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Abstract—This paper addresses the challenge of data augmen-
tation for monochrome images, which are still highly relevant in
machine vision. Current augmentation methods designed for nat-
ural scenes focus on geometric transformation and often fall short
in simulating real-world illumination variations. We propose a
novel approach that leverages a two-step monochrome image
processing technique consisting of image pseudo-colorization fol-
lowed be a specific decolorization scheme. Our method generates
diverse and unpredictable intensity variations, effectively emulat-
ing illumination changes and, if only a specific category of color
maps are used, preserving the naturalness of the resulting images.
To exclude the results which closely replicate images already
in the dataset, we rank these maps, identifying a subset that
significantly alters illumination characteristics of the originals. A
popular SSIM measure is used for that purpose. The proposed
technique enhances the illumination diversity of datasets, offering
a valuable tool for improving the robustness of AI/ML models
in monochrome imagery.

NOTE: All figures are best viewed in high resolution.

I. MOTIVATION AND INTRODUCTION

ATA augmentation is a crucial AI/ML technique that
D artificially expands training datasets by generating mod-
ified samples, [1]. This process enhances robustness of ma-
chine vision models to unseen data, reduces overfitting, and
improves performance, particularly in scenarios with data
scarcity or imbalance, [2]. By leveraging existing data, the
need for expensive and time-consuming data collection efforts
is minimized.

The data augmentation problem for a specific category of
visual data, i.e., monochrome images, is the subject of this
paper. These images continue to be a popular and informative
source, comparable in relevance to color images.

Commonly, the augmentation of monochrome visual data
(e.g., [3], [4]) relies on geometric transformations, encom-
passing rotation, scaling, cropping, shearing, homography, and
random occlusions. Illumination and intensity transformations
are less frequently employed, largely due to their limited
options, which primarily include adjustments to contrast and
brightness, alongside standard image processing techniques
like blurring or sharpening. Significantly, current augmenta-
tion methods often fall short in their ability to simulate the
unpredictable intensity variations caused by real-world illumi-
nation changes, such as those arising from diverse weather or
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visibility conditions.

Consequently, this paper focuses on augmenting visual data
by addressing this specific limitation. Directly visualizing
the effects of real-world illumination or visibility changes is
generally infeasible due to the extremely complex computa-
tional demands of 3D scene reconstruction and illumination
modeling based on identified or artificially embedded light
sources. Instead, we propose utilizing an image processing
technique capable of producing varying and unpredictable
outcomes that can effectively emulate diverse illumination
changes, even though the underlying physical characteristics
of these changes remain unspecified and undetermined.

The proposed approach leverages a recently developed im-
age decolorization algorithm [5], which has been subsequently
adapted to enhance the quality of grayscale images in [6],
[7]. The algorithm is a specific grayscaling scheme which
effectively enhances the visual prominence of original color
images by incrementally determining pixel intensities based on
the colors and intensities of their already processed neighbors
(details in [5]). Example results are shown in Fig. 1.

Fig. 1. Example images from COLOR250 dataset [8] decolorized using the
method described in [5].

Subsequently, any monochrome image can be transformed
into a color variant using pseudo-colorization, a common tech-
nique for visualizing grayscale data from diverse, primarily
non-visual domains, e.g., [9], [10], and then decolorized using
the aforementioned approach. We have observed that this two-
step process can significantly enhance image perceptibility
compared to the original grayscale image, given the appli-
cation of a suitable color map in the initial step. Optimal
color maps for this purpose are identified in [6], [7], both for
general monochrome images (targeting primarily those from
non-visual domains) [7]), and for images depicting natural
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scenes, [6]. However, we also observed that for images of
natural scenes, many color maps produce monochrome results
that, regardless of improved perceptibility, can resemble the
same scenes under different illumination conditions, as shown
in Fig. 2.

Fig. 2. The original image (left) and its variants, generated using diversified
color maps in the first step of our method.

This finding forms the core principle of this paper, as such
images are incorporated into the augmented dataset.

