
Abstract—Studies on Saudi accounting practices have identi-

fied evidence of creative accounting in the financial statements 

of listed companies. Despite the application of various fraud de-

tection methods, identifying legal but misleading manipulations 

remains challenging. This paper extends the Creative Account-

ing  Detection  Model  (CADM),  an  LSTM-based  model  origi-

nally proposed by Bineid et al. (2023, 2024) for detecting cre-

ative accounting. Two versions, (CADM1) and (CADM2), were 

trained on two simulated datasets with different bases, achiev-

ing 100% and 95% accuracy, respectively.  Testing on the en-

ergy sector (2019-2023), CADM1 identified one company as en-

gaging in creative accounting, while CADM2 classified all com-

panies  as  non-creative  with  greater  confidence  stability.  The 

findings establish CADM as a robust, scalable solution for the 

early detection of financial manipulation. By combining predic-

tive strength with explainability,  CADM can be employed to 

advance current approaches to forensic accounting and risk an-

alytics,  offering valuable insights to regulators,  auditors,  and 

decision-makers.

Index  Terms—Deep  Learning,  Long  Short-Term Memory, 

LSTM, Creative Accounting, Saudi Arabia.

I. INTRODUCTION

ESPITE the establishment of accurate accounting stan-

dards, financial statement scandals continue to shake 

global markets. Cases such as Enron [1] and Wirecard [2] 

reveal the persistent challenge of Creative Accounting (CA), 

a practice where managers manipulate the accounting fig-

ures to present a misleading image of financial position.

D

Business performance is typically evaluated through ac-

counting outcomes presented in financial statements (FSs). 

To ensure these statements offer a true and fair view, com-

panies are required to prepare them under well-defined ac-

counting standards and to subject them to independent audit-

ing [3]. These measures are intended to ensure transparency, 

confirm compliance, and detect any material misstatement. 

However,  corporate  managers  often  have  incentives  to 

present the most favourable image of their organisation [4]. 

In doing so, they may engage in CA practices, adjusting fig-

ures within the boundaries of acceptable standards, without 

technically violating the rules. Although CA is sometimes 

distinguished  from fraud,  its  consequences  can  be  just  as 

damaging [5], [6].

While many studies have focused on detecting Financial 

Statement Fraud (FSF), fewer studies have tried to identify 

CA ( also referred to as Earnings Management EM) [7], [8]. 

One of the earliest and most notable efforts is the Beneish 

M-Score [9], a model built on financial ratios designed to 

flag  potential  EM.  However,  its  capability  in  a  non-U.S. 

context remains questionable [10]. Other statistical models 

like  the  Jones  model  and  the  modified  Jones  model  [11] 

have been developed to detect EM, but they still face limita-

tions  such  as  model  misspecification  and  low  detection 

power, particularly in varying economic contexts. 

More  recently,  Deep  Learning  (DL)  applications  have 

emerged as a powerful tool in financial prediction and clas-

sification.  DL  models,  particularly  neural  networks,  have 

demonstrated promise in learning complex patterns embed-

ded in large  unstructured datasets.  Approaches combining 

Recurrent Neural Network (RNN), Long Short-Term Mem-

ory  (LSTM),  Gated  Recurrent  Network  (GRN),  and  even 

Bidirectional  Encoder  Representations  from  Transformers 

(BERT) models have been explored to solve problems like 

gradient vanishing and square modelling [12], [13]. For ex-

ample, Craja et al. [14]  applied deep learning techniques to 

detect FSF based on textual analysis of financial reports us-

ing a Bag-of-Words (BOW) approach.  The model success-

fully identified fraudulent cases; however, it was designed 

for linguistic analysis only. Schreyer et al. [15] used Adver-

sarial Autoencoder Neural Networks to detect anomalies in 

raw accounting entries,  although their  focus on ERP data 

structures limits the ability to generalise to standardised FSs. 

Given the sequential nature of FSs, LSTM networks have 

shown remarkable suitability for analysing time-series data. 

They are particularly adept at capturing long-term dependen-

cies and detecting subtle deviations from normal patterns. 

Their success in areas like anomaly detection, image recog-

nition, and natural language processing has encouraged their 

application to financial domains, including fraud detection 

[16], [17] and performance predictions [18]. However, ap-

plying  DL  techniques  to  CA  detection  requires
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overcoming a fundamental obstacle: the lack of real-world 

CA examples. However, in the Saudi Arabian context, studies 

have found that FSs do not represent a company's true and fair 

position, despite auditor procedures approval[4], [19], [20], 

[21]. This alarming finding emphasises the need for 

innovative solutions to detect FS manipulation and improve 

financial reporting quality. 

