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Abstract—This paper examines the challenges in distributing
AI models through file transfer mechanisms. Despite advance-
ments in security measures, vulnerabilities persist, necessitating a
multi-layered approach to mitigate risks effectively. The physical
security of model files is critical, requiring stringent access
controls and attack prevention solutions. This paper proposes a
novel solution architecture that protects the model architecture
and weights from attacks by using Moving Target Defense
(MTD), which obfuscates the model, preventing unauthorized
access, and enabling detection of changes to the model. Our
method is shown to be effective at detecting alterations to the
model, such as steganography; it is faster than encryption (0.1
seconds to obfuscate vs. 18 seconds to encrypt for a 2500 MB
model), and it preserves the accessibility of the original model
file format, unlike encryption. Finally, our code is available at
https://github.com/ArielCyber/AI-model-MTD.git.

I. INTRODUCTION

T
HE swift evolution of Artificial Intelligence (AI) tech-

nology has made it a top priority for cybercriminals

looking to obtain confidential information and intellectual

property or cause damage in different ways. These malicious

individuals may try to exploit AI systems for their own gain,

using specialized tactics alongside conventional IT methods.

In particular, attackers may wish to gain access to a trained

AI model for any number of reasons: to exfiltrate valuable

data from victims, including stealing trained AI model data, to

tamper with the model, for example, implanting backdoors [1],

etc. Given the broad spectrum of potential attack strategies,

safeguards must be extensive.

While adversarial AI model security [2], [3], privacy [4] and

operational security aspects of AI receive much attention [5],

[6], it’s equally important to address the physical file security

aspects of AI models. In this day and age, an AI model is

a valuable asset; training AI models is a long and extremely

expensive process, hence, the resulting trained models are the

sole artifacts that carry the effort put into the training process.

Figure 1 shows the simplified AI model architecture. Inside

the model, we have the architecture metadata (in some cases),

model weights (numeric parameters such as weights/biases),

and optional metadata such as labels and notes. The model

weights essentially carry the frozen state of the model after

training, they represent the model’s "knowledge" of the task

it was trained on. Therefore, deploying trained AI models

necessitates protecting the model file, and in particular, the

trained weights. The model might be exposed to danger in

different scenarios: in training, transit, deserialization, and

inference.

Fig. 1. Simplified AI model file architecture, and serialization attacks and
steganography attacks that utilize the AI model file.

The National Security Agency (NSA) recently released

a Cybersecurity Information Sheet (CSI) [5]. The CSI is

intended to support National Security System owners and

Defense Industrial Base companies deploying and operating

AI systems designed and developed by an external entity. The

CSI illustrates the steps to protect the deployment and two

main points directly related to this work. The first is to validate

and test the AI model. The second is protecting AI model

weights. The NSA CSI suggests the following protection steps:

• Harden interfaces for accessing model weights to increase

the effort it would take for an adversary to exfiltrate the

weights.

– Implement hardware protections for model weight

storage, disable unnecessary hardware communica-

tion capabilities, and protect against emanation or

side-channel techniques.

– Aggressively isolate weight storage. For example,

store model weights in a protected storage vault or

enclave

The Open Web Application Security Project (OWASP) has

been at the forefront of web application security for years.

Recognizing the burgeoning significance of machine learning,

OWASP introduced the "Top 10 Machine Learning Risks"
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[7], a compilation that categorizes and outlines the most

prevalent threats targeting AI systems, specifically about the

content of the model and the threats around it. Examples

of the discussed attacks are inference attacks and poisoning

attacks. Of all the discussed threats, the AI Supply Chain

Attacks are the most relevant to this work, while the other

attacks are related to the content and integrity of the model.

In the AI supply chain attack use case, an attacker modifies or

replaces a machine learning library or model used by a system.

This can also include the data associated with the machine

learning models. MITRE Adversarial Threat Landscape for

Artificial-Intelligence Systems (ATLAS™) [8] is a compre-

hensive knowledge base. It’s designed to document adversary

tactics, techniques, and case studies pertinent to machine learn-

ing (ML) systems. These details are amassed from real-world

observations, demonstrations by ML red teams and security

groups, and academic research. In terms of this research,

ATLAS helps to understand the attack surface, but it is not

a cyber solution. This work is positioned in MITRE ATLAS

as a solution against user execution of unsafe ML Artifacts

(AML.T0011.000) [9].

