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Abstract—This  paper  presents  a  model-driven  AI-assisted 

approach  for  generating  IT  project  management  plan  and 

scope documents, aiming to improve efficiency and quality in 

software development projects. Effective documentation in the 

early project phase is critical, yet often resource-intensive. The 

proposed solution consolidates best practices from widely used 

project management methodologies and standards to create a 

dynamic, adaptable framework for document generation. The 

study identifies key components and input data required for 

generating high-quality plans using model transformations and 

generative AI. A prototype supporting the solution is developed 

featuring a local processing engine, integrated with a large lan-

guage model, a vector database, and an embedded model.

Index Terms—IT project management, project documenta-

tion,  model-driven development,  generative AI,  prompt engi-

neering,  software  development  automation,  large  language 

models, AI-assisted tools.

I. INTRODUCTION

N MODERN IT project development, the demand for ac-

celerated delivery cycles continues to increase, driven by 

competitive pressure, agile practices, and customer expecta-

tions  [1].  One  of  the  most  critical  processes  in  the  early 

phases of the project lifecycle is the development of project 

documentation [2]. Well-structured documentation, such as 

project management plans and scope statements, forms the 

basis for mutual understanding between clients and delivery 

teams, and contributes directly to project success and client 

satisfaction [3].

I

To  address  the  need  for  speed  without  compromising 

quality,  automation tools  have been introduced to support 

documentation processes. These tools can generate content 

based on reusable templates, domain knowledge, and recog-

nized best  practices [4].  However,  most existing solutions 

act as passive assistants, requiring significant manual effort 
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to ensure completeness,  consistency,  and compliance with 

professional standards [5].

Since the emergence of generative artificial  intelligence 

(AI) technologies around 2020 [6], there has been growing 

interest in using AI to automate the creation of project docu-

mentation. Generative models such as large language mod-

els  (LLMs) [7]  offer  promising capabilities  for  producing 

structured, domain-specific texts [8]. However, researchers 

should overcome challenges related to the need for precise 

prompt formulation, ensuring contextual relevance, manag-

ing data quality,  and aligning with industry standards [9]. 

Addressing these challenges requires not only technical so-

lutions but also methodological guidance.

This raises a fundamental research question: Is it possible 

to integrate generative AI into documentation development 

without compromising quality and compliance? This paper 

investigates this question by proposing an AI-assisted solu-

tion grounded in software engineering principles, aiming to 

maintain documentation integrity while leveraging the po-

tential of generative AI. The research goal of the results pre-

sented in this paper is to develop an AI-assisted solution for 

generating  IT  project  management  plan  and  scope  docu-

ments applicable in software development projects, by con-

solidating best practices in project documentation as defined 

across  various  development  methodologies  and  industry 

standards.

The paper is organized as follows. The next section dis-

cusses the research background and summarizes the related 

literature. Section 3 presents the foundations used in the so-

lution and Section 4 explains  the essence of  the solution. 

Section 5 demonstrates the practical application of the solu-

tion and comments its validation and improvements. The fi-

nal section summarizes the main research findings and out-

lines directions for future work.
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II. BACKGROUND AND RELATED WORK 

Since the emergence of generative artificial intelligence (AI) 

technologies around 2020, such as OpenAI’s GPT-3 [6], there 

has been growing optimism that AI could dramatically 

streamline project documentation by enabling the automatic 

generation of high-quality documents in just a few clicks. The 

rapid advancement of LLMs has fueled expectations that 

these tools could reduce the manual effort required for creat-

ing project specifications, requirement documents, and other 

critical deliverables. However, several significant challenges 

remain in realizing this vision fully: 

1. Generative AI often struggles to capture the spe-

cific organizational context, domain terminology, 

and stakeholder expectations that are essential for 

meaningful documentation [9]. 

2. Effective AI-generated documentation depends 

heavily on the availability of structured, high-

quality input data. In many real-world projects, 

this data may be incomplete, ambiguous, or incon-

sistent [10]. 

3. Automatically generated content can raise con-

cerns about traceability, authorship, and the re-

sponsibility for errors or omissions in critical doc-

uments [11]. 

4. Industry-specific methodologies and compliance 

requirements (e.g., ISO, IEEE) can be difficult to 

encode into generic AI systems without signifi-

cant customization [12]. 

5. Even advanced generative tools require skilled 

human supervision to ensure accuracy, relevance, 

and alignment with project goals [13]. 

These limitations suggest that while generative AI has 

strong potential to support project documentation, its role is 

currently best viewed as augmentative rather than fully auton-

omous. Future developments may narrow these gaps, but ef-

fective human-AI collaboration remains essential for reliable 

outcomes in IT project documentation. 

