
Towards Optimal Train Routing Using Microscopic

Simulation on Moving Block Controlled Networks

Severin Lochschmidt, Stefan Engels∗ and Robert Wille

—, 0000-0002-0844-586X and 0000-0002-4993-7860

Chair for Design Automation, Technical University of Munich (TUM), 80333 Munich, Germany

Email: {severin.lochschmidt, stefan.engels, robert.wille}@tum.de

Abstract—The demand for sustainable railway transportation
is increasing over time. At the same time, the capacity of railway
networks is limited. Hence, efficient algorithms for generating
optimal timetables are of great interest. Previous research focuses
on trains being separated by classical fixed block signaling sys-
tems. With modern control systems based on moving block, e.g.,
within the European Train Control System (ETCS), the principles
of safely separating trains change significantly. Only limited
research on optimal routing on such modern railway networks
exists. With this work, we propose a simulation approach tailored
to be used with heuristic optimization algorithms to tackle this
problem. Moreover, we show how such a framework can allow for
more general inputs to jointly optimize what is usually planned
sequentially as of today. The simulation framework is included
within the open-source Munich Train Control Toolkit (MTCT)
available on GitHub at https://github.com/cda-tum/mtct.

I. INTRODUCTION

P
ASSENGER rail traffic in the European Union (EU) has

increased by 35% in the last 30 years [1]. The main driver

of this increase is high-speed rail traffic, which has risen on

average by 6% per year. At the same time, freight rail traffic

volume has stagnated, but, triggered by the European Green

Deal, freight traffic should be prioritized to be transported

by rail instead of road [2]. However, many railway lines are

already operating at their capacity limit. A good planning

process and traffic management systems are crucial to cope

with the increasing demand. Some of the arising design tasks

are introduced in [3].

The general railway planning process is commonly split into

multiple sub-problems. Solving these sub-problems sequen-

tially makes it possible to reduce complexity drastically. While

mathematical modeling of these singular steps is feasible and

widely implemented, an integrated approach remains out of

reach [4], [5].

In this work, we focus on timetabling on a predefined rail-

way network, or more precisely, how to optimally route trains

through a railway network to fulfill certain conditions. The

feasibility of a solution highly depends on the implemented

control system. Since trains cannot operate on sight due to

long braking distances, such signaling systems are crucial to

prevent collisions and ensure safe operation. Classically, block

signaling systems have been implemented. However, new train

control principles have also been defined considering the

increasing demand. One of these extensions is the introduction
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of Moving Block control systems, replacing classical block

signaling with dynamic supervision. Relevant details on these

systems are reviewed in Section II.

Much of the existing literature for train routing relies on

the properties of fixed-block signaling. There is only lim-

ited research on optimally routing trains through networks

equipped with modern moving block control systems [6], [7],

[8]. They are based on Mixed Integer Linear Programming

and do not (yet) scale well. We aim to close this gap by

introducing an alternative heuristic approach based on sim-

ulation on a microscopic level, i.e., considering individual

tracks. Existing simulation tools, such as OpenTrack [9] or

OSRD [10], mainly focus on verifying and evaluating given

solutions. Instead, our work focuses on applying a simula-

tion framework already within the optimization process. Its

architecture is built from the ground up with a moving-

block approach, ditching old constraints. This allows us to

apply novel techniques to encode solutions more efficiently

to improve the performance of respective search algorithms

applied to our simulation framework. Our approach can even

include more complicated objectives. By doing so, it could

be extended to combine multiple planning steps jointly in one

optimization step. All work is integrated into the Munich Train

Control Toolkit (MTCM) available open-source on GitHub

at https://github.com/cda-tum/mtct.

For this Section II reviews the basic principles of train

control systems, Section III describes the routing problem,

Section IV introduces the underlying model and encoding

with the aim of reducing the search space, Section V provides

information on how this model can be used for optimization

purposes, and, Section VI evaluates the approach by conduct-

ing a case study on a small benchmark set. Finally, Section VII

concludes this work.

II. TRAIN CONTROL PRINCIPLES

Train signaling has been based on splitting a line into dis-

crete segments or blocks (fixed block), going back to the 19th

century, Once a train enters a block, it is marked occupied,

and access to other trains is forbidden. The status of a line

segment is indicated to the driver via a mechanical display,

called a semaphore, or later, an optical signal. This ensures

mutual exclusion for track segments and thus prevents train

collisions. Trackside Train Detection (TTD) uses electrical
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Fig. 1: Schematic drawings of signaling principles [8]

circuits embedded in the tracks or discrete sensors triggered

by passing train axles to define the signal status.

