software engi-

neering — Life cycle processes — Requirement’s engineer-

ing [33];

2. ISO/IEC/IEEE 16326:2019 Systems and software engi-

neering — Life cycle processes — Project management, 2019

[34];

3. ISO 21502:2020, Project, programme and portfolio man-

agement — Guidance on project management, 2020 [35];

4. Corresponding elements of SWEBOK [36];

5. Corresponding elements of PMBOK [37].

Software engineering standards are used in two ways. The

first, they define the macrostructure of the document (like in

the way presented in Fig. 2) [31].

Fig 2. IT project documentation structure and content

The standards’ instructions are used to guide the structure
and content of generated project documents. These standards

provide clear expectations regarding the format, terminology,

and required content of artifacts such as project charters, re-

quirement specifications, and management plans.

And, the second, the standards shape the micro-level in-

structions that guide the AI in generating specific paragraphs

or sections. Rather than embedding static prompts into the

generative AI component, this solution dynamically generates

prompts based on structured input, specifically utilizing con-

tent derived from model transformations. The AI model is

thus directed by prompts that are themselves informed by

software engineering standards and documentation guide-

lines. This ensures that generated outputs are not only linguis-

tically fluent but also semantically aligned with professional

project management practices.

For example, prompts for requirement specification gener-

ation integrate instructional content drawn directly from

ISO/IEC/IEEE 29148:2018, such as the need for complete-

ness, verifiability, traceability, and feasibility.

Additionally, content expected from model transfor-

mations, such as stakeholder roles, system goals, and compo-

nent descriptions, is automatically fed into the prompt gener-

ation process. This staged approach enables the AI to act

within clearly defined semantic boundaries while maintaining

flexibility for natural language output. This mechanism rep-

resents a hybrid strategy that combines the strength of model-

124 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

driven development with the adaptive capabilities of genera-

tive AI. By grounding prompt generation in formal standards

and structured content, the solution significantly reduces the

risk of hallucinations and irrelevant output, ensuring higher

reliability and usability of project documentation.

In summary, the integration of software engineering stand-

ards serves as a scaffolding for both the structure and seman-

tics of AI-generated project artifacts. It bridges the gap be-

tween free-form generative models and formal documentation

requirements, resulting in outputs that are both technically

valid and aligned with industry expectations.

IV. SOLUTION DESIGN AND APPROACH

This section presents the formal framework and implemen-

tation of the proposed approach for AI-assisted generation of

project documentation. The solution is built on a hybrid meth-

odology, combining model-driven development (MDD),

prompt engineering, and alignment with software engineering

standards listed in previous sections.

The proposed solution is based on the principle that struc-

tured artifacts (i.e., models, templates, and metadata) should

guide document generation. When natural language output is

required, prompt engineering is applied, combining structured

artifacts and guidance to direct the language model. This hy-

brid approach reduces hallucinations and improves con-

sistency. The solution operates through several stages:

• Input Stage: Project-specific structured artifacts, such as

project artifacts, are provided as input. Wherever possible,

content is derived from model transformations, using ap-

proaches and tools like [38] [39].

• Instruction Stage: Documentation structure and content

expectations are sourced from industry standards. These

sources serve as a foundation for structuring both the overall

layout and the content of the generated documentation. Ex-

cerpts from standards, such as definitions, guidelines, and sec-

tion requirements, are used as instructional cues within

prompts to ensure that the generated text aligns with profes-

sional expectations.

• Transformation Stage: Input artifacts and instruction

templates are combined through structured transformation

logic (defined in JSON), which dynamically generates task-

specific prompts.

• Generation Stage: These dynamic prompts are used to

control a language model (LLM) that generates natural lan-

guage output. Furthermore, in the proposed solution, the

prompts used by the generative AI component are not static

or hardcoded. Instead, they are dynamically generated based

on software engineering standards and best-practice "instruc-

tions," as well as content defined through model transfor-

mations. This means that the system first interprets structured

input, such as elements derived from project models, and then

constructs a tailored prompt to guide the language model.

• Validation Stage: Output is validated against structural

schemas and evaluated on semantic alignment, completeness,

and relevance.

A key innovation is the dynamic generation of prompts

based on model-driven and SE standards-based inputs. In-

stead of using static instructions, the approach uses structured

data to generate a prompt, which in turn is used to generate

the final documentation text. This “generative AI powering
generative AI” approach ensures that outputs are both contex-
tually relevant and semantically accurate, thus allowing pre-

cise alignment between structured models and natural lan-

guage output and reducing the likelihood of irrelevant or hal-

lucinated content. It is like a controlled pipeline that leverages

automation while maintaining contextual fidelity and compli-

ance with documentation standards.

