
Abstract—In this paper, we investigate the impact of speech 

transcoding and noise on the performance of Arabic automatic 

speech recognition (ASR) systems based on deep learning. We 

apply Non-negative Matrix Factorization (NMF) as a denoising 

preprocessing step to enhance robustness to noise. Three deep 

architectures—CNN-LSTM, LSTM, and DNN—are evaluated 

using fused acoustic features including MFCCs, Mel- spectro-

grams, and Gabor filter representations. Experiments are con-

ducted under four signal-to-noise  ratio  (SNR) conditions  (−5 

dB,  0  dB,  5  dB,  and  10  dB)  on  both  transcoded  and  non- 

transcoded speech.  Results  show that the CNN-LSTM model 

achieves the highest accuracy of 87% at 10 dB SNR on clean 

(non-transcoded) speech using multimodal features. However, 

speech recognition performance degrades by 2–4% when using 

the Enhanced Voice Services (EVS) codec, especially in high- 

noise environments. Specifically, accuracy drops from 65.00% 

to 61.43% at −5 dB SNR, and from 87.00% to 84.00% at 10 dB 

SNR due to transcoding. These findings highlight the negative 

impact of mobile codec compression on ASR systems, particu-

larly under low-SNR conditions. Our study confirms the effec-

tiveness and stability of NMF-based feature fusion and denois-

ing in improving recognition, offering insights into deploying 

Arabic ASR in real-world scenarios such as mobile and VoIP 

communications.

Index  Terms—Audio  transcoding,  Noise,  Arabic  speech, 

NMF; CNN-LSTM, LSTM, DNN, SNR.

I. INTRODUCTION

UTOMATIC Speech Recognition (ASR) technologies 

have achieved remarkable performance in clean, con-

trolled environments with the advancement of deep learning 

and sophisticated feature extraction techniques. Their prowess 

in real-world environments under hostile conditions such as 

mobile communication, Voice over IP (VoIP) services, and 

low-bandwidth channels  remains an enduring challenge.  In 

these situations, speech signals are usually distorted by not 

only background noise but also compression distortions due to 

speech codecs, such as those employed in Enhanced Voice 

Services (EVS). The dual distortions greatly impair speech in-

telligibility and acoustic coherence, leading to drastic degra-

dation  of  ASR  performance.  Traditional  automatic  speech 

recognition  (ASR)  systems,  being  predominantly  Hidden 

Markov  Model  (HMM)-  and  Gaussian  Mixture  Model 

(GMM)- based [1][2], are plagued with limited robustness in 

A

mildly noisy environments. Their accuracy significantly with 

nonlinear  distortions  via  lossy  speech  compression.  Deep 

learning  models—Deep  Neural  Networks  (DNNs),  Long 

Short-Term Memory (LSTM) networks, and hybrid Convolu-

tional Neural Network–LSTM (CNN-LSTM) architecture—

have overwhelmed such traditional practices in recent years 

due to their strong ability to learn complicated speech patterns 

[16]. Due to all these developments, current state-of-the-art 

ASR engines are still very susceptible to non-stationary noise 

and encoding artifacts, particularly in the absence of any spe-

cial preprocessing. A hard problem arises in mobile and inter-

net communication systems, where speech signals are typi-

cally compressed by low-bitrate codecs (EVS), perceptually 

optimized rather than acoustically faithful [18,19]. The com-

pression causes time-frequency distortions that mask impor-

tant phonetic information, significantly degrading ASR per-

formance.  Moreover,  these  distortions  become  exacerbated 

under low signal-to- noise ratio (SNR) conditions, such as –5 

dB, significantly making it difficult to obtain correct speech 

recognitionIn order to address these challenges, a speech en-

hancement method based on Non-negative Matrix Factoriza-

tion (NMF) is put forward in this research. As an unsuper-

vised  learning  algorithm,  NMF decomposes  the  magnitude 

spectrogram  of  noisy  speech  into  low-rank,  non-negative 

bases  and  temporal  activations  [8,9,10,11].  With  separate 

modeling of speech and noise components, efficient noise re-

duction can be achieved without prior noise training. This fea-

ture makes the approach extremely adaptive to dynamic and 

changing  acoustic  environments.  Moreover,  we  investigate 

the impact of Enhanced Voice Services (EVS) transcoding on 

the  performance  of  Arabic  automatic  speech  recognition 

(ASR), which is an under investigated area considering the 

widespread use of EVS deployment in mobile wireless net-

works. In this regard, we compare the performances of three 

deep  learning-  based  architectures:  deep  neural  networks 

(DNNs), long short-term memory (LSTM) networks, and a 

hybrid  convolutional-LSTM  (CNN-LSTM)  network  [16]. 