Despite the growing literature on detecting financial 

statement fraud, a significant gap remains in detecting CA 

weather through statistical methods or Artificial Intelligence, 

particularly within the Saudi Arabian context. In addition, the 

absence of labelled datasets for CA, particularly in the Saudi 

market, presents a methodological challenge in developing, 

training, and validating such models. To address this gap, this 

research aims to design, simulate, and evaluate a Creative 

Accounting Detection model (CADM), using an LSTM 

architecture, capable of learning from domain-specific 

financial and non-financial patterns. 

To achieve this aim, the study makes several contributions 

to the literature. First, it introduces a novel domain-specific 

simulation methodology tailored to the characteristics of 

Saudi-listed companies. Second, it compares two distinct 

simulation approaches to determine which offers more 

effective training for the CA detection model. Third, it 

validates the proposed models using real-world FS data from 

the Saudi energy sector. These contributions are guided by the 

following research questions:  

• RQ1: How does the base used in simulated data affect 

the accuracy of LSTM models in detecting creative ac-

counting?  

• RQ2: Can the proposed deep learning model (CADM) 

be trained to classify with high accuracy? 

• RQ3: Can the proposed deep learning model (CADM) 

be generalised to real-world FSs?   

II. METHODOLOGY 

A mixed-methods approach is employed to deliver the re-

search objectives. It combines an experimental methodology 

with quantitative techniques to form a framework for devel-

oping, training, and evaluating a deep-learning model using 

simulated and real-world datasets. The upcoming subsections 

explain the research design, feature engineering, data prepa-

ration, model architecture, training process, and testing pro-

cedures. 

A. Research Design 

 The research design comprises two overlapping phases: 

quantitative and experimental, implemented in parallel across 

different stages of this study. The first phase involves prepar-

ing the dataset, which consists of two main components: a 

training dataset and a testing dataset. The testing dataset is 

collected from real-world FSs of Saudi-listed companies. 

However, due to the unavailability of a CA-labelled dataset, 

this study adopts a simulation-based methodology to generate 

FSs that reflect selected CA patterns. This leads us to start the 

second phase before ending the first, as shown in Fig. 1.   

This part of the experimental phase involves implementing 

a domain-specific simulation process to generate synthetic 

datasets. However, two simulation designs were applied sim-

ultaneously. The first simulation is based on the real-world 

dataset analysis, and the second is based on the findings of 

Leitch and Chen [21].   

Once the simulation stage is completed, the quantitative 

phase resumes with the development and training of the 

model. Using an LSTM-based architecture, the quantitative 

approach is implemented by analysing numeric accounting 

data, financial ratios, Corporate Governance (CGs), and key 

performance indicators extracted from real and simulated FSs 

to capture and classify CA practices. The outcomes of this 

analysis are further evaluated using deep learning perfor-

mance metrics in the remainder of the second phase.  

B. Data Sources and Collection 

The emergence of publicly accessible financial data in 

Saudi Arabia is a relatively recent advancement that reflects 

the Kingdom’s efforts to transform its financial system, in-

 

Fig. 1: CADM Research Framework 
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crease transparency, and attract domestic and foreign invest-

ment. These efforts are rooted in institutional reforms that be-

gan in the early 2000s, particularly with the creation of the 

CMA and have accelerated under the Vision 2030 economic 

transformation plan[22]. 

Saudi Arabia’s enforcement of financial disclosure stand-
ards and IFRS compliance since 2017 has significantly im-

proved the reliability and usability of its financial datasets. 

Real-world financial data can be accessed from the Saudi Ex-

change online platform (Tadawul), which provides official fi-

nancial disclosures, including downloadable PDFs and Excel 

data. CMA and SOCPA platforms also offer regulatory fil-

ings, enforcement actions, historical announcements, stand-

ards, conversion guidelines, and auditor regulations. Third-

party aggregators, such as Argaam.com and Mubasher.com, 

offer processed versions of the raw data; nevertheless, these 

platforms are commercially operated entities, not govern-

ment-affiliated sources. 

The Saudi market has 22 different sectors, each represent-

ing a distinct market segment with a varying number of com-

panies in each sector. The largest sector by market capitalisa-

tion is the Energy sector, and the smallest is the Entertainment 

which has a limited number of companies with a relatively 

lower market capitalisation compared to others. Sectors and 

the exact number of companies can vary due to new listings 

and reclassifications in the market. However, FSs of Saudi-

listed companies are publicly available in several formats. 

Tadawul provides financial data for all stakeholders, available 

in several formats, either online or offline. They also provide 

a useful analytical tool for paid subscription users. But still, 

some companies fail to publish regularly in Tadawul, as 

shown in Fig. 2. 

The Energy sector, having 7 companies, was chosen for 

this study. Although the Materials sector has the highest num-

ber of companies and is academically recognised for its high 

consistency across firms, making data preparation relatively 

easier, there was a concern that such uniformity might restrict 

the model’s ability to learn diverse patterns and ultimately re-
duce training effectiveness. To better challenge the model and 

assess its generalisation capabilities, the Energy sector was 

selected due to the greater diversity among its companies. 

