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Abstract—Labor shortages and usability challenges limit the
adoption of robotics in agriculture. This work explores how
Large Language Models (LLMs) and Vision-Language Models
(VLMs) can bridge this gap by enabling non-expert users to
command robots using natural language. A modular system was
developed to interpret instructions, execute tasks, and generate
visual field reports. Evaluations in a simulated field showed that
hybrid prompting strategies yielded reliable plans, while VLMs
supported effective object detection and contextual reporting.
This approach reduces entry barriers to robotics and promotes
accessible, intelligent agricultural automation.
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I. INTRODUCTION

A. Motivation and Background

OBOTICS is a rapidly evolving field with the potential
Rto address pressing global challenges, particularly in
sectors like agriculture [7]. However, deploying robotic
systems in practice often demands high technical expertise,
limiting accessibility for non-experts.

Norwegian agriculture, for example, faces critical challenges
such as labor shortages, food waste, and reduced productivity
[6], [4], [2]. Robotic solutions could address these issues by
automating labor-intensive tasks. However, the complexity of
current systems often discourages adoption, especially among
farmers unfamiliar with robotics or programming [5].

Recent advances in artificial intelligence, particularly large
language models (LLMs), present an opportunity to close
this usability gap. LLMs can interpret and respond to natural
language instructions, enabling intuitive, conversational
interfaces. This could significantly lower barriers to adoption,
allowing farmers to operate advanced robotic systems through
simple, everyday language [8].

B. Problem Statement and Objectives

Despite the potential of robotics to transform agriculture,
usability remains a core barrier. Most current systems are
not designed for non-technical users, limiting their impact on
productivity and sustainability [6].

This work addresses that challenge by exploring how LLMs
and vision-language models (VLMs) can make human-robot
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interaction (HRI) more natural and accessible. Specifically,
the system interprets written instructions, plans and executes
robotic actions, and processes visual data to generate human-
readable field reports.

The main objectives of this study are to:

Develop a multimodal LLM/VLM system that trans-
lates natural language and visual input into ROS2-
compatible robot actions.

Evaluate the accuracy and reliability of LLM-
generated action plans, including the impact of robotic
hardware limitations.

Analyze how different prompt engineering strategies
affect command quality and consistency.

Assess VLM capabilities for object detection and
spatial reasoning in agricultural environments.
Demonstrate VLM-based visual reporting, including
structured outputs that enhance transparency and over-
sight.

C. Research Questions

To evaluate the proposed approach, this research is guided by
the following questions:

o How accurately can an LLM generate executable ROS2
action plans from natural language instructions, and how
do hardware limitations affect execution?

How do different prompt engineering strategies influence
output quality and consistency?

How effectively can a VLM identify and localize agri-
cultural objects, and what are its spatial limitations?
Can VLMs produce interpretable, natural-language field
reports from visual input that support human-robot col-
laboration?

II. BACKGROUND AND RELATED WORK

Recent advances in LLMs and VLMs have enabled more
intuitive human-robot interaction, particularly in contexts
requiring high-level reasoning and accessibility for non-
experts. LLMs such as GPT-4 exhibit strong generalization
capabilities across tasks like planning, summarization, and
code generation without retraining. Their ability to interpret
natural language and produce structured outputs makes them
a compelling option for high-level robotic control [8].
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Prompt engineering has emerged as a key factor in improving
the consistency and accuracy of LLM outputs. Direct
prompting involves single-shot commands but often lacks
reliability. Chain-of-thought (CoT) prompting helps by
introducing intermediate reasoning steps, while few-shot
prompting provides examples to anchor the model’s behavior.
Hybrid strategies, combining CoT and few-shot, can further
enhance both interpretability and execution success in
planning tasks [1].

VLMs extend this capability by jointly processing image and
text inputs. Trained on large-scale image-caption datasets,
models like CLIP and BLIP can identify and describe visual
content, perform spatial reasoning, and generate contextual
reports. This is particularly valuable in agriculture, where
visual cues, such as detecting obstacles or crop conditions,
play a vital role in robot operation [3].

Integrating LLMs and VLMs in robotic applications
introduces a multimodal reasoning layer, enabling systems
to move beyond hard-coded control toward flexible, adaptive
interaction. Although prior work has demonstrated the
potential of these models in lab settings, their deployment
in field robotics, especially under agricultural constraints,
remains underexplored. This research addresses that gap
by combining LLM and VLM modules in a ROS2-based
system that translates natural language commands and visual
input into executable robot actions and structured field reports.