Example II.1 (from [8]). Consider two trains following each

other on a single track as depicted in Figure 1a. Train tr2
can only move until the end of TTD2. It cannot enter TTD3
because it is still occupied and, hence, might have to slow

down in order to be able to come to a full stop before entering

the occupied block section.

With advances in communications technology, it has be-

come possible to soften the traditional block structure into

virtual and moving blocks. Virtual Subsections (VSS) obey the

same principles as fixed blocks but can be arbitrarily defined.

Position reporting relies no longer on trackside equipment but

continuous bidirectional communication with the train. This

alleviates the previously mentioned problems, especially with

small or large block sizes, and allows for changing the block

layout at any time.

Moving Block is a further evolution where blocks are

abolished altogether. All trains in the network self-report and

receive each other’s position and speed. This allows them to

calculate safe headway times dynamically, considering their

individual braking curves. Moving Block has been taken up

first on suburban railways, where risks are easier to manage. In

metro lines, technical efficiency was improved by 11.5% by

introducing moving block signaling and connected automa-

tion [11].

Example II.2 (from [8]). In contrast to Eample. II.1, consider

a moving block control implemented in Figure 1b. Because

trains operate at the ideal absolute braking distance, tr2 can

move up to the actual end of tr1 (minus a little buffer).

In particular, it can already enter what has been TTD3
previously. Hence, trains can follow each other more closely.

III. TRAIN ROUTING UNDER MOVING BLOCK CONTROL

This work considers optimal train routing on a network

equipped with a moving block control system. The Train

Timetabling Problem (TTP) is part of the previously described

planning process in Section I. It aims to find a feasible

schedule and train routing under various constraints imposed

by requirements on the desired timetable and safety conditions

imposed by the control system as discussed in Section II.

Train routing on a microscopic level consists of assigning

trajectories and timings at the track level without imposing

conflicts between different train movements.

In this work, we consider a part of a network that is

equipped with a moving block control system, i.e., the problem

is given as:

Problem III.1 (Train Routing under Moving Block Control).

Given: A railway network, a list of trains including relevant

properties, and a set of demands for every train consisting of

• information on when and where the train enters the

network,

• information on when and where the train exits the net-

work, and

• a list of stations1 the train should stop at.

Problem: Find a feasible train routing that minimizes over-

all travel time.

IV. SIMULATION MODEL

This section describes the underlying model of our micro-

scopic time-continuous simulator. First, we briefly discuss how

the railway network and train in Sections IV-A and IV-B.

Finally, an efficient solution encoding is discussed with the

aim of preventing invalid solutions from being generated by

the optimizers presented in Section V.

A. Network and Train Model

Our network model is based on [3]. At the same time, we

allow trains to move on railway tracks in arbitrary directions.

Thus, a railway network is an undirected graph G = (V,E)
with vertices V = {v1, v2, v3, . . . , vm} representing rail-

way switches, signals or other points of interest and edges

E = {e1, e2, e3, . . . , em}, ei = {vj , vk} ⊂ V representing

railway tracks. Each edge ei also has an associated positive

weight lei representing track length and a maximum permitted

speed vmax,edge
ei

. Moreover, railroad switches can only be

traversed in specific directions, which is also modeled within

the railway network.

B. Train Model

Trains are objects of a certain length ltrain, maximal

velocity vmax,train, and maximal acceleration/deceleration2

amax,train. We allow negative velocity values to include

directional information. If v > 0, the train moves forward;

if v < 0, it moves backward. In contrast to previous work [6],

[7], [8], this allows trains to also turn around if necessary, e.g.,

in stations where this commonly happens in practice. Without

loss of generality, we define a train’s position as its center

point and denote by e[t] ∈ E the edge at time t

C. Solution Encoding

Choosing a purely heuristic approach affords us freedom

in the design of the entire optimization loop. This makes

it possible to limit the search space by intelligently pre-

processing our candidate solutions. We choose a representation

1This only includes the station. The platform is not yet fixed, but it is to
be decided by the solving algorithm.

2For simplicity, the train’s maximal acceleration and deceleration are equal.
However, the model can also be extended to model that these are usually
different since braking and accelerating behavior differ.
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Fig. 2: Directional choice variable.

such that for each train, the decision variables map onto a

physically possible train trajectory. This way, we eliminate

solutions that contain overspeed, overacceleration, and invalid

paths.