C. Simulation Strategy 

Although there is an increase in data availability, real-

world examples of CA are challenging to find, particularly in 

the Saudi context [7], as companies do not usually admit pub-

licly to using CA techniques. Without a real dataset, the best 

alternative would be to employ proxies, such as accrual-based 

analysis [26], on publicly available financial datasets to infer 

potential earnings management. However, accrual-based 

models like the Beneish M-Score [9] rely on assumptions and 

may not provide a definitive ground truth for CA, as they may 

include false positives and negatives, admitted by Beneish 

himself [10].  

Moreover, AI strategies that can effectively address the 

lack of data in training deep learning models, such as Semi-

supervised Learning, cannot be used because they lack the 

level of customisation needed in the dataset, and their results 

will be difficult to generalise [23]. It can also be helpful to use 

pre-trained models on a broader dataset (e.g., fraud detection 

models) as in Transfer Learning. Still, they are more likely to 

perform poorly on the domain-specific (Saudi-listed compa-

nies), and controlled variables (selected CA patterns) used in 

this research.  

Consequently, simulating financial data appeared to be the 

optimal strategy that fulfils the need to have a sector-specific 

dataset with labelled data and controlled variables. Simulating 

financial statements is a well-established practice in the liter-

ature, employed for various analytical purposes. For instance, 

Leitch and Chen [24] simulated monthly FSs to evaluate key 

financial indicators and explore broader organisational dy-

namics.  

Building upon their methodology, this study simulates two 

datasets: one based on general accounting measures and an-

other tailored to the characteristics of the Saudi-listed compa-

nies, including financial (FIN) and non-financial (N-FIN) var-

iables. Each dataset is prepared to train different versions of 

the CADM model. Generating a simulated dataset can explic-

itly encode CA techniques relevant to the Saudi business en-

vironment, providing flexibility for training scenarios and 

control over manipulation patterns, specifically when the base 

of the simulation is the real-world dataset. In other words, col-

lecting the real-world dataset is essential to start the simula-

tion process.  

 A structured pattern-based financial simulation approach 

has been utilised to generate the training dataset. First, two 

 

Fig. 2: Availability of FSs in the Saudi Market 
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primary goals were established: (1) to simulate a dataset 

closely resembling real-world data to ensure the model is ef-

fectively trained and (2) to account for four different scenarios 

of account manipulations, given the lack of clarity about the 

exact manipulation scenarios present in real datasets, if any. 

The dataset consists of two groups of companies: labelled as 

CA and labelled as N-CA (Non-Creative Accounting). The N-

CA group was generated without applying any manipulations, 

while the CA group underwent an additional process where 

CA patterns were embedded.  

 To achieve the first goal, FIN features such as raw ac-

counting data and financial ratios, and NFIN features such as 

CG metrics and auditor’s status, were incorporated into the 
simulation process. To address the second objective of this 

study, two datasets were simulated using two different bases: 

one based on general accounting measures reported in the lit-

erature and the other grounded in real-world data analysis. 

The first simulated dataset (DST_DSL) was generated by 

adopting the simulation methodology proposed by Leitch and 

Chen [24]. For the second simulated dataset (DST_DSR), in-

itial statistical analyses of the real-world dataset were con-

ducted and used as the baseline for determining measure-

ments and ratios. This dual approach enabled the training of 

two separate models on distinct simulated datasets, thereby 

enhancing the robustness and adaptability of the proposed de-

tection framework. A summary of the datasets used in the pro-

cesses is provided in Table I. 

 

Both simulated datasets are validated before being used in 

training; they are statistically analysed to compare key finan-

cial metrics with the real-world dataset, ensuring that trends, 

outliers, and energy sector characteristics are aligned. This 

was performed iteratively; when the validation results were 

not acceptable, the simulation was redesigned, and the gener-

ation phase was restarted. 

 

D. Feature Selection and Engineering 

This study aims to simulate a set of widely recognised and 

frequently cited CA techniques, as in [25], [26], within a con-

trolled dataset, representing them as manipulation patterns for 

CADM to learn from and detect. Four key CA patterns were 

selected for inclusion in the simulated dataset: revenue infla-

tion, underreporting of COGS, assets overstatement, and un-

derreporting of liabilities, as detailed in Table II. To make 

sure these patterns are relevant to the Saudi context, an addi-

tional layer of selection criteria was applied. Specifically, 

these techniques were also chosen based on their prevalence 

in the local literature [4], [19], [27], their documentation in 

real-world regulatory reports [28], and their alignment with 

the findings of the integration study [7]. 