Recent studies have demonstrated the growing potential of 

generative AI in enhancing project management processes, 

particularly in the areas of documentation, planning, and effi-

ciency. One of the key applications of generative AI is the 

automation of project documentation, including project plans 

and scope definitions. AI models can consolidate and struc-

ture content from various sources to generate standardized 

and coherent documents, ensuring compliance with project 

management standards and improving overall consistency 

[14]. Additionally, generative AI is increasingly used to gen-

erate meeting summaries, translate technical content, and up-

date project texts, contributing to more accurate and timely 

documentation [15]. 

In project planning, AI tools can support a wide range of 

functions such as scope definition, scheduling, cost estima-

tion, resource allocation, stakeholder analysis, and risk as-

sessment. Some studies suggest that generative AI can match 

or even outperform human planners in certain structured plan-

ning tasks, while still requiring expert oversight for contextual 

decisions [16]. Moreover, the integration of AI in Agile meth-

odologies has shown promise in optimizing team workflows, 

enhancing collaboration, and automating repetitive tasks 

[17]-[18]. 

The collaboration between human project managers and AI 

systems has been identified as a critical factor for success. 

Key performance indicators for such collaboration include ef-

ficiency gains in time, cost, and resource usage, as well as 

improved quality, clarity, and accuracy of project outputs 

[19]. Research also highlights the benefits of using generative 

AI in the early stages of innovation, such as digital prototyp-

ing and ideation, where rapid iteration and content generation 

are crucial [20]. 

However, several challenges remain. Effective integration 

of AI into project management environments must address is-

sues such as input data quality, compatibility with legacy sys-

tems, and ethical concerns regarding algorithmic transpar-

ency and accountability [21]-[22]. Furthermore, while gener-

ative AI can produce initial drafts of project documentation, 

human expertise is still essential to validate and refine the out-

put to ensure relevance, accuracy, and compliance with spe-

cific organizational contexts [16]. 

These findings underscore the dual role of generative AI as 

both an accelerator and a collaborator in project management. 

The literature suggests that while generative AI tools provide 

substantial benefits, their successful implementation relies on 

structured prompts, methodological support, and continuous 

human oversight. 

To address the limitations of generative AI in project doc-

umentation, Nikiforova, et al. [23] proposed a solution based 

on the integration of model-driven development (MDD) prin-

ciples. By embedding structured models into the AI-assisted 

documentation process, the approach aims to constrain and 

guide AI output according to predefined rules, templates, and 

domain-specific semantics. This model-driven approach 

helps overcome common issues such as contextual incon-

sistency, structural errors, and lack of standard compliance. It 

also enhances traceability and maintainability by linking gen-

erated content to formal models that represent project require-

ments and design logic.  

In response to the limitations of generative AI tools, re-

searchers and practitioners have increasingly focused on the 

field of prompt engineering, which is the practice of crafting 

and structuring input prompts in a way that guides AI systems 

to produce higher-quality, more relevant outputs [24]. Rather 

than relying on generic instructions, prompt engineering em-

phasizes precise formulations, contextual cues, and example-

based guidance to improve the performance of language mod-

els in complex tasks such as project documentation. The 

emerging field of prompt engineering aims to optimize 

prompt formulation in order to elicit high-quality, contextu-

ally accurate responses from generative models [25]. 

This emerging discipline is particularly relevant in domains 

like IT project management, where document quality is influ-

enced by terminology accuracy, logical structure, and compli-

ance with standards. By experimenting with different prompt 

122 PROCEEDINGS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



 

 

 

patterns, researchers aim to understand how to systematically 

elicit responses that align with user expectations and domain-

specific requirements. 

Early studies and practical experiments indicate that care-

fully designed prompts can significantly enhance the clarity, 

completeness, and consistency of AI-generated documents. 

As a result, prompt engineering is becoming a critical skill for 

those seeking to integrate generative AI into documentation 

workflows, bridging the gap between AI capabilities and real-

world needs. 

The research presented in this paper builds upon the idea of 

constraining generative AI to reduce hallucinations and un-

controlled variability in generated content. The proposed ap-

proach is oriented toward leveraging the strengths of model-

driven engineering by generating as much documentation 

content as possible through formal model transformations 

[26]. Where model transformation is insufficient, such as in 

the generation of narrative or descriptive elements, prompt 

engineering is applied, guided by artifacts from the target 

model [27]. This ensures that even AI-generated free-text sec-

tions remain contextually relevant, structurally aligned, and 

traceable to defined project components. The overall goal is 

to balance AI creativity with formal control, reducing risks 

while maintaining efficiency and adaptability. 

III. RESEARCH METHODOLOGY AND CONCEPTUAL 
FRAMEWORK 

This research follows the Design Science Research (DSR) 

methodology as proposed by Hevner et al. [28], which is 

widely used for the development and evaluation of IT arti-

facts. The goal is to create a novel, AI-assisted solution for 

generating IT project management plan and scope documen-

tation. This artifact integrates model-driven engineering prin-

ciples with generative AI capabilities to support early-phase 

documentation in software development projects. 

