Proceedings of the 20" Conference on Computer DOI: 10.15439/2025F9025
Science and Intelligence Systems (FedCSIS) pp. 405-410 ISSN 2300-5963 ACSIS, Vol. 43

Uaoiite

Unified Data-Driven Prediction of Photovoltaics
Output from Weather and Geographic Data Across
Diverse Systems

Joanna W¢jcicka
Faculty of Electrical Engineering,
Automatics, Computer Science
and Biomedical Engineering,
AGH University of Krakow,
Al. Mickiewicza 30,
30-059 Krakow, Poland
Email: wojcickajoannal @gmail.com,
joannawoj @student.agh.edu.pl

Abstract—As the adoption of renewable energy continues to
rise, precise forecasting of solar power generation is essential
for optimizing energy storage and distribution. This article
explores the prediction of energy output in photovoltaic systems
using machine learning models that leverage environmental and
geographical factors. The study utilizes data from 9,182 private
photovoltaic installations across Poland and publicly available
weather records. Additionally, a data preprocessing method was
introduced to filter out non-useful data, such as records indi-
cating malfunctioning installations, ensuring that only relevant
information is used for prediction. Key variables considered
include temperature, cloud cover, wind speed, and solar panel
efficiency. This paper studies the effectiveness of data-driven
energy production forecasting methods, namely linear regression,
polynomial regression, decision tree regression, random forest
regression, and multilayer fully connected artificial neural net-
work, designed to make predictions for various installations with
different parameters and geographical locations, considering at-
mospheric conditions in contrast to frequently published articles
in which predictions are fitted on data from a single photovoltaic
installation. Due to this, our work has broad research value,
explores the boundaries and limitations of such approaches, and
can be considered a reference for energy engineers, computer
scientists, and researchers.

Index Terms—Photovoltaic Infrastructure, Machine Learning,
Prediction, Feature Selection, Data-Driven

I. INTRODUCTION

ENEWABLE energy has experienced substantial growth
Rin recent decades, driven by the increasing global pop-
ulation and the recognition of the finite nature of fossil fuel
resources. The transition to renewable energy sources is widely
regarded as a viable strategy to reduce dependence on fossil
fuels while mitigating the environmental impacts of their
extraction and consumption. Technological advancements in
renewable energy have been considerable, with numerous so-
lutions already implemented in practical applications in private
and industrial sectors. Additionally, reliable environmental and
production data availability has improved significantly, caused
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by the growing adoption of monitoring systems in private
photovoltaic installations.

Among renewable energy sources, solar and wind technolo-
gies have been recognized for their substantial potential to
meet global energy demands. As noted by Gross et al. [1],
these technologies were considered to have the most significant
impact within the renewable energy sector. However, subse-
quent research by Olabi and Abdelkareem [2] emphasised
that both solar and wind energy are highly dependent on
environmental conditions, introducing variability and limiting
their reliability as primary global energy sources.

One of the critical challenges in integrating renewable en-
ergy sources is the efficient management of energy storage and
distribution to maintain a stable balance between generation
and consumption. As discussed by Roberts et al. [3], the
variability of renewable energy output, primarily influenced
by environmental conditions, requires the implementation of
adaptive and responsive strategies for storage and distribution.
At a macro-level, particularly within centralised energy sys-
tems such as Nord Pool [4], this involves determining optimal
periods for storing energy for future use versus distributing
it to external sectors to meet immediate demand. In addition,
these strategies should include dynamic pricing models that ac-
count for fluctuations in energy demand and the availability of
generation resources, thereby enhancing the overall efficiency
and reliability of the energy system.

Therefore, accurate forecasting of solar energy production
has become a critical component in the efficient operation
of modern energy systems. Reliable predictions enable bet-
ter planning for energy storage, grid balancing, and market
operations. Forecasting supports decision-making processes
by providing information on expected energy availability,
essential for maintaining supply stability, reducing reliance on
backup fossil fuel generation, and optimising energy pricing
and distribution strategies.

Two primary methodologies are commonly used to forecast
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the energy production of solar installations. The first is a
deterministic approach, which involves the development of a
physical model that represents the electrical behaviour of pho-
tovoltaic cells. This method simulates the underlying physical
processes to estimate the energy output based on the known
specifications and characteristics of the solar panel. A wide
range of physical models can be applied to predict the perfor-
mance of photovoltaic systems with varying configurations, as
examined by Dolara et al. [5], [6].