These models are acquired on the basis of a multimodal fu-

sion of acoustic features like Mel-frequency Cepstral Coeffi-

cients  (MFCCs),  Mel-spectrograms,  and  Gabor  filter-based 

descriptors.
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By fusing complementary spectral and temporal 
representations of speech, our work achieves increased 
robustness in adverse acoustic conditions. 

This paper advances the understanding of Automatic 
Speech Recognition (ASR) robustness in challenging 
acoustic environments through the following key 
contributions: 

 

 A thorough analysis of ASR performance under 
simulated combined noise and Enhanced Voice 
Services (EVS)-induced distortions, considering 
serious degradation trends under actual-like 
unfavorable conditions. 

 A novel preprocessing system with NMF as the 
underlying framework to enhance the quality of 
noisy and transcoded speech, significantly 
enhancing downstream ASR accuracy. 

 A comparative study of deep learning-based ASR 
models through integrated acoustic representations, 
demonstrating their ability to successfully counter 
compounded speech distortions. 

The remainder of this paper is organized as follows: 
Section II presents speech enhancement techniques based 
on Non-Negative Matrix Factorization (NMF) in order to 
establish the theoretical framework for our preprocessing 
approach. Section III presents the feature extraction 
methods investigated in this work, noting their suitability 
for noise and transcoded speech. Section IV describes the 
deep learning-based Automatic Speech Recognition 
(ASR) models used in this study. Section V describes the 
speech corpus, experiment setup, and discusses the results 
in various degradation conditions. Section VI summarizes 
the paper with the most significant results and future 
directions of work. 

II. AUTOMATIC SPEECH RECOGNITION OVER 

MOBILE NETWORK AND SPEECH 

ENHANCEMENT 

Today, with rapid expansion of cellular networks for 
voice services, system design for making speech 

recognition systems reliable and solid in the 

environment is a paramount issue of research. 

Noise is introduced by cellular network transmission, 

bandwidth constraint, signal degradation, all of 
which are certain to impact recognition. In an effort 

to combat these factors, strategies from effective 
robust automatic speech recognition techniques to 

advanced speech enhancement approaches have 

been developed. This section explains these 
strategies in depth, beginning with the exploration of 

how the performance of speech recognition systems 
under mobile network conditions, followed by 

implementing techniques such as Non-negative 
Matrix Factorization for enhancing the intelligibility 

and quality of speech signals 

A. Speech recognition over mobile Network 

The incredible developments in computing and 
networking have spurred a huge interest in deploying 

Automatic Speech Recognition on Mobile Devices and 

Over Communication Networks, and this trend is 
growing. 

B. Client-server architectures for Speech Recognition 

Many studies focus on architectures where speech 
recognition is performed on a remote server, while the 

mobile device acts as a lightweight client. For instance, 

Aggarwal et al. [1] proposed optimized protocols for real-
time transmission of compressed audio streams, reducing 

latency and bandwidth consumption. These architectures 
leverage the computational power of cloud data centers to 

run complex recognition models 

C. Audio Compression and Transmission 

Recognition accuracy heavily depends on the quality of the 

transmitted audio signal. Research has explored 
compression methods tailored for speech recognition, 

such as specialized codecs (AMR-WB, Opus) that preserve 
essential speech features while minimizing bitrate. Lukas 

et al. [2] studied the impact of different codecs on 
recognition performance over mobile networks. 

D. Robustness to Variable Network Conditions 

Mobile networks (3G, 4G, 5G) experience fluctuating 

bandwidth, latency, and packet loss. Kumar et al. (2020) 

proposed adaptive mechanisms that dynamically adjust 
audio quality and recognition model complexity based on 

network conditions to ensure smooth user experience. 

