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Abstract—This paper addresses the challenge of data augmen-
tation for monochrome images, which are still highly relevant in
machine vision. Current augmentation methods designed for nat-
ural scenes focus on geometric transformation and often fall short
in simulating real-world illumination variations. We propose a
novel approach that leverages a two-step monochrome image
processing technique consisting of image pseudo-colorization fol-
lowed be a specific decolorization scheme. Our method generates
diverse and unpredictable intensity variations, effectively emulat-
ing illumination changes and, if only a specific category of color
maps are used, preserving the naturalness of the resulting images.
To exclude the results which closely replicate images already
in the dataset, we rank these maps, identifying a subset that
significantly alters illumination characteristics of the originals. A
popular SSIM measure is used for that purpose. The proposed
technique enhances the illumination diversity of datasets, offering
a valuable tool for improving the robustness of AI/ML models
in monochrome imagery.

NOTE: All figures are best viewed in high resolution.

I. MOTIVATION AND INTRODUCTION

D
ATA augmentation is a crucial AI/ML technique that

artificially expands training datasets by generating mod-

ified samples, [1]. This process enhances robustness of ma-

chine vision models to unseen data, reduces overfitting, and

improves performance, particularly in scenarios with data

scarcity or imbalance, [2]. By leveraging existing data, the

need for expensive and time-consuming data collection efforts

is minimized.

The data augmentation problem for a specific category of

visual data, i.e., monochrome images, is the subject of this

paper. These images continue to be a popular and informative

source, comparable in relevance to color images.

Commonly, the augmentation of monochrome visual data

(e.g., [3], [4]) relies on geometric transformations, encom-

passing rotation, scaling, cropping, shearing, homography, and

random occlusions. Illumination and intensity transformations

are less frequently employed, largely due to their limited

options, which primarily include adjustments to contrast and

brightness, alongside standard image processing techniques

like blurring or sharpening. Significantly, current augmenta-

tion methods often fall short in their ability to simulate the

unpredictable intensity variations caused by real-world illumi-

nation changes, such as those arising from diverse weather or

visibility conditions.

Consequently, this paper focuses on augmenting visual data

by addressing this specific limitation. Directly visualizing

the effects of real-world illumination or visibility changes is

generally infeasible due to the extremely complex computa-

tional demands of 3D scene reconstruction and illumination

modeling based on identified or artificially embedded light

sources. Instead, we propose utilizing an image processing

technique capable of producing varying and unpredictable

outcomes that can effectively emulate diverse illumination

changes, even though the underlying physical characteristics

of these changes remain unspecified and undetermined.

The proposed approach leverages a recently developed im-

age decolorization algorithm [5], which has been subsequently

adapted to enhance the quality of grayscale images in [6],

[7]. The algorithm is a specific grayscaling scheme which

effectively enhances the visual prominence of original color

images by incrementally determining pixel intensities based on

the colors and intensities of their already processed neighbors

(details in [5]). Example results are shown in Fig. 1.

.

Fig. 1. Example images from COLOR250 dataset [8] decolorized using the
method described in [5].

Subsequently, any monochrome image can be transformed

into a color variant using pseudo-colorization, a common tech-

nique for visualizing grayscale data from diverse, primarily

non-visual domains, e.g., [9], [10], and then decolorized using

the aforementioned approach. We have observed that this two-

step process can significantly enhance image perceptibility

compared to the original grayscale image, given the appli-

cation of a suitable color map in the initial step. Optimal

color maps for this purpose are identified in [6], [7], both for

general monochrome images (targeting primarily those from

non-visual domains) [7]), and for images depicting natural
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scenes, [6]. However, we also observed that for images of

natural scenes, many color maps produce monochrome results

that, regardless of improved perceptibility, can resemble the

same scenes under different illumination conditions, as shown

in Fig. 2.

Fig. 2. The original image (left) and its variants, generated using diversified
color maps in the first step of our method.

This finding forms the core principle of this paper, as such

images are incorporated into the augmented dataset.

