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Abstract—In this paper, we analyse rolling stock cyclic job
scheduling problems with maintenance to maximize the total
availability of vehicles or to minimize the total maintenance cost.
The considered issues can be formulated as cyclic job scheduling
problems on parallel machines with time and usage based
deteriorating effects and maintenance. Since these problems are
strongly NP-hard, we propose a dedicated double crossover
genetic algorithm and compare its efficiency with other meta-
heuristics: particle swarm optimization, simulated annealing, and
genetic algorithm (using a single crossover). The computational
experiments reveal that our approach is robust, optimizes various
instances, and overwhelms the other evaluated algorithms for the
analysed scenarios correlated with real-life cases. Thus, our new
method is applicable for the industrial practice to maximized
availability of vehicles as well as to minimize maintenance costs.

Index Terms—Scheduling, Rolling stock, Deteriorating, Main-
tenance, Metaheuristic

I. INTRODUCTION

S
CHEDULING problems with deteriorating effects and/or
maintenance activities have attracted particular attention

in the research society (e.g., [1], [2], [3]). It follows from the
practical meaning of the related research, since most of the
industrial systems undergo degradation, and to avoid unex-
pected breakdowns preventive maintenance are performed. It
is especially important in a railway domain, where the related
rules concerning maintenance of vehicles are strictly defined.
Usually, for locomotives five levels of activities are distin-
guished: inspections (Level 1), periodic inspections (Level 2),
extended periodic inspections (Level 3), overhauls (Level 4),
overhauls and upgrades (Level 5) [4]. However, they are not
only time consuming and making vehicles unavailable [5],
but they are also expensive (see [6]) especially for higher
levels. On the other hand, the maintenance dates can be
controlled within a certain range by scheduling taking into
account required mileage of transport tasks and additional
constraints following from maintenance policies defining time-
based maintenance (TBM) and mileage based-maintenance
(MBM) cycles. Such approach was for the first time analysed,
developed and implemented by the author for a locomotive
rental company, and his results including the dedicated math-
ematical (simulation) model and the optimization algorithms
were described in details in the industrial report [7].

In this paper, we will follow that approach on rolling stock
cyclic job scheduling problems with maintenance to maximize

the total availability of vehicles or to minimize of the total
maintenance cost. To solve them, we will propose a dedicated
double crossover genetic algorithm and compare its efficiency
with other metaheuristics known from the literature such as our
previous implementations of particle swarm optimization [8],
simulated annealing ([7], also presented in [5]) and a genetic
algorithm with a single partially mapped crossover PMX [5]
adjusted to solve the required criteria.

II. PROBLEM FORMULATION

In this section, we will describe the analysed rolling stock
cyclic job scheduling problems to maximize the total availabil-
ity of vehicles (TA) and to minimize the total maintenance
cost (TC ) as a cyclic job scheduling problems on identical
parallel machines with deteriorating effects and maintenance.
It is worth highlighting that these problems are covered by
the mathematical (simulation) model, which was formulated
solely by the author (R. Rudek) and precisely described in
his industrial report [7]. Its fundamental part is the discrete
event simulator (DES) including the model parameters and
their relations describing vehicles, maintenance policies, jobs,
schedules and rules allowing for determining dates and dura-
tions of maintenance activities and calculating various criteria.
These main assumptions in a simplified form were presented
to a broader audience inter alia in [9] and [5] to optimize the
total availability criteria, the total maintenance cost [8] or the
total income [10].