Cloud-Based Speech Recognition Models 
With cloud computing advances, platforms like Google 

Speech-to-Text, Microsoft Azure Speech Services, and IBM 
Watson provide APIs accessible via mobile networks. 

These services utilize deep learning models trained on 
large multilingual datasets, offering high accuracy even in 

noisy environments. 

E. On-device vs Network-Based Recognition 

Research comparing on-device and network-based speech 

recognition highlights trade-offs. Chen et al. (2021) 

showed that on-device recognition reduces latency and 
enhances privacy but is limited by mobile hardware 

constraints, justifying cloud usage for more demanding 
applications. 

F. Speech enhancement 

Speech signals under real acoustic conditions are mostly 
corrupted by forms of acoustic interference. Speech 
enhancement techniques, particularly those using spectral 

subtraction, have proved to significantly improve the 

performance of Automatic Speech Recognition (ASR) 
systems under noisy conditions. The observed noisy 

speech signal can be modeled in the time domain as: 
 

)()()( tntxty                                          (1) 

 

where x(t) denotes the clean speech signal, y(t) represents  
the observed noisy speech, and 𝑛(ݐ) is the additive noise 
component. By applying the Short-Time Fourier  Transform 
(STFT).
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The signals are represented in the time-

frequency domain as y(݂, m),̂ݔ(f,m), and 𝑛(݂, m), 

corresponding to the noisy speech, estimated 
clean speech, and noise spectrum, respectively. 

The basic spectral subtraction method estimates 

the clean speech spectrum as follows:  

݉ ,݂)ݔ                ݉ ,݂)ݕ = ( ) − 𝑛(݂, ݉ )                           (2) 

   

G. Non-negative matrix factorization 

Non-negative Matrix Factorization (NMF) is a 

widely used technique for speech enhancement 
that decomposes the training data of noisy 
speech— typically represented as a magnitude or 

power spectrogram—into the product of two 

non-negative matrices: a basis matrix and an 

activation (or weight) matrix. This 
decomposition enables the independent 

reconstruction of the magnitude spectrograms of 

both speech and noise components [8]-[9]-[10]-
[11].  Formally, given a non-negative matrix ܸ∈ܴ≥0 𝑛×݉ NMF seeks to find two non-negative 
matricܹ ∈ ܴ≥0 𝑛×ݎ and ݎ 0≤ܴ ∋ܪ×݉ such that:  

 

                                   V = W ∗ H                                              (3) 

 

Here, ܹ contains the basis vectors (e.g., spectral 
patterns), and ܪ contains their corresponding 

activations over time. The rank ݎ is typically 

chosen such that ݎ < ݉݅𝑛(𝑛, ݉) , resulting in a 
low-rank approximation of the original matrix ࢂ. 

This decomposition allows for the modeling and 
separation of speech and noise components in the 

spectrogram domain using NMF-based 

reconstruction techniques [9]. After segmenting 
the time-domain signal, each segment is 

transformed into the frequency domain using the 
Fast Fourier Transform (FF). 

 
III. HYBRID DEEP LEARNING ARCHITECTURES 

FOR ASR 

In this study, the Deep Neural Network (DNN) 
architecture comprises three hidden layers, 

following the design proposed in [10]. The 
network is trained to perform speech 

enhancement by mapping noisy speech inputs to 

their clean counterparts. Each input sample 
consists of a log-magnitude spectrogram 

computed over a window of consecutive frames, 
providing temporal context. The dimensionality 

of the input layer corresponds directly to the size 
of the feature vector. The output layer generates 

an estimated log-magnitude spectrogram of clean 

speech, aiming to suppress noise components 
effectively. Each hidden layer activation hi is calculated 

through a linear transformation of the input, using a 
weight matrix , followed by a nonlinear activation 

function. This layer- wise transformation allows the 

DNN to learn complex mappings between noisy and 
clean speech spectra. The network is trained using a 

mean squared error loss between the predicted and 
target clean spectrograms.  

 
where. ܼ(ߥ) = (ݓ)T ߥ + ܽ, and ܹ and ܽ represent the 

weight matrix.  

respectively. 
 

