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Abstract—Recent advances in single- and multi-image super-
resolution have revealed the limitations of classical image sim-
ilarity metrics (like peak signal-to-noise ratio), as they often
fail to align with human perception when evaluating the visual
quality of super-resolved outputs. In this paper, we explore how to
exploit keypoint-based metrics to evaluate super-resolution image
quality. Specifically, we explore two correlated metrics: (i) a multi-
scale index proposal measure capturing salience of keypoints,
and (ii) a repeatability metric quantifying how consistently the
corresponding keypoints are identified in super-resolved and
ground-truth images. Experiments on several simulated and
real-world datasets show that the repeatability correlates with
subjective judgments, and multi-scale index proposal can be
helpful for difficult datasets when other metrics are insufficient.

I. INTRODUCTION

L
OW-RESOLUTION (LR) images pose a significant chal-

lenge in diverse imaging fields, from satellite surveillance

to medical diagnostics. Physical constraints or adverse capture

conditions often lead to low-quality data with insufficient

detail. To address this, image super-resolution (SR) techniques

reconstruct high-resolution (HR) images from LR inputs,

effectively enhancing visual clarity and texture.

In recent years, deep learning-based SR methods have

achieved impressive results, producing images with sharper

edges and more natural details than classic interpolation

schemes. However, these advances introduce a pressing need

for robust image quality assessment (IQA) metrics tailored to

super-resolved images. Traditional full-reference (FR) metrics

such as peak signal-to-noise ratio (PSNR) and structural sim-

ilarity index measure (SSIM) compare the SR output against

a ground-truth reference at the pixel or local structural level.

While useful for measuring basic fidelity, these methods often

do not capture the subjective quality that humans perceive—

especially in SR outputs that introduce plausible, but non-

identical, high-frequency details.
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Ultimately, human viewers prioritize perceptual realism,

focusing on sharp textures, coherent structures, and absence

of distracting artifacts. An SR image that looks over-smoothed

or contains noticeable distortions in critical regions may be

subjectively worse, even if it has a high value of PSNR or

SSIM metric. Conversely, an image that retains the essential

scene layout while adding visually consistent fine details

can be perceived as high quality despite larger pixel-wise

differences from the ground truth. This observation drives the

development of alternative IQA methods that better reflect

human visual preferences and the complex trade-offs between

fidelity and realism in SR.

The primary objective of this study is to explore keypoint-

based metrics as a means of evaluating the quality of super-

resolved images. Unlike traditional IQA metrics that focus on

pixel-wise fidelity or perceptual similarity, our approach inves-

tigates the geometric and structural consistency of SR output

through the lens of local feature detection. Keypoint-based

metrics were also exploited for that purpose in [1]; however,

that approach relies on conventional techniques that are non-

differentiable, which limits its applicability for training deep

neural networks. In this work, on the other hand, we aim at

adapting methods based on deep learning, in order to allow for

applying them to task-driven training in the future. To achieve

this, we leverage the capabilities of Key.Net [2], a neural

network designed for keypoint detection tasks that combines

hand-crafted and learned convolutional filters within a shallow

multiscale architecture. In particular, we examine the utility

of the repeatability, a widely adopted metric in local feature

evaluation [3], which measures the consistency of keypoint

detection under various transformations, and the multi-scale

index proposal (MSIP), introduced as a loss function for

training Key.Net [2]. We extend this idea to the SR domain,

under the assumption that a high-quality super-resolved image

should exhibit similar keypoint number and distributions to the

ground-truth reference image.

The paper is organized as follows. Section II reviews

related work on SR methods and quality assessment metrics.

Section III describes the datasets used for the evaluation.
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Section IV details the proposed keypoint-based approach and

metric configurations. Section V presents the experimental

setup and results. Section VI summarizes the paper and

provides directions for future research.

II. RELATED WORK

A. SR Techniques: Major Categories and State of the Art

SR is highly relevant in domains where capturing higher-

resolution imagery directly is impractical due to physical or

cost-related constraints [4]. Applications span security surveil-

lance, medical imaging, and remote sensing [5]. For instance,

in satellite imaging, SR algorithms may be the only way to

obtain finer details when sensor resolution is limited or hiqh-

quality image acquisition is too expensive [4]. Over the past

two decades, a vast array of SR methods have been proposed,

generally categorized into single-image SR (SISR) approaches

(relying on a single LR input) and multi-image SR (MISR)

approaches (fusing multiple observations of the same scene).