Let us recall that the discussed problems can be formulated
as cyclic job scheduling problems on parallel machines with
time and usage based deteriorating effects and maintenance
under the these criteria. The scheduling problem (model)
parameters and constraints are given as follows. There is
a time horizon T = {1, . . . , t, . . . , T} is divided into T
periods (in practice referring to succeeding months). A set
V = {1, . . . , v, . . . , n} of n parallel machines (representing
locomotives) that have to process a set J = {1, . . . , j, . . . , n}
of n cyclic jobs (identified with transport tasks) during all
periods T . A job can be assigned exactly to one and the same
machine for a given period t, and a machine can process
only one job at a time, but the reassignment in the next
periods is allowed. Moreover each job j ∈ J is characterized
by the average milage per day (workload) wj that defines
daily deteriorating of a machine (increasing its accumulative
mileage) during all days in period t, when that machine is
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operational (available) and processes job j. On the other hand
machines, due to their deteriorating, must to undergo periodic
preventive maintenance activities MAs, and each of them
belongs to exactly one family (type) f ∈ F = {1, . . . , F}.
Machines of a given type f share the same maintenance pol-
icy (MP), which defines time-based maintenance (TBM) and
mileage (distance) based-maintenance (MBM) cycles divided
into Kf levels of complexity. Each level k = 1, . . . ,Kf of MP
is described by the related parameters TBM

f
k and MBM

f
k ,

which are the predetermined threshold values triggering MA

according to TBM or MBM, respectively. A maintenance
activity of level k for a machine of type f is described by
the expected duration MD

f
k and the cost MC

f
k . The main-

tenance activities of lower levels are covered by the higher
levels and the following relations hold: TBM f

k < TBM
f
k+1,

MBM
f
k<MBM

f
k+1, MD

f
k<MD

f
k+1 and MC

f
k<MC

f
k+1 for

all k = 1, . . . ,Kf − 1. Each machine v ∈ V is characterized
by its deteriorating (condition) parameters VT v,k and VM v,k

denoting the period and the accumulated mileage since the last
maintenance of level k, respectively. The maintenance activity
MA of level k for machine v of type f is started, when
the first of the following deteriorating rules does not hold:
VT v,k ≤TBM

f
k or VM v,k ≤MBM k for all k = 1, . . . ,Kf

(referring to time and usage deteriorating). If a machine is out
of order due to MA, then each job assigned to that machine
during related unavailability periods is serviced by the third
party. After MA of level k is completed (meaning also the
completion of lower levers) the related deteriorating values
(counters/conditions) are set to zero VT v,i=0 and VM v,i=0
for i = 1, . . . , k and a machine can process an assigned job
(returned from the third party).

The considered problem is to find a schedule S that is
an assignment of all jobs j ∈ J to all machines v ∈ V
during all periods t ∈ T , which optimizes the required
criterion value Q, i.e., the total availability of machines
(vehicles) TA or the total maintenance cost TC . In other
words, the schedule S = 〈S1, . . . , St, . . . , ST 〉 is the se-
quence of the assignments of jobs to machines (vehicles)
St = (St(1), . . . , St(v), . . . , St(n)) in succeeding periods
t = 1, . . . , T , where St(v) ∈ J is the index of a job
assigned to machine (vehicle) v at period t. Note that S can be
represented unambiguously by the sequence of permutations
St. Furthermore, a schedule determines the deteriorating of
machines in particular periods (usually months) caused by
processing of jobs, which together with model parameters
and constraints (such as the maintenance policies) imply the
maintenance plan (dates of maintenance activities) that is
precisely described by our mathematical model RRR including
the discrete event simulator [7]. Thus, the calculation of the
criterion value Q(S) for a given schedule S is based on
the maintenance plan provided by our model, and it requires
O(MKn) steps, where M is the number of performed main-
tenance activities and K = maxf∈F{K

f} is their maximum
level for all machines. Therefore, the objective is to find a
schedule S∗ that optimizes the criterion value Q(S), i.e.,

the maximization of the total availability of machines (vehi-
cles) TA: S∗ = argmaxS∈S{Q(S)}= argmaxS∈S{TA(S)},
the minimization of the total maintenance cost TC :
S∗ = argminS∈S{Q(S)}= argminS∈S{TC(S)}, where S is
the set of all feasible schedules.

III. COMPUTATIONAL COMPLEXITY

The rolling stock cyclic job scheduling problem to maxi-
mize the total availability of vehicles is strongly NP-hard [5].
Here, we will present a sketch of the strong NP-hardness proof
of the analysed problem to minimize the total maintenance
cost, since its full version is beyond the scope of this paper.

