Uit

Proceedings of the 20" Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 519-530 ISSN 2300-5963 ACSIS, Vol. 43

DOI: 10.15439/2025F8874

While-guard Synthesis by Abstract Static Analysis
and CHC Solving

Aleksandar S. Dimovski
0000-0002-3601-2631
Mother Teresa University
Skopje, North Macedonia
aleksandar.dimovski @unt.edu.mk

Abstract—This paper introduces a novel technique for auto-
matically synthesizing assertion-safe while-guards in imperative
programs. Given a partial program (sketch) with missing while-
guards, the proposed algorithm synthesizes complete Boolean
expressions for the missing ones, such that the obtained complete
program satisfies the given assertions. To solve this problem, our
technique uses forward and backward abstract static analyses
of programs to generate (logical) constraints with unknown
predicates that are subsequently solved by employing the logical
Constraint Horn Clause (CHC) solvers.

We have implemented our synthesis algorithm in a proof-
of-concept tool, and evaluated it on a set of C programs with
missing while-guards. By experiments we prove the effectiveness
of the proposed technique for synthesizing arbitrary Boolean
expressions defined over program variables for some interesting
program sketches written in C.

Index Terms—Program Synthesis, Abstract Static Analysis,
Constraint Horn Clause (CHC) solving.

I. INTRODUCTION

ROGRAM synthesis [1] is a process of automatically con-
Pstructing a program from a given specification. Program
sketches [2], [3] are partial programs with missing (arithmetic
and Boolean) expressions called holes (? ?). They simplify the
synthesis problem by limiting the search to programs of par-
ticular form. The earliest approaches to program sketching [2],
[3], [4] can automatically synthesize only integer “constants”
for the holes. In particular, given a sketch and an assertion,
the synthesizer (e.g., Sketcher [2], [3]) automatically finds
integer constants for the holes such that the synthesized
complete program satisfies the assertion. Subsequently, the
generalized program sketcher [5] is introduced, which uses
abstract interpretation [6], [7], [8] and logical abduction [9] to
infer arbitrary expressions, rather than only integer constants,
for the holes in program sketches. The missing holes occur
either as guards (Boolean expressions) in if-s and while-s
or as right-hand sides (arithmetic expressions) in assignments.
However, in the case of missing while-guards, this approach
[5] is cumbersome due to the difficulty to infer precise
inductive invariants for while-s, and so it often fails to
generate satisfactory solutions.

In this paper, we explore the problem of inferring missing
while-guards in program sketches by introducing a novel
algorithm based on abstract static analysis of programs [6],
[7], [8] and logical Constraint Horn Clause (CHC) solving

IEEE Catalog Number: CFP2585N-ART ©2025, PTI

[10], [11]. In particular, our synthesis algorithm consists of
two phases: constraint generation and constraint solving. In
the first phase, we employ forward and backward abstract
static analyses of programs, whose aim is to determine dy-
namic program properties in a fully automatic manner. The
forward abstract analysis [6], [7], which is similar to strongest
postcondition inference [12], works by propagating the initial
facts towards the final locations, thus computing the invari-
ant postconditions before the holes. The backward abstract
analysis [6], [7], which is similar to weakest precondition
inference [12], works by propagating the final (assertion) facts
towards the initial locations, thus computing the sufficient
preconditions that ensure assertion validity after the holes. The
numerical abstract domains, such as Intervals [6], Octagons
[13], Polyhedra [14], are widely used in practice for static
analyses to infer information about the possible values of
program variables together with the possible relations between
them. Thus, they are employed for computing invariant post-
conditions and sufficient preconditions in the form of linear
integer constraints over program variables. Subsequently, in
the second phase, we employ the logical constraints generated
in the first phase by abstract static analyses as well as the logi-
cal CHC solving technique to synthesize the missing Boolean
expressions. That is, the while-guard synthesis problem is
encoded as a set of CHCs, which represent a class of first-
order logical formulas modulo some background theories, like
linear integer arithmetic (LIA). More specifically, a CHC is
a logical implication formula containing unknown predicates.
This way, all holes in the sketch as well as inductive invariants
for the while-s are represented by unknown predicates in
the CHCs. A solution to a set of CHCs assigns a logical
formula to each unknown predicate in such a way that all
CHCs become valid formulas, and moreover their validity
guarantees the correctness of the resulting complete program.
By solving the obtained CHCs with off-the-shelf CHC solvers,
such as Eldarica [11], Spacer [10], Duality [15],
and FregHorn [16], we can synthesize complete Boolean
expressions for the missing holes ?? in the program sketch,
which will guarantee the assertion validity of the resulting
complete program.

We have implemented the proposed algorithm in a proof-of-
concept tool, called WhileSketchingcye. For the constraint
generation phase, we use the numerical abstract domains

519 Thematic Session: Advances in Programming Languages

520

void main() {

(D) int x =10, y = 0;

® whlle\y(’”)do{

O x=x-1

© y=y+l;}

(5) assert (y==10);

//assert (y>x);

// assert (y==x);

//assert (x= lO) }

//assert (x>15); }
Fig. 1.

while.c.

(e.g., Polyhedra [14]) from the APRON library [17], while
for the constraint solving phase, we use the Eldarica
[11] and Z3 [18] tools for CHC- and SMT-solving. We
perform an experimental evaluation on a selected set of
benchmarks written in C, which are taken from the SV-COMP
(https://sv-comp.sosy-lab.org/) and the literature [19], [5]. The
experiments demonstrate the practicality of our technique to
successfully synthesize assertion-safe while-guards in some
interesting C sketches.
This work brings the following contributions:

(1) We present the while-guard synthesis problem for
automatically synthesizing arbitrary complete Boolean
expressions for missing holes in sketches;

(2) We introduce a novel algorithm for solving this problem
by interaction between the abstract static analysis and the
logical CHC solving;

(3) We implement our algorithm and evaluate it on a set of
interesting program sketches written in C.

This work is organized in the following way. Section II
presents a small example illustrating how our algorithm infers
missing while-guards. Section III defines a small imperative
language that is used for the formal development as well as its
concrete and abstract semantics. Moreover, the CHC problem
is also defined here. Section IV presents the main while-
guard synthesis algorithm. Section V briefly describes another
existing approach for resolving program sketches based on
logical abduction. Section VI presents an experimental eval-
uation of the introduced approach, comparing our tool with
a program sketching tool based on logical abduction. Finally,
Section VII and VIII discuss related work, summarize the
introduced approach, and highlight future research direction.

II. ILLUSTRATION

We now illustrate our approach through one motivating
example taken from [5]. The program sketch given in Fig. 1,
called while.c, contains one unknown hole ?7? in the
while-guard. Our aim is to replace the unknown hole at loc.
(» with a Boolean expression, such that the assertion at loc
® is valid.

Our approach consists of two phases: constraint generation
and constraint solving. In the first phase, our technique starts
by performing forward and backward abstract static analyses

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

based on the Polyhedra abstract domain [14]. The over-
approximating forward static analysis starts with the initial
fact T (i.e., true) at loc. (), and by propagating it forwards
it infers the invariants (x=10 A y=0) at loc. () before the
while as well as (x < 10 A x+y=10) at loc. (. The under-
approximating backward static analysis starts with the asser-
tion fact (y=10) at loc. (5, and by propagating it backwards
it infers the preconditions (y=10) at loc. (3 after the while
as well as L (i.e., false) at loc. (). The loc. () is reached upon
entering the while-loop and after each while-iteration, so
the facts inferred by both analyses at loc. () correspond to the
inductive while-invariant, which expresses a relationship be-
tween program variables that is preserved by any execution of
the while’s body [12]. However, since both analyses treat the
unknown hole 2?2 as non-deterministic choice {true, false}, the
forward analysis infers the over-approximation of the inductive
while-invariant, whereas the backward analysis infers the
under-approximation of the inductive while-invariant. Thus,
we use the inferred facts by forward and backward static
analyses to generate the following implication constraints,
called Constrained Horn Clauses (CHCs):

(x=10Ay=0) = Inv(x,y) (1)

Inv(x, y)AR(x, y)Ax' y'))
Inv(x,y) A—R(x,y) = (y=10) (3)

Inv(x,y) = (x <10Ax+y=10) (4)

false = Inv(x,y) (5)

=x-1Ay’=y+1 = Inv(x

Inv(x,y) encodes an unknown predicate for the inductive
while-invariant, and R(x,y) encodes an unknown predicate
for the missing while-guard ?7?. Both unknown predicates
Inv(x,y) and R(x, y) are defined over program variables x
and y that are in the scope of the while. The implications (1)
and (2) state that the while-invariant Inv(x, y) is inductive.
That is, (1) states that Inv(x, y) is implied by the while’s
precondition at loc. (2, whereas (2) states that Inv(x,y)
is preserved in each iteration of the while’s body, i.e. if
Inv(x,y) and the while-guard R(x,y) are true and we
execute the while’s body then Inv(x’,y’) will be true after
it, where x’ ,y’ are updated values of x, y after executing
the while’s body. The implication (3) stipulates that when
the while terminates, and so Inv(x,y) and ~R(x,y) are
true, then they are strong enough to imply the while’s
postcondition at loc. (3 ensuring that the assertion must be
valid. The implication (4) (resp., (5)) states that the analysis
fact inferred at loc. () by forward (resp., backward) analysis
is over- (resp., under-) approximation of Inv(x,y).