First, Section II categorizes color maps employed in pseudo-

colorization and identifies the sub-category suitable for the

proposed data augmentation scheme. Within this context, the

key features of the adopted decolorization scheme are also

briefly highlighted. In Section III, those color maps are ranked

so that only maps which statistically generate the most diverse

(and different from the dataset originals) images are retained.

In this way, we exclude the augmented images that basically

replicate visual information already provided in the training

dataset.

Finally, Section IV presents examples of this augmentation

and discusses further aspects of the method, including its

limitations.

II. PRINCIPLES OF THE METHOD

A. Remarks on Image Decolorization (more in [5])

The decolorization scheme presented in [5] assumes, but

does not directly apply, linear rgb-to-gray mappings defined

by:

I = kRR+ kGG+ kBB, (1)

where the coefficients [kR, kG, kB ] are optimized either glob-

ally (e.g., [11], [12]) or locally (e.g., [13], [14]) to enhance the

visual expressiveness of the resulting monochrome images.

Instead, we observe that a pixel with [R,G,B] values can

only be assigned an intensity I within the constrained range:

min(R,G,B) ≤ I ≤ max(R,G,B), (2)

regardless of the specific values of [kR, kG, kB ] in Eq.1.

Eq. 2 allows us to identify pixels with the narrowest range of

feasible grayscale intensities. For these pixels, their grayscale

values are either randomly selected from this restricted range

or assigned deterministically when when min(R,G,B) =
max(R,G,B).

These pixels serve as the starting points (the initial list)

for the decolorization process, which employs a randomized

variant of a flood-fill algorithm. Subsequently, pixels with al-

ready decolorized neighbors are assigned grayscale intensities

(constrained by Eq. 2) in proportion to their color differences

from those neighbors. This iterative process continues until all

pixels are processed, completing the decolorization step.

Furthermore, as discussed below, Eq. 2 indirectly deter-

mines the color maps that can be effectively used in the

first step (image pseudo-colorization) of the proposed image

augmentation.

B. Color Maps

Various color maps are designed for diverse purposes

(e.g., [15], [16]); however, we specifically focus on sequen-

tial color maps, where the luminance Y of assigned colors

changes monotonically with intensity. That is, if I1 < I2
then Y (RGB(I1)) < Y (RGB(I2)). This constraint ensures

that the pseudo-colorized image preserves the perceptual order

of luminance, which is important for maintaining the natural

appearance of the augmented images.
To further preserve perceptual naturalness, we impose an-

other constraint on the color maps, derived from Eq. 2.
Specifically, we only use those sequential color maps that
satisfy the condition:

max[R(0), G(0), B(0)] < 0.5 < min[R(255), G(255), B(255)].
(3)

This condition implies that after pseudo-coloring and subse-

quent decolorization, the darkest pixels in the original image

always remain darker than the brightest pixels. Combined with

the fact that the average intensity in Eq. 2 generally increases

for sequential color maps, the original hierarchy of intensities

is statistically maintained. We will jointly refer to sequential

maps satisfying Eg. 3 as SEQ3 maps.

At least 42 SEQ3 maps exist, as identified from the publicly

available map catalog [17] and other sources.

Figure 3 provides examples of those categories of color

maps.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Examples of: (a,b,c) sequential color maps satisfying Eq. 3 (SEQ3
maps); (d,e,f) non-SEQ3 sequential color maps; and (g,h,i) non-sequential
color maps.

To further illustrate the significance of using only SEQ3

color maps, examples are provided in Fig. 4. The results

obtained with SEQ3 maps effectively emulate alternative il-

lumination conditions, whereas the image generated using a

non-sequential map appears too unrealistic (despite its high

visual clarity) to be considered an augmented variant of the

original.

III. RESTRICTING THE NUMBER OF COLOR MAPS

Although our proposed method allows any SEQ3 map

to generate realistically-looking alternatives of monochrome

images, some maps yield outputs nearly indistinguishable

from the originals. Such near-identical images are unsuitable

for data augmentation as they essentially replicate existing
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(a) (b) (c) (d)

Fig. 4. Original image (a) compared with two variants using SEQ3 maps
SEQ3 maps (b,c) and a variant using a non-sequential color map (d), which
shows an unacceptable loss of naturalness.

dataset items in terms of overall visual impression. Instead,

we should prioritize maps that introduce substantial variations

in illumination characteristics. Illustrative examples of both

scenarios are provided in Fig. 5.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. (a) Original image; (b-d) variants closely resembling the original
(bone, greys, ice SEQ3 maps); and (e-h) variants with significantly different
illumination characteristics (haline, inferno, OrRd, rainforest SEQ3 maps).