Theorem 1: The rolling stock cyclic job scheduling problem
to minimize the total maintenance cost is strongly NP-hard.
Proof. The strong NP-hardness follows from the proof of the
strong NP-hardness of the problem with the minimization of
the total time on maintenance activities (see [5]). It can be done
by extending the pseudopolynomial time transformation such
that the parameter maintenance cost MC = 1 is added and the
criterion MA(S, T ) is replaced by correlated the total cost of
maintenance activities CMA(S, T ). Thus, it can be observed
that CMA(S, T ) is equal to y = 0 only if MA(S, T ) = y = 0
and CMA(S, T ) > y only if MA(S, T ) > y = 0. �

Thus, it is highly unlikely (until P = NP ) to construct an
exact polynomial time algorithm for the considered problem.
On the other hand, the solution space S is significantly greater
than for typical scheduling problems, since it is spread by the
sequence of permutations with the cardinality |S| = O((n!)T ).
Therefore, we will proposed a dedicated double crossover
genetic algorithm (GARDX) and compare its efficiency with
other methods already published (e.g., [5], [8]).

IV. GENETIC ALGORITHM

In this section, we will present our genetic algorithm
railway double crossover (GARDX), which is based on the
general concept of the genetic algorithm metaheuristic [11].
In particular, it follows the construction for one permutation
[12], later on extended to the sequence of permutations being
our earlier basic implementation GA (see [5]) evaluated for
the total availability criterion TA. Let us bring closer the
idea behind GARDX, which is describe by Algorithm 1.
It uses the mathematical model developed and implemented
solely by the author (R. Rudek) [7] and included in his
dll library RudRobustRailway (RRR). Since GARDX is
designed to optimize arbitrary criteria Q that are based on
the maintenance plan resulting from the schedule, the proper
handler has to be chosen (e.g., TA or TC ) and also the values
of its meta parameters have to be given, i.e., PopulationSize,
OffspringSize, MixSize, StopConition (see step 1). Each
individual in the population is expressed as the pair (S,Q),
where S = 〈S1, . . . , St, . . . ST 〉 is the schedule represented by
the sequence of permutations St and Q is the corresponding
criterion value (e.g., calculated according to TA or TC ). Thus,
we will refer to the schedule S and to the criterion value Q of
the idxth element from a required set (e.g., Population) as
follows: Population[idx].S and Population[idx].Q (step 2).
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Algorithm 1 Genetic Algorithm Railway Double Crossover
GARDX
1: Input: parameters and criterion type Q(·);
2: Refer to the schedule S and the criterion Q of

the element idx from the set SetName by

SetName[idx].S, SetName[idx].Q;
3: Population[1] = provided by FA;

4: Population[2] = provided by BH;

5: Population[3] = provided by PSO (StopCondition=10s);
6: Population[4] = provided by SA (StopCondition=10s);
7: for p = 5, . . . , bPopulationSize/2c
8: S′ = a sequence of random permutations;

9: Calculate the criterion Q′ for S′: Q′ = Q(S′);
10: Population[p] = S′ and Population[p].Q = Q′;

11: end for

12: for p = bPopulationSize/2c+ 1, . . . , PopulationSize
13: S′ = Population[1].S;
14: for t = 1, . . . , T
15: for r = 1, . . . , bn/2c
16: u = random vehicle index from {1, . . . , n};
17: v = random vehicle index from {1, . . . , n};
18: Swap jobs between u and v in S′

t
19: end for

20: end for

21: Calculate the criterion Q′ for S′: Q′ = Q(S′);
22: Population[p] = S′ and Population[p].Q = Q′;

23: end for

24: while (StopCondition 6= true)

25: ParentPool = {choose 2 ∗OffspringSize random
elements from Population};

26: for idx = 1, . . . , OffspringSize
27: ParentXX = ParentPool[2 ∗ idx− 1];
28: ParentXY = ParentPool[2 ∗ idx];
29: ta = random period index from {1, . . . , T};
30: tb = random period index from {1, . . . , T};
31: (SX , SY ) = TPX (ParentXX.S, ParentXY.S, ta, tb);
32: SC = ROX (SX , SY ,MixSize);
33: Calculate the criterion value QC

for the child schedule SC: QC =Q(SC);
34: Offspring[idx].S=SC and Offspring[index].Q=QC;