In the second phase, our aim is to solve the generated CHCs
by inferring interpretations (logical formulas) for Inv(x,y)
and R(x,y) under which all CHCs (1) — (5) are valid. The
CHC solving algorithm [11] reports the following solutions
for the unknown predicates: Inv(x, y) = (x < 10Ax+y=10)
and R(x,y) = (x < 10 A x+y=10 A x # 0). Then, we call
a SMT solver to simplify the formula R(x, y) A —~Inv(x, y),
thus excluding sub-formulas of R(x, y) that are also present in
the invariant Inv(x, y). Thus, the synthesized while-guard

ALEKSANDAR S. DIMOVSKI: WHILE-GUARD SYNTHESIS BY ABSTRACT STATIC ANALYSIS AND CHC SOLVING

will be only the strengthening of R(x,y) with respect to
Inv(x,y) that is not part of the invariant Inv(x, y). Hence,
we fill the hole ?? at loc. () with the solution (x # 0).

In a similar vein, we can synthesize concrete while-guards
in while.c (Fig. 1) with respect to different assertions.
Assume that we consider assert(be). The CHCs (1), (2), (4),
(5) stay the same as above, and we only change the right-hand
side of CHC (3) that becomes: Inv(x,y) A “R(x,y) =
(be). For example, for assertions (y > x), (y=x), (x=10),
and (x > 15), the synthesized while-guards are: (x > 5),
(x # 5), (false), and the problem is unrealizable (i.e., there
is no solution that can be derived), respectively. Note that
for assert (x > 15), we obtain the same solutions for
Inv(x,y) and R(x,y), that is Inv(x,y) = R(x,y) =
(x < 10 A x+y=10). For example, the implication (3):
Inv(x,y) A -R(x,y) = (x> 15) becomes vacuously
valid in this case as the left-hand side of the above implication
is (false). However, (R(x,y) A =Inv(x,y)) = false, so
we conclude that there is no (non-vacuous) solution for this
assertion (i.e., the problem is unrealizable). On the other
hand, for assert (x=10), we obtain the CHC solution
Inv(x,y) = (x < 10 A x+y=10) and R(x,y) = (false),
so we infer the solution (false) for 2?2 in this case.

III. BACKGROUND

This section introduces the language we consider as well
as its concrete and abstract semantics. Furthermore, we also
formally define the CHC problem.

A. Language

We use a simple C-like imperative language for writing
general-purpose programs. The program variables Var are
statically allocated and the only data type is the set Z of
mathematical integers. We use the hole constructs ?7?; to
encode unknown while-guards. The holes ??; are placehold-
ers that the synthesizer must replace with suitable Boolean
expressions, such that the resulting complete program will
satisfy all assertions. The syntax of the language is:

s(s € Stm) := skip | x=ae | s;s | assume(be)
| if (be') s elses|while l, : (be)dos
ae (ae € AExp) :=n | [n,n'] | x | ae®ae

be (be € BExp) ::=27?;| be’
be’ :=aexiae | —be’ | be’ Abe' | be' v be!

where n ranges over integers Z, x ranges over program vari-
ables Var, [n,n'] over integer intervals, and @ € {+, —, %, /},
e {<, <,=,#}. Integer intervals [n,n'] denote a random
choice of an integer in the interval. We assume that statements
are tagged with unique syntactic labels [€ L. Note that
while has an extra syntactic label [, € L at the while-
head, i.e. between the while keyword and the guard. We
assume, without loss of generality, that a program p is a
sequence of statements followed by a single assertion “I; :
s;ly s assert(bel)”. We say that the program p satisfies its
assertion (or the assertion is valid) if Boolean expression bef
evaluates to (true) whenever the control reaches the label [;.

S = S
x {o[x —
17 52dS = [l (119
assume(be)]S = {JGS | true € [be]o}

£ (be) s, else 55]8 = [s1]{c €S | true€ [be]o} U

[sa]{o €S | false € [be]o}

while (be) do s]S = {o€1fp ¢g | false€ [be]o}
2(X) = SU[s]{o € X | true € [be]o}

3

n] | oeS,neae]o}

= == |m—=

|=¢

=

i

©

Fig. 2. Definitions of [[:ﬁ P(X) = P(D).

Otherwise, the assertion is violated. We say that a program
(statement) is complete if it contains no holes; otherwise, we
say that it is partial (or program sketch).

Remark. Note that in programs p we allow assumptions
(assume(be)) to freely occur in a sequence of statements
s, while the assertion (assert(be)) occurs only at the final
location ;. An assertion assert(be) specifies that every
execution reaching it is expected to evaluate be to true, in
which case we say that the assertion is valid. Otherwise,
if the assertion is not valid, the program terminates early
with an error. On the other hand, an assumption assume(be)
specifies that every execution reaching it with be evaluated to
false is terminated. However, unlike before, this termination
is not erroneous, but it means that the programmer does not
want to consider the rest of this execution when verifying the
correctness of the program.

Let H be a set of uniquely labelled holes ??; in program p.
A control function ¢ is a mapping from the set of holes H to
complete Boolean expressions be’. We say that ¢ is complete
if dom(¢) = H,i.e. ¢ is defined for each hole in the program.
Otherwise, if dom(¢) C H, i.e. ¢ is L (undefined) for some
holes, we say that ¢ is a partial control function. We write
p[®] to denote the program obtained by substituting each ?7?;
with ¢(?7?;), if ¢(22;) is defined.

Definition 3.1: A complete control function ¢ is a solution
to the while-guard synthesis problem defined by program
sketch p if p[¢] is a complete program that satisfies its
assertion.

B. Concrete Semantics and Analyses

The concrete semantics describes the properties of the
possible executions of a program. We now define the concrete
semantics of our language, and use it to construct reachability
or invariance (forward) as well as sufficient condition (back-
ward) concrete analyses.

A memory store, denoted o € X, is a function mapping
each program variable to an integer value: ¥ = Var — Z.
The concrete domain is the complete lattice of the powerset
of stores ! (P(X), C,U,N, N,). The semantics of arithmetic
expressions [ae] : ¥ — P(Z) and Boolean expressions
[be] : £ — P({true, false}) are the sets of possible (numerical

IThe powerset of a set S, denoted P(.S), is the set of all subsets of S.

521

522

[skip]S =S

_ ae]S = {o | ¥ne[ae]o,o[x — n]€ S}

[51 7 2] = [s1]([52]5)

assume(be)]S = S U {o|[be]o = {false}}

if (be) s1 else s2]S = ([s1]S U {o|[be]o = {false}})n
| ({5215 U o] [~belo = {false}})
<[[ﬁhile (be) do s]S = gfp ¢s

¢s(X)=(SU{o|[-be]o ={false}}) N (mxu{ﬂ [be]o = {false}

X =

Fig. 3. Definitions of ﬂ?]] P(2) = P(D).

and Boolean) values for expressions ae and be in a given
store o. For example, [n]o =n and [[n,n']Jo = {n,...,n'}
for arithmetic expressions n and [n,n'], whereas [??;]o =
{true, false} for Boolean expression ??;. A semantics def-
inition associates with each statement (program) a concrete
semantics property from P(X) representing some characteris-
tics of its possible executions. We consider two semantics of
statements (programs): a reachability or invariance (forward)
semantics [s] : P(X) — P(X) that infers a set of reachable
stores (invariants) from a given set of initial stores; and a
sufficient condition (backward) semantics m :P(E) = P(X)
that infers a set of stores (sufficient condition) from which
only stores satisfying a given postcondition are reached. The
definitions of [[:ﬁ, and %]] are given in Fig. 2 and Fig. 3,
respectively. The reachability semantics [6] is built forward,
so each function [s] takes as input a set of stores S before
statement s and returns a set of possible stores reached after
executing s from S. The sufficient condition semantics [7] is
built backward, so each function [s] takes as input a set of
stores S after statement s and returns a set of possible stores
before s from which only stores from S are reached after
executing s. For example, given a set of stores S € P(%),
we have that [x = ae|S ? is the set of final stores reachable
after executing x = ae, whereas [x = ae]S is the set of initial
stores such that any execution of x = ae from them leads to
a store in S. The semantics of a while statement is given in
a standard fixed-point formulation [6], [7] using the least and
greatest fix-point gg)e(r_ators 1fp and gfp, where the fixed-
point functionals ¢g, ¢g : P(X) — P(X), parameterized with
the input set of stores S, accumulate possible stores after
another while iteration from a set of stores X going in a
forward and backward direction, respectively.

