
Abstract—The assessment of the six-pack toxicity, the crucial 

six systems and organ toxicities, is vital for ensuring the safe 

use of chemicals. Computational models capable of providing 

reliable predictions are acceptable for regulatory use to replace 

animal testing. However, data scarcity issues hindered the de-

velopment of prediction models. This study proposed the first 

application of multitask learning to the six-pack toxicity for ad-

dressing  data  scarcity  issues.  Five  algorithms  were  imple-

mented and compared. Results showed that the distinct chemi-

cal space of tasks impedes the learning of shared representation 

of conventional algorithms, with performance worse than base-

line models. In contrast, the MTForestNet algorithm built on a 

biological readacross concept performed best, with 3.1% and 

3.3% improvement on AUC and accuracy, respectively. These 

findings  demonstrate  that  biologically  informed  multitask 

learning can  effectively  overcome data  scarcity  and enhance 

toxicity prediction.

Index Terms—multitask learning, biological readacross, six-

pack toxicity, distinct chemical space, MTForestNet.

I. INTRODUCTION

OXICITY prediction plays a pivotal role in the early 

stages  of  drug discovery and  chemical  safety  assess-

ment.  Among  the  large  number  of  toxicity  endpoints  for 

testing, there is a suite of six key toxicity endpoints, com-

monly  known as  the  ‘six-pack’:  acute  oral  toxicity,  acute 

dermal toxicity, acute inhalation toxicity, skin irritation, eye 

irritation,  and  skin  sensitization.  These  endpoints  provide 

important information about the system and organ toxicity 

of testing chemicals and are crucial for regulatory decision-

making and risk assessment of industrial chemicals, pharma-

ceuticals, and consumer products.

T

The  assessment  of  the  six-pack  toxicity  is  traditionally 

based  on  animal  testing.  However,  the  traditional  experi-

mental  approaches to  assess  these toxicities  are  time-con-

suming and costly, and ethical concerns are raised due to ex-

tensive animal testing. In recent years, computational meth-

ods, particularly machine learning, have emerged as power-

ful alternatives for toxicity prediction. Several studies have 

developed machine learning models for predicting the six-

pack toxicity [1], [2], [3]. 

Despite  the  efforts  made  by  the  scientific  community, 

dataset size poses a major limitation on advancing the pre-

diction  performance of  six-pack  toxicity.  It  is  unlikely  to 

have a huge increase in the testing data due to the high cost  

and labor-intensive experiments. Compared to the conven-

tional  single-task  models  developed  by  previous  studies, 

multitask  learning  algorithms  capable  of  leveraging  the 

shared  knowledge  among  relevant  learning  tasks  can  be 

promising solutions to the prediction of six-pack toxicity.

Several multitask learning algorithms have been proposed 

and implemented with success for toxicity prediction.  For 

example, three deep learning-based multitask learning algo-

rithms, including conventional, bypass, and progressive mul-

titask learning algorithms, were shown to outperform single-

task models for several drug development-relevant datasets 

[4].  The  three  algorithms  were  implemented  as  an  open-

sourced  library,  DeepChem  [4].  In  addition,  AutoGluon-

Tabular [5], a powerful automated machine learning algo-

rithm, implemented a multilabel learning algorithm that can 

be potentially useful for multitask learning. By leveraging 

shared knowledge,  multitask learning can improve predic-

tion accuracy, especially when training data for individual 

tasks is limited or imbalanced.

While the abovementioned algorithms performed well 

on the benchmark datasets, each dataset contains a large 

portion  of  shared  training  samples  among  tasks  in  the 

dataset  [6],  [7],  [8],  [9],  [10],  and therefore  ensures  the 

successful transfer of knowledge among tasks. However, 

the majority of learning tasks of toxicity datasets are with 

distinct  chemical  spaces  containing  little  or  no  shared 

samples, which hinders the application of the DeepChem-

based  methods.  To  solve  the  issue  of  distinct  chemical 

space,  MTForestNet  was  proposed  with  a  progressive 

multitask  learning  strategy  concatenating  chemical  fea-

tures  and outputs  of  individual  classifiers  of  tasks  from
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the previous layer for accuracy improvement [11]. The algo-

rithm showed superior performance compared to other algo-

rithms on the zebrafish toxicity dataset, consisting of 48 tasks, 

and is expected to be useful for other toxicity datasets with 

distinct chemical space. 