First, Section II categorizes color maps employed in pseudo-
colorization and identifies the sub-category suitable for the
proposed data augmentation scheme. Within this context, the
key features of the adopted decolorization scheme are also
briefly highlighted. In Section III, those color maps are ranked
so that only maps which statistically generate the most diverse
(and different from the dataset originals) images are retained.
In this way, we exclude the augmented images that basically
replicate visual information already provided in the training
dataset.

Finally, Section IV presents examples of this augmentation
and discusses further aspects of the method, including its
limitations.

II. PRINCIPLES OF THE METHOD
A. Remarks on Image Decolorization (more in [5])

The decolorization scheme presented in [5] assumes, but
does not directly apply, linear rgb-to-gray mappings defined
by:

I =krR+ kgG + kpB, (D

where the coefficients [kg, kg, kp] are optimized either glob-
ally (e.g., [11], [12]) or locally (e.g., [13], [14]) to enhance the
visual expressiveness of the resulting monochrome images.
Instead, we observe that a pixel with [R, G, B] values can
only be assigned an intensity I within the constrained range:

min(R, G, B) < I < maz(R,G, B), 2)

regardless of the specific values of [kgr, kg, kp] in Eq.1.

Eq. 2 allows us to identify pixels with the narrowest range of
feasible grayscale intensities. For these pixels, their grayscale
values are either randomly selected from this restricted range
or assigned deterministically when when min(R,G,B) =
max(R, G, B).

These pixels serve as the starting points (the initial list)
for the decolorization process, which employs a randomized
variant of a flood-fill algorithm. Subsequently, pixels with al-
ready decolorized neighbors are assigned grayscale intensities
(constrained by Eq. 2) in proportion to their color differences
from those neighbors. This iterative process continues until all
pixels are processed, completing the decolorization step.
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Furthermore, as discussed below, Eq. 2 indirectly deter-
mines the color maps that can be effectively used in the
first step (image pseudo-colorization) of the proposed image
augmentation.

B. Color Maps

Various color maps are designed for diverse purposes
(e.g., [15], [16]); however, we specifically focus on sequen-
tial color maps, where the luminance Y of assigned colors
changes monotonically with intensity. That is, if I; < I
then Y(RGB(I1)) < Y(RGB(I2)). This constraint ensures
that the pseudo-colorized image preserves the perceptual order
of luminance, which is important for maintaining the natural

appearance of the augmented images.

To further preserve perceptual naturalness, we impose an-
other constraint on the color maps, derived from Eq. 2.
Specifically, we only use those sequential color maps that
satisfy the condition:

maz[R(0), G(0), B(0)] < 0.5 < min[R(255), G(255), B(255)].
3

This condition implies that after pseudo-coloring and subse-
quent decolorization, the darkest pixels in the original image
always remain darker than the brightest pixels. Combined with
the fact that the average intensity in Eq. 2 generally increases
for sequential color maps, the original hierarchy of intensities
is statistically maintained. We will jointly refer to sequential
maps satisfying Eg. 3 as SEQ3 maps.

At least 42 SEQ3 maps exist, as identified from the publicly
available map catalog [17] and other sources.

Figure 3 provides examples of those categories of color
maps.
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Fig. 3. Examples of: (a,b,c) sequential color maps satisfying Eq. 3 (SEQ3

maps); (d,e,f) non-SEQ3 sequential color maps; and (g,h,i) non-sequential
color maps.

To further illustrate the significance of using only SEQ3
color maps, examples are provided in Fig. 4. The results
obtained with SEQ3 maps effectively emulate alternative il-
lumination conditions, whereas the image generated using a
non-sequential map appears too unrealistic (despite its high
visual clarity) to be considered an augmented variant of the
original.

ITI. RESTRICTING THE NUMBER OF COLOR MAPS

Although our proposed method allows any SEQ3 map
to generate realistically-looking alternatives of monochrome
images, some maps yield outputs nearly indistinguishable
from the originals. Such near-identical images are unsuitable
for data augmentation as they essentially replicate existing
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Fig. 4. Original image (a) compared with two variants using SEQ3 maps
SEQ3 maps (b,c) and a variant using a non-sequential color map (d), which
shows an unacceptable loss of naturalness.

dataset items in terms of overall visual impression. Instead,
we should prioritize maps that introduce substantial variations
in illumination characteristics. Illustrative examples of both
scenarios are provided in Fig. 5.
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Fig. 5. (a) Original image; (b-d) variants closely resembling the original
(bone, greys, ice SEQ3 maps); and (e-h) variants with significantly different
illumination characteristics (haline, inferno, OrRd, rainforest SEQ3 maps).