1) Railway Switches: Since trains in our model can reverse

directions at any time, their trajectory describes an open,

undirected walk. Instead of generating a valid graph walk for

each solution, we compute it implicitly at simulation time with

no additional cost. For this, we introduce directional choices

D = {d1, . . . , dNmax

transitions
}, where each dj ∈ [0, 1] mimics

a steering wheel for a given decision point. If dj = 0, the

train wants to move left; if dj = 1, the train wants to move

right; see Figure 2. Because dj ∈ R, this allows us to also

choose middle tracks if a given switch allows for more than

two options. At the first switch, the route is chosen according

to d1, at the second switch according to d2, and so on. That

means the route choice variables do not depend on time but

are a list of decisions that are made in order whenever it is

necessary to make a decision.

More precisely, assume that at time t, a train traverses a

switch vtrav on edge e[t] and has to make its kth decision.

Assume that the list of possible successor edges allowed by

the switch Γ(e[t], vtrav) is ordered and contains j elements

e0, e1, . . . , ej−1. Then

e[t+∆t] = e⌊(dk·(j−1))⌉, (1)

where ⌊·⌉ denotes rounding to the closest integer.

2) Speed and Acceleration: We do not directly encode each

train’s velocity (and acceleration) because modeling future

speed limits (which might induce braking well in advance)

would be challenging to model. Instead, we choose a set of

speed target points S as decision variables, as time-velocity

pairings. More precisely, any si = (τi, νi) ∈ S consists

of a time point τi ∈ [0, Tmax] and a normalized velocity

target νi ∈ [0, 1]. From S we create a piecewise constant

function ξ(t) by previous-neighbor interpolation and scaling

with vmax,train, i.e.,

ξ(t) = vmax,train · νprevious(S,t), (2)

where previous(S, t) := max{i : τi ≤ t} is the most current

speed target. From this, we induce the acceleration by attempt-
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Fig. 3: Smoothing ξ to a feasible trajectory.

ing to reach the current speed target as quickly as possible,

see Figure 3a, similar to a bang-bang controller known from

optimal control theory. If

∣

∣

∣

ξ(t)−v[t]
∆t

∣

∣

∣
≤ amax,train, then

v[t + ∆t] = ξ(t), otherwise the train maximally accelerates

toward its target.

The track speed limit is much more difficult to encode

since train speed v[t] and edge position e[t] are interdependent.

Adjusting the speed can shift the time of an edge change or,

when reversing, even the edges themselves. We leverage this

by repairing v[t] during the simulation using backtracking,

a standard method for algorithmic constraint satisfaction as

shown in Figure 3b. When encountering a constraint violation,

the offending speed targets in S are removed and replaced

with the maximum allowed speed for the track section. The

simulation travels backward in time and applies just enough

braking to avoid overspeed. Similarly, we can force the train

to stop at a given point, e.g., at a station.

Encoding the target velocity curve as a set of discrete points

in this way reduces the dimensions of the solution space.

Any arbitrary curve in the solution space is still representable

by increasing the number of points until every timestep is

contained in S, amounting to a lookup table.

V. OPTIMIZATION USING SIMULATION

The combined encoding from Section IV-C gives us a space

of decision variables consisting of speed target points S and

direction choices D that map onto individually feasible train

trajectories as previously discussed. Next, we evaluate the
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Fig. 4: Detection algorithm for headway constraint violations.

quality of each solution to define optimization criteria and

apply various heuristic algorithms to find reasonable solutions.

A. Objective Function

The objective function is a composite of soft constraints

fheadway, fdest, and a global objective fstops, which are

explained next. They form the multi-objective minimiza-

tion problem. Each objective can easily be normalized and

weighted as desired.

1) Headway: Arguably, the most critical constraint is to

avoid collisions, i.e., to apply long enough headways between

two consecutive trains. It is introduced into the objective

as a soft constraint fheadway penalizing closeness beyond a

minimum safety distance hsafe ≥ 0.

Let di,j(t) be the distance between tri and trjat time t.

Additionally, a distance penalty function ω is chosen, which

is zero for distances greater than hsafe, for example, a triangle

function. The headway penalty can then be defined as

fheadway =

Ntrains
∑

i=1

Ntrains
∑

j=i+1

∑

t

ω(di,j(t)). (3)

Using pre-computed all-pairs shortest paths for the entire

network, the effort to find the distance between two trains is

constant. The total number of necessary checks can be reduced

by skipping time steps where a collision is physically impos-

sible. For this, not that di,j fulfills the following constraints:

di,j(t) ≥ 0,

di,j(t) ≤ longest distance in network,

|d′i,j(t)| ≤
∣

∣

∣
v
max,train
i

∣

∣

∣
+
∣

∣

∣
v
max,train
j

∣

∣

∣
, and

|d′′i,j(t)| ≤
∣

∣

∣
a
max,train
i

∣

∣

∣
+

∣

∣

∣
a
max,train
j

∣

∣

∣
.