An alternative approach to forecasting solar energy produc-
tion involves using statistical and machine learning models,
which are developed based on historical data from photo-
voltaic installations and relevant environmental variables that
influence energy generation. These methods aim to identify
and model the underlying relationships between features in
the dataset to enable accurate prediction. Linear regression
and artificial neural networks (ANNs) are the most commonly
used models in this domain. Both approaches have been
extensively applied in various research contexts with notable
success. For example, Gratidi et al. [7], Barrera et al. [8],
and Zazoum [9] each developed accurate prediction models
tailored to different datasets, photovoltaic system architectures,
and methodological frameworks. These studies highlight the
flexibility and effectiveness of machine learning techniques in
capturing the complexity inherent in solar energy production
forecasting.

Despite significant advancements and promising outcomes
in solar energy forecasting, considerable room for improve-
ment remains. Studies by Gratidi et al. [7] and Barrera
et al. [8] commonly relied on data collected from small-
scale installations located in research centres, which, while
controlled and consistent, may limit the model’s ability to
generalise to real-world scenarios. For predictive models to
be applicable globally, it is crucial to incorporate diverse
datasets drawn from various geographic locations and in-
stallation types. Additionally, many existing studies utilize
well-structured solar radiation data complemented by ambient
temperature measurements. Although this data can enhance
model accuracy, it often depends on specialized infrastructure
that may not be available in all regions. This reliance poses a
challenge to scalability, particularly in areas lacking compre-
hensive meteorological monitoring systems. It highlights the
need for models capable of operating effectively with more
readily accessible environmental data.

A. Novelty of this paper

This work examines the effectiveness of statistical and ma-
chine learning models for predicting energy output in photo-
voltaic systems that leverage environmental and geographical
factors. New to previous work dealing with similar topics, the
study was conducted on a large dataset containing installations
located almost all over a medium-sized European country. Our
goal was to create a predictive model that can effectively
predict energy production based on data such as the power
of an installation, its geographic location, and weather data to
improve forecast accuracy [10]. Thus, in this work, we study
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the effectiveness of data-driven energy production forecasting
methods designed to make predictions for various installations
with different parameters and geographical locations, taking
into account atmospheric conditions, in contrast to frequently
published articles in which predictions are fitted on data from
a single photovoltaic installation [11]-[15]. Due to this fact,
our work has broad research value, explores the boundaries
and limitations of such an approach, and can be considered
a reference for energy engineers, computer scientists, and
researchers.

II. MATERIALS AND METHODS

The foundation of this study is a dataset that accurately rep-
resents real-world conditions of photovoltaic installations. The
data were collected from multiple private solar installations
and supplemented with commonly observed meteorological
variables to ensure a comprehensive analysis. The selected
methodology prioritizes data that are accessible to the average
user, eliminating the need for specialized professional mea-
suring equipment. The dataset from photovoltaic installations
covers the year 2020 and, due to licensing and legal restric-
tions, cannot be publicly shared with other researchers.

A. Data set

The initial database comprised 145,068,684 records from
9,182 photovoltaic installations in Poland through the PVmon-
itor monitoring system. The measurements taken from these
installations were aggregated every three minutes, capturing
various parameters such as energy production, efficiency over
specific time intervals, the cumulative sum of energy generated
since monitoring began, and the corresponding timestamps.
Each installation was assigned a unique ID and included lo-
calization details and the manufacturer’s power specifications
for the photovoltaic panels.

The weather dataset was gathered to use only commonly
available environmental information like temperature, cloudi-
ness, or wind speed. To achieve this, the data was collected
from a publicly available AccuWeather archive using a data
scraping technique. This source was selected due to its fre-
quent measurements and broad coverage of features relevant
to this study. A notable characteristic of this dataset is the
cloudiness variable, which is provided as a percentage. This
numerical representation is more precise and requires less
preprocessing than categorical cloud cover classifications.

B. Preprocessing

Since the installations dataset was collected from private
users, it relied heavily on user input, with no control over
the accuracy of the solar panel setup or the calibration of the
monitoring devices. This resulted in a necessity to validate
and prune data strictly. Several conditions must be satisfied to
determine whether or not an installation is active and whether
it should be considered.