To simulate a realistic and varied dataset, not all four CA 

techniques were applied to all companies in the CA label. In-

stead, each manipulated company was randomly assigned one 

of the four techniques, which was then consistently applied 

across all five-year financial periods. This approach avoids 

compound distributions that may arise from stacking multiple 

manipulation techniques and allows the model to learn dis-

tinct behavioural patterns associated with each manipulation 

type. It also better reflects real-world conditions, where com-

panies typically engage in certain earnings management strat-

egies over others based on their internal practices, industry 

norms, and regulatory pressure.  

While other CA techniques have been identified in the lit-

erature, the selected CA patterns affect quantifiable financial 

ratios that make them suitable for detection by deep learning 

models based on time-series patterns. They are also compati-

ble with the simulation process, as each technique can be im-

plemented in a consistent and replicable way across multiple 

years. In addition, these patterns evolve, which is a key fea-

ture that aligns well with the capabilities of LSTM-based ar-

chitectures. Finally, it is important to limit the number of ma-

nipulation types to control the model’s complexity and reduce 
the risk of introducing noise or overlapping effects that could 

compromise the model's interpretability and reliability 

TABLE II: SIMULATED TECHNIQUES OF CA 

CA technique Behaviour in FSs Simulation 

Revenue 

inflation 

Revenue overstatement is one of the commonly used earnings management 

strategies and directly impacts key ratios such as net profit margin, EPS, and 

ROA [1], [2], [3]. 

A 15% inflation is applied to the 

revenue variable for each year for the 

generated companies. 

Underreporting 

of COGS 

This manipulation affects profitability without inflating top-line revenue and is 

less obvious than revenue inflation, thus posing a greater challenge for detection 

models[3], [4]. 

Reported COGS are decreased 10% 

(manipulated by 0.9) for each year 

while keeping the revenue constant. 

Assets 

overstatement 

This technique can distort key financial ratios such as ROA, current ratio, and 

debt-to-equity ratio. This tactic is commonly observed in cases where firms 

attempt to hide their losses or signal strength to creditors and investors [5].  

Asset value is increased by 10% for 

each year across all years. 

Liabilities 

underreporting 

This practice is used to present a healthier financial position. It improves leverage 

ratios (debt-to-equity) and conceals financial risk. This pattern is particularly 

relevant in the credit evaluation context [3], [6].  

Liabilities were reduced by 10%for 

each year, thereby relatively 

overstating equity. 

 

TABLE I: DATASET NAMING AND SPECIFICATIONS USING MATLAB 

Dataset Dataset type  Base Purpose 

DST_DSL.mat Simulated  [20] Training CADM1 

DSV_DSL.mat Simulated  [20] Validation CADM1 

DST_DSR.mat Simulated  DSR.mat Training CADM2 

DSV_DSR.mat Simulated DSR.mat Validation CADM2 

DSR.mat Real-world  N/A Testing CADM1&2 
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Both financial (FIN) and non-financial (NFIN) indicators 

associated with the selected patterns were incorporated into 

the model. These indicators are typically variables integrated 

from financial reports and FSs. The selection of FIN variables 

was based on their relationship with the accounting pattern 

under examination. In contrast, non-financial variables were 

incorporated based on their demonstrated significance in 

identifying accounting manipulation, as evidenced by the 

findings of the integration study [7]. The model included 14 

FIN (FIN1-FIN14) and 16 NFIN variables (NFIN1-NFIN20) 

as in Table III.  

E. Model Architecture 

The next step after data preparation and the identification 

of CA patterns is to select an appropriate deep learning tech-

nique for developing the predictive model CADM. As previ-

ously discussed, LSTM neural networks are widely regarded 

as one of the most effective methods for detecting unexpected 

anomalies in sequential unstructured data spanning multiple 

years. As an advanced type of RNN, LSTM is specifically de-

signed to learn long-term dependencies in time series through 

a gated architecture. These gates, responsible for retaining, 

discarding, or updating information, enable the model to cap-

ture complex temporal relationships in historical financial 

statements.  

Unlike traditional models, LSTM is robust against the need 

for extensive manual feature engineering, as it can automati-

cally learn features from raw data. This allows for the inclu-

sion of diverse FIN and N-FIN variables. Moreover, while 

CADM is designed to be trained using FIN and Non-FIN data, 

LSTM excels at modelling this non-linearity in data, specifi-

cally when it is required to capture temporal and contextual 

variables such as CGS measures, regulations, and multi-year 

data. This makes it possible to build a powerful deep learning 

model tailored to the Saudi business context. To effectively 

leverage these advantages, the CADM was implemented us-

ing multiple layers, where each layer contributes to progres-

sively learning higher-level temporal features from the FIN 

and N-FIN input data. All LSTM-related mathematical for-

mulations used in this study are adapted from Hochreiter and 

Schmidhuber [29], unless otherwise noted. The layered archi-

tecture (illustrated in Table III) is composed as follows:  

 Input Layer 

The input layer receives sequential financial data spanning 

multiple years, structured as a time-series input as in Fig. 3.  