C. Abstract Semantics

The language we consider is Turing complete, thus mak-
ing the concrete semantics and analyses uncomputable. We
now define computable abstract analyses [6], [7], [8] that
are approximations of the concrete semantics and analyses.
The first basic choice in abstract interpretation is to design
an abstract semantics domain D, which is an approximate

2g[x > n] denotes the store that updates o at variable x to be equal to n.

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

version of the concrete semantics domain P(X). More specif-
ically, we replace the computation in the concrete domain
P(X) with a computation in some numerical abstract do-
main D that reasons on the numerical properties of vari-
ables, such that there exists a concretization-based abstraction
(P(X),C)<2(D,Cp). 3 This abstraction works only with
a concretization function 7p : D — P(X) expressing the
meaning of abstract elements from D in terms of concrete
elements from P(X). The abstract domain D is a set of
computer-representable properties, called abstract elements,
together with effective algorithms to implement sound abstract
operators for forward and backward analyses. In particular,
they have abstract operators for ordering Cp, least upper
bound (join) LIp, greatest lower bound (meet) Mp, bottom L,
top Tp, widening Vp, and narrowing Ap. There are forward
transfer functions for assignments ASSIGNp : Stm x D — D
and tests FILTERp : BExp x D — D, which are sound over-
approximations of the corresponding concrete functions. We
let 1fp? denote an abstract fix-point operator, derived using
widening Vp and narrowing Ap, that over-approximates the
concrete 1 fp. There are also backward transfer functions for
assignments B-ASSIGNy : StmxD — DD, tests B-FILTERy :
BExp x D — D, and a lower widening Vy, [7], which are
sound under-approximations of the corresponding concrete
functions. We let gfp” denote an abstract fixpoint operator,
derived using lower widening Vy, that under-approximates the
concrete gfp.

The abstract domain D can be employed to derive
abstract reachability (resp., abstract sufficient condition)
analysis that represents over-approximation (resp., under-
approximation) of the corresponding concrete analysis. For
each statement s, we define the abstract reachability se-
mantics [s]* and the abstract sufficient condition seman-

tics m” in Fig. 4 and Fig. 5, respectively. For a while
loop, 1fp* ¢y is the limit of the following increasing chain:

Yo = d, Yng1 = Yn VD &5 (yn) for forward analysis;

whereas gfp? ¢ﬁd is the limit of the following decrﬁasing
chain: yo = B-FILTERY(=be,d), Yni1 = UnVp &4 (yn)
for backward analysis. Since FILTERp(be,d) Cp d and
B-FILTER}(be,d) Jp d, we use FILTERp(??;,d) = d and
B-FILTER}(??;,d) = d to handle the Boolean expression
hole ?7?;.

By the soundness of the operators of abstract domain D
[6], [7], we prove the soundness of abi)tract semantics with
respect to concrete semantics. That is, [s]* over-approximates
the set 0fr<_eachable stores obtained by concrete semantics [s],
whereas [s]* under-approximates the set of sufficient condition
stores obtained by concrete semantics [s].

—

Propositio(n_j’.Z ([6], [7]): We have: mm@(d) C [s]*d and
[sl(@) 2 [s1a

3Concretization-based abstraction, which uses only a concretization func-

tion yp (e.g. Polyhedra domain), represents a relaxation of the well-known
Galois connection that uses both abstraction and concretization functions.

ALEKSANDAR S. DIMOVSKI: WHILE-GUARD SYNTHESIS BY ABSTRACT STATIC ANALYSIS AND CHC SOLVING

[skip]fd =d

[x = ae]*d = ASSTIGNp(x = ae,d)
[s1 sQ%ﬂd [sol* (Ts11%)
[assume(be)]*d = FILTERp(be, d)

[if be s1 else sofd = [s1](FILTERp (be, d))Lp
[s2]#(FILTERD(—be, d))

[while be do s|*d = FILTERp(—be, 1fpﬁ¢7;>

qj;i(x) =dUp Hﬁ(FILTERD(be,x))

—
Fig. 4. Definitions of [s]* : D — D.

7skip]]ﬁd =d

[x = ae]?d = B-ASSIGNY(x = ae,d)

[s1 i soltd = [s1]*([s2]%a)

Jassume(be)]*d = B-FILTERY (be, d)

if be s1 else so]*d :B—FILTERﬁ(be,mnd)ITD
B-FILTERY(—be, [s2]%d)

while be do s]td = gfp* (;52
q&”d(x):B—FILTERﬁ;(ﬂbe,d) MpB-FILTERY (be, E;]]ﬁx)

-
Fig. 5. Definitions of [s]# : D — D.

The abstract domain) can be instantiated with different
numerical abstract domains including Intervals [6], Octagons
[7], and Polyhedra [14]. They differ in precision and com-
putational complexity. In this work, we will mainly use
the Polyhedra domain due to its precision. The Polyhedra
domain [14] is a fully relational numerical abstract domain,
which allows manipulating conjunctions of linear inequalities
(constraints) of the form ayxq1 + ...+ a,x, > 3, where x1,

.., Xy, are program variables and «;, 8 € Q (rationals). The
abstract operations, transfer functions, and the soundness of
the Polyhedra domain are defined in [14].

Example 3.3: Consider the program sketch while.c in
Fig. 1. Assume that the analysis fact T (true) holds at loc. (D)
and we want to perform forward reachability analysis based
on the Polyhedra domain. In order to enforce the convergence
of the analysis, we apply the widening operator at loc. (+). The
analysis results inferred by our forward analysis at locs. from
(O to (& are shown in Fig. 6 (left).

Similarly, we assume that the analysis fact (y=10) holds at
loc. (5) and we want to perform backward sufficient condition
analysis based on the Polyhedra domain. To enforce the
convergence, we apply the lower widening operator at loc.
(. The analysis results inferred by our backward analysis at
locs. from () to () are shown in Fig. 6 (right).

D. Constrained Horn Clauses (CHCs)

Given a formula ¢ in a first-order theory 7, the SMT (Satis-
fiability Modulo Theory) solvers [18] decide the satisfiability
of ¢, i.e. they check if there is an assignment of values to
variables in ¢ that makes ¢ true. To check the validity of ¢,

©T © (y=10)
© (x=10Ay=0) ® L
M (x <10 A x+y=10) ® L
() (x <10 A x+y=10) G L
® (x <9Ax+y=9) @1
) (x <10 A x+y=10) L

Fig. 6. Analysis results of while. c inferred by forward (left) and backward
(right) analysis.

they check the unsatisfiability of —¢. Examples of first-order
theories are: linear integer arithmetic (LIA), arrays, etc.
Constrained Horn Clauses (CHCs) are a fragment of first-
order theory 7 defined over a finite set of unknown predicates
R. A CHC is a formula that has one of the following forms:

$(X5) = Ro(X5) (6)

No<i<nRi(X]) A SR, -+ Xni1) = Rus1(Xnyi) (D)
No<icnRi(XD) = G(X0,..., %) (8)

where R;(X]) € R (0 < i < n+1) is an unknown predicate
defined over a vector of variables x;, and ¢(x07...,x_n>)

is a first-order formula that does not contain any unknown
predicates. The body (resp., head) of a CHC represents the
left (resp., right) side of the implication. A CHC of type (6)
is called fact, of type (7) is called inductive, and of type (8) is
called query. A CHC is called linear if the number of unknown
predicates in its body is one, otherwise it is called non-linear.

A solution to a set of CHCs defined over unknown predi-
cates R is a mapping M from R to first-order formulas, such
that all implications in the set become valid. That is, for each
R(X) € R, M(R) represents a first-order formula ¢ defined
over the variables X . The CHC solvers, like Eldarica [11],
Spacer [10], Duality [15], and FregHorn [16], contain
algorithms, denoted CHC-solve, for computing the correct
solutions to sets of CHCs.

IV. SYNTHESIS ALGORITHM

In this section, we present our algorithm for solving the
while-guard synthesis problem. In particular, we employ

the abstract static analyses, [s]* and [s]*, as well as the
CHC solving procedure, CHC-solve, to automatically find
Boolean expressions for the missing holes in a program sketch,
so that the resulting complete program satisfies its assertion.
That is, we establish a link between checking an assertion in a
program and solving CHCs via abstract static analyses, which
provide a way to transition from programs to CHCs.