(4)

Using Equation (4), we can calculate a grace period for each

distance check in which the trains cannot meet even when

taking the shortest path towards each other at full speed. As

seen in Figure 4, more checks are performed when trains

are closer. Consequently, the computational effort for this

objective varies based on the density and maximum speed of

trains on the network. This method can be further improved

by considering acceleration constraints in the grace period

calculation and using a more efficient sampling of the distance

function.

2) Destination: The problem specifies that each train enters

and exits the network under consideration at some point in

time with respective target velocities. The former constraint

can be fulfilled by fixing the initial state of each train. Guid-

ance toward a final destination is added through another soft

constraint, penalizing the distance from the desired position

and the difference in speed.

3) Intermediate Stops: Stops en route can be introduced

by rewarding time spent with zero speed on scheduled edges.

However, we can increase the prevalence of solutions with

valid stops by encoding them using the repair algorithm

described in Section IV-C. Each train passing an edge with

a stop will be forced to halt for a minimum amount of time.

In the objective evaluation, the fulfilled stops can be counted

at minimal cost.

B. Optimizer

As described in Section IV, we are confronted with a gen-

eral, non-linear, constrained optimization problem. In addition,

the objective is non-convex and non-smooth, and its analytic

form is unknown. We already defined an unconstrained version

via relaxation using penalty functions; see Section V-A. This

no longer guarantees solution feasibility for the combined

objective. However, feasibility can be verified by evaluating

the penalty functions.

The formulation gives rise to applying various heuristic

approaches to find a good solution, which are described in

the following paragraphs.

1) Random Search: A trivial baseline for search can be

achieved by randomly assigning decision variables and keep-

ing the best result. Such a method can be improved by

introducing local search steps in each iteration. , e.g., using

the Luus-Jakola method, a simple gradient-free local search

algorithm [12]. An initial solution is randomly perturbed in a

hypersphere with radius r. If the new candidate solution is an

improvement, it replaces the old one as a starting point. The

radius r contracts with each iteration by a contraction factor

ccontract.

2) Greedy Search: It can be beneficial to mimic the behav-

ior of human timetable planners when generating candidate

solutions, as proposed in [13]. We, therefore, place trains

sequentially using a limited random search for each instance

in sequence. This approach breaks down the routing into sub-

problems. The order of train placement in our implementation

is randomized. Classic asynchronous routing usually schedules

trains by priority. Again, such an algorithm could be improved

using local search, leading to the Greedy Randomized Adaptive

Search Procedure (GRASP).

3) Genetic Algorithm: The use of genetic algorithms for

timetabling is widespread [14], [15]. We implemented a prim-

itive version, where crossover amounts to randomly choosing

a trajectory for each train from the two parent solutions.

Again, the iterations can be combined with local search.

The population is sorted by objective score. Individuals are

transferred from an elite set of top performers to the next
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TABLE I: Search method comparison parameters.

Local Search Start Radius srinitial 0.4
and random+local Stop Radius srfinal 0.001
and GRASP Contraction Coefficient ccontract 0.99

Greedy Search Per Train Stall Time 10ms
and GRASP

Genetic Search Population |P | 1000
Elite Fraction nelite/|P | 0.01
Mutation Rate 0.1
Crossover Fraction ncrossover/|P | 0.7

generation without modification. The crossover fraction deter-

mines the subset of individuals selected as parents for the next

generation. Each offspring has a uniform chance to mutate,

called the mutation rate; in this case, a random perturbation of

all variables proportional to their maximum range is applied.

The size of this perturbation is scaled down non-linearly as

the generations progress. Our implementation uses the openGA

library [16].

VI. CASE STUDY

Due to their different model assumptions and significant

limitations on publicly available data, the performance of

timetabling tools is difficult to compare quantitatively. Ulti-

mately, the most decisive measure is usefulness when applied

in day-to-day planning. With this case study, we demonstrate

the applicability of the proposed framework to the early stages

of timetable planning.

A. Benchmark

For this, we solve three sample problems of varying size

from [17]. These networks are included in the aforementioned

Munich Train Control Toolkit (MTCT) available open-source.