Each input sequence represents a company’s FIN and N-FIN 

variables over consecutive reporting periods, allowing the 

TABLE III: FIN AND N-FIN VARIABLES 

FIN NFIN 

Variable Code Variable Code Encoding 

A
cc

o
u
n

ti
n
g

 r
aw

 d
at

a Bank balance and cash FIN1 

B
as

ic
 Year NFIN1 2019-2023 

Inventory FIN2 Company name  NFIN2 Table 1 Appendix 

Total assets FIN3 Auditor Firm NFIN3 Table 2 Appendix 

Total liabilities FIN4 Audit opinion1 NFIN4 0 clean (unqualified), 1 otherwise 

Total equity FIN5 

C
G

 m
et

ri
cs

 

Newcomer NFIN6 1 yes, 0 otherwise 

Revenue FIN6 Board Size NFIN7 Count  

COGS FIN7 CEO Duality2 NFIN8 0 no, 1 yes 

Gross profit FIN8 Board Dependency3  NFIN9 0 independent,1 dependent  

F
in

an
ci

al
 r

at
io

s 

Liquidity FIN9 Board meetings NFIN10 Count 

Profitability FIN10 Audit committee size NFIN11 Count 

Efficiency FIN11 Ownership concentration NFIN12 0 compliant, 1 non 

Leverage FIN12 CEO tenure NFIN13 0 compliant, 1 non 

Market ratio FIN13 Adopted standards NFIN14 0 SOCPA, 1 IFRS 

  

A
u

d
it

o
r 

Auditor status4 NFIN15 0 currently unauthorised, 1 authorised 

  Audit Big 45 NFIN16 0 no, 1 yes 

  Auditor allegations6 NFIN17 0 no, 1 yes 

1. There are four types of auditor opinions. The most common opinion is the Unqualified (Clean) Opinion, where the auditor believes the FSs are accurate 

and comply with accounting standards. This value is represented by 0. The second opinion is issued when the FSs are mostly accurate, but there is a spe-

cific issue that does not comply with standards, often explained in detail. This is called the Qualified Opinion. The remaining two types of opinions repre-

sent two levels of FS’s misrepresentation [28]. To simplify the model's input, any opinion other than the clean opinion is represented as 1. 

2. CEO duality indicates if the Chief Executive Officer holds the position of chairman of the board of directors. This feature is one of the main CG influenc-

ers, as holding both roles can lead to a concentration of power and potentially affect the board's ability to oversee management independently. This CEO 

duality takes 1 if the CEO is also the Chairman of the Board (indicating CEO duality exists) and 0 if the CEO and Chairman roles are held by separate indi-

viduals (no CEO duality).  

3. According to the Saudi regulations by the CMA [13], CG regulations demand that at least one-third of the board members must be independent. Independent 

directors are non-executives. All independents are non-executives, but not all non-executives are independents (they might have other relationships). There-

fore, the threshold in our design is 33%, so at least 33% must be independent. If less than 33%, then 1 (dependent). If 33% or more, then 0 (independent). 

Board dependency is measured using the following formula:  BD = (independent directors/ directors) *100  

4. Because the status of the auditing firm in the present indicates some flags about its integrity and professionalism, the performance history by allegations and 

by the status of the auditing firm by the authorities is highly effective in the analysis. If the audit firm (for a specific year) is authorised, this value takes 0, 

otherwise, the value is 1 if the audit firm is suspended in the current year.  

5. The size of the auditing firm is considered as an important auditor’s reputation feature as indicated by the findings of [2]. This variable asks whether the 

auditing firm is considered one of the Big 4 firms in Saudi Arabia (KPMG, PWC, EY, and Deloitte). It takes 1 if one of the big 4s, 0 otherwise. 

6. It leverages the audit firm if it has no previous allegations or lawsuits either with companies or the authorities. The variable takes 1 if the auditing firm has 

no previous or current allegations, otherwise, it is 0. 
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model to capture temporal trends and patterns relevant to de-

tecting CA. Time-series input can be mathematically ex-

pressed as follows:  

 

                𝑋 = ,1ݔ} ,2ݔ ,3ݔ … , ,{்ݔ ௧ݔ ∈ ܴ௡                        (1) 

Where: ࢀ number of time steps (years). ࢔ number of features (financial + non-financial variables). ࢚࢞ feature vector at time step. 

 

LSTM Layers 
Multiple layers learn long-term dependencies between 

years of FSs, treating them as time series data. By lever-
aging memory cells and gated mechanisms, LSTM layers 
enable the model to identify changes in financial behav-
iour, such as trends in earnings manipulation or shifts in 
governance-related variables, that span across reporting 
periods. This is critical for CA detection, which may 
evolve gradually over time rather than appearing as sud-
den anomalies in a single year. The model consists of three 
LSTM layers with 256, 128, and 64 units, respectively. 
The first layer outputs the hidden states for all time steps 
to capture full temporal dependencies with ‘sequence’ 
output mode. The second layer with the ‘last’ output mode 
was used to summarise the input sequence into a single 
context vector, and the last layer with the same mode was 
used to further condense the sequential representation. 
The following equations describe the standard LSTM op-
eration [29]. 