A. Description

The WhileSketchingcuc(p, H) synthesis procedure is
shown in Algorithm 1. The procedure takes as input two
parameters: a program sketch p, and a set of holes H in
p representing missing while-guards. It returns as output a
solution (complete control function ¢) or the empty mapping
if no solution exists. For each hole ?7?; in H, we first generate
an initial solution, which is a complete Boolean expression
be;, such that all other holes are treated as non-deterministic

524

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Algorithm 1: WhileSketchingcuc(p, H)

Algorithm 2: OneHoleSynth(p, sy, 1, 1;,1)

Input: Program sketch p, and a set of holes H

Output: Complete control function ¢ or an empty
mapping ()

p:=¢":=0;

for (7?2, € H) do

(l: whilelp : (22
¢’(Ldet::

i)do{ly: sp}l':) := Extract(p, 22;);
[22;— L] w{[?2?2;~P({true, false})]|j # i};
be! := oneHoleSynth(p[grdet], sp, 1, 1, 1) ;

if (be;, = () then return 0 ;

¢ = QW [?2; — bel

8 while (¢ # ¢') do

o | if (&' #0) then ¢ =¢';¢/ =0

10 for (72, € H) do

1 (I:whilely : (22;)do{ly : sp}l':):=Extract(p, 2?;);
12 G = @[22 — 1] ;

13 bel := OoneHoleSynth(plei], v, ln, ') ;

14 if (be! = () then return) ;

15 ¢ = ¢ W[?2?; — bel]

16 return ¢

N A N A W N =

2

choices over Booleans, P ({true, false}) (lines 2-7). First, we
identify the statement “(l : while I, : (22;) do {l; :
sp} U' :)” in which 2?; occurs by using Extract(p, ??;)
procedure (line 3). Second, we construct a partial control
function ¢7%, such that ¢14*(2?;) = L (undefined) and
prdet(22;) = P({true, false}) for all other ?2?; € H (line
4), and we generate a program sketch p[¢'¥!] in which the
hole ?7?; is the only one. This has the effect of treating
any hole other than 27?; in p[¢!?!] as a non-deterministic
choice. Finally, we call the one-hole synthesis procedure,
called OneHoleSynth(p[prdt], sy, 1,1, 1") to generate the
solution be) corresponding to hole ??; (line 5). This way, we
generate an initial complete control function ¢ : [272; — be}]
by using the above initial solutions for all holes ?7?; in H.
Subsequently, Algorithm 1 goes through an iterative
while-loop (lines 8-15) performing the weakening of the
current solution ¢, thus generating more general solutions
¢'. The algorithm terminates when the refinement is no
longer enabled, i.e. ¢ = ¢ (line 8). In particular, in each
while-iteration we weaken the current solution ¢ by itera-
tively weakening ¢-solutions for all holes (lines 10-15). To
weaken the ¢-solution for each ?7?;, we fix the ¢-solutions
be; for all other ??; in a partial control function ¢;, such
that ¢;(2?;) = L and ¢;(?2?;) = ¢(?2;) for all other
??; € H (line 12). Then, we generate a program sketch
pl¢i] in which the hole 2?2, is the only one. Finally, we
call OneHoleSynth(p[gld], sy, 1,1x,1") to find a weaker
Boolean expression be; for 272; (line 13), which is located
at statement (I : while I, : (?2?2;) do {lp : sp} U':). The
generated be; will be included in the updated solution ¢’ (line
15). In particular, we use the solutions given by the current
control function for all other holes and infer more general

Input: Program sketch p = [; : s;1; : assert(bef),
while-body sy, and labels [, 1,1
Output: Complete Boolean expression be’ or an
empty mapping ()
Reach? := [s t Tp:
2 Condf := mﬁFILTERD(bef,TD) ;

—

3 Oy := (Reach!(l) = Inv(X)) ;

4 Oy = (Inv(R)ARR)A([F =X s[x /XN To) = Ino(¥)) ;
5 Cy:= (Inv(?)/\ﬂR(?) = cOndﬁ(z')) :

6 Cy = (Inv(X) = Reach%lh ;

7 C5 := (Condjj ln) = Inv

8 CHC := {01,02,03,04,05} :

9 /\/l = CHC-solve(CHCQC)

10 if (M(R(¥)) @M(Im)(?)then return () ;
return SMTSimpl((M(R A =M Im;(Y))))

Boolean expression for ??; that implies the assertion validity.

B. One-hole Synthesis Procedure

The OneHoleSynth(p,ss,!,l:,!") procedure, shown in
Algorithm 2, takes five parameters: a program sketch p =
li : 831y : assert(be!) with one hole in it, a body s of the
while with missing guard in s, and three labels: [, [, and
', where the while-guard ?? we want to handle is located
(I and I’ are locations before and after the while, and [, is
location at the while-head). We first call the forward abstract
analysis [s #Tp (line 1) and the backward abstract analysis
s]*dx (line 2), where dr = FILTERp(be/, Tp) represents
the assertion fact, that proceed by structural induction on the
program syntax of s. This way, we compute the invariants
Reachf as well as the sufficient conditions Cond® in all
locations of p. Assume that Reach?(l) is the inferred invariant
at loc. [before the while, while Cond?(I’) is the inferred
sufficient condition at loc. !’ after the while that ensures
assertion-safety of the code that comes after the hole 27?.
Moreover, we assume that Reach®(l;) and Condf(l},) are
the inferred analysis facts at loc. I}, for the inductive while-
invariant by the forward and backward analysis, respectively.
By using the inferred Reach?(l), Reach®(l},), Cond*(l’),
and Cond*(l;,), we then construct CHCs with two unknown
predicates: Inv(X) and R(X) corresponding to the inductive
while-invariant and the guard of the while with the hole
22, where X is a vector of all program variables defined
in the scope of the given while. More specifically, we
generate the following five CHC queries for all cases involving
the given while. The inductive while-invariant Inuv(X)
expresses a relationship between the program variables that
is implied by the while’s precondition and is preserved by
any execution of the while-body. For this aim, we use the
CHCs €} and C; to ensure that the while-invariant Inv(X)
is inductive. In particular, C; states that the invariant at the
while’s precondition Reach?(l) implies Inv(X). To state

ALEKSANDAR S. DIMOVSKI: WHILE-GUARD SYNTHESIS BY ABSTRACT STATIC ANALYSIS AND CHC SOLVING

that [nv(?) is preserved in each iteration of the while’s
body, we need a way of remembering the initial values of
all variables X in the scope of the given while. To do so,
we analyze the program: X = X; sb[?/7], where X = X
assign all program variables X to their primed versions X

and s,[x° /X'] means that all variables X in s, are renamed to
their primed versions x’. This way, we build the required CHC
C, stating that if Inv(X) and R(X) hold and we analyze
¥ =% 5,[x /%], then Inv(x*) will hold after that. That is,
executing while’s body when R(?) holds re-establishes the
whi le-invariant Inv(X). The CHC Cj states that on while
exit, the while-invariant Inv(X) strengthen with ~R(X)
are sufficiently strong to imply the while’s postcondition
Cond?(1’) ensuring that the assertion is correct. The CHCs C
and Cj state that the analysis facts Reach?(l),) and Cond?(l},)
inferred at loc. [;, by forward and backward analysis are over-
and under-approximations of [nv(?) respectively.

Finally, we call the CHC-solve procedure to find the
solution (mapping) M of the constructed set of CHCs, such
that M (Inv) and M(R) are first-order formulas defined over
variables X . Since the solution M(R) represents a strengthen
formula of M(Inv), we can use M(R) A =M (Inv) as the
final solution be’ to replace the given Boolean expression hole
2?2 (line 11). However, if (M(R) & M(Inv)), ie. M(R)
and M(Inv) are equivalent, then the given problem is not
solvable and an empty mapping is returned (line 10).

C. Correctness

The following theorem states
WhileSketchingeye algorithm.

Theorem 1: WhileSketchingeuc(p, H) is correct and
terminates.

Proof: The procedure WhileSketchingeuc(p, H) ter-
minates since all steps in it are terminating. The while-loop
(lines 8-15) terminates since in the worst case it will generate
the weakest solutions true for all holes. The correctness of
WhileSketchingeuc(p, H) follows from the soundness of
Reach! and Ccond? (see Proposition 3.2) and the correctness
of CHC-solve [11], [10], [15], [16]. [|

correctness of the

V. ABDUCTION-BASED SYNTHESIS

We now give an overview of the logical abduction-
based approach for while-guard synthesis, called
GenSketching,yg, introduced in [5]. The logical abduction
[9] is a technique for inferring a single unknown predicate
R(?) which is defined over a vector of program variables

from an implication formula:

RX)Ay = C

where x and C are first-order logical formulas. The solution
to the above abduction problem is formula ¢, which represents
an interpretation of R(X), such that (1) ¢ A y }~ false; and
(2) ¢ A x = C. The procedure Abduce(x, C, 7) that finds
the logically weakest solution containing a fewest number of
variables to the above abduction problem is implemented in
the EXPLAIN tool [9].