Early SISR techniques were based on interpolation and

example-based methods, long before the deep learning era.

Interpolation-based methods such as bilinear or bicubic inter-

polation provide simple baselines by smoothing and enlarging

pixel grids, but tend to produce blurry results due to their lim-

ited modeling of image structure. More sophisticated classical

methods leveraged natural image priors. For example, patch-

based dictionary learning and sparse coding became influential

around 2010. Yang et al. [6] pioneered learning pairs of small

patches from LR–HR images, known as dictionary atoms, so

that a sparse linear combination of LR atoms can reconstruct

high-frequency details via the corresponding HR atoms. This

sparse representation approach achieved sharper results than

interpolation by reusing high-frequency patterns from training

data.

Convolutional neural network (CNN) models brought a

breakthrough in SISR by learning the LR-to-HR mapping from

large datasets. The seminal SRCNN [7] of Dong et al. was the

first CNN for SR, with a three-layer network directly learning

to improve the quality of interpolated LR inputs. Despite its

simplicity, SRCNN significantly outperformed sparse-coding

methods, demonstrating the power of data-driven feature ex-

traction. Dong et al. later proposed FSRCNN [8], an accel-

erated variant that operates in the LR space for efficiency.

Kim et al. introduced a very deep SR network (VDSR) [9]

with ca. 20 layers and residual learning to ease training.

Subsequently, the EDSR model removed batch normalization

to allow for even deeper residual networks, achieving state-

of-the-art performance in the 2017 NTIRE challenge [10].

By 2017, generative adversarial networks (GANs) emerged

to tackle a core limitation of purely mean squared error

(MSE) optimized CNNs: overly smooth outputs lacking high-

frequency texture. Ledig et al. proposed SRGAN [11], intro-

ducing adversarial training to favor perceptually sharp results.

SRGAN’s generator (a deep ResNet architecture, also known

as SRResNet, due to its use of residual learning blocks)

is trained with a discriminator to produce outputs that are

difficult to distinguish from real HR images. This GAN-based

approach produced much crisper and more detailed images, at

the cost of lower PSNR. Wang et al. later improved this with

ESRGAN [12], which used residual-in-residual dense blocks

and a more perceptually aligned loss, resulting in more natural

textures. Beyond perceptual losses, task-driven objectives have

emerged to tailor super-resolution to downstream applications.

For instance, Zyrek and Kawulok [13] proposed a method that

optimizes SISR for improved text recognition from scanned

documents by combining image similarity with text detection

objectives.

While not directly focused on SR, Bairi et al. [14] addressed

the related problem of image reconstruction from compressive

sensing data. Their dual-path framework integrates Vision

Transformers and perceptual optimization, combining global

contextual modeling with perceptual loss to enhance recon-

struction quality beyond traditional fidelity-driven methods.

Most recently, diffusion probabilistic models have been

applied to SISR, marking a new frontier in fidelity and

diversity. Saharia et al. introduced SR3 [15], which adapts

denoising diffusion models for SR. Starting from pure noise,

SR3 iteratively denoises the input while being conditioned on

the LR image, generating highly photo-realistic outputs.

Whereas SISR relies on learned priors to hallucinate missing

details, MISR methods exploit actual complementary infor-

mation from multiple observations of the same scene. By

combining a sequence of LR images (often with subpixel

shifts between them), MISR can surpass the limits of single-

image fidelity. Traditional MISR techniques were rooted in

multi-frame reconstruction theory and often cast as Bayesian

or regularized optimization problems. A classical formulation

assumes each LR image is a warped, blurred, downsampled,

and noisy version of an unknown HR image. The SR task

is then to invert this imaging model. Early solutions like the

work [16] of Schultz and Stevenson employed a maximum a

posteriori (MAP) estimator with a smoothness prior, solved

via iterative back-projection or gradient descent. Farsiu et

al. later proposed a fast and robust SR (FRSR) [17] MISR

algorithm that combined an L1-norm fidelity term (robust

to outliers) with a simplified regularization, and crucially

computed registration error in the HR space to avoid repeated

interpolations. Such approaches (e.g., Bayesian inference,

maximum likelihood or MAP estimation) dominated MISR

for years, incorporating robust alignment and prior terms

to handle noise and misregistrations. However, they often

required careful tuning and were computationally intensive.