To assess the statistical suitability of various SEQ3 maps
for illumination-targeting data augmentation in monochrome
imagery, we utilized a large number (V) of grayscale images
randomly extracted from the widely used SUN dataset [18].
This dataset was selected to facilitate future research compar-
ing the classification performance of diverse DL architectures
trained on either color images or their grayscale versions.

Each test image was processed by our method using all
(SEQ3(1) through SEQ3(42)) maps. Subsequently, we evalu-
ated the illumination disparity between each generated image
and its original. The most dissimilar results would be potential
candidates for inclusion in the augmented dataset.

While visual inspection could assess this dissimilarity, its
burden on human evaluators quickly becomes impractical
even with a small number of test images. Therefore, after
considering several common image similarity metrics, we
opted for the structural similarity index measure (SSIM) for
automatic evaluation.

The SSIM is defined by a weighted combination of three
measures that broadly represent statistical similarities between
the intensity, contrast, and structure of two images, X and Y:

SSIM(X,Y) =i(X,Y)* x ¢(X,Y)? x s(X,Y)" (4)

. _ 2uxpy+c 20x oy +ca
where i(X,Y) : fr o c(X,Y) e and
o C.
s(X,Y) = 2t e [19].

The structural similarity index measure (SSIM) ranges from
—1 to 1, with a maximum value of 1 indicating identical
images.

While lower SSIM values suggest various distortions be-
tween an original image and its processed version, in our
specific scenario, the image structure is perfectly preserved.
Therefore, intensity variations are the primary factor contribut-
ing to the SSIM-measured dissimilarity, making it a suitable
metric for our focus on illumination changes.

Consequently, for each test images X(n) (where n =
1,....IN), we calculate 42 SSIM values, denoted as their 42
SSIM(X(n), X;(n)) (where i=1,...,42). These values repre-
sent the similarity between the original image and its variants
X;(n) generated using each of the 42 SEQ3 maps.

Subsequently, we estimate the norms of the SSIM value
vectors across all test images.

norm {[SSIM(X (1), X;(1)), ..., SSIM(X(N), X;(N))]} (5)

The SEQ3 maps are ranked based on the increasing values
of the metric defined in Eq. 5. Consequently, maps exhibiting
the lowest vector norms are considered strong candidates for
data augmentation, as they statistically produce images with
significant dissimilarity from the originals. Conversely, maps
with the highest vector norms tend to generate near-identical
images, rendering them unsuitable for this purpose.

We explored various vector norms, primarily L* norms with
different values of k, both with and without outlier removal.
Remarkably, the resulting rankings of SEQ3 maps remained
nearly identical across these different norms, especially within
the top (recommended maps) and bottom (least recommended
maps) tiers. Specifically, the top 5 and bottom 5 map sets
consistently contained the same members, with only minor
variations in their internal order, as detailed in Table I,
irrespective of the chosen norm.

TABLE I
RANKING OF SEQ3 MAPS, INDICATING THE TOP AND BOTTOM TIERS.

rank | 1 213 38 [ 39 | 40 | 41 | 42

OrRd(YIOrBr) w»

YIOrBr(OrRd)| &

rainforest
hotM

hot
ocean(ice)
ice(ocean)
copper
greys
bone

map

Additionally, we have found that the maximum subset of
color maps which are always on top of this ranking (although
sometimes in a slightly varying order) irrespective of the norm
applied in Eq. 5, contains 14 SEQ3 maps.

We further assessed, using SSIM, the cross-dissimilarity
of the outputs generated by these color maps. Generally,
the results exhibited substantial differences, with the notable
exception of hotM and hot. These two maps, being nearly
identical, understandably produced very similar images, sug-
gesting that one should be excluded.
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Consequently, for illumination-targeting data augmentation
in monochrome natural scene imagery, we recommend em-
ploying the following color maps in the first step of our
proposed monochrome-to-monochrome (via pseudo-coloring)
image alternations:

(1) rainforest, (2) hot, (3) YlIOrBr, (4) OrRd, (5) YIOrRd,
(6) oranges, (7) nuclear, (8) RdPu, (9) reds, (10) PuRd, (11)
speed, (12) warm and (13) inferno.