The system is implemented in Python using the Ollama

framework. A locally hosted LLaMA 3.2:3b model handles

language generation, while ChromaDB stores embedded vec-

tor representations of source content. The conceptual schema

of the solutions architecture is shown in Fig. 3. Following the

outlined stages, a generative AI-based solution was devel-

oped, structured around three key modules: the Input Module,

the Processing Module, and the Output Module.

The Input Module validates and processes user-provided

files, including contextual documents and control JSONs. Up-

loaded PDF content is split into fragments using token limits

and overlap parameters to preserve context. Each fragment is

embedded as a vector and stored in ChromaDB, along with

metadata such as file type and source ID. Instruction files are

parsed into stepwise JSON objects for controlled processing.

The Processing Module executes semantic queries based

on the instruction steps. Each step retrieves relevant frag-

ments using vector similarity and uses them as input for the

next step. This enables incremental generation of documenta-

tion components, where each output builds on previous re-

sults. The final output is compiled into structured sections

based on a predefined JSON schema.

The Output Module formats the completed documenta-

tion into a standards-compliant structure, ready for export or

integration.

Fig 3. IT project documentation structure and content

The prototype screenshot is shown in Fig. 4. The user in-

terface enables uploading project artifacts and control JSON

files based on engineering standards. It supports “Process”
and “Generate” actions to trigger analysis and document cre-
ation via a lightweight, Python-based framework.

JĀNIS RIHARDS BLAZEVIČS ET AL.: A FRAMEWORK FOR MODEL-DRIVEN AI-ASSISTED GENERATION OF IT PROJECT MANAGEMENT 125

Fig 4. Solutions supporting prototype UI

V. SOLUTION DEMONSTRATION AND VALIDATION

The developed solution focuses on the generation of docu-

mentation for the project initiation phase, which primarily are

the project scope, requirements, and stakeholder register.

However, the overall architecture and methodology are inher-

ently adaptable to other types of software project artifacts

(e.g., test strategies, change logs), provided that the step-

based instruction approach is followed.

The design of the approach was informed by a critical anal-

ysis of limitations in existing AI-based documentation meth-

ods [41]. A key technical constraint was the limited token pro-

cessing capacity of large language models (LLMs). Supplying

the model with excessive or poorly structured context, even

within token limits, can degrade output quality. This chal-

lenge was especially relevant due to the decision to implement

the entire solution locally, without access to commercial API-

based models.

To overcome these constraints, the solution relies on a hy-

brid generation process that combines model-driven input

with structured prompt engineering techniques. The system

employs dynamic prompt construction, where instructions are

derived from formal templates and merged with input arti-

facts. This enables semantic precision and output consistency,

while minimizing hallucinations.

A. Prompt Construction and Input Engineering

Prompt engineering is a critical set of techniques aimed at

improving the precision, relevance, and structural integrity of

instructions provided to large language models (LLMs).

Given the inherent token limits and sensitivity to vague or am-

biguous inputs, effective prompt design plays a key role in

achieving high-quality, context-aware results.

While most modern LLMs can process both natural lan-

guage and semi-structured formats, generating well-struc-

tured outputs, such as formal documentation artifacts, re-

mains challenging. This is especially true when using general-

purpose models that are not fine-tuned for technical or proce-

dural content. To address this, researchers and practitioners

have explored strategies such as zero-shot prompting, few-

shot prompting, chain-of-thought prompting, and input injec-

tion, where contextual cues are embedded into the prompt to

guide the generation process more effectively.

An increasingly popular and effective technique, particu-

larly in software engineering and academic contexts, is

schema-based prompting. In this method, the input is orga-

nized into clearly defined data segments or templates, ena-

bling the model to recognize expected content categories and

follow predefined output structures. This improves both the

model’s contextual understanding and its ability to maintain
the desired format over longer outputs [41].

In the proposed solution, prompt and input engineering

form the core of the generation workflow. Instruction files are

parsed into stepwise key-value pairs and stored in session

memory. During generation, the system performs iterative

prompting, combining each instruction step with previously

generated content.

Fig. 5 presents an example of the JSON-based prompt

structure, and Figure 6 shows the resulting generated output.

126 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

Fig 5. A prompt for prompt generation on GPT-4-mini model

Fig 6. The generation result: a prompt for Llama 3.2:3b model

Additionally, semantic retrieval is supported through a lo-

cal vector database queried via Retrieval-Augmented Gener-

ation (RAG). Relevant context fragments are injected into

each prompt, ensuring that the model's output is both seman-

tically grounded and contextually accurate.