With the rise of deep learning, MISR has seen new data-

driven approaches addressing the key challenges of alignment

and fusion. The first application of deep learning in MISR

was EvoNet, presented in [4], where the method combines

the advantages of multi-image fusion with learning the LR-

to-HR mapping using deep networks, achieving superior re-

construction accuracy compared to state-of-the-art SR meth-

ods. A milestone in deep MISR was the PROBA-V Super

Resolution Challenge [18], which spurred the development

of several methods, including the HighRes-net by Deudon et

al. [19] and the winning approach, DeepSUM [20]. HighRes-
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net introduced an end-to-end trainable framework to jointly

learn co-registration of multiple LR frames and their fusion

into a single HR output. It uses a recursive fusion strategy

with an implicit reference frame, eliminating the need for

explicit motion compensation between inputs. DeepSUM, on

the other hand, leverages deep neural networks to efficiently

integrate spatial and temporal information from unregistered

multi-temporal images, achieving superior reconstruction qual-

ity. Another notable model is the residual attention MISR

(RAMS) network [21] by Salvetti et al. RAMS integrates

attention mechanisms into a deep CNN to adaptively weight

the contribution of each pixel from each image during fusion.

Current state-of-the-art MISR research often borrows archi-

tectures from SISR and video SR, enhanced to handle multiple

unordered inputs. Transformer-based MISR models [22][23]

have recently emerged, leveraging self-attention to capture

long-range dependencies across frames. Another approach is

to represent a stack of input images as a graph which is super-

resolved with a graph neural network [24] or graph attention

network [25].

B. Image Quality Assessment

Despite the progress in SR algorithms, evaluating the qual-

ity of super-resolved images remains challenging. Generally,

IQA methods are classified into FR, reduced-reference (RR),

and no-reference (NR) approaches, depending on how much

ground truth information is available [26]. FR-IQA metrics

(e.g., PSNR, SSIM) compare the output directly against a

reference image, RR-IQA methods use partial information

about the reference (such as features or the input LR image),

and NR-IQA (also called blind IQA) relies only on the output

itself. In conventional restoration tasks, FR metrics like PSNR

and SSIM have been widely used since a ground-truth HR

image is usually available for synthetic test cases. However,

these classical metrics focus on signal fidelity and often corre-

late poorly with human visual perception when applied to SR

results. A super-resolved image that looks sharp and realistic

to a human observer, might score worse in PSNR/SSIM than a

blurry image that stays pixel-close to the reference [27]. This

is especially true for GAN-based SR methods which introduce

high-frequency content: they achieve higher subjective quality

but lower PSNR (the perception-distortion dilemma [28]). As a

result, learning-based IQA metrics have gained traction. These

include deep feature-based distances like learned perceptual

image patch similarity (LPIPS) [29] (which compares images

in a CNN feature space) and deep image structure and texture

similarity (DISTS) [30], as well as neural networks trained to

predict human opinion scores.

For SR evaluation, both fidelity and perceptual quality are

important, and researchers have devised specialized metrics

to handle the conflicts between them [31]. Several recent

works propose SR-specific IQA methods that account for

characteristics of SR outputs.

FR-IQA compares the super-resolved image directly with

its HR ground truth. Metrics like PSNR and SSIM are most

commonly used, offering objective and repeatable evaluation.

PSNR measures pixel-wise fidelity based on mean squared

error, while SSIM captures local luminance, contrast, and

structure similarities. Despite their popularity, these metrics

often fail to reflect perceptual quality, especially for SR results

generated by GAN-based models, which prioritize sharpness

and realism over strict pixel accuracy [26][27]. Due to struc-

tural differences from the ground truth, more advanced FR

methods have been proposed that analyze images in gradient,

wavelet, or perceptual feature domains. For example, phase

congruency and gradient magnitude have been employed to

better model human sensitivity to edge structures, as illustrated

by the FSIM metric [32], which leverages both features within

a full-reference evaluation framework. While FR metrics are

ideal for synthetic SR benchmarks with available HR refer-

ences, they are unsuitable in real-world settings where such

references are missing.

RR-IQA methods evaluate quality using partial information

from the reference, often in the form of extracted features

or the LR input image itself. This makes RR approaches

more practical than FR in real-world SR scenarios, where full

ground truth is unavailable. Early RR methods focused on edge

preservation, texture statistics, or wavelet-based similarities

between LR and SR images [27]. More recent approaches, like

PFIQA [5], use deep neural networks to combine perceptual

and fidelity-aware branches, leveraging both the SR image

and the LR input alongside auxiliary information (e.g., scale

factor). These models better reflect human perception by

assessing whether reconstructed details are consistent with the

available input and visually plausible. RR-IQA is especially

valuable for detecting artifacts that contradict known image

structures or suggest overfitting (e.g., excessive sharpening).