While growing, the literature on physical AI model security

is still in its early stages [10], [11], [12], [13]. As the adoption

of AI and Machine Learning (ML) technologies continues to

rise, the need for robust security measures becomes increas-

ingly critical. This work focuses on providing a secure solution

to train, transfer, and ingest AI models.

In this work, we propose model weight separation based on

Moving Target Defense (MTD) of model weights. Our MTD

also provides verification and authentication mechanisms to

guarantee the model’s validity. By adopting an agreed-upon

framework of obfuscation of serialized models and verifying

models upon deserialization, model receivers can ensure they

ingest models safely, whether as part of a supply chain or

directly using the model.

The paper is organized as follows: Section II summarizes

the paper’s contribution. Section III reviews the related work.

Section IV presents the MTD solution architecture. Section

V describes our threat model. Section VI offers a detailed

description of our dataset. In Section VII, we present our

research evaluation and validation methodology. Subsequently,

in Section VIII, we discuss our limitations. Finally, Section IX

provides our conclusions.

II. CONTRIBUTION

This work reviews the state-of-the-art physical Artificial

Intelligence (AI) model security solutions. For the first time,

as far as we know, we suggest a novel zero-trust solution based

on MTD for AI model weights.

• We suggest a novel zero-trust MTD solution designed

to bolster the robustness and security of AI models

against potential threats. This approach ensures protection

throughout the entire model life cycle, from its initial

training phase to its final distribution. Consequently, it

provides a strong defense against physical file-based at-

Fig. 2. MTD model creation inside a secure enclave

tacks on the model weights and prevents unauthorized use

of the trained model by obfuscating the model weights.

• We fully publish our code [14].

III. RELATED WORK

Moving Target Defense (MTD) [15] is a proactive cyber-

security strategy that increases the complexity and cost for

attackers by continuously changing the attack surface. Unlike

traditional defense mechanisms, MTD introduces variability

and unpredictability into the system, making it more chal-

lenging for attackers to exploit vulnerabilities. MTD encom-

passes techniques like IP address hopping [16], port rotation

[16], virtual machine migration [17], code diversification [18],

software obfuscation [19], memory randomization [20], and

data randomization [21]. It is helpful in network and software

security and represents a paradigm shift in cybersecurity

by emphasizing dynamic and adaptive defense mechanisms.

Our AI model MTD uses model weight randomization and

reconstruction to prevent all model weight attacks and report

an attempt of an attack.

IV. ARCHITECTURE & SOLUTIONS

In this section, we describe our MTD methodology, which

provides comprehensive protection against physical attacks on

the model weights and prevents unauthorized use of the trained

model. It is used to save and load models.

The architecture is divided into two parts: MTD creation (Fig.

2) and MTD loading (Fig. 3). If the model is not MTD

protected, a fallback step optionally uses Content Disarm

and Reconstruction (CDR) methods that were discussed in

previous works [22] (Fig. 3).
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Fig. 3. MTD model loading and fallback to CDR

The model training process powered by MTD is demon-

strated in Fig. 2 and occurs within a secure runtime en-

vironment or enclave [23]. Once the training is complete

(1) and model evaluation passes (2), the MTD process (3)

begins. The NSA [5] recommends separating the model and its

weights. Therefore, the MTD algorithm randomizes the model

weights, separates the model mapping from the randomized

weights, and prevents unauthorized use of the trained model.

To provide additional security, the MTD model’s weights can

be encrypted. This produces a file (4) that is protected by

MTD. We sign and send this file to the cloud (5, 8) along

with a mapping (6). We also sign and store the mapping in

the cloud (6, 7). To further protect the model, upon saving the

MTD model, we save a sha256 hash of the model weights and

verify the hash on load.

Figure 3 shows how the MTD-protected model is loaded.