So far, the instruction is processed as part of the iterative

prompting loop, where the system performs the following

steps:

1. Retrieves relevant fragments from the vector database us-

ing tags such as "stakeholder_goals" and "deliverables".

2. Constructs a prompt that integrates retrieved content, the

instruction goal, and global generation rules (e.g., tone, struc-

ture).

3. Executes the prompt using the LLM, producing a scoped

and semantically grounded section.

The resulting output typically begins with a structured sum-

mary of project boundaries, highlights included and excluded

deliverables, and clarifies key stakeholder expectations,

which all are grounded in the source context provided by the

uploaded artifacts.

This process ensures that generated text is not only gram-

matically correct and coherent, but also aligned with input

data, methodologically consistent, and easy to validate. If any

relevant data is missing (e.g., no deliverables listed), the

model leaves the section incomplete or explicitly notes the

absence, avoiding hallucinated content.

The core task defined for the model was text generation

based on structured input instructions. An example of the in-

structions given for the Project Scope is shown in Fig. 7. Cru-

cially, each iteration updates the prompt dynamically, pre-

serving prior results and refining the context. This strategy

has shown to be highly effective in reducing hallucinations

and ensuring continuity across output sections. The base sys-

tem prompt (or system message) is used to define global con-

text and behavior for all interactions with the LLM.

To optimize prompt formulation, OpenAI’s GPT-4-turbo

model (May 2024 version) was used to assist in designing the

system-level prompts for the local LLaMA 3.2:3b model.

These instructions define the system’s role, generation bound-
aries, and output expectations based on the runtime environ-

ment and technologies used in this project [41]-[42].

These instructions clarified the expected format and explic-

itly emphasized that the context PDF file is the sole source of

truth for content generation. The model was also guided to

respect the limitations of the local environment and its own

processing capacity, discouraging overly long or ambiguous

prompts.

Fig 7. The instructions for Project Scope Statement

JĀNIS RIHARDS BLAZEVIČS ET AL.: A FRAMEWORK FOR MODEL-DRIVEN AI-ASSISTED GENERATION OF IT PROJECT MANAGEMENT 127

As a part of the development process, a system prompt was

iteratively refined and formatted using OpenAI tools, result-

ing in a stable, high-level instruction set. This ensures more

predictable and consistent model behavior across varying in-

put scenarios. To reduce hallucinations, a key rule was intro-

duced: if essential information is missing from the context,

the model must leave the corresponding field blank rather

than fabricate content.

This strict constraint not only improves trust in the AI-gen-

erated output but also allows for easier human validation. It

encourages transparent failure handling rather than mislead-

ing completions, which is critical for professional documen-

tation processes. As a result, the JSON files of the required

documentation fragments are generated.

The examples of outputs for project scope, requirements un

stakeholder register are shown in Fig. 8-10.

The solution supports structured evaluation of generated

documents based on two perspectives. First, document-level

criteria assess completeness, terminology, and traceability to

source inputs. Second, project-specific context examines con-

tent relevance and adaptability based on the detail of provided

artifacts. Testing with varied project samples confirmed that

output quality improves with richer inputs. Detailed project

charters produced precise and tailored documentation, while

minimal inputs resulted in more generic, though structurally

valid, content. This demonstrates that the system adapts to in-

put complexity while maintaining consistent structure, mak-

ing it suitable for diverse documentation scenarios across dif-

ferent project environments.

Fig 8.A fragment of output JSON for project scope

Fig 9. A fragment of output JSON for requirements

128 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

Fig 10. A fragment of output JSON for stakeholders

B. Solution Testing

The proposed approach was evaluated using two large lan-

guage models (LLMs): LLaMA 3.2:3b and OpenAI GPT-4-

mini. Both models received a unified instruction template and

identical context limits. To ensure fairness, GPT-4-mini was

restricted from using any external tools or accessing the web,

relying solely on the provided input. To avoid priming effects,

methodologies behind the instruction design were deliber-

ately excluded from the prompt.

Each model processed 200-token segments with 50-token

overlaps. For each evaluation step, five context fragments

were drawn from the source document to ensure relevant yet

limited context. Every instruction tied to an artifact was exe-

cuted ten times, and outputs were stored for later analysis. To

preserve neutrality, LLaMA’s vector database was refreshed
after each run, while GPT-4-mini was instructed to disregard

prior outputs and treat each prompt as new.

Model performance was assessed using a rubric-based

method, evaluating outputs across five dimensions. Each di-

mension was rated on a scale from 0.00 to 1.00, as detailed in

Table 1.