Detailed information on these maps can be found in [17]
and other resources.

Specifically, Figures 3(a) 3(b) and 3(c) illustrate the hot,
rainforest and YIOrBr, respectively.

Our limited-scale visual validation strongly supports the
suitability of these automatically identified color maps.

IV. SUMMARY
A. Examples

Figures 6 to 9 illustrate the augmentation results achieved
with the recommended color maps. These figures display
original monochrome images of natural scenes and the cor-
responding outputs produced by a random selection of seven
out of the thirteen recommended maps. While some image

(e) () (@ (h)

Fig. 6. (a) Original image; augmented variants obtained by using: (b) hot,
(c) inferno, (d) OrRd, (e) PuRd, (f) rainforest, (g) RdPu and (h) speed SEQ3
maps.

fragments may show resemblance, their illumination charac-
teristics diverge significantly in other parts.

B. Concluding Remarks

Overall, the SEQ3 color maps generate randomized and
often unpredictable intensity changes while preserving the
natural appearance of the original images. This means our
proposed augmentation method effectively produces scene
variations that could occur under various unspecified illumina-
tion conditions, an effect not achievable with traditional image
processing techniques.

Nevertheless, it’s important to highlight that our approach
addresses only a limited range of potential illumination vari-
ations. Specifically, within the proposed model, we cannot
simulate the effects of relocating light sources or chang-
ing their numbers. Despite this limitation, we believe our
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Fig. 7. (a) Original image; augmented variants obtained by using: (b) hot,
(c) nuclear, (d) oranges, (e) rainforest, (f) RdPu, (g) speed and (h) YIOrRd
SEQ3 maps.

®

Fig. 8. (a) Original image; augmented variants obtained by using: (b) hot,
(c) inferno, (d) nuclear, (¢) OrRd, (f) rainforest, (g) speed and (h) YIOrRd
SEQ3 maps.

Fig. 9. (a) Original image; augmented variants obtained by using: (b) hot,
(c) inferno, (d) nuclear, () OrRd, (f) speed, (g) warm and (h) YIOrRd SEQ3
maps.

method offers a valuable tool for augmenting training data
in monochrome imagery, introducing items with unseen and
diversified illumination characteristics. Notably, when com-
bined with geometry-based augmentation, this method can
yield sufficiently large and diverse training datasets, even when
the availability of images from a particular domain is limited.

Finally, it should be noted that restricting the augmenta-
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tion to only SEQ3 color maps is not a strict requirement.
Generally, non-SEQ3 sequential color maps or non-sequential
maps produce unacceptably unnatural outputs, as illustrated
in Fig. 3(d). However, if extremely unusual and unpredictable
visibility conditions are anticipated in a specific scenario,
one might consider incorporating non-SEQ3 or even non-
sequential maps into the data augmentation process. Fig. 10
provides an illustrative example of such a case.

Additionally, we have experimentally verified that our ap-
proach offers a superior level of intensity diversification com-
pared to standard image processing techniques. We evaluated
over ten common, non-task-specific image enhancement algo-
rithms. Of these, only two - image sharpening and the LoG
filter - produced statistically comparable SSIM dissimilarity
results. However, even these methods were noticeably inferior
to ours. It is important to note that image sharpening and
the LoG filter primarily enhance edges. This means the vi-
sual differences observed with these techniques largely stem
from structural modifications, not from the genuine intensity
diversification our proposed method achieves.

In the future, we plan to extend our proposed data augmenta-
tion scheme to natural color images. Preliminary experimental
results for this extension are shown in Figure 11.

i

Fig. 10. Original image (left) and three augmented variants using non-SEQ3
color maps.

(@) (b)

Fig. 11.  (a) Original color image; augmented results obtained via SEQ3
color maps: (b) inferno, (c) RdPu, and (d) rainforest.
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