« Power of Installation provided by a user cannot be equal
to zero,



JOANNA WOICICKA, TOMASZ HACHAJ: UNIFIED DATA-DRIVEN PREDICTION OF PHOTOVOLTAICS OUTPUT 407

« Installation should at least once in a month reach over
40% efficiency,

« Installation’s mean efficiency in winter (October through
March) should be over 5%,

« Installation’s mean efficiency in summer (April through
September) should be over 10%,

o Installation has to be monitored throughout the entire

year.

Applying these conditions reduced the number of installa-
tions to 32. Although this significantly decreased the amount
of data available for energy production predictions, ensuring
that the dataset contained only high-quality records was nec-
essary. Despite the reduction, the remaining installations still
contributed 181,306 measurement points, providing sufficient
data for accurate predictions.

The next step was to combine both datasets into a consistent
database. Since installation measurements were made every
three minutes and weather data was aggregated hourly, it was
necessary to aggregate the measurements to match this time
frame. Aggregation was achieved by calculating the mean
value of each efficiency of each Installation and the sum of
power (P) and power increment (D PV'). Finally, the data were
aligned based on geographical location.

Chart of installations efficiencies in each month
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Fig. 1. Chart of mean installations’ efficiencies aggregated monthly

After proper data filtering, it was possible to distinguish a
desired trend in efficiency throughout the year presented in
Figure 1. This trend is a direct result of yearly changes in the
solar azimuth angle because photovoltaic installations are more
efficient when the radiation reaches solar panels at around 90°
angle [16], [17] (as a combination of azimuth and tilt angles)
that occurs at the spring and autumnal equinox in Poland.

C. Experimental setup

The dataset was divided into training and testing sets in
an 80%-20% ratio based on installation indexes, ensuring that
instances from the same installation did not appear in both
sets, thus maintaining a clear separation for evaluation. Due to
the data being inconsistent regarding values range, the action
taken to ensure good performance of models was scaling both
training and test data using the Equation 1.

)]

where:

x is the value of sample,

p is a mean values of all samples and
o is the standard derivation.

The linear regression model was proposed as a baseline
model for comparison, as it is a simple machine learning
model that does not require additional hyperparameters tuning.
Another models we also evaluated were polynomial regression,
K-nearest neighbour regression (KNN), decision tree regres-
sion, random Forest regression (RFR) and artificial neural
network (ANN). The architecture of implemented ANN is
detailed in Table I.

TABLE I
ARCHITECTURE OF IMPLEMENTED ARTIFICIAL NEURAL NETWORK

Layer Layer Type Number of Neurons Activation Function
Input Input 7 (number of features)
Hidden n°1 Dense 10 ReLU
Hidden n°2 Dense 10 ReLU
Hidden n°3 Dense 10 ReLU
Output Dense 1 Linear

D. Metrics used to evaluate models’ performance

Evaluating machine learning models using standardised
metrics is essential to ensure comparability. The performance
of the models was assessed on the following metrics:

¢ Normalized Root Mean Squared Error
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where:

N is a number of testing samples,

y; are the predicted values,

1; are the actual values,

Ymax and ymin are the maximum and minimum values in the
dataset,

7 is mean of the observed values.

III. RESULTS

Table II presents the evaluation metrics calculated for the
training and test datasets. The NRMSE,,;;maq, metric is the
primary indicator of predictive accuracy, as it assesses the per-
formance of the models relative to the data scale. In addition,
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TABLE II
EVALUATION OF MODELS ON TRAINING AND TEST DATA
Test Set
Model NRMSE,.inmaz | MAE R?
R Linear 0.1809 17.4593 | 0.2390
egression
Regression with 0.1210 11.1261 | 0.6591
Polynomial Features
K-Nearest
Neighbors (KNN) 0.1304 10.5962 | 0.6045
Decision Tree
Regressor (DTR) 0.1237 9.8932 0.6445
Random Forest
Regressor (RFR) 0.1113 9.1079 0.7122
Artificial Neural
Network (ANN) 0.1137 94136 | 0.6994
Training Set
Model NRMSE,.inmaz MAE RZ
RL‘“ea.r 0.2019 17.4593 | 0.2290
egression
Regression with 0.1260 10.1974 | 0.6996
Polynomial Features
K-Nearest
Neighbors (KNN) 0.0637 4.0101 0.9231
Decision Tree
Regressor (DTR) 0.1179 7.9926 | 0.7228
Random Forest
Regressor (RFR) 0.0254 1.5648 | 0.9877
Artificial Neural
Network (ANN) 0.1189 8.7776 0.7322

MSE and R? serve as complementary metrics, offering further
insight into the overall effectiveness of the models.