In accordance with Hevner’s seven guidelines for DSR, 

this study: 

1. Designs an innovative artifact – a model-driven frame-

work and software prototype for document generation; 

2. Addresses a relevant business problem – namely, the inef-

ficiency and inconsistency in early-phase project documenta-

tion; 

3. Is evaluated through practical application and iterative re-

finement; 

4. Contributes both a utility-focused solution and theoretical 

insights into the integration of generative AI with structured 

project management models; 

5. Applies rigorous methods for modeling, implementation, 

and validation; 

6. Communicates the research effectively to both academic 

and practitioner audiences; 

7. Clearly situates the research within the context of infor-

mation systems and project management disciplines. 

The proposed approach balances the creative potential of 

generative AI with the structural rigor of model-driven devel-

opment. The main objective is to constrain AI-generated con-

tent within well-defined semantic and syntactic boundaries, 

ensuring compliance with established project management 

standards described in the next subsections. 

A. Model-Driven Development Principles 

Model-Driven Development (MDD) is a software engi-

neering approach that emphasizes the use of formal models as 

the primary artifacts throughout the development lifecycle 

[29]. Instead of writing low-level implementation code di-

rectly, developers create abstract models that define system 

structure, behavior, and logic [30]. These models are then 

transformed into executable code or other technical artifacts 

through automated tools. The main goal of MDD is to in-

crease productivity, improve consistency, and reduce human 

error by shifting development effort to higher levels of ab-

straction. 

MDD was originally developed to address complexity in 

large-scale systems and to enable better alignment between 

business requirements and technical implementation. It has 

proven particularly effective in domains requiring precision, 

standardization, and traceability, such as embedded systems, 

enterprise architectures, and critical software solutions. 

Based on systematic literature mapping of solutions offered 

under the MDD idea, Nikiforova et al. [31] conducted an in-

depth analysis of transformations between key artifacts used 

in the early phases of IT projects, that is, before the imple-

mentation stage. The study focused on identifying how differ-

ent project artifacts, such as goal models, process models, use 

case models, domain models, and architectural overviews, 

can be interrelated through formal transformation rules. 

The research highlights that certain artifacts can be auto-

matically derived from others using well-defined transfor-

mation methods, significantly reducing manual effort and in-

creasing consistency across documentation. For instance, 

structured requirements can be transformed into initial system 

models or project plans with minimal human intervention. 

However, not all relationships are fully automatable (shown 

as dotted lines in Fig. 1), some transformations still require 

manual refinement or validation, especially in cases involving 

complex contextual interpretation or stakeholder input. Ex-

actly, these transformations can be assisted with the usage of 

generative AI.  

An overview of all these artifact transformations and their 

interdependencies is illustrated in Fig. 1 [27]. This schema 

serves as a foundation for the proposed AI-assisted generation 

process, where transformation rules help define the scope of 

content that can be automatically constructed and guide the 

prompt generation strategy for generative AI components. 

Although MDD adoption has declined in recent years, 

partly due to the rise of more lightweight, iterative approaches 

like Agile [32], the core idea of structuring development 

around formalized models remains powerful. In the context of 

generative AI, MDD principles offer a unique advantage: they 

can provide a well-defined, controlled input structure for 

guiding AI outputs.  

 

JĀNIS RIHARDS BLAZEVIČS ET AL.: A FRAMEWORK FOR MODEL-DRIVEN AI-ASSISTED GENERATION OF IT PROJECT MANAGEMENT 123



 

 

 

 

Fig 1. Transformation among IT project artifacts 

 

This makes it possible to constrain generative models 

within meaningful boundaries, improving the reliability and 

quality of generated content. By reintroducing MDD concepts 

into AI-assisted documentation generation, this research aims 

to combine the rigor of model-driven processes with the flex-

ibility of modern language models, achieving better control, 

relevance, and integration in project management documen-

tation workflows. 

B. Software Engineering Standards 

The implementation of software engineering standards 

plays a vital role in ensuring consistency, quality, and tracea-

bility in IT project documentation. Given the increasing com-

plexity of software development projects and the integration 

of AI-assisted tools, aligning documentation processes with 

internationally recognized standards becomes not only bene-

ficial but necessary. The proposed solution leverages the fol-

lowing software engineering standards: 

1. ISO/IEC/IEEE 29148:2018 Systems and software engi-

neering — Life cycle processes — Requirement’s engineer-

ing [33]; 

2. ISO/IEC/IEEE 16326:2019 Systems and software engi-

neering — Life cycle processes — Project management, 2019 

[34]; 

3. ISO 21502:2020, Project, programme and portfolio man-

agement — Guidance on project management, 2020 [35]; 

4. Corresponding elements of SWEBOK [36]; 

5. Corresponding elements of PMBOK [37].  

Software engineering standards are used in two ways. The 

first, they define the macrostructure of the document (like in 

the way presented in Fig. 2) [31].  