TABLE I.

RUBRIC SCORE SCALE

Score Rubric Criteria

0.00 Output contains incorrect or fabricated data

0.25 Output is mostly empty or contains only

fragments

0.50 Output contains at least one correct element per

section

0.75 Output aligns with dimensional expectations but

lacks details

1.00 Output fully meets dimensional expectations

Each dimension was further weighted according to its sig-

nificance in the evaluation, with the highest weights assigned

to hallucination prevention and instruction compliance, given

their criticality in constrained local environments [43]. Output

clarity and consistency were assigned lower weights due to

their less critical impact. The dimension weights are shown in

Table 2.

TABLE II.

EVALUATION DIMENSIONS AND WEIGHTS

Evaluation Dimension Weight

Data Hallucinations 0.30

Contextual Relevance 0.20

Output Consistency 0.10

Instruction Compliance 0.30

Output Clarity 0.10

A similar dimensional evaluation approach has been ob-

served in empirical research investigating hallucinations

across popular large language models. One such study as-

sessed the hallucination rates of various LLMs by processing

1,000 documents, with results reported by [44]. Notably, the

LLaMA 3.2:3b model demonstrated a hallucination rate of

7.9% in this evaluation.

In this study, simulation results were aggregated by assign-

ing weights to each evaluation dimension, calculating average

scores for each output fragment. The outcomes of the ten re-

peated iterations per instruction were averaged, and the di-

mension-specific results are presented in Table 3. Despite

architectural and operational differences, that is, LLaMA

3.2:3b running locally and GPT-4-mini hosted via cloud ser-

vices, both models produced comparable top results.

JĀNIS RIHARDS BLAZEVIČS ET AL.: A FRAMEWORK FOR MODEL-DRIVEN AI-ASSISTED GENERATION OF IT PROJECT MANAGEMENT 129

TABLE III.

EVALUATION DIMENSIONS AND WEIGHTS (1- HALLUCINATIONS, 2 - CONTEXT USE, 3 - CONSISTENCY , 4 - INSTRUCTION COMPLIANCE, 5 –

CLARITY)

Artifact Model 1 2 3 4 5 Overall Scenario

Scope Statement LLaMA 3.2:3b 0.7 0.5 0.45 0.6 0.75 0.61 One Washington

 GPT-4-mini 0.9 0.75 0.8 0.8 1.0 0.84

Requirements Document

LLaMA 3.2:3b 0.6 0.45 0.35 0.5 0.75 0.53

GPT-4-mini 0.8 0.75 0.8 0.8 1.0 0.81

Work Breakdown

Structure

LLaMA 3.2:3b 0.5 0.4 0.3 0.35 0.5 0.42

GPT-4-mini 0.8 0.75 0.65 0.7 1.0 0.77

Stakeholder Register

LLaMA 3.2:3b 0.5 0.5 0.3 0.4 0.5 0.45

GPT-4-mini 0.7 0.7 0.65 0.7 1.0 0.725

Scope Statement

LLaMA 3.2:3b 0.5 0.5 0.45 0.4 0.75 0.49 Work Reports

 GPT-4-mini 0.8 0.75 0.8 0.6 1.0 0.75

Requirements Document

LLaMA 3.2:3b 0.5 0.25 0.35 0.3 0.7 0.4

GPT-4-mini 0.7 0.75 0.8 0.6 1.0 0.71

Work Breakdown

Structure

LLaMA 3.2:3b 0.4 0.2 0.3 0.25 0.3 0.3

GPT-4-mini 0.7 0.6 0.65 0.5 1.0 0.64

Stakeholder Register LLaMA 3.2:3b 0.35 0.35 0.3 0.3 0.4 0.34

GPT-4-mini 0.6 0.5 0.65 0.5 1.0 0.59

Scope Statement LLaMA 3.2:3b 0.6 0.5 0.45 0.5 0.75 0.55 Average

 GPT-4-mini 0.85 0.75 0.8 0.7 1.0 0.79

Requirements Document LLaMA 3.2:3b 0.55 0.35 0.35 0.4 0.725 0.46

GPT-4-mini 0.75 0.75 0.8 0.7 1.0 0.76

Work Breakdown

Structure
LLaMA 3.2:3b 0.45 0.3 0.3 0.3 0.4 0.36

GPT-4-mini 0.75 0.68 0.65 0.6 1.0 0.7

Stakeholder Register LLaMA 3.2:3b 0.43 0.43 0.3 0.35 0.45 0.39

GPT-4-mini 0.65 0.6 0.65 0.6 1.0 0.66

The local model performed well when processing frag-

ments closely matching the prompt, but it struggled with se-

mantically diverse expressions. For instance, in requirement

analysis or stakeholder registers, the instructions required ex-

tracting detailed information implied in the text. Here, GPT-

4-mini showed superior performance in delivering more con-

sistent and contextually aligned outputs. A notable gap was

observed between the models’ ability to interpret instructions,
particularly in the LLaMA model. For example, when pro-

cessing a scope statement, LLaMA inferred a resource plan-

ning system implementation based solely on the vague refer-

ence to a “system.”