While RR approaches strike a balance between fidelity and

perception, they remain limited in evaluating purely halluci-

nated textures, as they cannot fully determine whether added

details are semantically correct.

The NR-IQA approach is the most flexible and challenging

setting, as it operates solely on the super-resolved image

without any access to ground truth or input. NR metrics

are indispensable in real-world applications, where only the

output is available. Early NR-IQA approaches relied on natural

scene statistics, assuming that distortions in SR images would

cause statistical deviations. Methods like natural image quality

evaluator (NIQE) [33] are based on statistical features derived

from natural images and estimate deviations associated with

sharpness, noise, and unnatural textures. These were later com-

bined into composite scores like the perceptual index (PI) [27],

which became widely used in perceptual SR evaluation.

Recent NR-IQA methods leverage deep learning to directly

predict subjective quality from image content. For example,

KLTSRQA [34] uses Karhunen-Loève transform-based fea-

tures, while others employ CNNs or transformers trained with

human opinion scores [27]. Knowledge distillation techniques

have also been introduced to train NR-IQA models using

pseudo-labels obtained from strong full-reference models [27].

Although modern NR-IQA metrics outperform traditional ones

in terms of perceptual alignment, they still face challenges
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related to generalization and distinguishing realistic textures

from artifacts without reference anchors.

III. DATASETS

In the field of SR, selecting appropriate datasets is crucial

for evaluating the performance of quality assessment metrics.

This research leverages three distinct datasets: CVIU-17 [35],

SISAR [36], and MuS2 [37]. The first two are widely em-

ployed [27], [31], [26] in the field of IQA, whereas the third

one presents an intriguing complement owing to its distinctive

characteristics. Below, we provide detailed descriptions of

these datasets, highlighting their composition, purposes, and

contributions to advancing SR research.

A. CVIU-17

The CVIU-17 dataset is a publicly available resource tai-

lored for evaluating IQA metrics in the context of SISR. It

comprises 180 LR images and 1,620 HR images, generated

using nine distinct SR algorithms across six integer scaling

factors (see Fig. 1). LR images were generated by applying

a combination of downsampling and blurring to the original

images from the BSD200 dataset [38].

Fig. 1. An example from the CVIU dataset showing super-resolved images
obtained using various SR methods. The visual comparison highlights the
differences in reconstruction quality across methods.

B. SISAR

The SISAR dataset (SR image quality database with semi-

automatic ratings) stands as the largest-of-its-kind resource for

IQA. It contains 12,600 labeled HR images derived from 100

natural LR images, each with a resolution of 1024× 768 (see

Fig. 2). These HR images were generated using ten types of SR

algorithms. SISAR’s scale and diversity make it an invaluable

asset for developing robust and generalizable IQA metrics,

paving the way for more accurate quality predictions in SR

applications.

Fig. 2. An example scene from the SISAR dataset showing images super-
resolved using various methods. The figure includes Bicubic Interpolation,
RLLR, SRCNN, and VDSR, illustrating the visual differences in image quality
achieved by each method.

C. MUS 2

The MuS2 dataset is a specialized benchmark for MISR

of Sentinel-2 satellite [37]. It addresses the challenge of

improving the spatial resolution of Sentinel-2 imagery, which

has a ground sampling distance of 10 meters, by using HR

WorldView-2 imagery as a reference. The dataset includes 91

scenes (see Fig. 3), each containing 14 or 15 Sentinel-2 LR

images across 12 spectral bands, paired with corresponding

WorldView-2 HR images. All LR and HR image pairs in MuS2

are pre-aligned, and no geometric misalignments are present.

MuS2 is particularly significant for remote sensing ap-

plications, where HR imagery is critical for tasks such as

environmental monitoring, urban planning, and disaster man-

agement. Unlike many SR datasets that rely on simulated data,

MuS2 provides real-world data, capturing the complexities of

satellite imaging, such as atmospheric variations and temporal

changes. This realism makes it an ideal testbed for developing

and validating MISR algorithms that fuse information from

multiple images to achieve superior reconstruction accuracy.

IV. PROPOSED APPROACH

The main goal of this study is to investigate the use of

keypoint-based metrics for assessing the quality of super-

resolved images. These metrics, derived from Key.Net, include

MSIP and the repeatability.