 

Fig 2. IT project documentation structure and content 

 

The standards’ instructions are used to guide the structure 
and content of generated project documents. These standards 

provide clear expectations regarding the format, terminology, 

and required content of artifacts such as project charters, re-

quirement specifications, and management plans.  

And, the second, the standards shape the micro-level in-

structions that guide the AI in generating specific paragraphs 

or sections. Rather than embedding static prompts into the 

generative AI component, this solution dynamically generates 

prompts based on structured input, specifically utilizing con-

tent derived from model transformations. The AI model is 

thus directed by prompts that are themselves informed by 

software engineering standards and documentation guide-

lines. This ensures that generated outputs are not only linguis-

tically fluent but also semantically aligned with professional 

project management practices. 

For example, prompts for requirement specification gener-

ation integrate instructional content drawn directly from 

ISO/IEC/IEEE 29148:2018, such as the need for complete-

ness, verifiability, traceability, and feasibility. 

Additionally, content expected from model transfor-

mations, such as stakeholder roles, system goals, and compo-

nent descriptions, is automatically fed into the prompt gener-

ation process. This staged approach enables the AI to act 

within clearly defined semantic boundaries while maintaining 

flexibility for natural language output. This mechanism rep-

resents a hybrid strategy that combines the strength of model-
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driven development with the adaptive capabilities of genera-

tive AI. By grounding prompt generation in formal standards 

and structured content, the solution significantly reduces the 

risk of hallucinations and irrelevant output, ensuring higher 

reliability and usability of project documentation. 

In summary, the integration of software engineering stand-

ards serves as a scaffolding for both the structure and seman-

tics of AI-generated project artifacts. It bridges the gap be-

tween free-form generative models and formal documentation 

requirements, resulting in outputs that are both technically 

valid and aligned with industry expectations. 

IV. SOLUTION DESIGN AND APPROACH 

This section presents the formal framework and implemen-

tation of the proposed approach for AI-assisted generation of 

project documentation. The solution is built on a hybrid meth-

odology, combining model-driven development (MDD), 

prompt engineering, and alignment with software engineering 

standards listed in previous sections. 

The proposed solution is based on the principle that struc-

tured artifacts (i.e., models, templates, and metadata) should 

guide document generation. When natural language output is 

required, prompt engineering is applied, combining structured 

artifacts and guidance to direct the language model. This hy-

brid approach reduces hallucinations and improves con-

sistency. The solution operates through several stages: 

• Input Stage: Project-specific structured artifacts, such as 

project artifacts, are provided as input. Wherever possible, 

content is derived from model transformations, using ap-

proaches and tools like [38] [39]. 

• Instruction Stage: Documentation structure and content 

expectations are sourced from industry standards. These 

sources serve as a foundation for structuring both the overall 

layout and the content of the generated documentation. Ex-

cerpts from standards, such as definitions, guidelines, and sec-

tion requirements, are used as instructional cues within 

prompts to ensure that the generated text aligns with profes-

sional expectations. 

• Transformation Stage: Input artifacts and instruction 

templates are combined through structured transformation 

logic (defined in JSON), which dynamically generates task-

specific prompts.  

• Generation Stage: These dynamic prompts are used to 

control a language model (LLM) that generates natural lan-

guage output. Furthermore, in the proposed solution, the 

prompts used by the generative AI component are not static 

or hardcoded. Instead, they are dynamically generated based 

on software engineering standards and best-practice "instruc-

tions," as well as content defined through model transfor-

mations. This means that the system first interprets structured 

input, such as elements derived from project models, and then 

constructs a tailored prompt to guide the language model. 

• Validation Stage: Output is validated against structural 

schemas and evaluated on semantic alignment, completeness, 

and relevance.  

A key innovation is the dynamic generation of prompts 

based on model-driven and SE standards-based inputs. In-

stead of using static instructions, the approach uses structured 

data to generate a prompt, which in turn is used to generate 

the final documentation text. This “generative AI powering 
generative AI” approach ensures that outputs are both contex-
tually relevant and semantically accurate, thus allowing pre-

cise alignment between structured models and natural lan-

guage output and reducing the likelihood of irrelevant or hal-

lucinated content. It is like a controlled pipeline that leverages 

automation while maintaining contextual fidelity and compli-

ance with documentation standards.  

The system is implemented in Python using the Ollama 

framework. A locally hosted LLaMA 3.2:3b model handles 

language generation, while ChromaDB stores embedded vec-

tor representations of source content. The conceptual schema 

of the solutions architecture is shown in Fig. 3. Following the 

outlined stages, a generative AI-based solution was devel-

oped, structured around three key modules: the Input Module, 

the Processing Module, and the Output Module.  