The first network, "Overtake," models a situation where faster

trains must overtake slower ones. The second "SimpleNet-

work" makes four trains cross at a central station. The last

network, "Stammstrecke," is a full-sized replica of the Munich

S-Bahn’s core network passing through the city center.

Each train is defined with a fixed schedule for arrival and

departure in the network and planned stops. In our test case, all

objective functions are designed such that an objective score of

zero indicates an optimal solution. This means all trains obey

the distance minima, visit their scheduled stops, and reach their

destination at the right speed and time. The collision objective

is weighted roughly 10 to 1 against the two others.

Table I shows the parameters chosen to compare all search

methods. They are a compromise across all test networks

drawn from previous parameter measurements not reported in

this paper due to space limitations. The numeric results for

the search parameters we obtained are not universal since they

depend heavily on problem parameters. However, we attempt

to make generalized statements about algorithm performance

wherever conclusive measurements allow.

B. Setup

Our C++ implementation is integrated into the open-

source Munich Train Control Toolkit available on GitHub
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Fig. 5: Search Methods Effectiveness Measurement.

at https://github.com/cda-tum/mtct. Each optimizer instance

was run on a single 4GHz core of a stock Intel i7-6700K

processor using DDR4 RAM at 2133 MHz. For each algorithm

instance, we record each improvement in objective score along

with the expired search time. After collecting a statistically

significant number of runs, we interpolate at 500 evenly spaced

points over the runtime of the longest run. We then calculate

the arithmetic mean score at each point. These mean score

progressions can then be compared to assess algorithm quality.

C. Evaluation

We compare the optimizers introduced in Section V-B. For

the genetic algorithm, adding a local search step for each

generation did not improve outcomes while increasing search

time by an order of magnitude. For this reason, we excluded

local improvement from the results. For our sample problems,

all search methods stopped improving within the investigated

time period. Thus, we focus on the best score before stalling,

primarily reflecting solution quality.

Figure 5 pits all optimizers against each other. The random

search baseline performed worst in all cases, as expected. The

two local search methods dominated for the smallest instance.

Focusing on refinement is more fitting for a smaller fraction

of infeasible solutions. Greedy search was the overall best,
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delivering both fast results and a low floor over time. It can

efficiently generate many feasible solutions but will drop them

immediately. The genetic algorithm showed progressively im-

proved results for larger problem sizes, even overtaking greedy

search in final solution quality for the Stammstrecke instance.

By tracking individual objectives and visualizing the train

trajectories, we can assess the quality of the solutions for

these candidates. The objective values are normalized to

[0, 1] or [0%, 100%] respectively. The best solutions for the

SimpleNetwork and Overtake instances exhibit no distance

violations, an average destination penalty of 7% and 11%,

and visit all reachable stops. The Stammstrecke solution does

contain collisions, a 34% average distance penalty, and 27%

average unfulfilled stops.

VII. CONCLUSIONS

We have reviewed current developments in railway planning

and shown the need for modern, flexible, and accessible simu-

lation platforms. We presented a new microscopic simulation

framework for train timetabling on networks equipped with

modern signaling systems based on moving block separation.

This allows for more flexible train movements than previous

approaches. We explained how architectural decisions and

constraint encoding could be chosen to help heuristic algo-

rithms find feasible trajectories quickly by implementing repair

heuristics. Our approach allows for flexible objectives so that,

e.g., line planning could be included in a joint optimization

using the presented framework.

We tested multiple optimizer configurations on example

timetabling problems to demonstrate functionality and gain

insights into problem structure. Greedy and population-based

search strategies proved superior to neighborhood-focused

ones. For small instances, this trend was reversed. Overall,

diversification, in combination with constraint satisfaction,

dictated solution quality rather than local refinement. The

smaller routing instances could be solved within a few minutes

and withstand hard constraints even with limited hardware.

At the same time, this hints that the repair step introduced

in the encoding to enforce feasible trajectories significantly

helps the heuristics progress. Note that not all solutions firmly

adhered to the headway constraints. Hence, the approach might

improve from an enhanced solution encoding, which ensures

safe distances by a backtracking repair step similar to the

one proposed to ensure satisfying track maximum speeds. It

is conjectured that this will highly benefit the quality of the

solution.

Overall, this work constitutes a promising approach for

using simulation frameworks to generate optimal timetables

and microscopic routes on general railway networks equipped

with modern moving block control systems. All code is

available open-source within the Munich Train Control Toolkit

(MTCT) on GitHub at https://github.com/cda-tum/mtct, which

is still under active development.
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