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Abstract—This paper examines the challenges in distributing
Al models through file transfer mechanisms. Despite advance-
ments in security measures, vulnerabilities persist, necessitating a
multi-layered approach to mitigate risks effectively. The physical
security of model files is critical, requiring stringent access
controls and attack prevention solutions. This paper proposes a
novel solution architecture that protects the model architecture
and weights from attacks by using Moving Target Defense
(MTD), which obfuscates the model, preventing unauthorized
access, and enabling detection of changes to the model. Our
method is shown to be effective at detecting alterations to the
model, such as steganography; it is faster than encryption (0.1
seconds to obfuscate vs. 18 seconds to encrypt for a 2500 MB
model), and it preserves the accessibility of the original model
file format, unlike encryption. Finally, our code is available at
https://github.com/Ariel Cyber/AI-model-MTD.git.

I. INTRODUCTION

HE swift evolution of Artificial Intelligence (AI) tech-
Tnology has made it a top priority for cybercriminals
looking to obtain confidential information and intellectual
property or cause damage in different ways. These malicious
individuals may try to exploit Al systems for their own gain,
using specialized tactics alongside conventional IT methods.
In particular, attackers may wish to gain access to a trained
Al model for any number of reasons: to exfiltrate valuable
data from victims, including stealing trained Al model data, to
tamper with the model, for example, implanting backdoors [1],
etc. Given the broad spectrum of potential attack strategies,
safeguards must be extensive.

While adversarial Al model security [2], [3], privacy [4] and
operational security aspects of Al receive much attention [5],
[6], it’s equally important to address the physical file security
aspects of Al models. In this day and age, an Al model is
a valuable asset; training Al models is a long and extremely
expensive process, hence, the resulting trained models are the
sole artifacts that carry the effort put into the training process.

Figure 1 shows the simplified AI model architecture. Inside
the model, we have the architecture metadata (in some cases),
model weights (numeric parameters such as weights/biases),
and optional metadata such as labels and notes. The model
weights essentially carry the frozen state of the model after
training, they represent the model’s "knowledge" of the task
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it was trained on. Therefore, deploying trained AI models
necessitates protecting the model file, and in particular, the
trained weights. The model might be exposed to danger in
different scenarios: in training, transit, deserialization, and
inference.
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Fig. 1. Simplified AI model file architecture, and serialization attacks and
steganography attacks that utilize the AI model file.

The National Security Agency (NSA) recently released
a Cybersecurity Information Sheet (CSI) [5]. The CSI is
intended to support National Security System owners and
Defense Industrial Base companies deploying and operating
Al systems designed and developed by an external entity. The
CSI illustrates the steps to protect the deployment and two
main points directly related to this work. The first is to validate
and test the Al model. The second is protecting AI model
weights. The NSA CSI suggests the following protection steps:

« Harden interfaces for accessing model weights to increase
the effort it would take for an adversary to exfiltrate the
weights.

— Implement hardware protections for model weight
storage, disable unnecessary hardware communica-
tion capabilities, and protect against emanation or
side-channel techniques.

— Aggressively isolate weight storage. For example,
store model weights in a protected storage vault or
enclave

The Open Web Application Security Project (OWASP) has
been at the forefront of web application security for years.
Recognizing the burgeoning significance of machine learning,
OWASP introduced the "Top 10 Machine Learning Risks"
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[7], a compilation that categorizes and outlines the most
prevalent threats targeting Al systems, specifically about the
content of the model and the threats around it. Examples
of the discussed attacks are inference attacks and poisoning
attacks. Of all the discussed threats, the Al Supply Chain
Attacks are the most relevant to this work, while the other
attacks are related to the content and integrity of the model.
In the AI supply chain attack use case, an attacker modifies or
replaces a machine learning library or model used by a system.
This can also include the data associated with the machine
learning models. MITRE Adversarial Threat Landscape for
Artificial-Intelligence Systems (ATLAS™) [8] is a compre-
hensive knowledge base. It’s designed to document adversary
tactics, techniques, and case studies pertinent to machine learn-
ing (ML) systems. These details are amassed from real-world
observations, demonstrations by ML red teams and security
groups, and academic research. In terms of this research,
ATLAS helps to understand the attack surface, but it is not
a cyber solution. This work is positioned in MITRE ATLAS
as a solution against user execution of unsafe ML Artifacts
(AML.T0011.000) [9].