                        l

i

lTl

i

l

i avwh                                   (5) 

 

where 
l

w and  
l

a are the weight matrix and bias, 

respectively, at the hidden layer ݈,  l

ih  is the output of 

the  neuron.  

 

A. LSTM (Long Short-Term Memory) Model for Speech 
Recognition 

The Long Short-Term Memory (LSTM) network is a 
highly evolved version of the recurrent neural network 

(RNN) that was originally created to mitigate the short 
comings of standard RNNs—most notably the 

vanishing and exploding gradient issues hindering 

learning over long sequences. LSTM architecture 
consists of a memory cell and three gate mechanisms—
input, forget, and output gates—which manage the 

flow of information into, through, and out of the cell. 

This architecture enables the network to retain 

meaningful information on large time steps and thus is 
most appropriate for sequence data modeling of long-

term dependencies such as speech. This gating 
architecture allows the model to effectively extract 

long-term temporal relationships by discarding or 
main-training them suitably. Because of this capability, 

LSTM networks have proven to be particularly 

beneficial in sequential data modeling applications 
such as voice processing, where retaining context over 

time is critical. In speech recognition, it is essential to 
preserve the temporal context of phonemes and words 

to correctly interpret them. The Long Short-Term 

Memory (LSTM) model meets this need by processing 
input sequences of acoustic feature vectors, for 

instance, Mel-Frequency Cepstral Coefficients 
(MFCCs), spectrogram slices, or Gabor-based features, 

that represent the speech signal as a function of time. 
Using its internal memory characteristics, the LSTM 

effectively captures dynamic temporal patterns and 

transitions of spoken language without any need for 
spatial structure analysis.   
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Major advantages of the LSTM architecture are: 

Ability to manage long-term temporal dependencies, which 
play a significant role in the context of continuous speech 
understanding. 

Noise and variability insensitivity in the speech sequence 
length, enhancing performance under real-world 
conditions. 

A reasonably simple and computationally efficient 
architecture, and thus suitable for real-time and embedded 
speech processing tasks. 

Overall, LSTM networks continue to offer a robust and 
interpretable approach to sequence modeling in speech 
recognition tasks. 

B. CNN-LSTM Model for Speech Recognition 

Convolutional Long Short-Term Memory (CNN- LSTM) 
is a deep learning hybrid architecture which integrates 
Convolutional Neural Networks (CNNs) and Long Short-
Term Memory (LSTM) networks to efficiently learn and 
represent speech signals. In this case, CNNs operate on 
time-frequency representations such as spectrograms to 
learn spatial features—identifying significant acoustic pat- 
terns such as formants, harmonics, and local frequency 
changes. These high-level feature maps are then fed into 
the LSTM, where it extracts their temporal dynamics and 
sequential dependencies inherent in natural speech. This 
combined architecture has strong points, particularly in 
noisy acoustic scenarios. CNNs are insensitive to noise and 
local deformations, whereas LSTMs preserve long 
temporal dependencies well. In contrast to traditional 
models relying on hand-designed features, CNN-LSTM 
models learn discriminative feature representations 
automatically from raw inputs, reducing the demands of 
manual feature engineering [17]. Generally, the CNN-
LSTM architecture demonstrates superior performance in 
speech recognition tasks by leveraging spatial and temporal 
modeling capabilities in combination. It is well suited for 
application in visual time-series input tasks and has 
potential in real-world and multilingual speech processing. 

 

IV. FEATURES EXTRACTION (FRONT-END) 

The front-end analysis is the preliminary step of Automatic 
Speech Recognition (ASR), wherein the acoustic in- put 
signal is mapped into a series of acoustic feature vectors. 
This typically involves inspection of the short-term signal 
spectrum, which effectively characterizes the acoustic 
realizations of phonetic events. The optimal front- end 
analysis method must be able to retain all perceptually 
pertinent information needed for phonetic discrimination 
while remaining tolerant of variations that are linguistically 
or phonetically insignificant. We utilize two techniques for 
feature extraction in this paper. One technique is 
perceptually motivated representations of speech that we 
use to align the extracted features with human perception. 
The second is the utilization of Gabor filter-based 
representations because such representations suit 
extracting localized spectro-temporal patterns from the 
speech signal [7]. 