Key.Net [2] is a hybrid keypoint detection model that

combines handcrafted and learned CNN filters within a multi-

scale architecture. The handcrafted filters are inspired by

traditional methods like Harris [39] detectors, capturing first

and second-order image derivatives. These filters act as soft

anchors, reducing the number of learnable parameters and

improving stability. Key.Net also incorporates a multi-scale

pyramid representation, which enhances robustness to scale
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Fig. 3. An example scene from the MuS2 dataset, showing both LR and HR images. The figure includes bicubic interpolation of a mean LR, averaged
image of bicubic interpolation outcomes from each LR image, as well as super-resolved images obtained from HighRes-net and RAMS networks trained
using real-world PROBA-V images and from a simulated dataset.

changes by processing the input image at multiple scales. The

learned filters are then applied to these multi-scale features

to localize, score, and rank keypoints. The model uses a

novel MSIP layer as loss function, which optimizes keypoint

detection by leveraging both local and global information.

The MSIP module extends the concept of the index proposal

(IP) layer by aggregating multiple IP layers applied at different

spatial scales. Each IP layer operates on a shared response

map using a local window of size Ns×Ns, where Ns denotes

the scale-specific window size. Within each window, a spatial

softmax operator is used to convert raw activation values into a

probability distribution, highlighting the most prominent local

responses. This results in differentiable keypoint localization,

computed as the expected coordinate (weighted average) of

positions within the window.

By stacking several IP layers with increasing window sizes,

MSIP is able to extract keypoints that are not only locally

salient but also stable across spatial scales. This multi-scale

strategy improves robustness and suppresses unstable detec-

tions, as only keypoints that persist across larger contexts

are retained. This design encourages the detector to favor

geometrically consistent keypoints that are resilient to scale

variations, improving repeatability under transformation.

The repeatability quantifies how consistently keypoints are

detected between two images of the same scene (e.g., the

reference HR and its super-resolved counterpart). A keypoint

is considered repeatable if it has a corresponding match within

a defined spatial tolerance, often under geometric transforma-

tions such as scaling or homography. Formally, it is defined

as:

repeatability =
|Ka ∩ Kb|

min(|Ka|, |Kb|)
, (1)

where:

• Ka and Kb are the sets of keypoints detected in images

Ia and Ib, respectively.

• |Ka ∩ Kb| is the number of matching keypoints between

the two images.

• min(|Ka|, |Kb|) is the minimum number of keypoints

detected in either image.

In this implementation, keypoints are defined by both their

spatial coordinates and the scale at which they were de-

tected. To determine whether two keypoints correspond, the

intersection-over-union (IoU) is computed between the circu-

lar regions centered at each keypoint, scaled according to their

associated detection scale. A match is established, if the IoU

exceeds a fixed threshold. The repeatability can be measured

at a single scale, reflecting keypoint consistency under fixed

resolution, or across multiple scales, which accounts for ro-

bustness to scale variations. Multi-scale repeatability provides

a more comprehensive assessment of detector stability under

varying image resolutions.

The process of calculating keypoint-based metrics is pre-

sented in Fig. 4. To compute MSIP and Repeatability, the

SR and HR images are converted to grayscale. Then, each of

them is passed through the Key.Net network. As the output of

Key.Net, a response map is obtained, and further calculations

are performed depending on the metric:

• MSIP: Both response maps (SR and HR) are processed

through the MSIP layer, which extracts sets of stable

keypoints at different scales.

• Repeatability From the response maps, Non-Maximum

Suppression (NMS) is applied to obtain sets of keypoints.

IoU between corresponding keypoints from SR and HR

images is calculated, resulting in the repeatability metric.
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Fig. 4. A pipeline for keypoint-based metrics calculation in IQA for SR. Super-resolved and HR images are converted to grayscale, processed through Key.Net
to obtain response maps, and further analyzed using MSIP and repeatability metrics.

We hypothesize that incorporating keypoint repeatability

into IQA offers a promising alternative to perceptual or

distortion-based measures. To verify this, we compute both

conventional metrics—PSNR, SSIM, and LPIPS—as well as

keypoint-based metrics, including single-scale repeatability

(REP_S), multi-scale repeatability (REP_M), and the MSIP

for all three datasets. Furthermore, for the CVIU17 and SISAR

datasets, where mean opinion scores (MOS) are available, we

measure correlation between metric predictions and human

perceptual judgments.