While growing, the literature on physical Al model security
is still in its early stages [10], [11], [12], [13]. As the adoption
of AI and Machine Learning (ML) technologies continues to
rise, the need for robust security measures becomes increas-
ingly critical. This work focuses on providing a secure solution
to train, transfer, and ingest Al models.

In this work, we propose model weight separation based on
Moving Target Defense (MTD) of model weights. Our MTD
also provides verification and authentication mechanisms to
guarantee the model’s validity. By adopting an agreed-upon
framework of obfuscation of serialized models and verifying
models upon deserialization, model receivers can ensure they
ingest models safely, whether as part of a supply chain or
directly using the model.

The paper is organized as follows: Section II summarizes
the paper’s contribution. Section III reviews the related work.
Section IV presents the MTD solution architecture. Section
V describes our threat model. Section VI offers a detailed
description of our dataset. In Section VII, we present our
research evaluation and validation methodology. Subsequently,
in Section VIII, we discuss our limitations. Finally, Section IX
provides our conclusions.

II. CONTRIBUTION

This work reviews the state-of-the-art physical Artificial
Intelligence (AI) model security solutions. For the first time,
as far as we know, we suggest a novel zero-trust solution based
on MTD for Al model weights.

e We suggest a novel zero-trust MTD solution designed
to bolster the robustness and security of AI models
against potential threats. This approach ensures protection
throughout the entire model life cycle, from its initial
training phase to its final distribution. Consequently, it
provides a strong defense against physical file-based at-
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Fig. 2. MTD model creation inside a secure enclave

tacks on the model weights and prevents unauthorized use
of the trained model by obfuscating the model weights.
o We fully publish our code [14].

III. RELATED WORK

Moving Target Defense (MTD) [15] is a proactive cyber-
security strategy that increases the complexity and cost for
attackers by continuously changing the attack surface. Unlike
traditional defense mechanisms, MTD introduces variability
and unpredictability into the system, making it more chal-
lenging for attackers to exploit vulnerabilities. MTD encom-
passes techniques like IP address hopping [16], port rotation
[16], virtual machine migration [17], code diversification [18],
software obfuscation [19], memory randomization [20], and
data randomization [21]. It is helpful in network and software
security and represents a paradigm shift in cybersecurity
by emphasizing dynamic and adaptive defense mechanisms.
Our AI model MTD uses model weight randomization and
reconstruction to prevent all model weight attacks and report
an attempt of an attack.

IV. ARCHITECTURE & SOLUTIONS

In this section, we describe our MTD methodology, which

provides comprehensive protection against physical attacks on
the model weights and prevents unauthorized use of the trained
model. It is used to save and load models.
The architecture is divided into two parts: MTD creation (Fig.
2) and MTD loading (Fig. 3). If the model is not MTD
protected, a fallback step optionally uses Content Disarm
and Reconstruction (CDR) methods that were discussed in
previous works [22] (Fig. 3).
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The model training process powered by MTD is demon-
strated in Fig. 2 and occurs within a secure runtime en-
vironment or enclave [23]. Once the training is complete
(1) and model evaluation passes (2), the MTD process (3)
begins. The NSA [5] recommends separating the model and its
weights. Therefore, the MTD algorithm randomizes the model
weights, separates the model mapping from the randomized
weights, and prevents unauthorized use of the trained model.
To provide additional security, the MTD model’s weights can
be encrypted. This produces a file (4) that is protected by
MTD. We sign and send this file to the cloud (5, 8) along
with a mapping (6). We also sign and store the mapping in
the cloud (6, 7). To further protect the model, upon saving the
MTD model, we save a sha256 hash of the model weights and
verify the hash on load.