In the test set, the NRMSE,,,inmaz Values indicate that the
best-performing models are RFR and ANN, with RFR showing
a slight advantage. This suggests that RFR is particularly ef-
fective at capturing the dataset’s complexity while maintaining
high predictive accuracy. In contrast, models such as DTR and
polynomial regression obtained satisfactory results but did not
achieve the same level of accuracy as RFR and ANN.

Comparison with training data provides insight into the gen-
eralisability of the models. Although RFR and KNN achieve
exceptionally high performance on the training data, their
performance on the test dataset is noticeably lower. Among
the evaluated models, ANN exhibits the most consistent per-
formance in both training and test datasets, indicating a strong
balance between predictive accuracy and generalisability.

There is a notable improvement between the baseline model
(linear regression) and the more advanced models, empha-
sizing the effectiveness of non-linear approaches. Among the
models tested, RFR demonstrates the best overall performance,
closely followed by ANN. Additionally, based solely on the
evaluation metrics, regression with polynomial features and
KNN exhibit strong performance for this dataset. Further
insights into the models can be obtained by analysing Figures
2 and 3, which compares the real and predicted values for each
model across training and test datasets. These visualizations
offer a clear representation of the models’ generalization ca-
pabilities and enable a direct comparison of their performance
on training versus test data.

To objectively evaluate the performance of the models, it is
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Fig. 2. Comparison of training and test predicted values vs actual values -
linear regression, regression with polynomial features and K-nearest neighbour

crucial to compare the results with those reported in other
studies. Table III presents a performance summary of the
selected models in various data sets and methodologies. The
comparison is based on NRMSE values, with linear regression
serving as the baseline, normalised to 100% using the min-max
method in this study and different normalisation approaches
reported in the studies [7], [18], [19]. The relative performance
of other models is then expressed as a percentage improvement
or decline relative to this baseline. This approach ensures the
comparability of the metric between different methodologies.

IV. DISCUSSION

The comparison between the training and test results (Table
II) provides insights into the generalisation capabilities of the
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Fig. 3. Comparison of training and test predicted values vs actual values -
decision tree regressor, random forest regression and artificial neural network

models. Although RFR and KNN achieve high performance
on the training set, their test performance declines, indicating
overfitting. This suggests that these models capture patterns
specific to the training data but struggle to generalise to
unseen data. In contrast, ANN exhibits the most consistent
performance across both datasets, highlighting its robust gen-
eralisation ability. This suggests that ANN effectively learns
underlying relationships in the data without overfitting, making
it a more reliable model for photovoltaic energy prediction.
The observed differences in model performance may be
attributed to the nonlinear nature of photovoltaic energy gen-
eration, which is influenced by multiple environmental factors
[20], [21]. Although decision tree-based models like RFR
effectively handle complex interactions, their sensitivity to

TABLE III
COMPARISON OF MODEL PERFORMANCE BASED ON NRMSE VALUES,
WITH LINEAR REGRESSION SERVING AS THE BASELINE (100%), AND THE
PERFORMANCE OF OTHER MODELS EXPRESSED AS A PERCENTAGE
IMPROVEMENT OR DECLINE RELATIVE TO THIS BASELINE

Model | relative performance (in %)
S S1[71 | S2 [18] | S3 [19]
LR 100 100 100 100
KNN 138.7 173.33
RFR 162.53 160.8 288.89
ANN 158.10 | 71.38 350.33 236.36

training data can lead to overfitting. On the other hand, the
ANN model, with its ability to capture nonlinear dependencies,
demonstrates a better balance between flexibility and general-
isation.

In Figures 2-3, there is a noticeable increase in point density
for lower efficiency values in all models. This can be attributed
to the dataset’s characteristics, where higher efficiency values
are less frequent than lower ones. Power generation is typically
most efficient during specific periods, particularly in summer
and around midday, if weather conditions are favourable.
This distribution reflects the natural variability of photovoltaic
systems, which is strongly influenced by seasonal and temporal
factors. The effect is even more pronounced in the training set,
probably because of the smaller number of samples available.
The uneven distribution of training samples in the dataset is an
unfavorable phenomenon for machine learning. It could have
impacted the training and final performance of the models
considered.