An analysis of the results revealed that both models per-

formed better on the One Washington sample. This document

was more structured, contained instruction-aligned headings,

and used less academic language. These factors are beneficial

especially for the local model.

In contrast, higher hallucination rates were observed when

processing the productivity project charter. For instance, the

scope description included a false claim, whereas the delivery

items correctly referenced the convening of a steering com-

mittee. Similarly, the “Out of Scope” section was accurate.
However, in the assumptions section expected to list six ele-

ments the model included only two, of which only one was

correct. This may be attributed to the token limitation, which

possibly resulted in incomplete sentence inputs that the model

extrapolated upon.

Evaluation of GPT-4-mini’s results showed tendencies to-

ward verbosity, as the model often expanded text to produce

grammatically complete phrases. While linguistically correct,

these expansions altered the intended meaning, thus reducing

factual accuracy. For example, among the three output goals,

only the first two were valid; the third, referencing real-time

reporting, was not present in the source text. Similar incon-

sistencies and hallucinations were noted across other sections,

including deliverables and assumptions.

C. Solution Drawback and Improvements

Another key observation during evaluation was the differ-

ence in how the models responded to insufficient or ambigu-

ous information. LLaMA 3.2:3b tended to return empty or

partial outputs when it could not confidently locate the re-

quested data. In contrast, GPT-4-mini frequently attempted to

complete outputs regardless, even when context was lacking.

Often generating fabricated content in direct violation of the

provided instructions.

In the context of this study, where data integrity is of high

importance, LLaMA’s behavior was actually preferable.
Empty outputs are easier to verify, as they indicate uncer-

tainty rather than assumed correctness, which reduces the risk

130 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

of unintentionally integrating hallucinated data into down-

stream processes.

The results suggest that smaller, locally hosted models like

LLaMA 3.2:3b, when given clearly defined instructions and

constrained environments, are capable of producing viable

outputs, particularly when a human reviewer is involved in

validation. Although GPT-4-mini demonstrated superior gen-

eralization abilities, its tendency to confidently fabricate data

limited its advantage in this controlled use case.

The test design used small input samples and short text

fragments. In several cases, both models failed to retrieve rel-

evant content and instead included false or unrelated claims.

LLaMA also demonstrated high variability between runs: in

multiple cycles, it returned empty or low-information re-

sponses, likely due to how fragments were selected via the

nearest-neighbor search over the vector database using

Ollama embeddings.

Each processing step queried only five top-matching frag-

ments, assuming semantic accuracy in the embedding model.

However, no additional validation of the relevance of re-

trieved fragments was performed. Furthermore, the model’s
iterative process continuously appended data to key/value

stores without restriction, potentially leading to overwriting

or compounding errors in later stages.

In summary, while GPT-4-mini showed superior fluency

and semantic approximation, it introduced more hallucina-

tions than expected. LLaMA 3.2:3b, though less consistent,

adhered more strictly to constraints and demonstrated a con-

servative generation strategy more suitable for high-integrity

documentation workflows in local AI-assisted systems.

VI. CONCLUSION

This study demonstrates that the integration of generative

AI into IT project documentation processes is not only feasi-

ble but also valuable, which is provided by the frame within a

model-driven and standards-aligned architecture. By combin-

ing the expressive capabilities of large language models with

the structural rigor of model-driven development, the pro-

posed solution supports the generation of high-quality, se-

mantically consistent documentation artifacts during the early

phases of IT projects.

From a theoretical perspective, this work contributes to the

design science research body of knowledge by introducing a

novel artifact: a model-based framework that constrains and

guides generative AI outputs. It builds upon the principles of

semantic control in AI-assisted software engineering, show-

ing that MDD structures can serve as effective scaffolds for

LLM behavior. Additionally, it expands on prior work in doc-

umentation automation by demonstrating how prompt engi-

neering, semantic traceability, and formal process alignment

can mitigate common challenges such as hallucinations and

incoherence.