V. EXPERIMENTS

A. Experimental Setup

We carried out experiments on three standard IQA datasets

for SR: CVIU-17, SISAR, and MuS2. Both CVIU-17 and

SISAR provide HR images and MOS, enabling correlation

analysis of objective metrics with human perception. In con-

trast, MuS2 lacks MOS labels and focuses on Sentinel-2

satellite images for MISR.

Since our approach does not require additional training, we

directly used the super-resolved images and the correspond-

ing HR images from each dataset. We applied the Key.Net

model (PyTorch implementation) with the original pretrained

weights; only minor modifications were introduced to handle

grayscale conversion (for CVIU-17 and SISAR) and kernel

sizes in the MSIP function. For the purposes of keypoint-based

analysis, we assumed an identity homography transformation,

implying no geometric discrepancies between the HR images

and corresponding SR outcomes.

In our experiments, we evaluated several configurations of

the MSIP function to understand how varying kernel sizes

and weighting strategies affect the keypoint-based assessment

of super-resolved images. We decided to use this division to

systematically analyze the impact of different scale levels on

the quality of keypoint detection.

• MSIP_default: The default Key.Net configuration, em-

ploying four scales with decreasing weights.

• MSIP_5: Single-scale variant using only the smallest

kernel size for window.

• MSIP_17: Single-scale variant using only the largest

kernel size for window.

Table I summarizes the kernel sizes and weights for each

MSIP variant used in both scenarios.

TABLE I
MSIP CONFIGURATIONS USED FOR CVIU-17, SISAR, AND MUS2.

MSIP Variant Kernel Sizes Weights

MSIP_default 5× 5, 9× 9, 13× 13, 17× 17 1.0, 0.5, 0.25, 0.12
MSIP_5 5× 5 1.0
MSIP_17 17× 17 1.0

We computed the following metrics for each super-resolved

and HR image pair: PSNR, SSIM, LPIPS, and the proposed

set of keypoint-based metrics (MSIP, REP_S, REP_M). Where

MOS annotations existed (CVIU-17, SISAR), we calculated

the Pearson linear correlation coefficient (PLCC), Spearman

rank-order correlation coefficient (SRCC), and root mean

squared error (RMSE) between each metric’s prediction and

the MOS. To facilitate fair comparison across metrics, all

correlation scores were normalized.

B. Results and Analysis on SISR IQA Benchmark Datasets

Table II shows that Dong11 yield the highest MOS

(0.5491), surpassing simpler methods like bicubic interpo-

lation (0.4603). Although these top MOS approaches do

not always achieve the highest PSNR or SSIM, they align

more closely with the keypoint-based REP_M scores. This

finding supports the well-known perception-distortion tradeoff,

wherein an image may visually please observers but deviate

from the ground truth at the pixel level.
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TABLE II
EVALUATION OF SR METHODS ON THE CVIU-17 DATASET.

Method PSNR SSIM LPIPS REP_S REP_M MSIP_default MSIP_5 MSIP_17 MOS

Bicubic 24.5020 0.6653 0.4435 87.7187 84.2950 0.1134 0.0420 0.1235 0.4603
BP 24.5766 0.6751 0.4143 87.8826 84.5593 0.1136 0.0412 0.1243 0.4867
Shan08 22.8392 0.5890 0.4627 83.9553 79.1901 0.1926 0.0534 0.2822 0.2834
Glasner09 24.3997 0.6786 0.3393 87.3181 83.6684 0.1188 0.0409 0.1587 0.4467
Yang10 24.5002 0.6752 0.3663 87.0764 83.5761 0.1173 0.0428 0.1295 0.5138
Dong11 24.1746 0.6661 0.3838 88.4883 85.2192 0.1308 0.0449 0.1637 0.5491
Yang13 24.6486 0.6822 0.3466 87.4525 84.1223 0.1110 0.0393 0.1392 0.5426
Timofte13 24.6546 0.6767 0.3379 86.9872 83.5923 0.1090 0.0385 0.1241 0.5248
SRCNN 24.6925 0.6802 0.3403 88.1164 84.6920 0.1141 0.0407 0.1177 0.5444

PLCC 0.5835 0.6317 0.7529 0.5899 0.6769 0.4816 0.4865 0.3364 -
SRCC 0.5716 0.6274 0.7401 0.6280 0.7164 0.5318 0.4929 0.3953 -
RMSE 4.9681 4.8174 4.8293 4.6891 4.7130 4.6094 4.7082 4.5634 -