௧݂ = ݐݔ݂ܹ)ߪ + ܷ݂ℎݐ − 1 + ܾ݂) (2-a) ݅௧ = ݐݔܹ݅)ߪ + ܷ݅ℎݐ − 1 + ܾ݅) (2-b) ݋௧ = ݐݔ݋ܹ)ߪ + ݐℎ݋ܷ − 1 + ć௧ (c-2) (݋ܾ = tanh(ܹܿݐݔ + ܷܿℎݐ − 1 + ܾܿ) (2-d) ܿ௧ = ௧݂ ⊙ ܿ௧−1 + ݅௧  ⊙ ć௧      (2-e) ℎ௧ = ⊙ ௧݋  ℎ(ܿ௧)        (2-f)݊ܽݐ
Where: 

σ: sigmoid activation  ht: hidden state (output) 

tanh: hyperbolic tangent activation ct : cell state ⊙: element-wise multiplication 

W,U,b : trainable parameters 

 

Dropout Layer 
Since the model is trained on simulated data that may 

not fully reflect the variability of real-world financial 

statements, a dropout layer with a rate of 0.7 is applied to 
prevent data overfitting by randomly deactivating 70% of 
neurons during training. This regularises the LSTM model 
and reduces the risk of memorising synthetic patterns that 
do not generalise well to actual data.   

Fully Connected Layer 
This layer, with 2 neurons, aggregates the learned tem-

poral features extracted by the preceding LSTM layers 
and maps them to the target output classes. By combining 
information across all time steps and input variables, the 
fully connected layer enables the model to produce a bi-
nary prediction that reflects the likelihood of CA behav-
iour in a company’s financial statements. ݖ = ௙ܹ௖ℎ் +  (3)                                ࢉࢌܾ

Where: ܋܎܅ ∶  weight matrix for the dense layer 

∶ ࢉࢌ܊                                       bias vector  
SoftMax Layer 

Performs binary classification (two classes, CA and N-
CA). It consists of a single neuron with a sigmoid activa-
tion function, which outputs a probability score between 0 
and 1, indicating the model's confidence that the financial 
statement exhibits CA behaviour. The threshold applied to 
convert this probability into a final class label is 0.5. ȳ = (ݖ) ߪ  = 11 + ݁−௭                   (4) 

Where: ȳ ∈ (૙, ૚)  is the predicted probability of CA 

A threshold ી = ૙. ૞ is used to convert probabilities to class labels 

Predictions = {1 ݂݅ ȳ > ܰ        ݁ݏ݅ݓݎℎ݁ݐ݋ 0     ܣܥ             0.5 −  ܣܥ

Training configuration 

The model was trained using the Adam Optimiser for up to 

100 epochs with a small mini-batch size of 10 to suit the lim-

ited number of training samples. Validation was performed 

every 5 epochs using a separate validation set, and early stop-

ping was applied with a patience of 20 validation checks. 

Conversely, evaluation is performed once while training the 

model and another time during the testing phase, while com-

paring results. This phase is performed only once to assess the 

simulation efficiency.  

 

Fig. 3: Data Frame and Model Structure 
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F. Evaluation Metrics 

An appropriate evaluation criterion must be established to 

assess the generalisation phase of both models and compare 

their performances. In the long-term plan of this research, the 

assessment criterion is to employ qualitative assessment, 

namely expert evaluation, to interpret testing results and val-

idate the model’s utility. This current stage relies on quantita-

tive distributional analysis for the model outputs. Specifi-

cally, SoftMax confidence distributions are examined along-

side the predicted labels to evaluate each model's behaviour 

and how biased it is towards each class. This approach allows 

for an initial assessment of how confidently the model classi-

fies real-world FSs.  

III. IMPLEMENTATION - THE EXPERIMENT 

This section details the implementation of CADM, focus-

ing on the experimental process used to train and evaluate its 

performance. The implementation was carried out in the fol-

lowing phases: simulation (explained earlier), model training 

using the simulated datasets, model testing on real-world fi-

nancial statements, and model evaluation as illustrated in Fig. 

4 Training, Testing, and Evaluation phases are presented in 

the following subsections, outlining the experimental setup, 

hyperparameter choices, and evaluation outcomes.[22] 

A. Training 

As shown in Fig. 5, CADM1 achieved 100% accuracy in 

training and validation. In contrast, CADM2 achieved 92% 

accuracy in training and 80% accuracy in validation. All pre-

dicted labels were true by CADM1 and only 3 were false by 

CADM2 as shown in Fig. 6 These results were achieved after 

several iterations involving multiple rounds of dataset re-gen-

eration. The training datasets were carefully re-simulated to 

introduce variability and reduce the model’s familiarity with 
recurring patterns, thereby promoting better generalisation 

and minimising overfitting.  