We now show how to handle the case when there is a
single hole in a sketch p, which occurs in the statement of
the form: “l : (whilel, : (2?) do {lp : sp})!' :”. The
case when there are more than one holes in a program sketch
is handled similarly as in Algorithm 1. First, we perform
forward and backward abstract static analyses of p to compute
the invariants Reach® and the sufficient conditions Cond®
in all locations of p. Then, we construct an abduction query
where the premise is Reachﬁ(lh), the desired conclusion is
Cond?(l’), and the unknown predicate is Rfulse(Y), that is:
Reach? (lh)ARfalse(?) — Cond*(’). The meaning of this
query is that when while terminates, the while-invariant
Reachf(l},) and the negation of the missing whi 1e-guard,
encoded via the unknown predicate R fazse(é), should imply
the sufficient condition Cond*(1’) ensuring that the code after
while guarantees the assertion validity.

Next, we find Rtme(?) that is the negation of the for-
mula found for Rfalse(7), ie. Rtme(Y) = (ﬂRfalse(7)).
Assume that Riypue(X) is of the form: ¢ V ... V
¢n, Where ¢; is a conjunction of formulas. We per-
form n backward analyses defined as follows: Cond®! =
P[22 — (p1A22)|JHFILTERp(bef, Tp)),...,Cond®"
P[22 = (¢n A 22)]]F(FILTERp(bef, Tp)), where p[?2
(¢i A 22?)] is the sketch p in which the hole 2?2 is re-
placed with (¢; A 2?). We create n abduction queries:
Reach!(I,)ARL . (X) = cond®! (), ..., Reach?(ly) A

true

" o(X) = Cond®"(l,). Finally, the solution for ?? is the
Boolean expression: (¢y AR, (X))V...V(¢n AR, (X)).
In the implementation, we can make some optimizations
to reduce the number of calls to the abduction solver. For
example, if Cond*?(l;) = false then we can conclude that
Rime(?) = (false) without calling the abduction solver.

Example 5.1: Consider the sketch while.c given in
Fig. 1. The forward analysis infers the invariant (x < 10) A
(x+y=10) at loc. I,. We construct the abduction query (x <
10) A (x+y=10) A Rfqise(x,y) = (y=10). The reported
solution by EXPLAIN is Rtq5¢(x, v) = (x=0). We compute
Ripue(x,v) = " Rpaise(x,y) = (x<0) V (x>0). Hence, we
perform two backward analysis of while.c in which the
while-guard is (x<0 A 2?271) and (x>0 A ??2), respectively.
They start with the fact (x=0 A y=10) at loc. ®. The first
backward analysis for (x<0 A ??1) infers the bottom (L) con-
dition after the guard at loc. (3), whereas the second backward
analysis for (x>0 A 2?2) infers (1 < x < 11) A (x+y=10)
after the guard at loc. 3). We construct two abduction queries:
(1) (x < 10 A x+y=10) A R}, ,.(x,y) = false, and (2)
(x <10Ax+y=10) A R? .(x,y) = (1 <x <11)A
(x+y=10). The obtained solutions are R},,.(x,y) = false
and R? . (x,y) = true. Hence, we fill the hole with (x>0).

VI. EVALUATION

We now evaluate our approach based on abstract static
analysis and CHC solving for synthesizing missing while-
guards in numerical sketches written in C. We compare its
performances against the approach that uses logical abduction
for constraint solving.

525

526

void main (int n){
assume (n > 0)

int i = 0O;
while (27?)do{
i= 42

}

assert (1==2xn);
// assert (i==4xn);
// assert (i==0);
// assert (i<0);

}

Fig. 7. eg2.c.
void main(int x) {
assume (x > 0)
int a = x;
int y = 0;
while(??)do{
y = y+l;
a=a-1;
}
assert (x——y);
// assert (a==0);
// assert (a+2==x);
// assert (y<0);

}

Fig. 9. copy.c.

A. Implementation

We have implemented the proposed synthesis algorithm in
a proof-of-concept tool, called WhileSketchinggyc. The
abstract operations and transfer functions of the Polyhedra
abstract domain [14] are provided by the APRON library [17].
The CHC and SMT queries are solved by the Eldarica [11]
and the 73 [18] tools. Our proof-of-concept tool is written
in OCAML and consists of around 7K lines of code. The
tool accepts programs written in a subset of C. It currently
provides only a limited support for arrays, pointers, struct
and union types. The only basic data type is mathematical
integers. The tool calls the APRON library for static analysis
of the input program, then generates CHC constraints and
calls the Eldarica tool to solve them. Finally, it handles
the obtained results and reports the solutions.

B. Experiment setup and Benchmarks

All experiments are executed on a 64-bit Intel®Core”™ i5
CPU, VM Lubuntu 18.04, with 16 GB memory, and we use a
timeout value of 60 sec. All times are reported as average over

five independent executions. We compare two approaches:

(1) WhileSketchingcy based on abstract static anal-
ysis and CHC solving; and
(2) GenSketching,,y based on abstract static analy-
sis and abduction solving.
We report TIME which is the total time to resolve a given
problem, SOLVTIME which is the time taken by logical (CHC

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

void main() {
int i = 0;
int j = 0;

while (2??)do{
i=1+1;
j=3+L

}

assert (i+3==20);
// assert (i+3>20);
// assert (i+3<15);
// assert (i+3j==15);

}

Fig. 8. loop2.c.

void main() {
int x = 0;

int y = 0;
while(??)do{
x = x+1;
y = y+2;
}
assert (y==2+m);

// assert (y==x);
// assert (y::x&\\ix>0):
// assert (y==2+m+1);

}

Fig. 10. hola.c.

or abduction) solvers to solve the logical queries in the given
synthesis task, and PREC which shows the precision of the
reported solution. We use: v when the tool finds correct
solution for a given assertion; and x denotes the opposite,
i.e. the tool cannot find a correct solution for the assertion.

The evaluation is performed on several C numeri-
cal sketches collected from SV-COMP, (https://sv-comp.
sosy-lab.org/) and the literature [19], [5] In particular, we
use the following benchmarks: while.c (Fig. 1), eq2.c
(Fig. 7), loop2.c (Fig. 8), copy.c (Fig. 9), and hola.c
(Fig. 10). In all benchmarks, we assume that while-guards
are missing and we employ the aforementioned approaches to
synthesize suitable Boolean expressions for them.

C. Performance Results

Table 1 shows the performance results of
WhileSketchingcye and GenSketchingyygy.

We described in Section II how WhileSketchinggyc
successfully handles the sketch while.c given in Fig. 1.
GenSketching,,y also finds the correct solutions for
while. c, but for the first two assertions it needs two calls to
the abduction solver, which results in slower running times.

The program sketch eq2 . c in Fig. 7 has one local variable
i, which is initialized to 0 and increased by 2 in every
while-iteration. The forward static analysis infers the invari-
ant (1=0An > 0) before the while and (i > 0An > 0) at
the while-head. For the specification assert (i==2xn),
WhileSketchinggye constructs the corresponding CHCs

ALEKSANDAR S. DIMOVSKI: WHILE-GUARD SYNTHESIS BY ABSTRACT STATIC ANALYSIS AND CHC SOLVING

PERFORMANCE RESULTS OF WHILESKETCHINGcHc VS. GENSKETCHINGagp. ALL TIMES IN SEC.

TABLE I

Bench. | assert | WhileSketchingcyc | GenSketchingapeg |
| | TIME SOLVTIME Prec | TIME SOLVTIME Prec
while.c | (y=10) 0.920 0.904 v 2.011 1.836 N
while.c | (y>x) 0.924 0.901 v 2.082 1.874 v
while.c | (x=10) 0.817 0.796 v 0.746 0.611 v
while.c | (x>15) 0.921 0.900 v 0.744 0.630 v
eqg2.c (i=2xn) 0.939 0.889 v 1.337 1.251 v
eqg2.c (i=4*n) 0.901 0.871 v 1.578 1.402 v
eg2.c (1=0) 0.813 0.789 v 0.742 0.637 N
eqg2.c (1<0) 0.903 0.872 v 0.745 0.631 v
loop2.c | (i+3=20) 0.945 0911 v 1.502 1.364 v
loop2.c | (1+3>20) 0.936 0.902 v 1.558 1.404 v
loop2.c | (i+3j<=20) 0.814 0.786 v 1.543 1.376 v
loop2.c | (i+j=15) 0.951 0.910 v 0.751 0.665 v
copy.c (x=y) 0.979 0.937 v 1.693 1.542 X
copy.c (a=0) 0.954 0.921 v 1.511 1.382 X
copy.c (a+2=x) 0.950 0.918 v 1.451 1.329 X
copy.c | (v<0) 0.947 0.916 v | 0757 0.679 v
hola.c (y=2xm) 0.948 0.913 v 1.511 1.364 X
hola.c (y=x) 0.825 0.764 v 1.542 1.350 v
hola.c (y=x Ax>0) | 0.952 0.921 v 0.756 0.667 v
hola.c (y=2+*m+1) 0.926 0.902 v 0.748 0.664 X

and generates the solution (i # n) for the while-guard
2?. For the assertions (i==4xn), (i==0), and (i<0),
we synthesize the following while-guards: (i # 2*n),
false, and the problem is unrealizable, respectively. On the
other hand, GenSketching,,y reports the correct solutions
for eqg2.c, but it shows slower performance times than
WhileSketchinggye for the first two assertions.