Figure 3 shows how the MTD-protected model is loaded.
First, it checks (1) if the model is MTD protected. If it’s
not, CDR (5) is used instead. If the model is protected, it’s
validated (2) with the MTD cloud API (3). If any modifications
are detected, an alert is sent, and the process is stopped. If
the model is valid, the mapping is received, and the model is
reconstructed. Once the model is reconstructed, it can be saved
to a file or kept in memory. It’s important to note that this
process assumes that if the user is compromised, it’s already
too late, and the focus is on securing the model and not the
device. Al inference can also run inside a secure enclave. Our
future work will focus on securing AI PC, which is expected
to be the future of running large language models by utilizing
a Neural Processing Unit (NPU) (see [24]).

V. THREAT MODEL

To ground our security analysis, we first formalise the
adversary we seek to resist, the assumptions we place on
system components, and the boundaries of our evaluation.
The threat model presented here guides the design choices
in Section IV and underpins the evaluation in Section VII.

A. System Participants and Assets
We consider three roles:

e Model Owner - trains the network inside a trusted
hardware enclave, applies the proposed Moving-Target
Defense (MTD) to obfuscate the weights, and signs the
resulting artefacts.

« Distribution Service - a cloud repository that stores the
MTD-protected weight file and the corresponding recon-
struction mapping, exposes a mutually-authenticated API,
and returns the mapping only to authorised consumers.

« Model Consumer - fetches the protected file, verifies the
signature, retrieves the mapping via the API, reconstructs
the model, and performs inference.

The primary assets are: (i) the trained weights, (ii) the archi-
tecture/mapping that re-orders the weights, and (iii) the Model
Owner’s signing key.

B. Adversary Capabilities

The adversary (“A”) is active and may:

1) Observe, intercept, replay, or tamper with any file trans-
ferred between participants (supply-chain attack, man-
in-the-middle, malicious mirror).

2) Obtain direct read—write access to any storage location
that holds the protected file at rest (e.g., compromise of
a consumer endpoint or removable media).

3) Craft and deliver malicious model artefacts that embed
steganography, hidden payloads, or altered weights in an
attempt to bypass verification.

4) Deny or delay network access to the Distribution Ser-
vice.

A cannot (by assumption):

o Break standard cryptographic primitives (digital signa-

tures, SHA-256 hashes, authenticated encryption).

o Extract secret keys from the hardware enclave or the

Model Owner.

o Compromise the integrity of the Distribution Service’s

authentication and access-control logic.

C. Trusted Computing Base (TCB)

Our TCB consists of:

o The hardware enclave used for training and MTD obfus-
cation, including its firmware and attestation chain.

o The Model Owner’s private signing key and the correct-
ness of the signature-generation process.

o The Distribution Service’s storage and access-control
mechanisms (but not its surrounding OS or network,
which may be hostile).

o Standard cryptographic libraries and their implementa-
tions.
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TABLE 1
SUBSET OF PYTORCH MODEL ARCHITECTURES USED TO VALIDATE THE
SUGGESTED MTD METHOD.

Model Type Model Architecture #Models  Size [MB]
AlexNet [25] 1 230

Vision ConvNext [26] 4 110-750

(et DenseNet [27] 4 30-110

> EfficientNet [28], [29] 12 20-450

RegNet [30] 34 20-2460

Vision

(Segmentation) DeepLabV3 [31] 3 40-230

Vision

(Detection) Faster R-CNN [32] 4 70-160

Vision .

(Video) SwinTransformer [33] 4 110-360

Text BERT [34] 8 440-1440

Audio Wav2Vec [35] 2 380-1270

D. Out-of-Scope Scenarios

The following are expressly excluded from this work:

« Data poisoning, backdoor insertion during training, or
adversarial-example attacks at inference time. These
alter model behaviour rather than the on-disk artefact and
are orthogonal to file-level protection.

o Full host compromise before MTD creation (if the
training environment is already under attacker control,
any file- level defence is moot).