In terms of practical implications, the solution enables pro-

ject teams, especially in resource-constrained environments,

to accelerate and standardize documentation workflows with-

out compromising methodological integrity. The prototype

shows that even with local infrastructure, it is possible to har-

ness generative AI tools securely and effectively. Reusable,

cross-method instruction sets and alignment with common

standards further enhance the applicability and scalability of

the approach in varied project contexts.

Several key findings of the research are as follows:

1. Structured inputs and well-defined transformation rules

significantly improve the quality and reliability of AI-gener-

ated documents.

2. Embedding documentation within a model-driven frame-

work allows for semantic validation, traceability, and reduced

ambiguity.

3. Local deployment of LLM-based tools is technically fea-

sible and aligns with data governance requirements in many

organizations.

4. Standard elements (e.g., objectives, risks, assumptions)

can be reused across methods, enabling cross-framework con-

sistency in documentation practices.

This research opens new avenues for extending the frame-

work to other documentation types and domains (e.g., test

plans, architecture overviews, compliance checklists), and for

integrating dynamic feedback loops to iteratively refine gen-

erated content based on stakeholder input or project evolution.

Future work could explore as follows:

1. Comparative evaluation across multiple LLMs and do-

main contexts;

2. Deeper integration with enterprise modeling tools or agile

project platforms;

3. Automated validation mechanisms for AI-generated arti-

facts.

In conclusion, the results affirm that generative AI, when

properly constrained and guided, can enhance formal docu-

mentation practices in IT project management. Rather than re-

placing human expertise, such tools augment human capabil-

ities, i.e., improving efficiency, consistency, and knowledge

transfer in complex project environments.

REFERENCES

[1] X. Zhang and B. Dorn, “Accelerating software development through
agile practices: A case study of a small-scale, time-intensive web de-
velopment project at a college-level IT competition,” *J. Inf. Technol.
Educ.*, vol. 11, pp. 1–12, 2012, doi: 10.28945/1545.

[2] H. Kerzner, “Project Management: A Systems Approach to Planning,
Scheduling, and Controlling”, 13th ed. Hoboken, NJ, USA: Wiley, Mar.

2022, ISBN 978‑1119805373.
[3] B. Habib and R. Romli, "A Systematic Mapping Study on Issues and

Importance of Documentation in Agile," 2021 IEEE 12th International

Conference on Software Engineering and Service Science (ICSESS),

Beijing, China, 2021, pp. 198-202, doi:
10.1109/ICSESS52187.2021.9522254

[4] W. Behutiye, P. Seppänen, P. Rodríguez, and M. Oivo, "Documentation
of quality requirements in agile software development," in Evaluation
and Assessment in Software Engineering (EASE’ 20), Trondheim, Nor-

way, Apr. 15–17, 2020, ACM, New York, NY, USA, pp. 1–10, doi:

10.1145/3383219.3383245
[5] A. Ataman, “Data quality in AI: Challenges, importance & best prac-

tices,” AIMultiple. [Online]. Available: https://research.aimulti-

ple.com/data-quality-ai/
[6] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhari-

wal, et al., “Language models are few-shot learners,” Adv. Neural Inf.
Process. Syst., vol. 33, pp. 1877–1901, 2020, doi:
10.48550/arXiv.2005.14165

JĀNIS RIHARDS BLAZEVIČS ET AL.: A FRAMEWORK FOR MODEL-DRIVEN AI-ASSISTED GENERATION OF IT PROJECT MANAGEMENT 131

[1] P. Liang, R. Bommasani, D. Tsipras, et al., “Holistic evaluation of lan-
guage models,” arXiv preprint arXiv:2211.09110, 2022, doi:
10.48550/arXiv.2211.09110.

[2] OpenAI, “GPT-4 Technical Report,” OpenAI, Mar. 2023. [Online].
Available: https://openai.com/research/gpt-4

[3] F. Nafz, M. Krajinovic, and M. Ley, “Artificial intelligence in soft-
ware documentation: Embracing the documentation as code para-
digm,” in “Go Where the Bugs Are”, G. Ernst et al., Eds., “Lecture
Notes in Computer Science”, vol. 15765, Cham, Switzerland:
Springer, 2025, doi: 10.1007/978-3-031-92196-4_14.

[4] K. J. Ajeigbe and O. Emma, “Dynamic Documentation Generation
with AI,” 2024. Available at: https://www.researchgate.net/publica-
tion/390265865_Dynamic_Documentation_Generation_with_AI

[5] K. Dearstyne, A. Rodriguez, and J. Cleland-Huang, “Supporting Soft-
ware Maintenance with Dynamically Generated Document Hierar-
chies,” arXiv preprint arXiv:2408.05829, Aug. 2024, doi: 10.48550/
arXiv.2408.05829

[6] S. Mehta, A. Rogers, and T. Gilbert, “Dynamic Documentation for AI
Systems,” arXiv preprint arXiv:2303.10854, Mar. 2023, doi:
10.48550/arXiv.2303.10854.