35: end for

36: Population = Choose PopulationSize best elements
from the set {Population ∪Offspring}
ordered from the best to the worst Q;

37: if Population[1].Q is better than Q∗
then

38: Q∗ = Population[1].Q and S∗ = Population[1].S;
39: end if

40: end while

41: Return the schedule S∗ = (S∗
1 , . . . , S

∗
T )

and its criterion value Q∗;

Algorithm 2 Two Point Crossover (TPX):
(SX , SY ) = TPX (SXX , SXY , ta, tb)
1: Input: parent schedules SXX, SXY and

crossover parameters ta, tb;
2: if ta > tb then exchange values ta and tb;
3: for t = 1 to ta − 1
4: SX

t = SXX
t ;

5: SY
t = SXY

t ;

6: end for

7: for t = ta to tb
8: SX

t = SXY
t ;

9: SY
t = SXX

t ;

10: end for

11: for t = tb + 1 to T
12: SX

t = SXX
t ;

13: SY
t = SXY

t ;

14: end for

15: Return resulting schedules SX and SY ;

Algorithm 3 Random Order Crossover (ROX):
SC = ROX (SX , SY ,MixSize)
1: Input: parent schedules SX, SY and

parameter MixSize;
2: Initialize the child schedule:

SC = 〈SC
1 , . . . , SC

t , . . . SC
T 〉 = SX;

3: for q = 1, . . . ,MixSize
4: t = random period index from {1, . . . , T};
5: for v = 1 to n
6: Get job index j assigned to vehicle v

at period t for parent X: j = SX
t (v);

7: Mark vehicle v in child schedule SC
t as

not assigned: SC
t (v) = −1;

8: Mark job j as not assigned to the child:

isJobAssigned[j] = false;

9: rv = random value from {0.0, . . . , 0.9};
10: if rv < 0.5 then

11: Assign job j to vehicle v in SC
t : SC

t (i) = j;
12: Mark j as assigned: isJobAssigned[j] = true;

13: end if

14: end for

15: u = 1;
16: for v = 1 to n
17: Get job index j assigned to vehicle v

at period t for parent Y : j = SY
t (v);

18: if isJobAllocated[j] == false then

19: while (SC
t (u) > 0)

20: u = u+ 1;
21: end while

22: Assign job j to vehicle u in SC
t : SC

t (u) = j;
23: end if

24: end for

25: end for

26: Return the child schedule SC = (SC
1 , . . . , SC

T );

The first four individuals in the initial population (steps 3–
6) are constructed by the following methods FA, BH, PSO
and SA. Namely, Fixed Assignment (FA) is the constant
assignment of jobs to vehicles during all months (no job
reassignment between vehicles), i.e., a sequence of natural
permutations (introduced as a default reference in [7], later
on used in [5]). Balance Heuristic (BH) was developed and
introduced in [7], later on used and shown to a broader
audience in [9], whereas Particle Swarm Optimization (PSO)
was presented in [8], and Simulated Annealing (SA) was
introduced in [7], later on used in [5]. The applied PSO
and SA optimize the criterion type chosen for GARDX and
their meta parameter values are given in Section V, whereas
their stop condition in GARDX is 10 seconds. Next p =
5,. . . ,bPopulationSize/2c individuals are the sequences of
random permutations (steps 7-11). The rest of elements of the
population p=bPopulationSize/2c+1,. . ., PopulationSize
are constructed on the basis of FA, where for each St jobs
are swapped between two random vehicles u and v that are
drawn bn/2c times (steps 12-23) for every t=1,. . . ,T .