To assess the statistical suitability of various SEQ3 maps

for illumination-targeting data augmentation in monochrome

imagery, we utilized a large number (N ) of grayscale images

randomly extracted from the widely used SUN dataset [18].

This dataset was selected to facilitate future research compar-

ing the classification performance of diverse DL architectures

trained on either color images or their grayscale versions.

Each test image was processed by our method using all

(SEQ3(1) through SEQ3(42)) maps. Subsequently, we evalu-

ated the illumination disparity between each generated image

and its original. The most dissimilar results would be potential

candidates for inclusion in the augmented dataset.

While visual inspection could assess this dissimilarity, its

burden on human evaluators quickly becomes impractical

even with a small number of test images. Therefore, after

considering several common image similarity metrics, we

opted for the structural similarity index measure (SSIM) for

automatic evaluation.

The SSIM is defined by a weighted combination of three

measures that broadly represent statistical similarities between

the intensity, contrast, and structure of two images, X and Y :

SSIM(X,Y ) = i(X,Y )α × c(X,Y )β × s(X,Y )γ (4)

where i(X,Y ) = 2µXµY +c1
µ2

X
+µ2

Y
+c1

, c(X,Y ) = 2σXσY +c2
σ2

X
+σ2

Y
+c2

and

s(X,Y ) = σXY +c3
σXσY +c3

, see [19].

The structural similarity index measure (SSIM) ranges from

−1 to 1, with a maximum value of 1 indicating identical

images.

While lower SSIM values suggest various distortions be-

tween an original image and its processed version, in our

specific scenario, the image structure is perfectly preserved.

Therefore, intensity variations are the primary factor contribut-

ing to the SSIM-measured dissimilarity, making it a suitable

metric for our focus on illumination changes.

Consequently, for each test images X(n) (where n =

1,...,N ), we calculate 42 SSIM values, denoted as their 42
SSIM(X(n), Xi(n)) (where i=1,...,42). These values repre-

sent the similarity between the original image and its variants

Xi(n) generated using each of the 42 SEQ3 maps.

Subsequently, we estimate the norms of the SSIM value

vectors across all test images.

norm {[SSIM(X(1), Xi(1)), ..., SSIM(X(N), Xi(N))]} (5)

The SEQ3 maps are ranked based on the increasing values

of the metric defined in Eq. 5. Consequently, maps exhibiting

the lowest vector norms are considered strong candidates for

data augmentation, as they statistically produce images with

significant dissimilarity from the originals. Conversely, maps

with the highest vector norms tend to generate near-identical

images, rendering them unsuitable for this purpose.

We explored various vector norms, primarily Lk norms with

different values of k, both with and without outlier removal.

Remarkably, the resulting rankings of SEQ3 maps remained

nearly identical across these different norms, especially within

the top (recommended maps) and bottom (least recommended

maps) tiers. Specifically, the top 5 and bottom 5 map sets

consistently contained the same members, with only minor

variations in their internal order, as detailed in Table I,

irrespective of the chosen norm.

TABLE I
RANKING OF SEQ3 MAPS, INDICATING THE TOP AND BOTTOM TIERS.
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Additionally, we have found that the maximum subset of

color maps which are always on top of this ranking (although

sometimes in a slightly varying order) irrespective of the norm

applied in Eq. 5, contains 14 SEQ3 maps.