[7] C. Leyh, A. Lorenz, M. J. Faruga, and L. Koller, “Critical Success
Factors for ERP Projects Revisited: An Update of Literature
Reviews,” in Proc. 19th Conf. on Computer Science and Intelligence
Systems (FedCSIS), vol. 39, Annals of Computer Science and Infor-
mation Systems, pp. 131–140, 2024, doi: 10.15439/2024F6271

[8] T. Vetriselvi, M. Mathur, and M. Bhuvaneswari, “Applying Genera-
tive AI to Create SOP, Reducing API Costs Through Prompt Com-
pression and Evaluating LLM Responses with Tonic Validate RAG
Metrics,” in Proc. 4th Int. Conf. Ubiquitous Comput. Intell. Inf. Syst.
(ICUIS), 2024, doi: 10.1109/ICUIS64676.2024.10867024

[9] S. Tsuchiwata, Y. Tanabe, Y. Hosoya, and K. Aoyama, “Generative
AI Driven Clinical Drug Development,” Japanese Journal of Clinical
Pharmacology and Therapeutics, 2025, doi: 10.3999/jscpt.56.2_109

[10] A. Barcaui and A. Monat, “Who is better in project planning? Genera-
tive artificial intelligence or project managers?,” Project Leadership
and Society, vol. 4, 2023. 10.1016/j.plas.2023.100101

[11] A. Bahi, J. Gharib, and Y. Gahi, “Integrating Generative AI for Ad-
vancing Agile Software Development and Mitigating Project Manage-
ment Challenges,” Int. J. Adv. Comput. Sci. Appl., vol. 15, no. 1,
2024, doi: 10.14569/IJACSA.2024.0150306

[12] Z. Alliata, T. Singhal, and A.-M. Bozagiu, “The AI Scrum Master: Us-
ing Large Language Models (LLMs) to Automate Agile Project Man-
agement Tasks,” in Lect. Notes Bus. Inf. Process., 2025, doi:
10.1007/978-3-031-72781-8_12

[13] M. AbuAlfateh, M. Ali, and M. Messaadia, “Establishing Key Perfor-
mance Indicators for Human-Generative AI Collaboration,” Studies in
Big Data, vol. 110, 2025, doi: 10.1007/978-3-031-83911-5_42

[14] V. Bilgram and F. Laarmann, “Accelerating Innovation With Genera-
tive AI: AI-Augmented Digital Prototyping and Innovation Methods,”
IEEE Eng. Manag. Rev., vol. 51, no. 2, pp. 40–47, 2023, doi:
10.1109/EMR.2023.3272799

[15] N. Ibadildin, Z. Kenzhin, G. Yeshenkulova, and A. Kadyrova, “Artifi-
cial Intelligence in Project Management: A Bibliometric Analysis,”
Problems and Perspectives in Management, vol. 23, no. 1, pp. 130–
142, 2025, doi: 10.21511/ppm.23(2).2025.17

[16] S. Salimimoghadam, A. N. Ghanbaripour, R. J. Tumpa, and M. Skit-
more, “The Rise of Artificial Intelligence in Project Management: A
Systematic Literature Review of Current Opportunities, Enablers, and
Barriers,” Buildings, vol. 15, no. 2, 2025. 10.3390/buildings15071130

[17] O. Nikiforova, J. Grabis, O. Pastor, K. Babris, M. K. Miļūne, and R.
Bobkovs, “Model-Based Methodology for Development of IT Project
Management Plan and Scope Using Artificial Intelligence: Project in
Progress,” in Proc. 19th Int. Conf. on Research Challenges in Informa-
tion Science (RCIS), CEUR Workshop Proc., 2025 (in press).

