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Abstract—The assessment of the six-pack toxicity, the crucial
six systems and organ toxicities, is vital for ensuring the safe
use of chemicals. Computational models capable of providing
reliable predictions are acceptable for regulatory use to replace
animal testing. However, data scarcity issues hindered the de-
velopment of prediction models. This study proposed the first
application of multitask learning to the six-pack toxicity for ad-
dressing data scarcity issues. Five algorithms were imple-
mented and compared. Results showed that the distinct chemi-
cal space of tasks impedes the learning of shared representation
of conventional algorithms, with performance worse than base-
line models. In contrast, the MTForestNet algorithm built on a
biological readacross concept performed best, with 3.1% and
3.3% improvement on AUC and accuracy, respectively. These
findings demonstrate that biologically informed multitask
learning can effectively overcome data scarcity and enhance
toxicity prediction.

Index Terms—multitask learning, biological readacross, six-
pack toxicity, distinct chemical space, MTForestNet.

I. INTRODUCTION

OXICITY prediction plays a pivotal role in the early

stages of drug discovery and chemical safety assess-
ment. Among the large number of toxicity endpoints for
testing, there is a suite of six key toxicity endpoints, com-
monly known as the ‘six-pack’: acute oral toxicity, acute
dermal toxicity, acute inhalation toxicity, skin irritation, eye
irritation, and skin sensitization. These endpoints provide
important information about the system and organ toxicity
of testing chemicals and are crucial for regulatory decision-
making and risk assessment of industrial chemicals, pharma-
ceuticals, and consumer products.

The assessment of the six-pack toxicity is traditionally
based on animal testing. However, the traditional experi-
mental approaches to assess these toxicities are time-con-
suming and costly, and ethical concerns are raised due to ex-
tensive animal testing. In recent years, computational meth-
ods, particularly machine learning, have emerged as power-
ful alternatives for toxicity prediction. Several studies have
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developed machine learning models for predicting the six-
pack toxicity [1], [2], [3]

Despite the efforts made by the scientific community,
dataset size poses a major limitation on advancing the pre-
diction performance of six-pack toxicity. It is unlikely to
have a huge increase in the testing data due to the high cost
and labor-intensive experiments. Compared to the conven-
tional single-task models developed by previous studies,
multitask learning algorithms capable of leveraging the
shared knowledge among relevant learning tasks can be
promising solutions to the prediction of six-pack toxicity.

Several multitask learning algorithms have been proposed
and implemented with success for toxicity prediction. For
example, three deep learning-based multitask learning algo-
rithms, including conventional, bypass, and progressive mul-
titask learning algorithms, were shown to outperform single-
task models for several drug development-relevant datasets
[4]. The three algorithms were implemented as an open-
sourced library, DeepChem [4]. In addition, AutoGluon-
Tabular [5], a powerful automated machine learning algo-
rithm, implemented a multilabel learning algorithm that can
be potentially useful for multitask learning. By leveraging
shared knowledge, multitask learning can improve predic-
tion accuracy, especially when training data for individual
tasks is limited or imbalanced.

While the abovementioned algorithms performed well
on the benchmark datasets, each dataset contains a large
portion of shared training samples among tasks in the
dataset [6], [7], [8], [9], [10], and therefore ensures the
successful transfer of knowledge among tasks. However,
the majority of learning tasks of toxicity datasets are with
distinct chemical spaces containing little or no shared
samples, which hinders the application of the DeepChem-
based methods. To solve the issue of distinct chemical
space, MTForestNet was proposed with a progressive
multitask learning strategy concatenating chemical fea-
tures and outputs of individual classifiers of tasks from
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the previous layer for accuracy improvement [11]. The algo-
rithm showed superior performance compared to other algo-
rithms on the zebrafish toxicity dataset, consisting of 48 tasks,
and is expected to be useful for other toxicity datasets with
distinct chemical space.

This study explores the application of multitask learning
models to predict all six toxicity endpoints concurrently. A
total of five algorithms were implemented and compared for
their application to the prediction of six-pack toxicity. Results
showed that the model based on MTForestNet performed best
on predicting the independent test dataset with the highest av-
erage area under the receiver operating characteristic curve
(AUC) value of 0.825, showing a 3.1% improvement over
single-task models. The other models showed no improve-
ment or much worse performance. The low percentage of
shared samples among the six tasks further supports the use-
fulness of MTForestNet on predicting chemical toxicity.