First, it checks (1) if the model is MTD protected. If it’s

not, CDR (5) is used instead. If the model is protected, it’s

validated (2) with the MTD cloud API (3). If any modifications

are detected, an alert is sent, and the process is stopped. If

the model is valid, the mapping is received, and the model is

reconstructed. Once the model is reconstructed, it can be saved

to a file or kept in memory. It’s important to note that this

process assumes that if the user is compromised, it’s already

too late, and the focus is on securing the model and not the

device. AI inference can also run inside a secure enclave. Our

future work will focus on securing AI PC, which is expected

to be the future of running large language models by utilizing

a Neural Processing Unit (NPU) (see [24]).

V. THREAT MODEL

To ground our security analysis, we first formalise the

adversary we seek to resist, the assumptions we place on

system components, and the boundaries of our evaluation.

The threat model presented here guides the design choices

in Section IV and underpins the evaluation in Section VII.

A. System Participants and Assets

We consider three roles:

• Model Owner - trains the network inside a trusted

hardware enclave, applies the proposed Moving-Target

Defense (MTD) to obfuscate the weights, and signs the

resulting artefacts.

• Distribution Service - a cloud repository that stores the

MTD-protected weight file and the corresponding recon-

struction mapping, exposes a mutually-authenticated API,

and returns the mapping only to authorised consumers.

• Model Consumer - fetches the protected file, verifies the

signature, retrieves the mapping via the API, reconstructs

the model, and performs inference.

The primary assets are: (i) the trained weights, (ii) the archi-

tecture/mapping that re-orders the weights, and (iii) the Model

Owner’s signing key.

B. Adversary Capabilities

The adversary (“A”) is active and may:

1) Observe, intercept, replay, or tamper with any file trans-

ferred between participants (supply-chain attack, man-

in-the-middle, malicious mirror).

2) Obtain direct read–write access to any storage location

that holds the protected file at rest (e.g., compromise of

a consumer endpoint or removable media).

3) Craft and deliver malicious model artefacts that embed

steganography, hidden payloads, or altered weights in an

attempt to bypass verification.

4) Deny or delay network access to the Distribution Ser-

vice.

A cannot (by assumption):

• Break standard cryptographic primitives (digital signa-

tures, SHA-256 hashes, authenticated encryption).

• Extract secret keys from the hardware enclave or the

Model Owner.

• Compromise the integrity of the Distribution Service’s

authentication and access-control logic.

C. Trusted Computing Base (TCB)

Our TCB consists of:

• The hardware enclave used for training and MTD obfus-

cation, including its firmware and attestation chain.

• The Model Owner’s private signing key and the correct-

ness of the signature-generation process.

• The Distribution Service’s storage and access-control

mechanisms (but not its surrounding OS or network,

which may be hostile).

• Standard cryptographic libraries and their implementa-

tions.
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TABLE I
SUBSET OF PYTORCH MODEL ARCHITECTURES USED TO VALIDATE THE

SUGGESTED MTD METHOD.

Model Type Model Architecture #Models Size [MB]

AlexNet [25] 1 230
ConvNext [26] 4 110-750
DenseNet [27] 4 30-110
EfficientNet [28], [29] 12 20-450

Vision
(Classification)

RegNet [30] 34 20-2460
Vision
(Segmentation)

DeepLabV3 [31] 3 40-230

Vision
(Detection)

Faster R-CNN [32] 4 70-160

Vision
(Video)

SwinTransformer [33] 4 110-360

Text BERT [34] 8 440-1440
Audio Wav2Vec [35] 2 380-1270

D. Out-of-Scope Scenarios

The following are expressly excluded from this work:

• Data poisoning, backdoor insertion during training, or

adversarial-example attacks at inference time. These

alter model behaviour rather than the on-disk artefact and

are orthogonal to file-level protection.

• Full host compromise before MTD creation (if the

training environment is already under attacker control,

any file- level defence is moot).

VI. DATASET

For evaluation of our suggested method, we create 2 datasets:

benign AI models, and AI models attacked with steganogra-

phy.