[18] J. White, C. Kirchner, T. Paschal, S. Hays, A. Kazerouni, T. Mytkow-
icz, and M. Monperrus, “A Prompt Pattern Catalog to Enhance Prompt
Engineering with ChatGPT,” arXiv preprint arXiv:2302.11382, 2023,
doi: 10.48550/arXiv.2302.11382

[19] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-
train, Prompt, and Predict: A Systematic Survey of Prompting Meth-
ods in Natural Language Processing,” ACM Comput. Surv., vol. 55,
no. 9, Art. no. 195, pp. 1–35, Sep. 2023, doi: 10.1145/3560815

[20] O. Nikiforova, K. Babris, U. Karlovs-Karlovskis, M. Narigina, A. Ro-
manovs, A. Jansone, J. Grabis, and O. Pastor, “Model Transformations
Used in IT Project Initial Phases: Systematic Literature Review,”
Computers, vol. 14, no. 2, p. 40, 2025, doi: 10.3390/comput-
ers14020040

[21] O. Nikiforova, K. Babris, M. K. Miļūne, N. Tanguturi, and Ó. Pastor,
“Key Artefacts in the Initial Phases of IT Project Management: Sys-
tematic Mapping Study,” in Proc. 20th Int. Conf. Evaluation of Novel
Approaches to Software Engineering (ENASE), SciTePress, 2025, pp.
773–781, doi: 10.5220/0013471000003928

[22] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in
Information Systems Research,” *MIS Quarterly*, vol. 28, no. 1, pp.
75–105, 2004, doi: 10.2307/25148625.

[23] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software En-
gineering in Practice, 2nd ed. Cham, Switzerland: Springer, 2017.

[24] O. Pastor and J. Molina, Model-Driven Architecture in Practice: A
Software Production Environment Based on Conceptual Modeling.
Berlin/Heidelberg, Germany: Springer, 2007. [Online]. Available:
https://doi.org/10.1007/978-3-540-71868-0

[25] O. Nikiforova, M. K. Miļūne, K. Babris, and O. Pastor, “Generation of
IT Project Documentation Elements from a Model Transformation
Chain,” in Proc. Int. Conf. on Software Technologies (ICSOFT),
2025, pp. 1–10, DOI: 10.5220/0013568300003964

[26] Agile Manifesto (2001) https://agilemanifesto.org/
[27] ISO/IEC/IEEE, Systems and software engineering — Life cycle pro-

cesses — Requirements engineering, ISO/IEC/IEEE 29148:2018, In-
ternational Organization for Standardization, Geneva, Switzerland,
2018

[28] ISO/IEC/IEEE, Systems and software engineering — Life cycle pro-
cesses — Project management, ISO/IEC/IEEE 16326:2019, Interna-
tional Organization for Standardization, Geneva, Switzerland, 2019

[29] ISO, Project, programme and portfolio management — Guidance on
project management, ISO 21502:2020, International Organization for
Standardization, Geneva, Switzerland, 2020.

[30] P. Bourque and R. E. Fairley, Eds., Guide to the Software Engineering
Body of Knowledge (SWEBOK Guide), Version 4.0, IEEE Computer
Society, 2024. [Online]. Available: https://www.computer.org/educa-
tion/bodies-of-knowledge/software-engineering

[31] Project Management Institute, A Guide to the Project Management
Body of Knowledge (PMBOK® Guide), 7th ed., Newtown Square,
PA, USA: PMI, 2021

[32] O. Nikiforova, M. Kirikova, and N. Pavlova, “Two-hemisphere driven
approach: Application for knowledge modeling,” in Proc. 7th Int.
Baltic Conf. Databases and Information Systems, 2006, pp. 244–250,
art. no. 1678503. [Online]. Available: https://www.scopus.com/in-
ward/record.uri?eid=2-s2.0-34250753483

[33] O. Nikiforova and K. Gusarovs, “Comparison of BrainTool to other
UML modeling and model transformation tools”, AIP Conf. Proc.,
vol. 1863, art. no. 330005, 2017. doi: 10.1063/1.4992503

[34] J. He, M. Rungta, D. Koleczek, A. Sekhon, F. X. Wang, and S. Hasan,
“Does Prompt Formatting Have Any Impact on LLM Performance?,”
arXiv preprint arXiv:2411.10541, 2024, doi: 10.48550/
arXiv.2411.10541

[35] A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, et
al., “Self-Refine: Iterative Refinement with Self-Feedback,” arXiv
preprint arXiv:2303.17651, 2023, doi: 10.48550/arXiv.2303.17651

[36] OpenAI, ChatGPT (May 2024 version) [Large Language Model].
Available: https://chat.openai.com/

[37] T. Bao, J. Yang, Y. Yang, and Y. Yin, "RM2Doc: A tool for automatic
generation of requirements documents from requirements models," in
Proc. ACM/IEEE 44th Int. Conf. Softw. Eng.: Companion Proc.
(ICSE ’22), New York, NY, USA, 2022, pp. 188–192, doi:
10.1145/3510454.3516850.

[38] Vectara. (2024). Hallucination leaderboard [Computer software].
GitHub. https://github.com/vectara/hallucination-leaderboard

132 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