Table III compares the findings of this study with related
works. Graditi et al. [7] analysed a single photovoltaic in-
stallation under controlled conditions, where linear regression
performed well due to simple variables. Jebli et al. [18] used
historical weather and radiation data and found ANN to be the
best performer, reinforcing the advantage of nonlinear models.
Similarly, Chaaban and Alfadl [19] studied solar power plant
data, with RFR and KNN outperforming linear regression,
aligning closely with the findings of this research.

The presented metric provides valuable information on the
dataset’s characteristics and underscores the performance im-
provements of RFR and ANN models in this specific problem
setting. Compared to other studies, this research’s outcomes
are satisfactory, as the observed trends across different models
align well with the findings reported in the literature.

V. CONCLUSION

The aim of this study was to create machine learning models
to predict energy production in photovoltaic infrastructures
with different parameters, locations, and under the influence of
variable weather conditions. It is an area of study of growing
importance, given the increasing adoption of renewable energy
as a primary energy source across a large number of sectors.
Its significance is particularly evident for energy management
systems, which depend on accurate energy production predic-
tions to adjust distribution strategies accordingly to resource
availability.
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We have shown that a single data-driven predictive model
can accurately predict the output of many different installa-
tions. Among the evaluated models, the ANN showed the
most consistent performance across both training and test
datasets, demonstrating strong generalisability. This indicates
that ANN-based approaches are particularly suitable for solar
energy forecasting. In contrast, the Random Forest and K-
Nearest Neighbors models exhibited indications of overfitting,
as evidenced by a notable difference in performance between
training and test sets. However, the RFR remains a highly
accurate model in general, showcasing strong predictive capa-
bilities.

There is still room for improvement in models’ performance
that was not addressed in this study. For future work, it
would be beneficial to incorporate data from installations that
span a broader geographical area. This would enhance the
generalisation capability of the models, enabling them to make
accurate predictions across diverse contexts and conditions. In
their current form, the models developed in this project are
not well-suited for deployment in locations beyond Poland and
nearby areas.

REFERENCES

[1]1 R. Gross, M. Leach, and A. Bauen, “Progress in renewable energy,”
Environment international, vol. 29, no. 1, pp. 105-122, 2003. doi:
https://doi.org/10.1016/S0160-4120(02)00130-7

[2] A. Olabi and M. A. Abdelkareem, “Renewable energy and climate
change,” Renewable and Sustainable Energy Reviews, vol. 158, p.
112111, 2022. doi: https://doi.org/10.1016/j.rser.2022.112111

[3] B. P. Roberts and C. Sandberg, “The role of energy storage in devel-
opment of smart grids,” Proceedings of the IEEE, vol. 99, no. 6, pp.
1139-1144, 2011. doi: 10.1109/JPROC.2011.2116752

[4] E. Serban, M. Ordonez, C. Pondiche, K. Feng, M. Anun, and P. Servati,
“Power management control strategy in photovoltaic and energy storage
for off-grid power systems,” in 2016 IEEE 7th International Symposium
on Power Electronics for Distributed Generation Systems (PEDG), 2016.
doi: 10.1109/PEDG.2016.7527070 pp. 1-8.

[5] A.Dolara, S. Leva, and G. Manzolini, “Comparison of different physical
models for pv power output prediction,” Solar energy, vol. 119, pp. 83—
99, 2015. doi: https://doi.org/10.1016/j.solener.2015.06.017

[6] A. Baczkiewicz and J. Watrdbski, “Selection of floating photovoltaic
system considering strong sustainability paradigm using ssp-copras
method,” in Proceedings of the 18th Conference on Computer Science
and Intelligence Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, D.
Slezak (eds). ACSIS, 09 2023. doi: 10.15439/2023F492 pp. 901-905.

[71 G. Graditi, S. Ferlito, and G. Adinolfi, “Comparison of photo-
voltaic plant power production prediction methods using a large mea-
sured dataset,” Renewable energy, vol. 90, pp. 513-519, 2016. doi:
https://doi.org/10.1016/j.renene.2016.01.027

[8] J. M. Barrera, A. Reina, A. Maté, and J. C. Trujillo, “Solar
energy prediction model based on artificial neural networks and
open data,” Sustainability, vol. 12, no. 17, p. 6915, 2020. doi:
https://doi.org/10.3390/sul2176915

PROCEEDINGS OF THE FEDCSIS. KRAKOW, POLAND, 2025

[9] B. Zazoum, “Solar photovoltaic power prediction using different ma-
chine learning methods,” Energy Reports, vol. 8, pp. 19-25, 2022. doi:
https://doi.org/10.1016/j.egyr.2021.11.183

[10] E. Koutensky, J. Pihrt, M. Cepek, V. Rybar, P. Simdnek, M. Kepka,
K. Jedlicka, and K. Charvat, “Combining local and global weather data
to improve forecast accuracy for agriculture,” in Communication Papers
of the 19th Conference on Computer Science and Intelligence Systems
(FedCSIS), M. Bolanowski, M. Ganzha, L. Maciaszek, M. Paprzycki, D.
Slezak (eds). ACSIS, 11 2024. doi: 10.15439/2024F5990 pp. 77-82.