Consider the program sketch loop2.c in Fig. 8. The
forward static analysis infers the invariant (1=0A j=0) before
the while and (i=0 A i=3j) at the while-head. Hence,
WhileSketchingcye infers the solutions (i # 10), (1 <
10), and false for the assertions (i+j==20), (i+3>20),
and (i+3j < 15), respectively. However, for the assertion
(1+3==15), we obtain that the problem is unrealizable (i.e.,
it has no solution). GenSketching,,y finds the correct
solutions as well, but is slower for three assertions.

The program sketch copy.c in Fig. 9 copies the input
value of the argument x into the local variable y. This is
specified by the final assertion (x==y). The forward static
analysis infers the invariant (x>0 A y=0 A x=a) before the
while and (x > 0 A y=x-a A x—a > 0) at the while-
head. Hence, WhileSketchingcyc infers the solution (x #
y) for the missing while-guard ??. For the assertions
(a==0), (a+2==x), and (y<0), it generates the while-
guards: (x—y > 1), (v # 2), and the problem is unrealizable,
respectively. On the other hand, GenSketching,,4 fails to
find solutions for three assertions.

Consider the program sketch hola.c in Fig. 10 [19].
The forward static analysis infers the invariant (x=0 A y=0)
before the while and (x > 0 A y=2+x) at the while-
head. This way, WhileSketchingcy. finds the solution
(m # x) for the assertion (y==2*m). For assertion (y==x) the
solution is (false), whereas for assertions (y==x)A (x>0) and

(y==2+m+1) we obtain that the problems are unrealizable.
GenSketching,y fails to produce correct solutions for two
assertions in this case.

Discussion: In summary, as Table I shows, the proposed
technique WhileSketchingcy: is quite effective at suc-
cessfully synthesizing the missing while-guards ?7? in all
considered benchmarks. Note that the tasks that synthesize the
solution (false) are the fastest ones for WhileSketchingeye
achieving around 10% speed-up with respect to the other tasks
for the same benchmark. Moreover, the CHC and abduction
solvers take more than 95% of the total synthesis time
for both WhileSketchingcy: and GenSketchingayg.
The synthesis time of GenSketching,,y depends on how
many times the abduction solver is called. When the Ab-
duction solver is called once, then GenSketching,,4 and
WhileSketchingeye achieve comparable synthesis times,
since WhileSketchingey: always calls the CHC solver
once. However, we can see that GenSketching,,4 cannot
find solutions for five assertions, thus returning empty sets.
On the one hand, this is due to the limitation of the abduction
solver and the difficulty of static analyzers to infer precise in-
ductive while-invariants in the presence of missing while-
guards, but on the other hand, this is also due to the suitability
of CHC solvers for handling complex control flow.

The current tool supports an interesting subset of C, so we
can handle many interesting programs. The selected bench-
marks are chosen to show some distinctive properties of our
approach and its ability to be applied in practice.

VII. RELATED WORK

We divide our discussion of related work into three cate-
gories: program sketching; abstract static analysis; and CHC
solving.

527

528

A. Program sketching

The widely-known SKETCH tool [2], [3] represents one of
the earliest attempts to resolve program sketches in which
missing holes can be only integer constants. It uses SAT-
based counterexample-guided inductive synthesis. In partic-
ular, SKETCH iteratively generates a finite set of inputs and
performs SAT queries to identify values for the holes such that
the obtained complete program satisfies all assertions for the
considered inputs. Additional SAT queries are then checked
to establish whether the obtained program is correct on all
possible inputs. SKETCH handles while-s by unrolling them,
which makes its performance very sensitive to the degree
of unrolling. Since it is based on SAT solvers, SKETCH is
especially suited for handling bit-manipulating programs.

FAMILYSKETCHER [4], [20], [21] is another tool for solv-
ing the sketching problem by using lifted (family-based) static
analysis based on abstract interpretation [22], [23]. The key
idea underlying this approach is that the set of all possible
sketch realizations can be represented as a program family
(Software Product Line) with numerical features [24], [25],
[26], which is subsequently statically analyzed to establish as-
sertion validity. This way, the effort of conducting an effective
search of all possible hole realizations is delegated to an effi-
cient lifted static analyzer for program families (SPLs), which
uses a specifically designed decision tree abstract domain.
Since FAMILYSKETCHER is based on numerical abstract
domains, it can handle unbounded while-s via widening
and narrowing, and moreover it is very suited for handling
numerical programs with integer data types.

However, SKETCH and FAMILYSKETCHER can only re-
solve program sketches in which unknown holes can be
replaced by one constant value from a finite set of inte-
gers. GenSketching,py [5] considers so-called generalized
sketching problem, where each hole can be replaced by an ar-
bitrary expression. It uses abstract static analysis for constraint
generation and abduction solvers for constraint solving. Simi-
larly to FAMILYSKETCHER, GenSketching,,4 can handle
unbounded while-s and numerical programs. However, this
approach is not very effective in handling missing while-
guards, and it often fails to find any solution. In this paper,
we pursue this line of work by using CHC solvers rather than
abduction solvers, which are more suitable for automatically
handling more complex while-loops. The abduction solvers
have also been applied in program synthesis to infer missing
if-guards from low-level C code such that all buffer accesses
are memory safe [27], to infer missing # i f-guards from nu-
merical program families so that a given assertion is valid in all
members of the family [28], to find the weakest specifications
of unknown (library) functions that ensure the safety of the
program calling those external functions [29], [30], etc.

B. Abstract static analysis

Abstract interpretation [6], [14], [7], [31], [32] is a gen-
eral theory for approximating the semantics of programs.
It provides sound and efficient static analyses for inferring
run-time properties of programs. The most popular static

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

analyzers employ the well-known numerical abstract domains
of Intervals [6], Octagons [7], and Polyhedra [14], that can be
used for inferring numerical properties of program variables.
Mine [32] has introduced the under-approximating backward
polyhedral analysis for inferring sufficient conditions of non-
deterministic programs, which has been implemented as part
of the APRON library in the BANAL tool [32].

Several successful static analyzers based on abstract inter-
pretation have been developed recently for verifying real-world
programs. For example, ASTREE [33] is a static analyzer
for verifying avionics software; ULITIMATE TAIPAN [34] is
a software model checker that uses abstract interpretation to
derive invariants for the path program corresponding to a given
spurious counterexample; PAGAT [35] combines SMT-solving
with abstract interpretation, etc.

Several approaches use a combination of forward and
backward static analyses to infer more precise interesting
properties of programs. More specifically, Rival [36] uses
this combination to detect a set of traces leading to a bug;
Bourdoncle [31] to generate preconditions ensuring validity of
invariant and intermittent assertions; Dimovski and Legay [37]
to compute the probability that a given assertion is satisfied (or
violated); and Urban and Miné [8] to find ranking functions
for proving termination.

C. Constraint Horn Clauses

Recently, the problem of CHC solving has gained a lot of
attention due to their wide applications in program verification
and program synthesis. Various algorithms and tools for CHC
solving have been developed. Some of the most prominent
tools are: Eldarica [11] that combines predicate abstraction
with counterexample-guided abstraction refinement; Spacer
[10] that uses generalized property-driven reachability analy-
sis; Duality [15] that uses predicate abstraction and Craig
interpolation for abstraction refinement; FreqHorn [16] that
uses Syntax-Guided Synthesis (SyGuS) [38]. Optimal CHC
solving [39], which calculates maximal and minimal solutions
of a given set of CHCs, uses techniques from program termi-
nation analysis to check the optimality of a solution of CHCs.
Algorithms for solving a richer formalism of existentially
quantified Horn clauses have also been studied [40], [41].

CHC solving has found a number of applications in pro-
gram verification and program synthesis. SEAHORN [42] and
JAYHORN [43] are tools for verification of safety properties
of C and Java programs by combining abstract interpretation
and CHC solving. They encode Hoare logic-style verification
conditions as CHCs, which are subsequently solved via CHC
solvers. CHC solving has also been used for determining
refinement types of higher-order functional programs [44], for
analysis of business processes expressed as Petri nets [45], etc.
The existential Horn clauses have been used for the weakest
strategy synthesis of safety games [46].