In the each iteration of the main loop (steps 24-40),
the algorithm chooses OffspringSize random pairs from
the population (step 25) that are the intermediate parents
ParentXX and ParentXY (steps 27-28). Following them
and for two random periods ta and tb (steps 29-30) the target
parents are constructed represented by schedules SX and SY

(step 31). It is done by using the two point crossover TPX

(Algorithm 2), which exchanges permutations of schedules
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ParentXX.S ≡ SXX and ParentXY.S ≡ SXY in ranges
t ∈ {ta, . . . , tb} (where ta < tb) returning the new schedules
SX and SY . On their basis, a new child schedule SC is created
following the random order crossover ROX and parameter
MixSize (step 32). The related procedure ROX described
by Algorithm 3 initially clones the first parent schedule SX to
the child schedule SC . Next, it draws MixSize times random
period indices t ∈ T . For each t, the particular assignments of
jobs to the vehicles from the permutation of the first parent SX

t

are copied with probability 0.5 to the related permutation of
the child schedule SC

t , whereas not chosen jobs are marked as
unassigned. Subsequently, these missing jobs are assigned to
unoccupied vehicles in SC

t according to the order determined
by the permutation of the second parent SY

t .
After the complete set Offspring of OffspringSize new

schedules is generated, the new population is constructed. It
is done by choosing PopulationSize best solutions from the
temporary set consisting the previous population and the new
offspring, i.e., {Population ∪ Offspring} (step 36). If the
new population contains a solution that is better than the best
already found Q∗, then it is updated (steps 37-39). Note that
better (step 37) for TA means that the new criterion value
is greater than Q∗, whereas for TC means that it has to
be smaller to be updated. Nevertheless, if the algorithm is
implemented such that the availability TA is represented by
positive and the cost TC by negative numbers, then we can
unify the notation and focus only on the maximization, thereby
the best found solution is updated only for greater values.

The computational complexity of a single iteration of
GARDX (steps 24–40) is equal to O(OffspringSize(MK+
T )n) that is determined by TPX (step 31), ROX (step 32)
and the calculation of Q(·) based on the maintenance plan
(step 33), which are equal to O(Tn), O(Tn), O(MKn),
respectively.

V. EXPERIMENTS

Let us now verify the accuracy of the proposed algorithm
GARDX in reference to other methods implemented for
similar problems. To provide reliable analysis of our algo-
rithm, especially referring to the methods already described
in the literature (particle swarm optimization PSO, simulated
annealing SA, genetic algorithm GA), we will compare the
scheduling algorithms for the instances constructed similarly
as in the related works [5].1 The set of all evaluated algo-
rithms and their configurations are given as follows: Particle
Swarm Optimization (PSO): ω = 0.6, c1 = 0.5, c2 = 0.5,
swarm size m = 10, bounds Xmin = 0.0, Xmax = 4.0,
νmin=−4.0, νmax=4.0 (following [8]); Simulated Annealing
(SA): Temp=1000000, α=0.01 (introduced in [7], later on
used in [5]); Genetic Algorithm (GA): PopulationSize=200,
OffspringSize = 50, MixSize = b0.2T c, (following [5]);

1The algorithms were coded in C# (Microsoft Visual Studio 2022) and
simulations were run under Windows 10 on PC, CPU Intel R© CoreTM i9-
10885H 2.40GHz and 32GB RAM. All the corresponding software and
algorithms, their previous as well as the current versions were coded solely
by R. Rudek

Genetic Algorithm Railway Double Crossover (GARDX):
PopulationSize = 160, OffspringSize = 40, MixSize =
b0.2T c. The initial solution (schedule) for each metaheuristic
is determined by FA. To provide a fair comparison, due to
nondeterministic nature of these methods, we run each of them
10 times and choose the best result (similarly as in [5]) as
well as the stop condition for all metaheuristics is the same
and set to 90s. Thus, we slightly extended the running times
of PSO, SA and GA set in [8] and [5], giving them more time
to traverse the search space.