To optimise model accuracy, various hyperparameters 

were fine-tuned, including the number of LSTM Units. They 

experimented with different neuron counts to determine the 

optimal balance between model complexity and learning ca-

pacity. While smaller configurations, such as 128, 64, and 32 

units, were initially considered to reduce overfitting, the final 

architecture adopted a larger structure —256, 128, and 64 

units —demonstrating improved learning performance with-

out compromising generalisation. This architecture, applied 

to both CADM1 and CADM2, retained sufficient capacity to 

capture complex temporal dependencies in the data while 

maintaining robust performance on unseen samples, despite 

the relatively small dataset size.  

Moreover, the Learning Rate was adjusted to prevent con-

vergence issues, and the batch size and epochs were optimised 

for computational efficiency and model performance. Addi-

tionally, L2 regularisation was applied and a dropout layer to 

mitigate overfitting. Finally, the Optimiser Selection com-

pared Adam, RMSprop, and SGD to identify the most effec-

tive optimisation strategy. 

B. Testing 

Following the training of both models, CADM1 and 

CADM2, the next step is to test them to assess their generali-

sation capabilities. Testing is designed to be implemented on 

 

Fig. 4: Workflow of CADM Simulation, Training, Testing, and Evaluation 
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the real-world dataset; the collected and pre-prepared FSs, 

which have become DSR after preparation. Due to having two 

models, testing was done twice on the same dataset. However, 

DSR is prepared to be in the same shape as the simulated da-

taset to have correct and accurate testing and be ready to be 

used by CADM.  

However, CADM1 predicted five out of six companies as 

class 1 (CA) Fig. 7, but with SoftMax probabilities clustered 

very close to the classification threshold (ranging between 

0.5001 and 0.5042) Fig. 8. The single prediction of class 0 (N-

CA) was also marginal, with a class 0 probability of just 

0.5004. This narrow range of values indicates that CADM1 

was uncertain in its predictions, which reflects the model’s 

weak classification capability and lack of confidence when 

applied to real-world financial statements. 

In contrast, CADM2 predicted all companies class 0 (N-

CA) Fig. 7, with SoftMax probabilities ranging from 0.5021 

to 0.5063. Being close to the decision threshold as well does 

not indicate any better performance than CADM1, although 

they have more consistency (all above 0.5). Still, CADM2 

demonstrates modest and more stable confidence in labelling 

the data. 

IV. DISCUSSION  

This study successfully developed and evaluated two 

LSTM-based models (CADM1 and CADM2) to classify FSs 

 
 

 

Fig. 5: Training accuracy and loss curves for CADM1 (top) and CADM2 (bottom), showing the models’ learning performance over 100 
epochs 
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based on the likelihood of CA practices being used in their 

preparation. The models were trained and validated to assess 

their effectiveness in controlled simulations and real-world 

Saudi market data. Additionally, the study compared the 

models’ performance regarding the underlying simulation 

approach used to generate their training dataset. This section 

discusses the research objectives and demonstrates 

meaningful contributions to DL-driven financial analysis. 

RQ1: Training CADM: Learning from Simulated Data 

The results of training CADM reflect a key contrast 

between real-world context and theoretical modelling. 

CADM1 achieved perfect accuracy (100%) in both training 

and validation phases. This technical success confirms that 

the model architecture is responsive to clean data with well-

defined patterns. However, this result may also indicate 

overfitting to the ideal dataset that lacks real-world 

variability.  

In contrast, training CADM2 was more challenging. 

Despite extensive hyperparameter tuning, CADM2’s 
accuracy was lower than CADM1's, reflecting the inherited 

complexity of real-world Saudi financial behaviour. This 

result is not a flaw but a strength: it underscores CADM2’s 
exposure to more realistic noise, non-linear interactions, and 

imperfect relationships characterising actual FSs.  

In addition, the training dynamics promote valuable 

reflections on the boundaries of CADM’s optimal 

performance, raising questions about model robustness and 

the interpretability of results when using overly cleaned data, 

a significant debate in DL-based financial models.  CADM1’s 
perfect performance might not perfectly generalise to real-

world data, while CADM2, despite lower learning scores, 

likely learned patterns closer to reality. This observation 

supports the argument in the literature about the risk of 

training financial AI models on idealised datasets.  