CHC solving has also been applied for synthesizing imper-
ative programs from input-output examples as specifications
in the semantics-guided synthesis (SemGuS) framework [47],
[48]. The syntax, semantics, and specifications of imperative

ALEKSANDAR S. DIMOVSKI: WHILE-GUARD SYNTHESIS BY ABSTRACT STATIC ANALYSIS AND CHC SOLVING

programs are represented as CHCs, thus effectively reducing
the program synthesis problem into a proof search over CHCs.
This approach is specialized on proving unrealizable problems
by showing that no imperative program from a given grammar
exists that satisfies the specification. The SemGuS framework
is also used for synthesizing regular expressions, Boolean
formulas, and SyGuS problems. There are other approaches for
imperative program synthesis that are specialized for solving
realizable problems. SIMPL [49] combines the enumerative
search with abstract static analysis to infer programs from
input-output examples, while IMPSYNTH [50] combines enu-
merative search, abstract static analysis, and SMT mutations
[51] to infer programs from logic specifications.

VIII. CONCLUSION

In this work, we introduce a synthesis algorithm for auto-
matically inferring arbitrary Boolean expressions for unknown
while-guards in program sketches. It is implemented by
interaction between abstract static analyses and CHC solving.
By means of experiments, we demonstrate the effectiveness of
our algorithm on a set of interesting C benchmarks that cannot
be handled by other existing tools.

In the future, we plan to extend our approach by considering
program sketches in which apart from while-guards, un-
known holes can also be i f-guards, arithmetic expressions in
assignments, and ultimately arbitrary statements. We envision
achieving this aim by further interplay between abstract static
analyses, CHC solving, and abduction solving.

REFERENCES

[1] A. Pnueli and R. Rosner, “On the synthesis of a reactive module,”
in Conference Record of the Sixteenth Annual ACM Symposium
on Principles of Programming Languages. ACM Press, 1989, pp.
179-190. [Online]. Available: https://doi.org/10.1145/75277.75293

[2] A. Solar-Lezama, “Program sketching,” STTT, vol. 15, no. 5-
6, pp. 475-495, 2013. [Online]. Available: https://doi.org/10.1007/
s10009-012-0249-7

[3] A. Solar-Lezama, R. M. Rabbah, R. Bodik, and K. Ebcioglu,
“Programming by sketching for bit-streaming programs,” in Proceedings
of the ACM SIGPLAN 2005 Conference on Programming Language
Design and Implementation. ~ACM, 2005, pp. 281-294. [Online].
Available: https://doi.org/10.1145/1065010.1065045

[4] A. Dimovski, S. Apel, and A. Legay, “Program sketching using lifted
analysis for numerical program families,” in NASA Formal Methods,
NFM 2021, ser. LNCS, vol. 12673. Springer, 2021, pp. 95-112.
[Online]. Available: https://doi.org/10.1007/978-3-030-76384-8_7

[51 A. S. Dimovski, “Generalized program sketching by abstract
interpretation and logical abduction,” in Static Analysis - 30th
International Symposium, SAS 2023, Proceedings, ser. LNCS, vol.
14284. Springer, 2023, pp. 212-230. [Online]. Available: https:
//doi.org/10.1007/978-3-031-44245-2_11

[6] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation
of fixpoints,” in POPL’77. ACM, 1977, pp. 238-252. [Online].
Available: http://doi.acm.org/10.1145/512950.512973

[71 A. Miné, “Tutorial on static inference of numeric invariants by
abstract interpretation,” Foundations and Trends in Programming
Languages, vol. 4, no. 3-4, pp. 120-372, 2017. [Online]. Available:
https://doi.org/10.1561/2500000034

[8] C. Urban and A. Miné, “A decision tree abstract domain
for proving conditional termination,” in Static Analysis - 2Ist
International ~ Symposium, SAS 2014. Proceedings, ser. LNCS,
vol. 8723. Springer, 2014, pp. 302-318. [Online]. Available:
https://doi.org/10.1007/978-3-319-10936-7_19

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

I. Dillig and T. Dillig, “Explain: A tool for
abductive inference,” in Computer Aided Verification - 25th
International Conference, CAV 2013. Proceedings, ser. LNCS,
vol. 8044. Springer, 2013, pp. 684-689. [Online]. Available:
https://doi.org/10.1007/978-3-642-39799-8_46

A. Komuravelli, A. Gurfinkel, and S. Chaki, “Smt-based model
checking for recursive programs,” in Computer Aided Verification
- 26th International Conference, CAV 2014. Proceedings, ser.
LNCS, vol. 8559. Springer, 2014, pp. 17-34. [Online]. Available:
https://doi.org/10.1007/978-3-319-08867-9_2

H. Hojjat and P. Riimmer, “The ELDARICA horn solver,” in 2018
Formal Methods in Computer Aided Design, FMCAD 2018. IEEE,
2018, pp. 1-7. [Online]. Available: https://doi.org/10.23919/FMCAD.
2018.8603013

C. A. R. Hoare and N. Wirth, “An axiomatic definition of the program-
ming language PASCAL,” Acta Informatica, vol. 2, pp. 335-355, 1973.
A. Miné, “The octagon abstract domain,” Higher-Order and Symbolic
Computation, vol. 19, no. 1, pp. 31-100, 2006. [Online]. Available:
https://doi.org/10.1007/s10990-006-8609- 1

P. Cousot and N. Halbwachs, “Automatic discovery of linear restraints
among variables of a program,” in Conference Record of the Fifth
Annual ACM Symposium on POPL’78. ACM Press, 1978, pp. 84-96.
[Online]. Available: https://doi.org/10.1145/512760.512770

N. S. Bjgrner, K. L. McMillan, and A. Rybalchenko, “On
solving universally quantified horn clauses,” in Static Analysis -
20th International Symposium, SAS 2013. Proceedings, ser. LNCS,
vol. 7935. Springer, 2013, pp. 105-125. [Online]. Available:
https://doi.org/10.1007/978-3-642-38856-9_8

G. Fedyukovich, S. Prabhu, K. Madhukar, and A. Gupta, “Quantified
invariants via syntax-guided synthesis,” in Computer Aided Verification
- 31st International Conference, CAV 2019, Proceedings, Part I, ser.
LNCS, vol. 11561. Springer, 2019, pp. 259-277. [Online]. Available:
https://doi.org/10.1007/978-3-030-25540-4_14

B. Jeannet and A. Miné, “Apron: A library of numerical abstract
domains for static analysis,” in 21st Int. Conf., CAV 2009. Proceedings,
ser. LNCS, vol. 5643. Springer, 2009, pp. 661-667. [Online].
Available: https://doi.org/10.1007/978-3-642-02658-4_52

L. M. de Moura and N. Bjgrner, “Z3: an efficient SMT solver,”
in 14th International Conference, TACAS 2008. Proceedings, ser.
LNCS, vol. 4963. Springer, 2008, pp. 337-340. [Online]. Available:
https://doi.org/10.1007/978-3-540-78800-3_24

L. Dillig, T. Dillig, B. Li, and K. L. McMillan, “Inductive invariant
generation via abductive inference,” in Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2013. ACM, 2013, pp.
443-456. [Online]. Available: https://doi.org/10.1145/2509136.2509511
A. S. Dimovski, “Quantitative program sketching using lifted static
analysis,” in 25th Int. Conf. FASE 2022, Proceedings, ser. LNCS,
vol. 13241. Springer, 2022, pp. 102-122. [Online]. Available:
https://doi.org/10.1007/978-3-030-99429-7_6

A. Dimovski, “Quantitative program sketching using decision tree-based
lifted analysis,” J. Comput. Lang., vol. 75, p. 101206, 2023. [Online].
Available: https://doi.org/10.1016/j.cola.2023.101206

A. S. Dimovski, “A binary decision diagram lifted domain for
analyzing program families,” J. Comput. Lang., vol. 63, p. 101032,
2021. [Online]. Available: https://doi.org/10.1016/j.cola.2021.101032
A. S. Dimovski, S. Apel, and A. Legay, “Several lifted abstract
domains for static analysis of numerical program families,” Sci.
Comput. Program., vol. 213, p. 102725, 2022. [Online]. Available:
https://doi.org/10.1016/j.scico0.2021.102725

A. S. Dimovski, C. Brabrand, and A. Wasowski, “Finding suitable
variability abstractions for family-based analysis,” in FM 2016:
Formal Methods - 2lst International Symposium, Proceedings, ser.
LNCS, vol. 9995. Springer, 2016, pp. 217-234. [Online]. Available:
https://doi.org/10.1007/978-3-319-48989-6_14

A. S. Dimovski and A. Wasowski, “From transition systems
to variability models and from lifted model checking back to
UPPAAL,” in Models, Algorithms, Logics and Tools, ser. LNCS,
vol. 10460. Springer, 2017, pp. 249-268. [Online]. Available:
https://doi.org/10.1007/978-3-319-63121-9_13