TABLE I: Example preventive maintenance cycles, durations
and costs of maintenance activities for Škoda 31E (f = Š)
and for E6ACTa Dragon 2 (f = D) (see [10])

Type f Level k TBM
f
k

MBM
f
k

MD
f
k

MC
f
k

[km] [days] [PLN∗]
Š Škoda 31E

1 14 days 2,500 0.125 1,000
2 110 days 22,000 2 7,000
3 32 months 220,000 21 50,000
4 8 years 620,000 74 800,000
5 16 years 1,200,000 84 1,000,000

D E6ACTa Dragon 2
1 3 months 30,000 0.125 2,000
2 1 year 150,000 2 12,000
3 4 years 660,000 21 80,000
4 8 years 1,220,000 74 1,000,000
5 32 years 4,800,000 84 1,400,000

It is worth noticing that all the considered metaheuristics
(PSO, SA, GA, GARDX) were developed and implemented
solely by the author such that they can be applied for an
arbitrary criterion based on his model developed in [7] and
included in his dll library RudRobustRailway (RRR).
Thereby, the only necessary action to optimize the required
criterion by these algorithms is to choose and to apply a
proper handler Q calculating the criterion value, e.g., referring
to TA or TC ; for Algorithm 1 see its step 33. Though our
previous implementations SA, GA (e.g., [5]) and PSO [8] were
originally used for different objective functions, they can be
applied in the exactly same form to optimize also TA or TC
(only by choosing a proper objective function handler).

Similarly as in [5] and [10], the computational experiments
are provided for the instances constructed on the basis of two
extreme types of vehicles representing one of the oldest (Škoda
31E series 181 produced till 1965) and one of the most modern
locomotive (E6ACTa Dragon 2 produced since 2018) offered
by rail vehicle rental companies in Europe. The maintenance
cycles of these vehicles describing the time based TBM and
the mileage based MBM maintenance policies, maintenance
durations DM and costs MC are given in Table I. In the
industrial practice, the maintenance activities of levels k ≥ 3
start one day earlier than following from TBM

f
k [7]. Although

the financial values are correlated with the market, they do not
refer to any particular company. Moreover, if it is needed to
analyse these values in US Dollars, the exchange rate to Polish
Złoty (PLN) on 30 April 2025 was $1 ≈ 3.77 PLN. The
instances are based on n∈{10, 20} vehicles of the same type
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TABLE II: The total availability TA (in days), the improve-
ment (additional days) δTA and the total loss (in days) ∆TA

to the best solution of the considered algorithms A ∈ {FA,
PSO, SA, GA, GARDX} for the analyzed instances

T (y) n Measure FA PSO SA GA GARDX
[years] [days]