Dataset 1 - Benign PyTorch models: A dataset of benign

pre-trained PyTorch models. We compile this dataset using

the torchvision and HuggingFace APIs. Table I contains a

subset of the pre-trained model architectures we used. In total,

this dataset contains 129 vision, text, and audio models. We

use this to validate our method on benign data, and it is

used as a base for creating a dataset of models attacked with

steganography (dataset 2) for further evaluation.

Dataset 2 - Attacked models for MTD method evaluation:

We use LSB model weight steganography attacks [36] from

our previous work on the benign models from dataset 1 to

validate the MTD verification, ensuring that the MTD process

works as intended with untempered models and also that the

method successfully detects changes (i.e., physical attacks) in

the model as intended.

VII. EVALUATION

This section evaluates our proposed AI model MTD method.

The experiments are designed to prove that the method has

practical value for protecting AI model ecosystems from phys-

ical attacks such as data exfiltration or unauthorized access to

the trained AI model.

Experimental Setup: All experiments are run on a Ubuntu

Linux 24.04 server, equipped with an Intel(R) Xeon(R) w5-

2445 CPU (20 cores @ 3.10GHz), and 128 GB RAM.

Baseline Method: In terms of obfuscating the model to

prevent unauthorized access, the immediate solution is to

encrypt the serialized payload before transmission. This is also

suggested by the NSA CSI [5] to ensure security of the model

files. In our experiments, we compare our suggested MTD

method to the Fernet encryption algorithm in terms of runtime.

The MTD approach has the property of keeping the model file

accessible, i.e., recognizable as the original model file, but the

trained state is only available to the rightful owners of the

model. This can be a benefit, for example, in scenarios such

as model hubs that index the model and give an overview of its

metadata, like HuggingFace does; with encryption, this won’t

be possible.

A. Experimental Results

We evaluate the MTD method for protecting training models

with 2 main concerns: validity and runtime. Validity means

we assert that the method prevents the attacks it’s supposed

to prevent and that the models stay intact after the whole

process. We measure runtime to analyze the time overhead

that the MTD methods cause. On the model sender side, there

are the obfuscation and saving (serialization) methods, and on

the model receiver side, there are the loading (deserialization)

and the deobfuscation methods. We created automated Quality

Assurance (QA) tests to check the method’s validity. The tests

check the following:

1) MTD model is the same after obfuscation and deobfus-

cation.

2) MTD model is the same after saving and loading.

3) Attack simulation: An MTD Model is constructed,

obfuscated, and saved. Then the model weights are

attacked, and we assert that the change is detected upon

load.

For steps 1 and 2, we use the benign PyTorch models dataset

(dataset 1, see Section VI); for step 3, we use dataset 2. All

tests passed. Figure 4 plots the mean runtime of saving and

loading MTD functions on all models in dataset 1, repeated

10 times. Additionally, we compare the runtimes to regular

saving and loading to quantify the additional overhead our

suggested method adds. Saving and loading were done with

a virtual file since we are only concerned with the runtime

overhead our method adds. We can see our MTD method

adds approximately 4 seconds of runtime overhead to the

serialization of a 2500 MB model; we feel this is within

reason. Additionally, looking at Table II, we can see MTD

obfuscation/deobfuscation has almost no runtime overhead,

while the alternative method of encrypting the payload has

a significant runtime overhead (about 17 seconds for a 2500

MB model). Therefore, in total, choosing our MTD method

will be faster than using encryption. Finally, the MTD de-

serialization method has nearly identical runtime to regular

runtime. In conclusion, the suggested MTD method is faster

than encryption, especially as model size scales, and it also

keeps the model file accessible in terms of metadata, structure,

etc., which can be useful for sites like HuggingFace that give

high-level overviews based on the model metadata.
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Fig. 4. Mean time (seconds) measurement vs. model size (MB) of saving/loading MTD actions. We show the MTD variant (solid blue line) and the regular
variant (dashed orange line) for save and load. The action procedures were repeated 10 times with each model in the MTD datasets, and we show confidence
intervals. We can see a linear increase in serialization (saving) runtime as the model size grows, and MTD has little to no overhead on loading the model
after serialization.