The Input Module validates and processes user-provided 

files, including contextual documents and control JSONs. Up-

loaded PDF content is split into fragments using token limits 

and overlap parameters to preserve context. Each fragment is 

embedded as a vector and stored in ChromaDB, along with 

metadata such as file type and source ID. Instruction files are 

parsed into stepwise JSON objects for controlled processing. 

The Processing Module executes semantic queries based 

on the instruction steps. Each step retrieves relevant frag-

ments using vector similarity and uses them as input for the 

next step. This enables incremental generation of documenta-

tion components, where each output builds on previous re-

sults. The final output is compiled into structured sections 

based on a predefined JSON schema. 

The Output Module formats the completed documenta-

tion into a standards-compliant structure, ready for export or 

integration. 

 

Fig 3. IT project documentation structure and content 

The prototype screenshot is shown in Fig. 4. The user in-

terface enables uploading project artifacts and control JSON 

files based on engineering standards. It supports “Process” 
and “Generate” actions to trigger analysis and document cre-
ation via a lightweight, Python-based framework. 
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Fig 4. Solutions supporting prototype UI 

V. SOLUTION DEMONSTRATION AND VALIDATION 

The developed solution focuses on the generation of docu-

mentation for the project initiation phase, which primarily are 

the project scope, requirements, and stakeholder register. 

However, the overall architecture and methodology are inher-

ently adaptable to other types of software project artifacts 

(e.g., test strategies, change logs), provided that the step-

based instruction approach is followed. 

The design of the approach was informed by a critical anal-

ysis of limitations in existing AI-based documentation meth-

ods [41]. A key technical constraint was the limited token pro-

cessing capacity of large language models (LLMs). Supplying 

the model with excessive or poorly structured context, even 

within token limits, can degrade output quality. This chal-

lenge was especially relevant due to the decision to implement 

the entire solution locally, without access to commercial API-

based models. 

To overcome these constraints, the solution relies on a hy-

brid generation process that combines model-driven input 

with structured prompt engineering techniques. The system 

employs dynamic prompt construction, where instructions are 

derived from formal templates and merged with input arti-

facts. This enables semantic precision and output consistency, 

while minimizing hallucinations. 

A. Prompt Construction and Input Engineering 

Prompt engineering is a critical set of techniques aimed at 

improving the precision, relevance, and structural integrity of 

instructions provided to large language models (LLMs). 

Given the inherent token limits and sensitivity to vague or am-

biguous inputs, effective prompt design plays a key role in 

achieving high-quality, context-aware results. 

While most modern LLMs can process both natural lan-

guage and semi-structured formats, generating well-struc-

tured outputs, such as formal documentation artifacts, re-

mains challenging. This is especially true when using general-

purpose models that are not fine-tuned for technical or proce-

dural content. To address this, researchers and practitioners 

have explored strategies such as zero-shot prompting, few-

shot prompting, chain-of-thought prompting, and input injec-

tion, where contextual cues are embedded into the prompt to 

guide the generation process more effectively. 

An increasingly popular and effective technique, particu-

larly in software engineering and academic contexts, is 

schema-based prompting. In this method, the input is orga-

nized into clearly defined data segments or templates, ena-

bling the model to recognize expected content categories and 

follow predefined output structures. This improves both the 

model’s contextual understanding and its ability to maintain 
the desired format over longer outputs [41]. 

In the proposed solution, prompt and input engineering 

form the core of the generation workflow. Instruction files are 

parsed into stepwise key-value pairs and stored in session 

memory. During generation, the system performs iterative 

prompting, combining each instruction step with previously 

generated content. 

Fig. 5 presents an example of the JSON-based prompt 

structure, and Figure 6 shows the resulting generated output. 
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Fig 5. A prompt for prompt generation on GPT-4-mini model 

 

Fig 6. The generation result: a prompt for Llama 3.2:3b model 

Additionally, semantic retrieval is supported through a lo-

cal vector database queried via Retrieval-Augmented Gener-

ation (RAG). Relevant context fragments are injected into 

each prompt, ensuring that the model's output is both seman-

tically grounded and contextually accurate. 

So far, the instruction is processed as part of the iterative 

prompting loop, where the system performs the following 

steps: 

1. Retrieves relevant fragments from the vector database us-

ing tags such as "stakeholder_goals" and "deliverables". 

2. Constructs a prompt that integrates retrieved content, the 

instruction goal, and global generation rules (e.g., tone, struc-

ture). 

3. Executes the prompt using the LLM, producing a scoped 

and semantically grounded section. 

The resulting output typically begins with a structured sum-

mary of project boundaries, highlights included and excluded 

deliverables, and clarifies key stakeholder expectations, 

which all are grounded in the source context provided by the 

uploaded artifacts. 

This process ensures that generated text is not only gram-

matically correct and coherent, but also aligned with input 

data, methodologically consistent, and easy to validate. If any 

relevant data is missing (e.g., no deliverables listed), the 

model leaves the section incomplete or explicitly notes the 

absence, avoiding hallucinated content.  