Škoda 31E (series 181)
5 10 TA 15,718 15,810 15,827 15,815 15,846

δTA 92 109 97 128
∆TA 128 36 19 31 0

20 TA 31,448 31,546 31,568 31,585 31,624
δTA 98 120 137 176
∆TA 176 78 56 39 0

10 10 TA 31,060 31,268 31,330 31,356 31,367
δTA 208 270 296 307
∆TA 307 99 37 11 0

20 TA 62,050 62,473 62,447 62,629 62,636
δTA 423 397 579 586
∆TA 586 163 189 7 0

15 10 TA 46,439 46,620 46,666 46,636 46,674
δTA 181 227 197 235
∆TA 235 54 8 38 0

20 TA 92,877 93,026 93,168 93,061 93,183
δTA 149 291 184 306
∆TA 306 157 15 122 0

E6ACTa Dragon 2
5 10 TA 17,820 17,911 17,914 17,914 17,915

δTA 91 94 94 95
∆TA 95 4 1 1 0

20 TA 35,747 35,818 35,829 35,825 35,830
δTA 71 82 78 83
∆TA 83 12 1 5 0

10 10 TA 35,130 35,203 35,166 35,202 35,236
δTA 73 36 72 106
∆TA 106 33 70 34 0

20 TA 70,360 70,407 70,370 70,381 70,458
δTA 47 10 21 98
∆TA 98 51 88 77 0

15 10 TA 52,519 52,602 52,555 52,519 52,625
δTA 83 36 0 106
∆TA 106 23 70 106 0

20 TA 105,021 105,132 105,110 105,021 105,158
δTA 111 89 0 137
∆TA 137 26 48 137 0

chosen from the considered locomotives. It is assumed that the
simulations start at 01.01.2024 and at that day all vehicles are
just after maintenance of the highest level Kf (overhaul) or
they are just delivered from their producer, thereby VT v,k=0
and VDv,k = 0 for v = 1,. . . ,n and k = 1,. . . ,Kf (identical
parallel machines). The number of jobs is equal to the number
of vehicles divided into G=dn/2e groups that share the same
average mileage per day from range wj ∈ {400, . . . , 700}
(see [5]). We consider periods referring to popular strategic
planning time frame (from shorter to longer) T (y)∈{5, 10, 15}
in years, i.e., T ∈{60, 120, 180} in months. The analysed al-
gorithms A∈{FA, PSO, SA, GA, GARDX} are evaluated for
each instance I according to the following measures depending
on the criterion Q ∈ {TA,TC}: the total availability of
vehicles TA with δTA(A)≡δTA(A, I)=TA(SA)−TA(SFA)
is the improvement (additional days) in reference to FA (higher
values are better); ∆TA(A)≡∆TA(A, I)=TA

∗−TA(SA) is
the total loss in days in reference to the best solution TA

∗=

TABLE III: The total maintenance cost TC , the financial
savings δTC and the loss (in savings) ∆TC to the best solution
(all in thousand PLN, kPLN) of the considered algorithms
A∈{FA, PSO, SA, GA, GARDX} for the analyzed instances

T (y) n Measure FA PSO SA GA GARDX
[years] [kPLN]

Škoda 31E (series 181)
5 10 TC 15,718 15,538 15,449 15,442 15,385

δTC 180 269 276 333
∆TC 333 153 64 57 0

20 TC 31,906 31,518 31,243 31,311 31,200
δTC 388 663 595 706
∆TC 706 318 43 111 0

10 10 TC 36,482 33,563 36,132 33,269 33,181
δTC 2,919 350 3,213 3,301
∆TC 3,301 382 2,951 88 0

20 TC 73,914 67,829 72,427 67,265 67,249
δTC 6,085 1,487 6,649 6,665
∆TC 6,665 580 5,178 16 0

15 10 TC 56,460 54,690 55,412 54,741 53,815
δTC 1,770 1,048 1,719 2,645
∆TC 2645 875 1,597 926 0

20 TC 112,814 110,692 111,397 112,406 110,575
δTC 2,122 1,417 408 2,239
∆TC 2,239 117 822 1,831 0

E6ACTa Dragon 2
5 10 TC 4,072 2,104 2,032 2,070 2,032

δTC 1,968 2,040 2,002 2,040
∆TC 2,040 72 0 38 0

20 TC 6,152 4,210 4,074 4,150 4,074
δTC 1,942 2,078 2,002 2,078
∆TC 2,078 136 0 76 0

10 10 TC 15,784 13,660 13,730 13,664 13,604
δTC 2,124 2,054 2,120 2,180
∆TC 2,180 56 126 60 0

20 TC 29,448 27,508 27,354 27,438 27,318
δTC 1,940 2,094 2,010 2,130
∆TC 2,130 190 36 120 0

15 10 TC 23,632 22,682 23,576 23,632 22,664
δTC 950 56 0 968
∆TC 968 18 912 968 0

20 TC 47,424 46,354 47,114 47,424 46,272
δTC 1,070 310 0 1,152
∆TC 1,152 82 842 1,152 0

max{TA(SA)} for instance I (lower values are better); where
TA(SA) is the total availability of vehicles (in days) for the
schedule SA provided by algorithm A; the total maintenance
cost TC with δTC(A)≡δTC(A, I)=TC (SFA)−TC (SA) is
the improvement (financial savings) in reference to FA (higher
values are better); ∆TC(A)≡∆TC(A, I) = TC (SA)−TC

∗

is the total loss in savings in reference to the best solution
TC

∗=min{TA(SA)} for instance I (lower values are better);
where TC (SA) is the total maintenance cost for the schedule
SA provided by algorithm A. Note that ∆TA and ∆TC are
redundant to δTA and δTC , respectively. Nevertheless, they
are introduced for a more comprehensive comparison of the
algorithms to clearly show differences between them and to
easily recognize leading approaches (lower values are better).