VI. DATASET

For evaluation of our suggested method, we create 2 datasets:
benign AI models, and Al models attacked with steganogra-
phy.

Dataset 1 - Benign PyTorch models: A dataset of benign
pre-trained PyTorch models. We compile this dataset using
the torchvision and HuggingFace APIs. Table I contains a
subset of the pre-trained model architectures we used. In total,
this dataset contains 129 vision, text, and audio models. We
use this to validate our method on benign data, and it is
used as a base for creating a dataset of models attacked with
steganography (dataset 2) for further evaluation.

Dataset 2 - Attacked models for MTD method evaluation:
We use LSB model weight steganography attacks [36] from
our previous work on the benign models from dataset 1 to
validate the MTD verification, ensuring that the MTD process
works as intended with untempered models and also that the
method successfully detects changes (i.e., physical attacks) in
the model as intended.

VII. EVALUATION

This section evaluates our proposed AI model MTD method.
The experiments are designed to prove that the method has
practical value for protecting Al model ecosystems from phys-
ical attacks such as data exfiltration or unauthorized access to
the trained Al model.

Experimental Setup: All experiments are run on a Ubuntu
Linux 24.04 server, equipped with an Intel(R) Xeon(R) w5-
2445 CPU (20 cores @ 3.10GHz), and 128 GB RAM.
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Baseline Method: In terms of obfuscating the model to
prevent unauthorized access, the immediate solution is to
encrypt the serialized payload before transmission. This is also
suggested by the NSA CSI [5] to ensure security of the model
files. In our experiments, we compare our suggested MTD
method to the Fernet encryption algorithm in terms of runtime.
The MTD approach has the property of keeping the model file
accessible, i.e., recognizable as the original model file, but the
trained state is only available to the rightful owners of the
model. This can be a benefit, for example, in scenarios such
as model hubs that index the model and give an overview of its
metadata, like HuggingFace does; with encryption, this won’t
be possible.

A. Experimental Results

We evaluate the MTD method for protecting training models
with 2 main concerns: validity and runtime. Validity means
we assert that the method prevents the attacks it’s supposed
to prevent and that the models stay intact after the whole
process. We measure runtime to analyze the time overhead
that the MTD methods cause. On the model sender side, there
are the obfuscation and saving (serialization) methods, and on
the model receiver side, there are the loading (deserialization)
and the deobfuscation methods. We created automated Quality
Assurance (QA) tests to check the method’s validity. The tests
check the following:

1) MTD model is the same after obfuscation and deobfus-

cation.

2) MTD model is the same after saving and loading.

3) Attack simulation: An MTD Model is constructed,
obfuscated, and saved. Then the model weights are
attacked, and we assert that the change is detected upon
load.

For steps 1 and 2, we use the benign PyTorch models dataset
(dataset 1, see Section VI); for step 3, we use dataset 2. All
tests passed. Figure 4 plots the mean runtime of saving and
loading MTD functions on all models in dataset 1, repeated
10 times. Additionally, we compare the runtimes to regular
saving and loading to quantify the additional overhead our
suggested method adds. Saving and loading were done with
a virtual file since we are only concerned with the runtime
overhead our method adds. We can see our MTD method
adds approximately 4 seconds of runtime overhead to the
serialization of a 2500 MB model; we feel this is within
reason. Additionally, looking at Table II, we can see MTD
obfuscation/deobfuscation has almost no runtime overhead,
while the alternative method of encrypting the payload has
a significant runtime overhead (about 17 seconds for a 2500
MB model). Therefore, in total, choosing our MTD method
will be faster than using encryption. Finally, the MTD de-
serialization method has nearly identical runtime to regular
runtime. In conclusion, the suggested MTD method is faster
than encryption, especially as model size scales, and it also
keeps the model file accessible in terms of metadata, structure,
etc., which can be useful for sites like HuggingFace that give
high-level overviews based on the model metadata.
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TABLE I

RUNTIME (SECONDS) OF SERIALIZATION/DESERIALIZATION USING OUR SUGGESTED MTD METHOD, AND THE BASELINE FERNET ENCRYPTION

METHOD.