This study explores the application of multitask learning 

models to predict all six toxicity endpoints concurrently. A 

total of five algorithms were implemented and compared for 

their application to the prediction of six-pack toxicity. Results 

showed that the model based on MTForestNet performed best 

on predicting the independent test dataset with the highest av-

erage area under the receiver operating characteristic curve 

(AUC) value of 0.825, showing a 3.1% improvement over 

single-task models. The other models showed no improve-

ment or much worse performance. The low percentage of 

shared samples among the six tasks further supports the use-

fulness of MTForestNet on predicting chemical toxicity. 

II. MATERIALS AND METHODS 

A. Dataset 

The six-pack toxicity dataset was obtained from a previous 

study [3] collecting the largest dataset of toxicity data from 

the U.S. National Toxicology Program and OECD eCHem-

Portal. The dataset was randomly divided into 70% training, 

10% validation, and 20% test sets for model training, tuning, 

and independent test, respectively. A summary of the dataset 

is shown in Table I. In this study, the widely used extended 

connectivity fingerprint (ECFP) with a diameter of 6 was uti-

lized to encode the chemical feature vector. Specifically, a 

1024-dimensional vector representing the binary occurrence 

of specific substructures was utilized for machine learning. 

B. Single-task learning algorithm   

In this study, random forest [12] was utilized as the base-

line algorithm for evaluating the performance improvement 

based on multitask learning algorithms. Random forest was 

extensively used and proved to have robust and high perfor-

mance in a large number of cheminformatics tasks [13], [14], 

[15], [16], [17]. The parameters utilized to implement random 

forest classifiers were set as follows: mtry=log2(total feature 

number) and n_estimators=500. With the parameters, a sin-

gle-task random forest classifier with 500 trees and log2(total 

feature number) features sampled from all features was devel-

oped for each task.  

C. Multitask learning algorithms 

Five algorithms were implemented and compared in this 

study. Accuracy was utilized as the objective function to tune 

or select models based on the validation sets for all algo-

rithms. DeepChem package [4] was utilized to implement 

three multitask learning algorithms of multitask network 

(DC_MTN), progressive network (DC_Progressive), and by-

pass network (DC_Bypass). DC_MTN incorporates shared 

layers for learning a joint representation of all tasks with six 

separate output layers, each corresponding to a specific task. 

DC_Progressive prevents catastrophic forgetting by adding a 

new column for each task and using lateral connections to 

transfer knowledge from previously learned tasks. DC_By-

pass combines the learnable shared representation and a col-

umn of weights that bypass the shared representation for each 

task. The hyperparameters of the three networks were set as 

follows: learning_rate=0.001; dropouts=[0.20, 0.10, 0.05]; 

layer_sizes=[400, 200, 100]; penalty=0.001; weight_de-

cay_penalty_type='l2'.  

The multilabel learning algorithm of AutoGluon-Tabular 

trained an individual model for each label, with the inclusion 

of previous labels as features. In this way, the dependence of 

labels can be modeled. The default setting of AutoGluon-Tab-

ular was applied in this study with eight classifiers, including 

two neural networks based on Torch and FastAI, LightGBM 

boosted trees, CatBoost boosted trees, XGBoost, random for-

est, extremely randomized trees, and k-nearest neighbors 

were automatically trained and stacked to achieve the highest 

performance on the validation set. The parameter of 

auto_stack was set to true for automatic model stacking in the 

model development. Medium (AG_Medium) and best 

(AG_Best) quality models were built for performance com-

parison using the quality parameter.  

MTForestNet was proposed to deal with the distinct chem-

ical space of tasks with little or no shared samples. The idea 

is based on the biological data-based read-across, where the 

label (target endpoint) of chemicals tends to be similar if the 

bioactivity profile of chemicals is similar [18], [19], [20]. 