The results of the computational experiments for instances
based on the considered locomotive types, including criterion
values TA (the total availability of vehicles in days) and TC

(the total maintenance cost in thousand PLN), the improve-

RADOSLAW RUDEK: METAHEURISTICS FOR ROLLING STOCK CYCLIC JOB SCHEDULING PROBLEMS WITH MAINTENANCE 379



ments to FA (δTA, δTC) and the losses to the best solutions
(∆TA, ∆TC) are shown in Tables II and III, respectively.
It can be seen that all metaheuristics improved the results
obtained by FA for both criteria. Our newly proposed GARDX
overwhelms all other previous algorithms PSO, SA and GA
for all considered instances under each of the separately
optimized criteria: the total availability of vehicles TA and
the total maintenance cost TC . It found schedules that offer
additional measurable profits in reference to FA, e.g., from 128
additional days in 5 years and 10 locomotives to 586 days for
10 years and 20 locomotives (see Table II) and significant
savings in the maintenance cost that exceed 2M PLN (c.a.
$0.5M) for T (y) = 5 years and n = 10 locomotives or it
can even reach 6M PLN (c.a. $1.5M) for T (y) = 10 and
n = 20. The experiments revealed that GARDX is a robust
method that well optimizes various instances, whereas other
algorithms are instable. Therefore, GARDX can successfully
replace each of the previous metaheuristics PSO, SA and GA
for the optimization of TA or TA. Although the maximization
of the total availability of vehicles TA is correlated with the
minimization of the total maintenance cost TC , they are not
equivalent. The optimization of TA does not need to lead to
the identical improvement of TC , due to specifications and
nonlinearity of these criteria. We have managed for Škoda
instances to choose the costs of maintenance activities MCf

k

on particular levels (within the range of real values correlated
with the market, see Table I) that allows us for the following
analysis. Namely, for T (y) = 5 and n = 10, FA obtained
the maintenance plan that was characterized by TA equals
to 15,718 days (Table II) and at the same time TC is equal
to 15,718 thousand PLN (kPLN) (see Table III). Thus, we
can see that the best result for TA is 15,846 days provided
by GARDX and the ranking of algorithms is GARDX, SA,
GA, PSO (see Table II), whereas the best value for TC is
15,385 kPLN obtained also by GARDX, but the ranking is
different, i.e., GARDX, GA, SA, PSO (see Table III). GARDX
optimizing TA for that instance was able to find the schedule
STA resulting with a maintenance plan characterized by the
best availability TA(STA) = 15, 846 days (Table II) and
the related total maintenance cost was TC (STA) = 15, 414
kPLN. However, if GARDX optimized the criterion TC ,
then a different schedule STC was found corresponding to a
maintenance plan characterized by the best total maintenance
cost TC (STC)=15, 385 kPLN (Table III) and the related total
availability in days was TA(STC)=15, 826. It can be seen that
the total availability TA(STA is better (greater) than TA(STC)
if TA is optimized, and the total maintenance cost TC (STC)
is better (smaller) than TC (STA) if the optimization objective
is TC . Thereby, optimization of TA is not equivalent to
optimization of TC .

VI. CONCLUSIONS

We analysed rolling stock cyclic job scheduling problems
with maintenance to optimize the following objectives: the
maximization of the total availability of vehicles TA and
the minimization of the total maintenance cost TC . They

were formulated as cyclic job scheduling problems on parallel
machines with time and usage based deteriorating effects
and maintenance. We constructed dedicated efficient genetic
algorithm GARDX and we adjusted other metaheuristics PSO,
SA, and GA known from the literature. The computational
experiments revealed that GARDX overwhelms all compared
methods and it proved its usefulness to the industrial prac-
tice to maximized TA and to minimize TC translating into
convincing financial profits. For instance, it was able to
significantly improve TA in reference to FA, e.g., from 128
additional days in 5 years and 10 locomotives to 586 days for
10 years and 20 locomotives. If it was applied to optimized
TC , it found savings in reference to FA that exceeded 2M
PLN (c.a. $0.5M) for 5 years and 10 locomotives and 6M
PLN (c.a. $1.5M) for 10 years and 20 vehicles.
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