III. METHODOLOGY

A. System Architecture

The system follows a modular architecture combining
language and vision models for robotic control. As shown in
Figure 1, it processes natural language commands through
an LLM to generate ROS2-compatible action plans. If visual
input is required, a VLM interprets camera images to support
perception and reporting. The robot then receives executable
commands and a spoken summary of intent for transparent
interaction.

The natural language command is processed through a
Langchain pipeline using a FewShotPromptTemplate,
which embeds dynamic user input and curated examples to
shape the model’s interpretation. The prompt structure includes
a task description, spatial constraints, and example command
formats. The LLM response contains a natural-language sum-
mary and a structured plan expressed in pseudo-code or action-
like instructions. These are then parsed and verified using a
YAML schema to ensure semantic and syntactic validity.
An example output may resemble:
Plan:

— drive (2)

— turn(90)

— drive (2)
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Receive text
command

Parse command
and create plan
(LLM)

Capture image
and create plan
(VLM)

Is vision
needed?

Send action
sequence to robot

-

Generate voice
explanation

-

Execute
command (robot)

Fig. 1. High-Level Architecture for LLM-Based Robotic System

This intermediate representation allows modular validation and
easier debugging. Internally, each action string is mapped
to a corresponding ROS2-compatible function. For instance,
drive (2) translates to a call to the navigation stack or a
custom publisher on the /cmd_vel topic with linear velocity
commands for a specified duration. Angle commands like
turn (90) trigger a PID-regulated angular velocity loop with
quaternion goals defined in radians. All interpreted commands
are time-stamped and executed via a ROS2 executor, ensuring
synchronization and feedback integration. For planning errors
or misinterpretation, fallback handlers can re-query the LLM
using augmented prompts that include failure context.

B. Simulation Environment

Development and validation were conducted in Gazebo Classic
using the Peik robot, modeled in URDF/Xacro to replicate
real-world geometry and sensor layout (Figure 2). ROS2
middleware facilitated communication across components.
Peik’s simulated sensors include a front-mounted RGB-D
camera and an IMU. The robot was simulated in a maize
field using Gazebo, with onboard RGB-D sensing and
inertial measurement to support planning, perception, and
trajectory tracking. A modular ROS2 architecture handled
action execution and data flow between the LLM, VLM, and
navigation stack.
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The robot base is configured with a ‘base_link‘ and
‘camera_link‘ transform, aligned using static TF
publishers. The URDF includes a ZED-like camera plugin
with near-true RGB-D behavior. Odometry is simulated using
differential drive parameters in Gazebo, allowing accurate
benchmarking of LLM trajectory plans versus actual ground
truth paths. The robot’s rotational behavior is tuned with
angular velocity limits of +1.5 rad/s and a max forward
speed of 0.5 m/s, constrained for safety in narrow-field crop
paths.

Fig. 2. Peik operating in a simulated maize field

C. LLM-Based Command Interpretation

User instructions are sent via a ROS2 topic and processed by
an OpenAl-powered LLM using the Langchain framework.
Prompts are dynamically constructed to include reasoning
and explicit robot actions. Responses are parsed into a
human-readable explanation (spoken aloud) and a command
list (e.g., drive (2), turn (90)), which is executed by the
robot. The system triggers visual processing if the response
contains the keyword [CAMERA_REQUIRED].

D. VLM Integration for Perception

For visual reasoning, the system captures a JPEG image from
the robot’s camera, encodes it in base64, and sends it with
a text prompt (e.g., "What’s in this image?") to a
GPT-4-based VLM. The model returns a natural-language
description of the scene, including obstacle presence or
task-relevant objects. This output is both published and
spoken by the robot for transparency.

IV. RESULTS
A. Trajectory Execution

The system was evaluated using a square-pattern navigation
task, where the LLM generated a plan from the command:
"Move in a square pattern, each side one meter long.". The
robot successfully executed the plan with minor trajectory
drift. A PID controller improved tracking accuracy compared
to open-loop control. Figure 3 shows the odometry trace
before and after adjustment.

Peik Odometry vs Planned Path
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Fig. 3. Robot trajectory: Open-loop vs PID control

B. Prompting Strategy Comparison

Four prompting strategies were compared: Direct, Chain-of-
Thought (CoT), Few-Shot, and Hybrid. Each strategy was
tested using the same navigation task in the simulation.
Figure 4, 5, 6 and 7 shows one example of each run.
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Fig. 4. Example of prompt strategy (CoT) run
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Fig. 5. Example of prompt strategy (Direct) run
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Fig. 6. Example of prompt strategy (Few-Shot) run

A quantitative comparison assessed each strategy’s perfor-
mance over five repetitions of a trajectory planning task.
Table I summarizes the average task success rate and angular
deviation across strategies.