MTForestNet utilized random forest as a base learner for 

building models, each for a task. The predicted outputs of sin-

gle-task models were then fed into the next layer, where the 

feature vector was refined to concatenate both the chemical 

TABLE I. 

OVERVIEW OF DATASET SAMPLE SIZES 

Task Toxic/Nontoxic Training Validation Test 

Acute Dermal Toxicity 870/939 1266 181 362 

Acute Inhalation Toxicity 436/428 604 87 173 

Acute Oral Toxicity 6391/4723 7779 1112 2223 

Eye Irritation 1824/1841 2565 367 733 

Skin Irritation 1315/1311 1837 263 526 

Skin Sensitization 1510/1256 1935 277 554 
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fingerprint and the six outputs from the models of the previ-

ous layer. The validation set was utilized to determine the size 

of the model giving the highest validation performance.  

D. Hardware 

The experiments were conducted in a computer equipped 

with two Intel® Xeon® Gold 6330, one NVIDIA RTX 

A6000, and 2 TiB RAM. The operating system is Ubuntu 

22.04.  

III. RESULTS 

A. Tasks with low percentages of shared chemicals  

The percentages of shared chemicals among tasks were 

first analyzed to give an overview of the similarity of the six 

tasks. As shown in Fig.1, overall medium to low percentages 

of shared chemicals among tasks indicated that the six da-

tasets lack sufficient information for learning a shared repre-

sentation. The two skin-relevant tasks of skin sensitization 

and skin irritation shared the highest percentages of samples, 

where 94.94% of chemicals have both labels. The task of 

acute oral is associated with the lowest percentage of shared 

chemicals of 7.77% and 16.28% for acute inhalation and acute 

dermal, respectively. Among the 15 pairs of tasks, 5 pairs of 

tasks are associated with a percentage of shared samples less 

than or equal to 30%. Only 3 pairs of tasks are associated with 

a percentage of shared chemicals greater than or equal to 70%. 

The average percentage of samples shared in all pairs of tasks 

is 44.45%. In summary, the low percentages of shared chem-

icals may hinder the learning of shared representation for con-

ventional multitask algorithms. 

 

B. Validation performance 

The application of multitask learning algorithms for pre-

dicting six-pack toxicity includes three steps of model train-

ing based on the training sets, model tuning/validation based 

on the validation set, and model testing using the test sets.  

This section provides the validation results of the imple-

mented models. The detailed performance comparison is 

shown in Table II. The baseline models based on random for-

est provide reasonably good performance for all tasks, with 

an average AUC and accuracy of 0.777 and 0.711, respec-

tively. 

The validation performance of the three DeepChem-based 

models is much worse than that of the baseline models, with 

at least a 10% decrease in the average AUC. The average 

AUC and accuracy values are 0.673 and 0.545 for DC_MTN, 

0.659 and 0.556 for DC_Bypass, and 0.600 and 0.395 for 

DC_Progressive, respectively. As the chemical spaces are 

distinct for each task, the low performance of DeepChem-

based models is expected. 

The AutoML models based on AutoGluon-Tabular provide 

slightly worse performance compared to the random forest. 

Fig. 1 The percentage of shared chemicals for each pair of tasks 

TABLE II. 

VALIDATION PERFORMANCE 

Model Acute Dermal  

Toxicity 

Acute Inhalation  

Toxicity 

Acute Oral  

Toxicity 

Eye  

Irritation 

Skin  

Irritation 

Skin  

Sensitization 

Random forest 0.773/0.680 0.794/0.770 0.840/0.761 0.729/0.665 0.803/0.730 0.724/0.657 

MTForestNet 0.813/0.713 0.833/0.770 0.829/0.772 0.758/0.689 0.847/0.768 0.746/0.679 

AG_Medium 0.773/0.707 0.723/0.690 0.841/0.763 0.708/0.649 0.804/0.722 0.724/0.671 