II. MATERIALS AND METHODS

A. Dataset

The six-pack toxicity dataset was obtained from a previous
study [3] collecting the largest dataset of toxicity data from
the U.S. National Toxicology Program and OECD eCHem-
Portal. The dataset was randomly divided into 70% training,
10% validation, and 20% test sets for model training, tuning,
and independent test, respectively. A summary of the dataset
is shown in Table L. In this study, the widely used extended
connectivity fingerprint (ECFP) with a diameter of 6 was uti-
lized to encode the chemical feature vector. Specifically, a
1024-dimensional vector representing the binary occurrence
of specific substructures was utilized for machine learning.

B. Single-task learning algorithm

In this study, random forest [12] was utilized as the base-
line algorithm for evaluating the performance improvement
based on multitask learning algorithms. Random forest was
extensively used and proved to have robust and high perfor-
mance in a large number of cheminformatics tasks [13], [14],
[15],[16], [17]. The parameters utilized to implement random
forest classifiers were set as follows: mtry=log2(total feature
number) and n_estimators=500. With the parameters, a sin-
gle-task random forest classifier with 500 trees and log2(total
feature number) features sampled from all features was devel-
oped for each task.
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C. Multitask learning algorithms

Five algorithms were implemented and compared in this
study. Accuracy was utilized as the objective function to tune
or select models based on the validation sets for all algo-
rithms. DeepChem package [4] was utilized to implement
three multitask learning algorithms of multitask network
(DC_MTN), progressive network (DC_Progressive), and by-
pass network (DC_Bypass). DC_MTN incorporates shared
layers for learning a joint representation of all tasks with six
separate output layers, each corresponding to a specific task.
DC_Progressive prevents catastrophic forgetting by adding a
new column for each task and using lateral connections to
transfer knowledge from previously learned tasks. DC By-
pass combines the learnable shared representation and a col-
umn of weights that bypass the shared representation for each
task. The hyperparameters of the three networks were set as
follows: learning_ rate=0.001; dropouts=[0.20, 0.10, 0.05];
layer sizes=[400, 200, 100]; penalty=0.001; weight de-
cay_penalty type="12".

The multilabel learning algorithm of AutoGluon-Tabular
trained an individual model for each label, with the inclusion
of previous labels as features. In this way, the dependence of
labels can be modeled. The default setting of AutoGluon-Tab-
ular was applied in this study with eight classifiers, including
two neural networks based on Torch and FastAl, LightGBM
boosted trees, CatBoost boosted trees, XGBoost, random for-
est, extremely randomized trees, and k-nearest neighbors
were automatically trained and stacked to achieve the highest
performance on the validation set. The parameter of
auto_stack was set to true for automatic model stacking in the
model development. Medium (AG Medium) and best
(AG_Best) quality models were built for performance com-
parison using the quality parameter.

MTForestNet was proposed to deal with the distinct chem-
ical space of tasks with little or no shared samples. The idea
is based on the biological data-based read-across, where the
label (target endpoint) of chemicals tends to be similar if the
bioactivity profile of chemicals is similar [18], [19], [20].
MTForestNet utilized random forest as a base learner for
building models, each for a task. The predicted outputs of sin-
gle-task models were then fed into the next layer, where the
feature vector was refined to concatenate both the chemical

TABLE I.
OVERVIEW OF DATASET SAMPLE SIZES

Task Toxic/Nontoxic Training Validation Test
Acute Dermal Toxicity 870/939 1266 181 362
Acute Inhalation Toxicity 436/428 604 87 173
Acute Oral Toxicity 6391/4723 7779 1112 2223
Eye Irritation 1824/1841 2565 367 733
Skin Irritation 1315/1311 1837 263 526
Skin Sensitization 1510/1256 1935 277 554
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Fig. 1 The percentage of shared chemicals for each pair of tasks

fingerprint and the six outputs from the models of the previ-
ous layer. The validation set was utilized to determine the size
of the model giving the highest validation performance.

D. Hardware

The experiments were conducted in a computer equipped
with two Intel® Xeon® Gold 6330, one NVIDIA RTX
A6000, and 2 TiB RAM. The operating system is Ubuntu
22.04.

III. RESULTS

A. Tasks with low percentages of shared chemicals

The percentages of shared chemicals among tasks were
first analyzed to give an overview of the similarity of the six
tasks. As shown in Fig.1, overall medium to low percentages
of shared chemicals among tasks indicated that the six da-
tasets lack sufficient information for learning a shared repre-
sentation. The two skin-relevant tasks of skin sensitization
and skin irritation shared the highest percentages of samples,
where 94.94% of chemicals have both labels. The task of
acute oral is associated with the lowest percentage of shared
chemicals of 7.77% and 16.28% for acute inhalation and acute
dermal, respectively. Among the 15 pairs of tasks, 5 pairs of
tasks are associated with a percentage of shared samples less
than or equal to 30%. Only 3 pairs of tasks are associated with
a percentage of shared chemicals greater than or equal to 70%.
The average percentage of samples shared in all pairs of tasks
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Fig. 2 The validation performance of MTForestNet

is 44.45%. In summary, the low percentages of shared chem-
icals may hinder the learning of shared representation for con-
ventional multitask algorithms.