TABLE 1
PROMPT STRATEGY EVALUATION

Strategy Success Rate
Direct Prompt 5/5
Chain-of-Thought 5/5
Few-Shot 1/5
Hybrid (CoT + ES) 3/5

C. Object Detection via VLM

The robot captured field images and passed them to GPT-4
with prompts like "Describe what'’s in this image". The VLM
consistently identified crops, tools, and obstacles like bottles
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Fig. 7. Example of prompt strategy (Hybrid) run

or weeds.

D. Visual Field Reporting

In extended prompts (e.g., "Generate a report of what you see
in this field"), the VLM produced coherent natural-language
summaries highlighting plant health, potential obstructions,
and environmental conditions. These reports were structured
and human-readable, supporting autonomous decisions and
remote operator review.

Fig. 8. Example of robot pov for GPT-4-generated field report

V. DISCUSSION
A. LLMs as Planners, Not Controllers

The findings validate the role of LLMs as high-level planners
capable of translating abstract natural language instructions
into executable robot behaviors. However, while LLMs can
produce coherent and logically sound plans, their real-time
execution fidelity is limited by hardware-level dynamics
and environmental variance. As shown in the square-pattern
task, deviations from expected paths were frequent in
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open-loop mode, highlighting the importance of integrating
traditional low-level control mechanisms like PID regulators.
This reinforces the necessity of hybrid architectures, where
symbolic reasoning from LLMs is grounded by deterministic
feedback control.

B. Prompt Engineering Trade-offs

The prompt design significantly influenced output quality, with
hybrid prompting (Few-shot + CoT) achieving the best balance
of reliability and generalization. Direct prompts were quick to
generate but tended to fail under ambiguity or complex task
structures. Chain-of-thought prompting improved transparency
by encouraging intermediate reasoning, sometimes resulting
in verbose or over-engineered plans. Few-shot prompting
offered stability by anchoring the model’s output style with
curated examples, but in practice, it did not generalize well
to tasks requiring geometric adaptation. Hybrid prompting
combined examples with reasoning, improving robustness
in some cases but introducing inconsistency in others. This
aligns with observations from the thesis, which showed
that prompt selection directly affects the syntactic structure,
interpretability, and trajectory adherence, especially in angle-
sensitive instructions like turning 120° versus 90°.

The results of the triangle movement experiment further
highlight the impact of system prompt design on LLM-driven
control. Despite using the same user prompt ("Move in a
triangle pattern"), the system’s output and robot behavior
varied significantly across prompting strategies.

1) Direct Prompting: Direct prompting achieved excellent
performance, with 5 out of 5 successful runs and high
consistency. This approach benefited from a system prompt
instructing the LLM to generate concise, minimal step-by-step
outputs without explicit reasoning. However, direct prompting
is highly dependent on a well-phrased initial instruction.
If user input is vague or lacks geometric precision, the
model lacks mechanisms to infer missing context, potentially
reducing robustness.

2) Chain-of-Thought (CoT) Prompting: CoT prompting also
yielded strong performance, matching direct prompting with
5 out of 5 successful runs. In this case, the model was guided
to reason that a triangle requires three sides of equal length
and external angles of 120°. This explicit explanation helped
the LLM generalize to the correct geometry.

3) Few-shot Prompting: Few-shot prompting demonstrated
poor generalization, with only 1 out of 5 successful
executions. Although the model was provided with examples
(e.g., moving in a square), it frequently overfitted to these
patterns and failed to extrapolate to triangles. Common
errors included using 90° turns instead of 120° or stopping
prematurely after one or two sides.

4) Hybrid Prompting (Few-shot + CoT): Hybrid prompting,
which combines examples with structured reasoning, achieved
3 out of 5 successful runs. This method produced promising
results when the examples and reasoning segments were
well-aligned. While hybrid prompting offers strong potential,
its effectiveness depends on carefully crafted prompt design
to avoid interference between modes.

5) Overall Observations: Direct and chain-of-thought
prompting emerged as the most reliable methods for producing
executable, ROS2-compatible plans in geometric movement
tasks. Few-shot prompting alone lacked adaptability, and
hybrid prompting, while promising, introduced occasional
inconsistencies. These findings underscore that prompting
strategy plays a central role in shaping language output and
real-world robot behavior.