The core task defined for the model was text generation 

based on structured input instructions. An example of the in-

structions given for the Project Scope is shown in Fig. 7. Cru-

cially, each iteration updates the prompt dynamically, pre-

serving prior results and refining the context. This strategy 

has shown to be highly effective in reducing hallucinations 

and ensuring continuity across output sections. The base sys-

tem prompt (or system message) is used to define global con-

text and behavior for all interactions with the LLM. 

To optimize prompt formulation, OpenAI’s GPT-4-turbo 

model (May 2024 version) was used to assist in designing the 

system-level prompts for the local LLaMA 3.2:3b model. 

These instructions define the system’s role, generation bound-
aries, and output expectations based on the runtime environ-

ment and technologies used in this project [41]-[42]. 

These instructions clarified the expected format and explic-

itly emphasized that the context PDF file is the sole source of 

truth for content generation. The model was also guided to 

respect the limitations of the local environment and its own 

processing capacity, discouraging overly long or ambiguous 

prompts. 

 

Fig 7. The instructions for Project Scope Statement 
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As a part of the development process, a system prompt was 

iteratively refined and formatted using OpenAI tools, result-

ing in a stable, high-level instruction set. This ensures more 

predictable and consistent model behavior across varying in-

put scenarios. To reduce hallucinations, a key rule was intro-

duced: if essential information is missing from the context, 

the model must leave the corresponding field blank rather 

than fabricate content. 

This strict constraint not only improves trust in the AI-gen-

erated output but also allows for easier human validation. It 

encourages transparent failure handling rather than mislead-

ing completions, which is critical for professional documen-

tation processes. As a result, the JSON files of the required 

documentation fragments are generated.  

The examples of outputs for project scope, requirements un 

stakeholder register are shown in Fig. 8-10. 

The solution supports structured evaluation of generated 

documents based on two perspectives. First, document-level 

criteria assess completeness, terminology, and traceability to 

source inputs. Second, project-specific context examines con-

tent relevance and adaptability based on the detail of provided 

artifacts. Testing with varied project samples confirmed that 

output quality improves with richer inputs. Detailed project 

charters produced precise and tailored documentation, while 

minimal inputs resulted in more generic, though structurally 

valid, content. This demonstrates that the system adapts to in-

put complexity while maintaining consistent structure, mak-

ing it suitable for diverse documentation scenarios across dif-

ferent project environments.

 

Fig 8.A fragment of output JSON for project scope 

 

 

Fig 9. A fragment of output JSON for requirements 
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Fig 10. A fragment of output JSON for stakeholders 

 

B. Solution Testing 

The proposed approach was evaluated using two large lan-

guage models (LLMs): LLaMA 3.2:3b and OpenAI GPT-4-

mini. Both models received a unified instruction template and 

identical context limits. To ensure fairness, GPT-4-mini was 

restricted from using any external tools or accessing the web, 

relying solely on the provided input. To avoid priming effects, 

methodologies behind the instruction design were deliber-

ately excluded from the prompt. 

Each model processed 200-token segments with 50-token 

overlaps. For each evaluation step, five context fragments 

were drawn from the source document to ensure relevant yet 

limited context. Every instruction tied to an artifact was exe-

cuted ten times, and outputs were stored for later analysis. To 

preserve neutrality, LLaMA’s vector database was refreshed 
after each run, while GPT-4-mini was instructed to disregard 

prior outputs and treat each prompt as new. 

Model performance was assessed using a rubric-based 

method, evaluating outputs across five dimensions. Each di-

mension was rated on a scale from 0.00 to 1.00, as detailed in 

Table 1. 

TABLE I. 

RUBRIC SCORE SCALE 

Score Rubric Criteria 

0.00 Output contains incorrect or fabricated data 

0.25 Output is mostly empty or contains only 

fragments 

0.50 Output contains at least one correct element per 

section 

0.75 Output aligns with dimensional expectations but 

lacks details 

1.00 Output fully meets dimensional expectations 

 

Each dimension was further weighted according to its sig-

nificance in the evaluation, with the highest weights assigned 

to hallucination prevention and instruction compliance, given 

their criticality in constrained local environments [43]. Output 

clarity and consistency were assigned lower weights due to 

their less critical impact. The dimension weights are shown in 

Table 2. 

TABLE II. 

EVALUATION DIMENSIONS AND WEIGHTS 

Evaluation Dimension Weight 

Data Hallucinations 0.30 

Contextual Relevance 0.20 

Output Consistency 0.10 

Instruction Compliance 0.30 

Output Clarity 0.10 

 

A similar dimensional evaluation approach has been ob-

served in empirical research investigating hallucinations 

across popular large language models. One such study as-

sessed the hallucination rates of various LLMs by processing 

1,000 documents, with results reported by [44]. Notably, the 

LLaMA 3.2:3b model demonstrated a hallucination rate of 

7.9% in this evaluation. 