B. Atanasovski, M. Bogdanovic, G. Velinov, L. Stoimenov, A. S.
Dimovski, B. Koteska, D. Jankovic, I. Skrceska, M. Kon-Popovska, and
B. Jakimovski, “On defining a model driven architecture for an enterprise

performing

529

530

[27]

(28]

[29]

(30]

(31]

[32]

(33]

(34]

(35]

(36]

[37]

[38]

[39]

e-health system,” Enterp. Inf. Syst., vol. 12, no. 8-9, pp. 915-941, 2018.
[Online]. Available: https://doi.org/10.1080/17517575.2018.1521996

T. Dillig, I. Dillig, and S. Chaudhuri, “Optimal guard synthesis for
memory safety,” in Computer Aided Verification - 26th International
Conference, CAV 2014. Proceedings, ser. LNCS, vol. 8559. Austria:
Springer, 2014, pp. 491-507. [Online]. Available: https://doi.org/10.
1007/978-3-319-08867-9_32

A. S. Dimovski, “On synthesizing presence conditions in numerical
software product lines,” in Proceedings of the 29th ACM International
Systems and Software Product Line Conference - Volume A, SPLC
2025. ACM, 2025. [Online]. Available: https://doi.org/10.1145/
3744915.3748474

A. Albarghouthi, I. Dillig, and A. Gurfinkel, “Maximal specification
synthesis,” in Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2016. St. Petersburg: ACM, 2016, pp. 789-801. [Online]. Available:
https://doi.org/10.1145/2837614.2837628

A. S. Dimovski, “Weakest safe context synthesis by symbolic
game semantics and logical abduction,” in Proceedings of the 40th
ACM/SIGAPP Symposium on Applied Computing, SAC 2025. ACM,
2025, pp. 1990-1997. [Online]. Available: https://doi.org/10.1145/
3672608.3707849

F. Bourdoncle, “Abstract debugging of higher-order imperative
languages,” in Proceedings of the ACM SIGPLAN’93 Conference on
Programming Language Design and Implementation (PLDI). ACM,
1993, pp. 46-55. [Online]. Available: https://doi.org/10.1145/155090.
155095

A. Miné, “Backward under-approximations in numeric abstract
domains to automatically infer sufficient program conditions,” Sci.
Comput. Program., vol. 93, pp. 154-182, 2014. [Online]. Available:
https://doi.org/10.1016/j.scic0.2013.09.014

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival, “The astreé analyzer,” in Programming Languages and
Systems, 14th European Symposium on Programming, ESOP 2005,
Proceedings, ser. LNCS, vol. 3444. Springer, 2005, pp. 21-30.
[Online]. Available: https://doi.org/10.1007/978-3-540-31987-0_3

M. Greitschus, D. Dietsch, M. Heizmann, A. Nutz, C. Schiitzle,
C. Schilling, F. Schiissele, and A. Podelski, “Ultimate taipan: Trace
abstraction and abstract interpretation - (competition contribution),”
in 23rd International Conference, TACAS 2017, Proceedings, Part
II, ser. LNCS, vol. 10206, 2017, pp. 399—403. [Online]. Available:
https://doi.org/10.1007/978-3-662-54580-5_31

J. Henry, D. Monniaux, and M. Moy, “PAGAI: A path sensitive static
analyser,” Electron. Notes Theor. Comput. Sci., vol. 289, pp. 15-25,
2012. [Online]. Available: https://doi.org/10.1016/j.entcs.2012.11.003
X. Rival, “Understanding the origin of alarms in astrée,” in Static
Analysis, 12th International Symposium, SAS 2005, Proceedings, ser.
LNCS, vol. 3672. Springer, 2005, pp. 303-319. [Online]. Available:
https://doi.org/10.1007/11547662_21

A. S. Dimovski and A. Legay, “Computing program reliability
using forward-backward precondition analysis and model counting,” in
Fundamental Approaches to Software Engineering - 23rd International
Conference, FASE 2020, Proceedings, ser. LNCS, vol. 12076.
Springer, 2020, pp. 182-202. [Online]. Available: https://doi.org/10.
1007/978-3-030-45234-6_9

R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman,
S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa,
“Syntax-guided synthesis,” in Formal Methods in Computer-Aided
Design, FMCAD 2013. IEEE, 2013, pp. 1-8. [Online]. Available:
http://ieeexplore.ieee.org/document/6679385/

Y. Gu, T. Tsukada, and H. Unno, “Optimal CHC solving via termination

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

proofs,” Proc. ACM Program. Lang., vol. 7, no. POPL, pp. 604-631,
2023. [Online]. Available: https://doi.org/10.1145/3571214

T. A. Beyene, C. Popeea, and A. Rybalchenko, “Solving existentially
quantified horn clauses,” in Computer Aided Verification - 25th
International Conference, CAV 2013. Proceedings, ser. LNCS, vol.
8044. Springer, 2013, pp. 869-882. [Online]. Available: https:
//doi.org/10.1007/978-3-642-39799-8_61

T. Kuwahara, R. Sato, H. Unno, and N. Kobayashi, “Predicate
abstraction and CEGAR for disproving termination of higher-
order functional programs,” in Computer Aided Verification - 27th
International Conference, CAV 2015, Proceedings, Part 1I, ser.
LNCS, vol. 9207. Springer, 2015, pp. 287-303. [Online]. Available:

https://doi.org/10.1007/978-3-319-21668-3_17
A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas, “The

seahorn verification framework,” in Computer Aided Verification -
27th International Conference, CAV 2015, Proceedings, Part I, ser.
LNCS, vol. 9206. Springer, 2015, pp. 343-361. [Online]. Available:
https://doi.org/10.1007/978-3-319-21690-4_20

T. Kahsai, P. Riimmer, H. Sanchez, and M. Schif, “Jayhorn:
A framework for verifying java programs,” in Computer Aided
Verification - 28th International Conference, CAV 2016, Proceedings,
Part I, ser. LNCS, vol. 9779. Springer, 2016, pp. 352-358. [Online].
Available: https://doi.org/10.1007/978-3-319-41528-4_19

K. Hashimoto and H. Unno, “Refinement type inference via horn
constraint optimization,” in Static Analysis - 22nd International
Symposium, SAS 2015, Saint-Malo, France, September 9-11, 2015,
Proceedings, ser. Lecture Notes in Computer Science, vol. 9291.
Springer, 2015, pp. 199-216. [Online]. Available: https://doi.org/10.
1007/978-3-662-48288-9_12

J. Leroux, P. Rimmer, and P. Subotic, “Guiding craig
interpolation with domain-specific abstractions,” Acta Informatica,
vol. 53, no. 4, p. 387-424, 2016. [Online]. Available:
https://doi.org/10.1007/s00236-015-0236-z

T. A. Beyene, S. Chaudhuri, C. Popeea, and A. Rybalchenko, “A
constraint-based approach to solving games on infinite graphs,” in
The 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL ’14. ACM, 2014, pp. 221-234.
[Online]. Available: https://doi.org/10.1145/2535838.2535860

J. Kim, Q. Hu, L. D’Antoni, and T. W. Reps, “Semantics-guided
synthesis,” Proc. ACM Program. Lang., vol. 5, no. POPL, pp. 1-32,
2021. [Online]. Available: https://doi.org/10.1145/3434311

K. J. C. Johnson, A. Reynolds, T. W. Reps, and L. D’Antoni,
“The semgus toolkit,” in Computer Aided Verification - 36th
International Conference, CAV 2024, Proceedings, Part III, ser.
LNCS, vol. 14683. Springer, 2024, pp. 27-40. [Online]. Available:
https://doi.org/10.1007/978-3-031-65633-0_2

S. So and H. Oh, “Synthesizing imperative programs from
examples guided by static analysis,” in Static Analysis - 24th
International Symposium, SAS 2017, Proceedings, ser. LNCS,
vol. 10422. Springer, 2017, pp. 364-381. [Online]. Available:
https://doi.org/10.1007/978-3-319-66706-5_18

A. S. Dimovski, “Imperative program synthesis by abstract static
analysis and SMT mutations,” in Proceedings of the 24th ACM
SIGPLAN International Conference on Generative Programming:
Concepts and Experiences, GPCE 2025, Bergen, Norway, July
3-4, 2025. ACM, 2025, pp. 27-40. [Online]. Available: https:
//doi.org/10.1145/3742876.3742884

A. Dimovski, “Mutation-based lifted repair of software product
lines,” in 38th European Conference on Object-Oriented Programming,
ECOOP 2024, ser. LIPIcs, vol. 313. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2024, pp. 12:1-12:24. [Online]. Available:
https://doi.org/10.4230/LIPIcs. ECOOP.2024.12