B. Validation performance

The application of multitask learning algorithms for pre-
dicting six-pack toxicity includes three steps of model train-
ing based on the training sets, model tuning/validation based
on the validation set, and model testing using the test sets.
This section provides the validation results of the imple-
mented models. The detailed performance comparison is
shown in Table II. The baseline models based on random for-
est provide reasonably good performance for all tasks, with
an average AUC and accuracy of 0.777 and 0.711, respec-
tively.

The validation performance of the three DeepChem-based
models is much worse than that of the baseline models, with
at least a 10% decrease in the average AUC. The average
AUC and accuracy values are 0.673 and 0.545 for DC_MTN,
0.659 and 0.556 for DC_Bypass, and 0.600 and 0.395 for
DC _Progressive, respectively. As the chemical spaces are
distinct for each task, the low performance of DeepChem-
based models is expected.

The AutoML models based on AutoGluon-Tabular provide
slightly worse performance compared to the random forest.

TABLE II.
VALIDATION PERFORMANCE

Model Acute Dermal  Acute Inhalation  Acute Oral Eye Skin Skin
Toxicity Toxicity Toxicity Irritation Irritation Sensitization
Random forest 0.773/0.680 0.794/0.770 0.840/0.761  0.729/0.665  0.803/0.730 0.724/0.657
MTForestNet 0.813/0.713 0.833/0.770 0.829/0.772  0.758/0.689  0.847/0.768 0.746/0.679
AG_Medium 0.773/0.707 0.723/0.690 0.841/0.763  0.708/0.649  0.804/0.722 0.724/0.671
AG_Best 0.791/0.718 0.777/0.701 0.842/0.761  0.738/0.678  0.728/0.668 0.728/0.668
DC_MTN 0.676/0.595 0.713/0.464 0.742/0.621  0.609/0.515  0.714/0.617 0.586/0.455
DC_Bypass 0.687/0.565 0.689/0.582 0.734/0.592  0.603/0.531  0.684/0.581 0.556/0.487
DC_Progressive 0.702/0.585 0.500/0.019 0.500/0.279  0.622/0.521  0.698/0.560 0.577/0.407

Performance is expressed as AUC/Accuracy. Bold numbers show the best performance in the specific task.
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TABLE III.
INDEPENDENT TEST
Model Acute Dermal  Acute Inhalation  Acute Oral Eye Skin Skin
Toxicity Toxicity Toxicity Irritation Irritation Sensitization
Random forest 0.836/0.732 0.758/0.676 0.832/0.745  0.767/0.703  0.822/0.751 0.751/0.679
MTForestNet 0.865/0.765 0.842/0.740 0.819/0.752  0.795/0.719  0.851/0.795 0.779/0.708
AG_Medium 0.826/0.729 0.765/0.711 0.838/0.757  0.746/0.689  0.804/0.743 0.749/0.671
AG_Best 0.729/0.826 0.760/0.728 0.838/0.760  0.771/0.700  0.815/0.743 0.762/0.702
DC_MTN 0.747/0.622 0.654/0.483 0.730/0.628  0.596/0.521  0.683/0.615 0.589/0.473
DC_Bypass 0.748/0.569 0.642/0.591 0.745/0.624  0.600/0.546  0.672/0.592 0.593/0.487
DC_Progressive 0.729/0.602 0.500/0.019 0.500/0.280  0.617/0.530  0.687/0.558 0.584/0.429

Performance is expressed as AUC/Accuracy. Bold numbers show the best performance in the specific task.

The average AUC and accuracy values of AG_Medium are
0.762 and 0.700, respectively. AG_Best delivers a slightly
better AUC of 0.767 and slightly worse accuracy of 0.699.

The MTForestNet, designed for dealing with the distinct
chemical space of tasks, performed best. Fig. 2 shows the
training process with accuracy and AUC performance for
each layer. The optimal number of layers of MTForestNet
was determined to be six according to the accuracy of the val-
idation set. Its average AUC is 0.804, which is 3.3% better
than the baseline models. With an average accuracy of 0.732,
MTForestNet provides 2.1% performance improvement over
the baseline models.

Table II showed that MTForestNet performed best in 5 out
of the 6 tasks in terms of AUC and accuracy. AG_Best is the
best model for acute dermal toxicity and acute oral toxicity in
terms of accuracy and AUC, respectively. However, AG_Best
is worse than the baseline models for the other tasks, resulting
in a worse average AUC and accuracy compared to the base-
line model.