In this study, simulation results were aggregated by assign-

ing weights to each evaluation dimension, calculating average 

scores for each output fragment. The outcomes of the ten re-

peated iterations per instruction were averaged, and the di-

mension-specific results are presented in Table 3.   Despite 

architectural and operational differences, that is, LLaMA 

3.2:3b running locally and GPT-4-mini hosted via cloud ser-

vices, both models produced comparable top results. 
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TABLE III. 

EVALUATION DIMENSIONS AND WEIGHTS (1- HALLUCINATIONS, 2 - CONTEXT USE, 3 -  CONSISTENCY , 4 - INSTRUCTION COMPLIANCE, 5 – 

CLARITY) 

Artifact Model 1 2 3 4 5 Overall Scenario 

Scope Statement LLaMA 3.2:3b 0.7 0.5 0.45 0.6 0.75 0.61 One Washington 

 GPT-4-mini 0.9 0.75 0.8 0.8 1.0 0.84 

Requirements Document 

 

LLaMA 3.2:3b 0.6 0.45 0.35 0.5 0.75 0.53 

GPT-4-mini 0.8 0.75 0.8 0.8 1.0 0.81 

Work Breakdown 

Structure 

 

LLaMA 3.2:3b 0.5 0.4 0.3 0.35 0.5 0.42 

GPT-4-mini 0.8 0.75 0.65 0.7 1.0 0.77 

Stakeholder Register 

 

LLaMA 3.2:3b 0.5 0.5 0.3 0.4 0.5 0.45 

GPT-4-mini 0.7 0.7 0.65 0.7 1.0 0.725 

Scope Statement 

 

LLaMA 3.2:3b 0.5 0.5 0.45 0.4 0.75 0.49 Work Reports 

 GPT-4-mini 0.8 0.75 0.8 0.6 1.0 0.75 

Requirements Document 

 

LLaMA 3.2:3b 0.5 0.25 0.35 0.3 0.7 0.4 

GPT-4-mini 0.7 0.75 0.8 0.6 1.0 0.71 

Work Breakdown 

Structure 

LLaMA 3.2:3b 0.4 0.2 0.3 0.25 0.3 0.3 

GPT-4-mini 0.7 0.6 0.65 0.5 1.0 0.64 

Stakeholder Register LLaMA 3.2:3b 0.35 0.35 0.3 0.3 0.4 0.34 

GPT-4-mini 0.6 0.5 0.65 0.5 1.0 0.59 

Scope Statement LLaMA 3.2:3b 0.6 0.5 0.45 0.5 0.75 0.55 Average 

 GPT-4-mini 0.85 0.75 0.8 0.7 1.0 0.79 

Requirements Document LLaMA 3.2:3b 0.55 0.35 0.35 0.4 0.725 0.46 

GPT-4-mini 0.75 0.75 0.8 0.7 1.0 0.76 

Work Breakdown 

Structure 
LLaMA 3.2:3b 0.45 0.3 0.3 0.3 0.4 0.36 

GPT-4-mini 0.75 0.68 0.65 0.6 1.0 0.7 

Stakeholder Register LLaMA 3.2:3b 0.43 0.43 0.3 0.35 0.45 0.39 

GPT-4-mini 0.65 0.6 0.65 0.6 1.0 0.66 

 

The local model performed well when processing frag-

ments closely matching the prompt, but it struggled with se-

mantically diverse expressions. For instance, in requirement 

analysis or stakeholder registers, the instructions required ex-

tracting detailed information implied in the text. Here, GPT-

4-mini showed superior performance in delivering more con-

sistent and contextually aligned outputs. A notable gap was 

observed between the models’ ability to interpret instructions, 
particularly in the LLaMA model. For example, when pro-

cessing a scope statement, LLaMA inferred a resource plan-

ning system implementation based solely on the vague refer-

ence to a “system.” 

An analysis of the results revealed that both models per-

formed better on the One Washington sample. This document 

was more structured, contained instruction-aligned headings, 

and used less academic language. These factors are beneficial 

especially for the local model. 

In contrast, higher hallucination rates were observed when 

processing the productivity project charter. For instance, the 

scope description included a false claim, whereas the delivery 

items correctly referenced the convening of a steering com-

mittee. Similarly, the “Out of Scope” section was accurate. 
However, in the assumptions section expected to list six ele-

ments the model included only two, of which only one was 

correct. This may be attributed to the token limitation, which 

possibly resulted in incomplete sentence inputs that the model 

extrapolated upon. 

Evaluation of GPT-4-mini’s results showed tendencies to-

ward verbosity, as the model often expanded text to produce 

grammatically complete phrases. While linguistically correct, 

these expansions altered the intended meaning, thus reducing 

factual accuracy. For example, among the three output goals, 

only the first two were valid; the third, referencing real-time 

reporting, was not present in the source text. Similar incon-

sistencies and hallucinations were noted across other sections, 

including deliverables and assumptions. 