TABLE III
EVALUATION OF SR METHODS ON THE SISAR DATASET

Method PSNR SSIM LPIPS REP_S REP_M MSIP_default MSIP_5 MSIP_17 MOS

BICUBIC 21.8163 0.6551 0.5001 56.3998 48.9003 0.0813 0.0141 0.1543 0.4494
RLLR 18.2244 0.5803 0.5227 46.9003 39.6196 0.1051 0.0163 0.2193 0.4409
SRCNN 18.1481 0.5748 0.5474 51.0858 42.6164 0.0960 0.0158 0.1893 0.4727
VDSR 22.7156 0.6738 0.4664 64.3389 56.1876 0.0639 0.0130 0.1105 0.4896

PLCC 0.6174 0.4830 0.6185 0.6957 0.7133 0.5679 0.4386 0.4956 -
SRCC 0.6129 0.4882 0.6059 0.6861 0.7021 0.5931 0.4263 0.5771 -
RMSE 0.2296 0.2611 0.2147 0.2098 0.2131 0.3241 0.2616 0.4238 -

Comparing the MSIP configurations in Table II, we observe

that single-scale variants (MSIP_5, MSIP_17) can diverge

significantly for certain SR methods, suggesting that analyz-

ing only a single kernel size may overlook important local

structures. Correlation part of this table, reinforces this obser-

vation: the correlation of MSIP_5 and MSIP_17 with MOS

is generally lower than that of MSIP_default, indicating that

decreasing weights over multiple kernels are more effective

than a single-scale approach.

A similar trend appears in Table III, where VDSR achieves

the highest MOS (0.49) but not the highest PSNR. The local

structure measures REP_S and REP_M exhibit a relatively

high correlation with MOS, implying that preserving essential

edges and textures is key to subjective quality. As in the

CVIU-17 dataset, the single-scale MSIP_5 and MSIP_17 lag

behind MSIP_default in terms of correlation metrics, though

MSIP_default still does not reach the correlation levels of

REP_M. This suggests that while MSIP has potential for

capturing perceptual differences in super-resolved images, it

may require additional tuning or refined weighting strategies

to better reflect subjective quality.

Both tables also presents a direct comparison of PLCC,

SRCC, and RMSE against MOS for both datasets. As ex-

pected, PSNR and SSIM show modest correlations, consistent

with their known limitations in modeling perceptual sharpness

or high-frequency details. LPIPS reports a higher correlation,

which is unsurprising, as it is designed to capture perceptual

similarities. The keypoint-based metrics REP_S and REP_M

outperform classic metrics in most cases, highlighting that

matching local structure and geometry is highly relevant to

subjective quality. In comparison, the MSIP_default variants of

MSIP reveal a promising correlation but trail behind the best

REP_M scores, indicating that further refinement of multi-

scale configurations and weighting choices could improve

MSIP-based evaluations.

C. Results and Analysis on the Real-World MISR Dataset

Below, we summarize the results of various SR approaches

on the MuS2 dataset, which includes Sentinel-2 satellite im-

agery. Table IV covers both baseline methods (Bicubic) and

SR models trained on real-world PROBA-V (NIR or RED

bands) or simulated Sentinel-2 data. Specifically:

• Bicubic Mean: Single bicubic upsampling of an averaged

LR frame.

• Mean Bicubic: Bicubic upsampling of each LR frame

followed by averaging.

• HighRes-net (PROBA-V NIR) / HighRes-net (PROBA-V

RED): HighRes-net variants trained on PROBA-V data

(NIR or RED bands).

• HighRes-net (simulated): A HighRes-net variant trained

on simulated Sentinel-2 data.

• RAMS (PROBA-V NIR) / RAMS (PROBA-V RED):

RAMS variants trained on PROBA-V data (NIR or RED

bands).

• RAMS (simulated): A RAMS variant trained on synthetic

Sentinel-2 data.

A closer look at the metrics reveals several key issues:

1) Bicubic Mean and Mean Bicubic achieve the highest

PSNR and relatively high SSIM values, yet their LPIPS

and MSIP scores are very poor. Based on the article [37],

they produce visually the smoothest (most blurred) out-

puts, confirming that high PSNR and SSIM alone may

not indicate perceptually sharp images. MOS study was
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TABLE IV
EVALUATION RESULTS ON THE MUS2 DATASET. IN THE BRACKETS, WE INDICATE THE DATASET USED FOR TRAINING (REAL-WORLD PROBA-V OR

SIMULATED IMAGES).