TABLE II
RUNTIME (SECONDS) OF SERIALIZATION/DESERIALIZATION USING OUR SUGGESTED MTD METHOD, AND THE BASELINE FERNET ENCRYPTION

METHOD.

Model Serialization Model Deserialization

MTD Obfuscate Fernet Encrypt MTD Deobfuscate Fernet Decrypt

0 ≤ Model Size (MB) < 100 0.003820 ± 0.002000 0.244292 ± 0.115333 0.005795 ± 0.003956 0.245123 ± 0.123005
100 ≤ Model Size (MB) < 200 0.008666 ± 0.002466 0.680410 ± 0.126848 0.013184 ± 0.005763 0.724327 ± 0.133060
200 ≤ Model Size (MB) < 300 0.014490 ± 0.004417 1.225329 ± 0.231984 0.021955 ± 0.009834 1.197840 ± 0.278559
300 ≤ Model Size (MB) < 400 0.017144 ± 0.002250 1.648033 ± 0.388462 0.025935 ± 0.002614 1.746837 ± 0.373579
400 ≤ Model Size (MB) < 500 0.024434 ± 0.006219 2.898500 ± 0.236313 0.040424 ± 0.018690 2.574974 ± 0.215552
500 ≤ Model Size (MB) < 600 0.019980 ± 0.001987 3.002284 ± 0.217727 0.021760 ± 0.004777 2.574076 ± 0.170747
700 ≤ Model Size (MB) < 800 0.037661 ± 0.005977 5.552645 ± 0.103848 0.051598 ± 0.006328 5.999168 ± 0.116049

1100 ≤ Model Size (MB) < 1200 0.051498 ± 0.000437 7.697417 ± 0.152804 0.069661 ± 0.002010 8.562226 ± 0.158626
2400 ≤ Model Size (MB) < 2500 0.109626 ± 0.023599 17.901734 ± 0.261984 0.134600 ± 0.019062 19.233927 ± 0.467096

VIII. LIMITATIONS

The proposed solution introduces a novel architecture for

physically securing AI model files from malicious exposure.

The architecture prevents all file alterations when the model

is secured with the suggested MTD method. This builds

upon previous work on CDR against steganography attacks

[37] and steganalysis [36] (steganography attack detection).

Since AI model file security is still in its early stages, we

expect to see more sophisticated attacks and vulnerabilities

in this domain. The proposed MTD architecture requires the

user to fully use the various AI model functions, such as

training and serialization within it, but widely-used methods

like SafeTensors [38] do so too. Moreover, the proposed

method adds a certain performance overhead that is added

to all models since it works in a zero-trust manner. However,

the performance overhead is small, as described in the results

section. It is important to note that this work focuses solely on

the security of the AI model’s physical file. Other adversarial

attacks exist, such as backdoors in machine learning models

[1] and dataset poisoning attacks [39]. Dataset attacks are

outside this paper’s scope, but future work should view them

as part of a holistic platform.

IX. CONCLUSIONS

Our work proposes a new solution for securing AI model

files by preventing file modifications and unauthorized access

through the use of MTD and authentication. This architecture

aims to secure AI model file transfers from malicious attacks

that threaten the industry. By incorporating MTD, we follow

the NSA’s [5] recommendation to separate the model architec-

ture and its weights. This is accomplished by randomizing the

model weights and separating the model from the deconstruc-

tion mapping. This ensures that only authenticated users can

reconstruct and use the model when it is distributed. Based on

our experimental results, the proposed architecture provides a

100% attack prevention rate (129/129 tampered models were

correctly alerted) under the assumed conditions. In addition,

we show that our method is significantly faster than using

encryption (0.1 seconds to obfuscate vs. 18 seconds to encrypt
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for a 2500 MB model), and contrary to encryption, it also

keeps the model file in the original format, which can allow to

get a high-level overview of the model, based on the metadata

(e.g., number of parameters, etc.). Of course, users can also

choose to use encryption on top of our suggested method if

they wish to. Our method was evaluated on a wide range of

data, which includes diverse benign models and steganography

attacks from the literature and real-world scenarios found in

HuggingFace [40]
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