C. Solution Drawback and Improvements 

Another key observation during evaluation was the differ-

ence in how the models responded to insufficient or ambigu-

ous information. LLaMA 3.2:3b tended to return empty or 

partial outputs when it could not confidently locate the re-

quested data. In contrast, GPT-4-mini frequently attempted to 

complete outputs regardless, even when context was lacking. 

Often generating fabricated content in direct violation of the 

provided instructions. 

In the context of this study, where data integrity is of high 

importance, LLaMA’s behavior was actually preferable. 
Empty outputs are easier to verify, as they indicate uncer-

tainty rather than assumed correctness, which reduces the risk 
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of unintentionally integrating hallucinated data into down-

stream processes. 

The results suggest that smaller, locally hosted models like 

LLaMA 3.2:3b, when given clearly defined instructions and 

constrained environments, are capable of producing viable 

outputs, particularly when a human reviewer is involved in 

validation. Although GPT-4-mini demonstrated superior gen-

eralization abilities, its tendency to confidently fabricate data 

limited its advantage in this controlled use case. 

The test design used small input samples and short text 

fragments. In several cases, both models failed to retrieve rel-

evant content and instead included false or unrelated claims. 

LLaMA also demonstrated high variability between runs: in 

multiple cycles, it returned empty or low-information re-

sponses, likely due to how fragments were selected via the 

nearest-neighbor search over the vector database using 

Ollama embeddings. 

Each processing step queried only five top-matching frag-

ments, assuming semantic accuracy in the embedding model. 

However, no additional validation of the relevance of re-

trieved fragments was performed. Furthermore, the model’s 
iterative process continuously appended data to key/value 

stores without restriction, potentially leading to overwriting 

or compounding errors in later stages. 

In summary, while GPT-4-mini showed superior fluency 

and semantic approximation, it introduced more hallucina-

tions than expected. LLaMA 3.2:3b, though less consistent, 

adhered more strictly to constraints and demonstrated a con-

servative generation strategy more suitable for high-integrity 

documentation workflows in local AI-assisted systems. 

VI. CONCLUSION 

This study demonstrates that the integration of generative 

AI into IT project documentation processes is not only feasi-

ble but also valuable, which is provided by the frame within a 

model-driven and standards-aligned architecture. By combin-

ing the expressive capabilities of large language models with 

the structural rigor of model-driven development, the pro-

posed solution supports the generation of high-quality, se-

mantically consistent documentation artifacts during the early 

phases of IT projects.  

From a theoretical perspective, this work contributes to the 

design science research body of knowledge by introducing a 

novel artifact: a model-based framework that constrains and 

guides generative AI outputs. It builds upon the principles of 

semantic control in AI-assisted software engineering, show-

ing that MDD structures can serve as effective scaffolds for 

LLM behavior. Additionally, it expands on prior work in doc-

umentation automation by demonstrating how prompt engi-

neering, semantic traceability, and formal process alignment 

can mitigate common challenges such as hallucinations and 

incoherence. 

In terms of practical implications, the solution enables pro-

ject teams, especially in resource-constrained environments, 

to accelerate and standardize documentation workflows with-

out compromising methodological integrity. The prototype 

shows that even with local infrastructure, it is possible to har-

ness generative AI tools securely and effectively. Reusable, 

cross-method instruction sets and alignment with common 

standards further enhance the applicability and scalability of 

the approach in varied project contexts. 

Several key findings of the research are as follows: 

1. Structured inputs and well-defined transformation rules 

significantly improve the quality and reliability of AI-gener-

ated documents. 

2. Embedding documentation within a model-driven frame-

work allows for semantic validation, traceability, and reduced 

ambiguity. 

3. Local deployment of LLM-based tools is technically fea-

sible and aligns with data governance requirements in many 

organizations. 

4. Standard elements (e.g., objectives, risks, assumptions) 

can be reused across methods, enabling cross-framework con-

sistency in documentation practices. 

This research opens new avenues for extending the frame-

work to other documentation types and domains (e.g., test 

plans, architecture overviews, compliance checklists), and for 

integrating dynamic feedback loops to iteratively refine gen-

erated content based on stakeholder input or project evolution. 

Future work could explore as follows: 

1. Comparative evaluation across multiple LLMs and do-

main contexts; 

2. Deeper integration with enterprise modeling tools or agile 

project platforms; 

3. Automated validation mechanisms for AI-generated arti-

facts. 

In conclusion, the results affirm that generative AI, when 

properly constrained and guided, can enhance formal docu-

mentation practices in IT project management. Rather than re-

placing human expertise, such tools augment human capabil-

ities, i.e., improving efficiency, consistency, and knowledge 

transfer in complex project environments. 
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