RQ2: Generalisation: Performance on Real-World Data 

As ground truth for CA is not available, innovative assess-

ment methods become necessary. At this stage of the research, 

the generalisation capacity of both models was evaluated us-

ing class distribution patterns and feature-based differentia-

tion.  Although theoretically accurate, CADM1 was more lia-

ble to misclassification when confronted with real-world var-

iance. In contrast, the final version of CADM2 testing showed 

that all companies in the Energy sector are CA-free. This can 

be interpreted as the model trained on a dataset that already 

sees these scenarios as non-CA, which reflects stronger gen-

eralisation capacity from CADM2. 

From the perspective of CA theory, CA is intentionally de-

signed to evade detection mechanisms. Consequently, a deep 

contextual understanding and the incorporation of non-finan-

cial signals are essential for effective detection. This may ex-

plain the comparatively better classification performance by 

CADM2 when tested on real-world FSs, as it appears to have 

 

 

Fig. 7: Classification results of CADM1 (top) and CADM2 

(bottom) on the real-world dataset, showing predicted 

counts for Class 0 (N-CA) and Class 1 (CA). 

 

 
 

 

Fig. 6: Classification Results of CADM1 Training (top) and 

CADM2 Training (Bottom) 
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captured some attributes of the complexity inherent in real-

world data. Nevertheless, generalisation was naturally chal-

lenged by sector-specific anomalies. Companies in this sector 

have diverse accounting scenarios and include a dominant 

outlier (ARAMCO), with significantly different scales and 

metrics compared to its peers. These factors influenced the 

model’s sensitivity and underscore the importance of sector-

aware tuning in future iterations.  

RQ3: Evaluating The Simulation Base: Theory vs Reality 

The comparison between CADM1 and CADM2 provides 

critical insight into how simulation strategy affects model be-

haviour. Evaluating the simulation base was done by compar-

ing the results of CADM1 and CADM2 classifiers. The Soft-

Max probability distributions further illustrate these tenden-

cies. While CADM1 demonstrated theoretical strength, 

CADM2 has more consistent confidence values, particularly 

when they were consistently above 0.5 and demonstrated 

more stable confidence in labelling companies as N-CA. The 

more consistent confidence profile of CADM2 is attributed to 

its training on a dataset simulated using real-world statistical 

analysis, which enabled it to better mirror the characteristics 

of actual financial reporting in the Saudi market. This con-

firms the validity of using real-world statistical patterns in 

training simulations.  

The contrasted results between CADM1 and CADM2 il-

lustrate that models trained on idealised literature-driven sim-

ulations achieve higher accuracy yet lower generalisation 

ability to real-world FSs compared to models trained on real-

world-based simulations. This supports the theoretical argu-

ment in the literature that training models on clean data may 

not adequately prepare them for the complexities and imper-

fections found in real-world data [30], [31]. In addition, the 

experiment in this study suggests that hybrid approaches, such 

as blending literature-based metrics with real-world features, 

may offer the most promising path forward. 

V. CONCLUSION 

This study represents a significant milestone in developing 

a data-driven framework for detecting CA within Saudi-listed 

companies. By training two variants of the Creative Account-

ing Detection Model (CADM) using different simulation cri-

teria, this research establishes a credible foundation for AI-

enabled financial monitoring. The model was then tested on 

the real-world dataset collected from the Saudi market portal 

to check if the model is capable of looking at how financial 

and non-financial metrics evolve, CADM and classifying 

Saudi-listed companies in the Energy sector as creative ac-

counting or non-creative accounting practitioners.  

Both SoftMax confidence distributions of CADM predic-

tions on the real-world dataset models offer a significant in-

sight: the importance of strong theory and the need to reflect 

real-world scenarios when detecting financial anomalies. The 

implication of this study extends beyond model performance. 

It sets a new direction for applying deep learning to compli-

cated grey areas like creative accounting. Unlike fraud detec-

tion, this model identifies forms of financial misrepresenta-

tion that fall within regulatory bounds but still distort finan-

 

Fig. 8: SoftMax confidence distributions of CADM predictions on the real-world dataset 
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cial reality. Further research may involve integrating addi-
tional financial indicators such as the revenue recognition, 
misclassification  of  accounting  elements,  and  off-balance 
sheet financing, and governance indicators, such as manage-
ment compensations and narrative disclosure. It could also 
add explainability mechanisms to the model, such as apply-
ing custom attention layer to the model to enhance model 
transparency and make CADM a valuable tool for regulators 
and auditors. In addition, the simulation scope could be ex-
panded to have semi-creative accounting data, and the test-
ing could include other sectors to improve sensitivity and 
real-world relevance.  Future  work is  intended to integrate 
expert interpretation of classification results through inter-
views to validate the model’s output and illuminate practical 
constraints. 

This research serves as a foundation for the next genera-
tion of intelligent accounting analytics. Besides considered a 
proof  of  the feasibility  of  AI in  financial  transparency,  it 
promotes  meaningful  integration  of  simulation,  sector 
knowledge, and regulatory insight. 
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