For robotics applications, prompt clarity, structure, and internal
logic are critical to minimize ambiguity and execution failure.
Future research should explore combining prompt-based
control with parameterized templates, explicit reasoning
paths, or constrained decoding to improve interpretability and
task repeatability.

C. VLM-Based Perception and Reporting

The VLM component effectively grounded visual input into
human-readable outputs, such as object labels and structured
reports. Agricultural scenes were typically parsed with high
accuracy, though occlusions and low-contrast conditions
introduced occasional misclassifications, especially in
cluttered environments. This confirms the thesis’s insight that
VLMs can enhance field awareness but are sensitive to camera
placement, field layout, and scene quality. Additionally, the
ability to produce spoken reports supports explainability,
which is crucial for human trust in robot decision-making.

The object detection experiments revealed that GPT-4-based
VLMs consistently identified foreign objects such as bottles,
soda cans, and weeds, and provided type-correct descriptions.
Crucially, when no objects were present, the model did not
hallucinate, correctly reporting empty scenes. This ability to
maintain grounded, reality-consistent outputs suggests strong
baseline reliability under normal field conditions. However,
spatial localization, particularly left/right/center descriptions,
showed inconsistencies, with subjective or frame-dependent
language used to describe object position. More structured
prompting (e.g., referencing rows or distance bands) could
improve spatial clarity.

Contextual understanding was also demonstrated: the model
inferred partial occlusion when overlapping objects were
present and improved classification when similar items
appeared at varying distances. For example, in one run, a
far object was generically labeled as “debris,” while a closer
object in a similar class was correctly described as a “glass
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bottle.” This reflects a degree of contextual refinement, where
object interpretation improves with better visual cues.

Field reporting experiments further validated the model’s
ability to assess environmental risks and suggest mitigation
strategies. Detected objects were categorized by potential
hazard (e.g., “the bottle might shatter and harm equipment”),
with risk ratings inferred from visible features like size and
material. In empty field scenarios, the VLM demonstrated
conservative behavior, noting small rocks as minor concerns
rather than hallucinating threats, showing an ability to scale
its judgment based on visual evidence. However, it sometimes
underestimated cumulative risks (e.g., multiple soda cans
described without reference to quantity), highlighting a
limitation in quantitative reasoning.

Finally, the model showed early signs of predictive reasoning:
in occluded scenes, it inferred the likely presence of
a second object based on partial shape overlap. Such
capabilities could be valuable for hazard anticipation and
proactive avoidance. Nonetheless, challenges remain in depth
estimation, localization precision, and interpretability across
varying field conditions. Structured prompts, confidence
scoring, and hybrid visual reasoning modules could help
mitigate these issues for real-world deployments.

D. Human-Robot Interaction Implications

The system enables a shift in human-robot interaction (HRI)
toward natural-language-based collaboration. This reduces
the cognitive and technical burden on end users, making
robotics more accessible for domains like agriculture, where
operators are often domain experts but not programmers. This
positions conversational robotics as a tool for automation and
augmenting field intelligence.

E. Limitations and Future Directions

While the results obtained in the simulation were promising,
several limitations remain that must be addressed to enable
real-world deployment:

o Latency: API-based model queries, especially those
involving VLMs, introduced non-deterministic delays,
which hinder real-time performance.

« Robustness: LLM behavior became less predictable dur-
ing long or complex task sequences. Inconsistent internet
connectivity in field environments further reduces system
reliability.

o Scalability: The current modular architecture supports
isolated tasks but lacks mechanisms for multi-step work-
flows, memory across sessions, and coordination between
multiple agents.

To address these limitations, future work should explore
deploying LLM and VLM inference directly on edge
devices to reduce latency and improve autonomy. Visual
capabilities could also include crop growth monitoring,
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disease detection, and environmental stress assessment.
Additionally, integrating adaptive feedback loops, where the
robot asks for clarification when uncertain, could significantly
enhance task reliability and user trust in ambiguous situations.

VI. CONCLUSION

This work demonstrates a modular system integrating LLMs
and VLMs to enable intuitive, explainable robot control for
agricultural tasks. By translating natural language instructions
into executable ROS2 actions and combining this with visual
perception and reporting, the system allows non-expert users
to interact with robots in accessible ways. Experimental
results show that LLMs can generate high-level plans reliably
when supported by classical control and that VLMs can
effectively interpret agricultural scenes to produce structured
field reports. This approach reduces the barrier to robotics
adoption in farming and opens new opportunities for human-
robot collaboration in semi-structured environments.

Future work will improve real-time robustness, deploy
models locally for field use, and extend visual understanding
to support crop-specific tasks such as growth analysis and
anomaly detection.
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