AG_Best 0.791/0.718 0.777/0.701 0.842/0.761 0.738/0.678 0.728/0.668 0.728/0.668 

DC_MTN 0.676/0.595 0.713/0.464 0.742/0.621 0.609/0.515 0.714/0.617 0.586/0.455 

DC_Bypass 0.687/0.565 0.689/0.582 0.734/0.592 0.603/0.531 0.684/0.581 0.556/0.487 

DC_Progressive 0.702/0.585 0.500/0.019 0.500/0.279 0.622/0.521 0.698/0.560 0.577/0.407 

Performance is expressed as AUC/Accuracy. Bold numbers show the best performance in the specific task. 

 

Fig. 2 The validation performance of MTForestNet 
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The average AUC and accuracy values of AG_Medium are 

0.762 and 0.700, respectively. AG_Best delivers a slightly 

better AUC of 0.767 and slightly worse accuracy of 0.699. 

The MTForestNet, designed for dealing with the distinct 

chemical space of tasks, performed best. Fig. 2 shows the 

training process with accuracy and AUC performance for 

each layer. The optimal number of layers of MTForestNet 

was determined to be six according to the accuracy of the val-

idation set.  Its average AUC is 0.804, which is 3.3% better 

than the baseline models. With an average accuracy of 0.732, 

MTForestNet provides 2.1% performance improvement over 

the baseline models. 

Table II showed that MTForestNet performed best in 5 out 

of the 6 tasks in terms of AUC and accuracy. AG_Best is the 

best model for acute dermal toxicity and acute oral toxicity in 

terms of accuracy and AUC, respectively. However, AG_Best 

is worse than the baseline models for the other tasks, resulting 

in a worse average AUC and accuracy compared to the base-

line model.  

C. Independent test 

The independent test showed similar results that MTForest-

Net is the only algorithm providing a superior performance 

over the baseline model, with an average AUC and accuracy 

of 0.825 and 0.747, respectively. A 3.1% and 3.3% improve-

ment on the average AUC and accuracy was achieved com-

pared to the random forest models. The average AUC and ac-

curacy of random forest models are 0.794 and 0.714, respec-

tively.  

Table III showed that MTForestNet performed best in 5 

and 4 tasks in terms of AUC and accuracy, respectively.  

While with a slightly worse mean AUC of 0.779, AG_Best 

models provide good accuracy of 0.743, which is close to 

MTForestNet models and better than the baseline models. 

AG_Best is the best model in 1 and 2 tasks in terms of AUC 

and accuracy, respectively, as shown in Table III. As for the 

DeepChem-based models, their performance is the worst 

among the evaluated algorithms and is much worse than the 

baseline models. The average AUC and accuracy are 0.667 

and 0.557 for DC_MTN, 0.667 and 0.568 for DC_Bypass, 

and 0.603 and 0.403 for DC_Progressive, respectively. 

D. Comparison to existing methods 

There are three recently published methods aiming to pre-

dict six-pack toxicity [1], [2], [3]. However, a careful evalua-

tion found that the three studies divide the whole dataset into 

training and validation sets without an independent test. All 

three studies applied multiple machine learning algorithms 

and picked the best results from validation results. In this 

case, the prediction performance may be overestimated. Nev-

ertheless, a comparison to existing methods can still provide 

some information on the current status of prediction models 

for six-pack toxicity.  

We first compare our results with the study [3] using the 

same dataset. Only accuracies rounded to two decimal places 

were fully disclosed in their paper, with an average value of 

0.75 based on the validation set. Their average accuracy value 

is the same as that of the developed MTForestNet model 

based on the test set, indicating that MTForestNet performed 

very well without the need to exhaustively train and select 

models.  