We further assessed, using SSIM, the cross-dissimilarity

of the outputs generated by these color maps. Generally,

the results exhibited substantial differences, with the notable

exception of hotM and hot. These two maps, being nearly

identical, understandably produced very similar images, sug-

gesting that one should be excluded.
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Consequently, for illumination-targeting data augmentation

in monochrome natural scene imagery, we recommend em-

ploying the following color maps in the first step of our

proposed monochrome-to-monochrome (via pseudo-coloring)

image alternations:

(1) rainforest, (2) hot, (3) YlOrBr, (4) OrRd, (5) YlOrRd,

(6) oranges, (7) nuclear, (8) RdPu, (9) reds, (10) PuRd, (11)

speed, (12) warm and (13) inferno.

Detailed information on these maps can be found in [17]

and other resources.

Specifically, Figures 3(a) 3(b) and 3(c) illustrate the hot,

rainforest and YlOrBr, respectively.

Our limited-scale visual validation strongly supports the

suitability of these automatically identified color maps.

IV. SUMMARY

A. Examples

Figures 6 to 9 illustrate the augmentation results achieved

with the recommended color maps. These figures display

original monochrome images of natural scenes and the cor-

responding outputs produced by a random selection of seven

out of the thirteen recommended maps. While some image

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. (a) Original image; augmented variants obtained by using: (b) hot,
(c) inferno, (d) OrRd, (e) PuRd, (f) rainforest, (g) RdPu and (h) speed SEQ3
maps.

fragments may show resemblance, their illumination charac-

teristics diverge significantly in other parts.

B. Concluding Remarks

Overall, the SEQ3 color maps generate randomized and

often unpredictable intensity changes while preserving the

natural appearance of the original images. This means our

proposed augmentation method effectively produces scene

variations that could occur under various unspecified illumina-

tion conditions, an effect not achievable with traditional image

processing techniques.

Nevertheless, it’s important to highlight that our approach

addresses only a limited range of potential illumination vari-

ations. Specifically, within the proposed model, we cannot

simulate the effects of relocating light sources or chang-

ing their numbers. Despite this limitation, we believe our

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. (a) Original image; augmented variants obtained by using: (b) hot,
(c) nuclear, (d) oranges, (e) rainforest, (f) RdPu, (g) speed and (h) YlOrRd

SEQ3 maps.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. (a) Original image; augmented variants obtained by using: (b) hot,
(c) inferno, (d) nuclear, (e) OrRd, (f) rainforest, (g) speed and (h) YlOrRd

SEQ3 maps.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. (a) Original image; augmented variants obtained by using: (b) hot,
(c) inferno, (d) nuclear, (e) OrRd, (f) speed, (g) warm and (h) YlOrRd SEQ3
maps.

method offers a valuable tool for augmenting training data

in monochrome imagery, introducing items with unseen and

diversified illumination characteristics. Notably, when com-

bined with geometry-based augmentation, this method can

yield sufficiently large and diverse training datasets, even when

the availability of images from a particular domain is limited.

Finally, it should be noted that restricting the augmenta-
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tion to only SEQ3 color maps is not a strict requirement.

Generally, non-SEQ3 sequential color maps or non-sequential

maps produce unacceptably unnatural outputs, as illustrated

in Fig. 3(d). However, if extremely unusual and unpredictable

visibility conditions are anticipated in a specific scenario,

one might consider incorporating non-SEQ3 or even non-

sequential maps into the data augmentation process. Fig. 10

provides an illustrative example of such a case.

Additionally, we have experimentally verified that our ap-

proach offers a superior level of intensity diversification com-

pared to standard image processing techniques. We evaluated

over ten common, non-task-specific image enhancement algo-

rithms. Of these, only two - image sharpening and the LoG

filter - produced statistically comparable SSIM dissimilarity

results. However, even these methods were noticeably inferior

to ours. It is important to note that image sharpening and

the LoG filter primarily enhance edges. This means the vi-

sual differences observed with these techniques largely stem

from structural modifications, not from the genuine intensity

diversification our proposed method achieves.

In the future, we plan to extend our proposed data augmenta-

tion scheme to natural color images. Preliminary experimental

results for this extension are shown in Figure 11.

Fig. 10. Original image (left) and three augmented variants using non-SEQ3
color maps.

(a) (b) (c) (d)

Fig. 11. (a) Original color image; augmented results obtained via SEQ3
color maps: (b) inferno, (c) RdPu, and (d) rainforest.
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