C. Independent test

The independent test showed similar results that MTForest-
Net is the only algorithm providing a superior performance
over the baseline model, with an average AUC and accuracy
of 0.825 and 0.747, respectively. A 3.1% and 3.3% improve-
ment on the average AUC and accuracy was achieved com-
pared to the random forest models. The average AUC and ac-
curacy of random forest models are 0.794 and 0.714, respec-
tively.

Table III showed that MTForestNet performed best in 5
and 4 tasks in terms of AUC and accuracy, respectively.
While with a slightly worse mean AUC of 0.779, AG_Best
models provide good accuracy of 0.743, which is close to
MTForestNet models and better than the baseline models.
AG_Best is the best model in 1 and 2 tasks in terms of AUC
and accuracy, respectively, as shown in Table III. As for the
DeepChem-based models, their performance is the worst
among the evaluated algorithms and is much worse than the
baseline models. The average AUC and accuracy are 0.667
and 0.557 for DC_MTN, 0.667 and 0.568 for DC_Bypass,
and 0.603 and 0.403 for DC_Progressive, respectively.

D. Comparison to existing methods

There are three recently published methods aiming to pre-
dict six-pack toxicity [1], [2], [3]. However, a careful evalua-
tion found that the three studies divide the whole dataset into
training and validation sets without an independent test. All
three studies applied multiple machine learning algorithms
and picked the best results from validation results. In this
case, the prediction performance may be overestimated. Nev-
ertheless, a comparison to existing methods can still provide
some information on the current status of prediction models
for six-pack toxicity.

We first compare our results with the study [3] using the
same dataset. Only accuracies rounded to two decimal places
were fully disclosed in their paper, with an average value of
0.75 based on the validation set. Their average accuracy value
is the same as that of the developed MTForestNet model
based on the test set, indicating that MTForestNet performed
very well without the need to exhaustively train and select
models.

The other two studies used a smaller dataset [1], [2] for
model development. There is no accuracy information re-
ported by StopTox [1]. Instead, a balanced accuracy repre-
senting a mean of sensitivity and specificity was given based
on their validation set with an average value of 0.735. Please
note that the results were based on a selection of chemicals
suitable for the StopTox models. There are 5.4% deemed to
be not suitable for the StopTox models. Without a selection
of chemicals, the MTForestNet model with an average value
of balanced accuracy of 0.7445 based on the test set provides
better performance. The latest study [2] exhaustively trained
all models by using the combination of three algorithms and
four representations of chemicals. The selection of the best
models based on their validation set yields average AUC val-
ues of 0.832 and 0.802 for models based on fingerprint and
descriptor, and physicochemical properties, respectively.
MTForestNet with an average AUC of 0.825 based on the test
set is better than the models based on physicochemical prop-
erties and comparable to the models based on fingerprint and
descriptor. While they proposed to combine the best-perform-
ing models to vote for the final prediction with a higher AUC
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of 0.838 based on their validation set, the iterative use of
samples from the validation set is prone to overfit the valida-
tion set without generalization ability to unseen samples.
Overall, MTForestNet provides an easy-to-use and robust
method for predicting six-pack toxicity. The models devel-
oped in this study were rigorously validated and indepen-
dently tested, and performed better than existing methods.

E. Comparison of training times

While good performance was achieved by the MTForest-
Net, it would be interesting to know the efficiency of the al-
gorithms. We therefore compare the training time of the
models. The baseline model requires 58 seconds for training
six models. The DeepChem algorithms with early stop en-
abled are efficient, although with the worst performance.
The training times are 40 seconds, 1 minute and 46 seconds,
and 7 minutes and 19 seconds for DC_MTN, DC Bypass,
and DC_Progressive. The AG_Medium and AG_Best took
the longest training time of 8 minutes and 28 seconds and 5
hours, 48 minutes and 34 seconds, respectively. MTForest-
Net maintains a well-balanced training time of 7 minutes
and 26 seconds and the best prediction performance. Please
note that only DeepChem-based models were trained using a
GPU. CPU-based training was conducted for the other algo-
rithms, and the model training may be further accelerated by
using a GPU.

IV. ConcLrusioN

Distinct chemical space is a unique attribute of biochemi-
cal datasets with little or no common chemicals shared
among the tasks. Conventional multitask learning algorithms
relying on learning a shared representation obtained from
the common chemicals may not provide beneficial effects on
the prediction performance. This study implemented and
compared three types of multitask learning algorithms.
Based on the validation and independent test results, we
found that the biological readacross-based MTForestNet
performed best. Overall, this work represents a significant
step toward a biologically grounded and performance-en-
hancing solution suitable for computational toxicology tasks.
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