Model Serialization

Model Deserialization

MTD Obfuscate

Fernet Encrypt

MTD Deobfuscate

Fernet Decrypt

0 < Model Size (MB) < 100
100 < Model Size (MB) < 200
200 < Model Size (MB) < 300
300 < Model Size (MB) < 400
400 < Model Size (MB) < 500
500 < Model Size (MB) < 600
700 < Model Size (MB) < 800

1100 < Model Size (MB) < 1200

2400 < Model Size (MB) < 2500

0.003820 + 0.002000
0.008666 + 0.002466
0.014490 + 0.004417
0.017144 + 0.002250
0.024434 + 0.006219
0.019980 + 0.001987
0.037661 + 0.005977
0.051498 + 0.000437
0.109626 + 0.023599

0.244292 + 0.115333
0.680410 + 0.126848
1.225329 + 0.231984
1.648033 + 0.388462
2.898500 + 0.236313
3.002284 + 0.217727
5.552645 + 0.103848
7.697417 + 0.152804
17.901734 + 0.261984

0.005795 + 0.003956
0.013184 + 0.005763
0.021955 + 0.009834
0.025935 + 0.002614
0.040424 + 0.018690
0.021760 + 0.004777
0.051598 + 0.006328
0.069661 £ 0.002010
0.134600 + 0.019062

0.245123 + 0.123005
0.724327 + 0.133060
1.197840 + 0.278559
1.746837 + 0.373579
2.574974 + 0.215552
2.574076 + 0.170747
5.999168 + 0.116049
8.562226 + 0.158626
19.233927 + 0.467096

VIII. LIMITATIONS

The proposed solution introduces a novel architecture for
physically securing Al model files from malicious exposure.
The architecture prevents all file alterations when the model
is secured with the suggested MTD method. This builds
upon previous work on CDR against steganography attacks
[37] and steganalysis [36] (steganography attack detection).
Since Al model file security is still in its early stages, we
expect to see more sophisticated attacks and vulnerabilities
in this domain. The proposed MTD architecture requires the
user to fully use the various AI model functions, such as
training and serialization within it, but widely-used methods
like SafeTensors [38] do so too. Moreover, the proposed
method adds a certain performance overhead that is added
to all models since it works in a zero-trust manner. However,
the performance overhead is small, as described in the results
section. It is important to note that this work focuses solely on
the security of the Al model’s physical file. Other adversarial
attacks exist, such as backdoors in machine learning models

[1] and dataset poisoning attacks [39]. Dataset attacks are
outside this paper’s scope, but future work should view them
as part of a holistic platform.

IX. CONCLUSIONS

Our work proposes a new solution for securing Al model
files by preventing file modifications and unauthorized access
through the use of MTD and authentication. This architecture
aims to secure Al model file transfers from malicious attacks
that threaten the industry. By incorporating MTD, we follow
the NSA’s [5] recommendation to separate the model architec-
ture and its weights. This is accomplished by randomizing the
model weights and separating the model from the deconstruc-
tion mapping. This ensures that only authenticated users can
reconstruct and use the model when it is distributed. Based on
our experimental results, the proposed architecture provides a
100% attack prevention rate (129/129 tampered models were
correctly alerted) under the assumed conditions. In addition,
we show that our method is significantly faster than using
encryption (0.1 seconds to obfuscate vs. 18 seconds to encrypt
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for a 2500 MB model), and contrary to encryption, it also
keeps the model file in the original format, which can allow to
get a high-level overview of the model, based on the metadata
(e.g., number of parameters, etc.). Of course, users can also
choose to use encryption on top of our suggested method if
they wish to. Our method was evaluated on a wide range of
data, which includes diverse benign models and steganography
attacks from the literature and real-world scenarios found in
HuggingFace [40]
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