Method PSNR SSIM LPIPS REP_S REP_M MSIP_default MSIP_5 MSIP_17

Bicubic Mean 24.1514 0.6012 0.5667 42.3759 24.0449 0.5470 0.0815 1.1352
Mean Bicubic 24.1515 0.6012 0.5667 42.3708 24.0607 0.5457 0.0815 1.1403
HighRes-net (PROBA-V NIR) 23.9385 0.5970 0.4357 42.7648 28.4317 0.5163 0.0806 1.0476
HighRes-net (PROBA-V RED) 23.9802 0.5995 0.4476 42.0976 26.5394 0.5244 0.0798 1.0775
HighRes-net (simulated) 23.6873 0.5415 0.4905 43.1661 28.4554 0.5349 0.0857 1.0651
RAMS (PROBA-V NIR) 23.9743 0.6004 0.4420 42.6352 28.5710 0.5109 0.0815 1.0271
RAMS (PROBA-V RED) 24.0145 0.6015 0.4593 41.0973 25.8652 0.5233 0.0808 1.0686
RAMS (simulated) 23.8417 0.5324 0.5621 43.3115 28.5120 0.5198 0.0831 1.0436

also done, but the methodology does not allow for such

analysis as with CVIU/SISAR.

2) RAMS (PROBA-V NIR) delivers the best visual quality

overall. It achieves consistently strong metrics across the

board, showing the highest MSIP and REP_M scores

and ranking second-best in LPIPS. This suggests an

excellent balance between fidelity and perceptual quality.

3) The second-best visual performance is offered by

HighRes-net (PROBA-V NIR), which maintains strong

metrics and a low LPIPS, indicative of better perceptual

alignment.

4) Models trained on synthetic Sentinel-2 data have lower

PSNR and weaker SSIM values compared to their

PROBA-V counterparts. Despite this, they achieve rela-

tively high REP_S and REP_M scores, indicating their

ability to reconstruct sharper local details, even in the

absence of precise pixel-level alignment with the refer-

ence image.

In summary, Bicubic Mean and Mean Bicubic yield the

highest PSNR and SSIM, but the worst perceptual outcomes

and poor LPIPS and MSIP scores. By contrast, RAMS

(PROBA-V NIR) stands out visually, backed by strong metrics,

with HighRes-net (PROBA-V NIR) close behind. Meanwhile,

the simulated Sentinel-2 models confirm that sharper details

may be underappreciated by fidelity-based metrics (PSNR,

SSIM) but can be captured by the repeatability and perceptual

assessments.

VI. CONCLUSION

In this study, we explored the utility of keypoint-based

metrics for assessing the quality of super-resolved images

across single- and multi-image scenarios. By capturing lo-

cal feature consistency through multi-scale repeatability, our

approach complements conventional fidelity metrics (PSNR,

SSIM) and perceptual measures (LPIPS), providing a stronger

alignment with human subjective ratings. Experimental results

on CVIU-17, SISAR, and MuS2 confirm that multi-scale

keypoint detection highlights structurally salient regions that

significantly influence observers’ quality judgments. More-

over, the proposed MSIP variants offer an effective means

to combine different spatial kernels and weights, focusing on

various frequency components within super-resolved images.

Although the proposed metrics show strong potential, fur-

ther work is needed to address current limitations and explore

open challenges. First, the comparison with advanced full- and

no-reference IQA metrics is limited; extending this analysis

is essential to fully position keypoint-based evaluation within

the broader IQA landscape. Ongoing research focuses on

adapting the MSIP metric specifically for SR tasks, both as

a standalone quality measure and as a trainable loss function

in SR models. Preliminary results indicate its potential to be

comparable with state-of-the-art perceptual metrics. Addition-

ally, future work should address geometric misalignments by

evaluating repeatability under non-identity homographies and

by integrating registration-aware keypoint detectors. Finally,

we plan to extend the MuS2 dataset with human opinion

scores, enabling more robust evaluation of MISR methods in

real-world settings.
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IEEE, 2024. doi: 10.15439/2024F7855 p. 259–264.

[14] Z. Bairi, K. B. Bey, O. Ben-Ahmed, A. Amamra, and A. Bradai, “Dual-
path image reconstruction: Bridging vision transformer and perceptual
compressive sensing networks,” in Proceedings of the 18th Conference

on Computer Science and Intelligence Systems, ser. Annals of Computer
Science and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzy-
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