The other two studies used a smaller dataset [1], [2] for 

model development. There is no accuracy information re-

ported by StopTox [1]. Instead, a balanced accuracy repre-

senting a mean of sensitivity and specificity was given based 

on their validation set with an average value of 0.735. Please 

note that the results were based on a selection of chemicals 

suitable for the StopTox models. There are 5.4% deemed to 

be not suitable for the StopTox models. Without a selection 

of chemicals, the MTForestNet model with an average value 

of balanced accuracy of 0.7445 based on the test set provides 

better performance. The latest study [2] exhaustively trained 

all models by using the combination of three algorithms and 

four representations of chemicals. The selection of the best 

models based on their validation set yields average AUC val-

ues of 0.832 and 0.802 for models based on fingerprint and 

descriptor, and physicochemical properties, respectively. 

MTForestNet with an average AUC of 0.825 based on the test 

set is better than the models based on physicochemical prop-

erties and comparable to the models based on fingerprint and 

descriptor. While they proposed to combine the best-perform-

ing models to vote for the final prediction with a higher AUC 

TABLE III. 

INDEPENDENT TEST 

Model Acute Dermal 

 Toxicity 

Acute Inhalation 

 Toxicity 

Acute Oral  

Toxicity 

Eye  

Irritation 

Skin  

Irritation 

Skin  

Sensitization 

Random forest 0.836/0.732 0.758/0.676 0.832/0.745 0.767/0.703 0.822/0.751 0.751/0.679 

MTForestNet 0.865/0.765 0.842/0.740 0.819/0.752 0.795/0.719 0.851/0.795 0.779/0.708 

AG_Medium 0.826/0.729 0.765/0.711 0.838/0.757 0.746/0.689 0.804/0.743 0.749/0.671 

AG_Best 0.729/0.826 0.760/0.728 0.838/0.760 0.771/0.700 0.815/0.743 0.762/0.702 

DC_MTN 0.747/0.622 0.654/0.483 0.730/0.628 0.596/0.521 0.683/0.615 0.589/0.473 

DC_Bypass 0.748/0.569 0.642/0.591 0.745/0.624 0.600/0.546 0.672/0.592 0.593/0.487 

DC_Progressive 0.729/0.602 0.500/0.019 0.500/0.280 0.617/0.530 0.687/0.558 0.584/0.429 

Performance is expressed as AUC/Accuracy. Bold numbers show the best performance in the specific task. 
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of 0.838 based on their validation set,  the iterative use of 

samples from the validation set is prone to overfit the valida-

tion set without generalization ability to unseen samples.

Overall, MTForestNet provides an easy-to-use and robust 

method for predicting six-pack toxicity. The models devel-

oped in this study were rigorously validated and indepen-

dently tested, and performed better than existing methods.

E. Comparison of training times

While good performance was achieved by the MTForest-

Net, it would be interesting to know the efficiency of the al-

gorithms.  We  therefore  compare  the  training  time  of  the 

models. The baseline model requires 58 seconds for training 

six models. The DeepChem algorithms with early stop en-

abled  are  efficient,  although  with  the  worst  performance. 

The training times are 40 seconds, 1 minute and 46 seconds, 

and 7 minutes and 19 seconds for DC_MTN, DC_Bypass, 

and DC_Progressive. The AG_Medium and AG_Best took 

the longest training time of 8 minutes and 28 seconds and 5 

hours, 48 minutes and 34 seconds, respectively. MTForest-

Net  maintains  a  well-balanced training time of  7  minutes 

and 26 seconds and the best prediction performance. Please 

note that only DeepChem-based models were trained using a 

GPU. CPU-based training was conducted for the other algo-

rithms, and the model training may be further accelerated by 

using a GPU. 

IV. CONCLUSION

Distinct chemical space is a unique attribute of biochemi-

cal  datasets  with  little  or  no  common  chemicals  shared 

among the tasks. Conventional multitask learning algorithms 

relying on  learning a  shared representation  obtained from 

the common chemicals may not provide beneficial effects on 

the  prediction  performance.  This  study  implemented  and 

compared  three  types  of  multitask  learning  algorithms. 

Based  on  the  validation  and  independent  test  results,  we 

found  that  the  biological  readacross-based  MTForestNet 

performed best.  Overall,  this work represents a significant 

step  toward  a  biologically  grounded  and  performance-en-

hancing solution suitable for computational toxicology tasks. 
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