[11] M. Ceci, R. Corizzo, F. Fumarola, D. Malerba, and A. Rashkovska, “Pre-
dictive modeling of pv energy production: How to set up the learning
task for a better prediction?” IEEE Transactions on Industrial Informat-
ics, vol. 13, no. 3, pp. 956-966, 2017. doi: 10.1109/TI1.2016.2604758

[12] Y. Ledmaoui, A. El Maghraoui, M. El Aroussi, R. Saadane, A. Chebak,
and A. Chehri, “Forecasting solar energy production: A comparative
study of machine learning algorithms,” Energy Reports, vol. 10,
pp. 1004-1012, 2023. doi: https://doi.org/10.1016/j.egyr.2023.07.042.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
$2352484723011228

[13] N. Dimitropoulos, N. Sofias, P. Kapsalis, Z. Mylona, V. Marinakis,
N. Primo, and H. Doukas, “Forecasting of short-term pv produc-
tion in energy communities through machine learning and deep
learning algorithms,” in 2021 12th International Conference on In-
formation, Intelligence, Systems & Applications (IISA), 2021. doi:
10.1109/1ISA52424.2021.9555544 pp. 1-6.

[14] M. Pikus and J. Was, “Predictive modeling of renewable energy
purchase prices using deep learning based on polish power grid
data for small hybrid pv microinstallations,” Energies, vol. 17,
no. 3, 2024. doi: 10.3390/en17030628. [Online]. Available: https:
/Iwww.mdpi.com/1996-1073/17/3/628

[15] M. Pikus and J. Was, “Using deep neural network methods for
forecasting energy productivity based on comparison of simulation and
dnn results for central poland—swietokrzyskie voivodeship,” Energies,
vol. 16, no. 18, 2023. doi: 10.3390/en16186632. [Online]. Available:
https://www.mdpi.com/1996-1073/16/18/6632

[16] X. Chen, Y. Li, B. Zhao, and R. Wang, “Are the optimum
angles of photovoltaic systems so important?” Renewable and
Sustainable Energy Reviews, vol. 124, p. 109791, 2020. doi:
https://doi.org/10.1016/j.rser.2020.109791

[17] M. Z. Jacobson and V. Jadhav, “World estimates of pv optimal tilt angles
and ratios of sunlight incident upon tilted and tracked pv panels relative
to horizontal panels,” Solar energy, vol. 169, pp. 55-66, 2018. doi:
https://doi.org/10.1016/j.solener.2018.04.030

[18] I. Jebli, F-Z. Belouadha, M. I. Kabbaj, and A. Tilioua, “Pre-
diction of solar energy guided by pearson correlation using
machine learning,” Energy, vol. 224, p. 120109, 2021. doi:
https://doi.org/10.1016/j.energy.2021.120109

[19] A. K. Chaaban and N. Alfadl, “A comparative study of machine
learning approaches for an accurate predictive modeling of solar en-
ergy generation,” Energy Reports, vol. 12, pp. 1293-1302, 2024. doi:
https://doi.org/10.1016/j.egyr.2024.07.010

[20] M. A. Hassan, N. Bailek, K. Bouchouicha, A. Ibrahim, B. Jamil,
A. Kurigi, S. C. Nwokolo, and E.-S. M. El-kenawy, “Evaluation of
energy extraction of pv systems affected by environmental factors under
real outdoor conditions,” Theoretical and Applied Climatology, vol.
150, no. 1, pp. 715-729, 2022. doi: https://doi.org/10.1007/s00704-022-
04166-6

[21] T. Hai, M. Aksoy, and K. Nishihara, “Optimized mppt model for
different environmental conditions to improve efficacy of a photovoltaic
system,” Soft Computing, vol. 28, no. 3, pp. 2161-2179, 2024. doi:
https://doi.org/10.1007/s00500-023-09195-5