A. Perceptual Speech Approach 

This approach is perceptually centered on speech modeling, with 
the focus laid on how humans interpret and process auditory 
signals. Methods such as: Fourier Analysis: Used to decompose 
the speech signal into its frequency constituents, providing a 
spectral description over time. Mel-Frequency Cepstral 
Coefficients (MFCCs): A widely employed feature extraction 
algorithm that maps frequencies to the Mel scale—a more 
perceptually human auditory scale. MFCCs capture perceptually 
relevant spectral information and perform best at phoneme-level 
discrimination. In parallel, Gabor filter banks are used as a 
second alter- native, particularly for extracting spectro-temporal 
features from time-frequency representations. Originally de- 
signed for image analysis, Gabor filters mimic the response 
characteristics of visual cortex neurons by extracting local 
frequency, orientation, and texture details. In speech processing, 
they are employed to promote feature representation by 
identifying fine-grained spectrogram patterns for better 
classification performance in both clean and noisy conditions [7]. 
The Gabor features are employed here to retrieve robust spectro-
temporal information from the speech signal. Two-dimensional 
(2-D) Gabor modulation filters are employed to manipulate the 
input spectro- gram. These filters operate in frequency and time 
domains and produce 2-D feature vectors that capture the 
patterns of localized modulation. Gabor representation describes 
the envelope width as a function of modulation frequency in 
order to possess the same number of periods at every frequency. 
It possesses this property so that Gabor features can be used as a 
wavelet-like representation in frequency and time domains too 
[13]-[14]. The convolution of the Gabor functions gu,v(t, f) with 
the power spectrum X(t, f) is given by: 

 

                   Gu,v(t, f) = |X(t, f) ∗ gu,v(t, f)|                             (6) 

 

where ∗ represents the 2-D convolution operation. These 
resulting feature maps constitute a collection of image-like 
representations, each for different time-frequency modulations 
and filter parameters. The underlying spectro-temporal 
representation utilized for Gabor filtering is often obtained from 
the Short-Time Fourier Transform (STFT) or Mel spectrogram. 
The STFT is widely used for speech analysis, where the signal is 
segmented into overlapping frames and transformed via the 
Discrete Fourier Trans- form (DFT). This complex-valued STFT 
obtained has both magnitude and phase. The magnitude 
spectrogram is created by computing the absolute value of each 
STFT coefficient. In situations where the amplitude spectrum is 
modified—e.g., by masking methods—reconstruction of the 
time-domain signal will typically involve retaining the original 
phase and applying the inverse DFT. Alternatively, Non-
negative Matrix Factorization (NMF) is more likely to be applied 
in the Mel-frequency spectral domain, which offers a frequency 
resolution inspired by perception aligned with human hearing. 
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Fig. 1. The NMF model, represents the magnitude spectrum matrix V as the product of basis matrix W and H 

 

 

 
 
 
 

Fig.2. Speech recognition in mobile communication 
 

 
TABLE. 1. SUMMARY OF ARADIGITS-BASED SPEECH DATABASES 

 
Attribute ARADIGIT_NOISE_NMF ARADIGIT_EVS_NOISE_NMF 
Content Arabic digits (0 to 9) Arabic digits (0 to 9) 
Speakers 110 Algerian speakers (both 

genders) 
Same as ARADIGIT_NOISE_NMF 

Repetitions 3 repetitions per digit Same as ARADIGIT_NOISE_NMF 
Speaker Age Range 18 to 50 years Same as ARADIGIT_NOISE_NMF 

Recording Environment Quiet room, ambient noise < 35 
dB 

Same as ARADIGIT_NOISE_NMF 

File Format WAV, sampled at 16 kHz, 
downsampled to 8 kHz 

Same as ARADIGIT_NOISE_NMF 

Developed By LCPTS Laboratory LCPTS Laboratory 
Noise Type Babble noise Babble noise 

Processing Steps Noise added + NMF-based noise 
removal 

Noise added + EVS transcoding + 
NMF-based noise removal 
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V. EXPERIMENTAL SETUP       

    In this section, we introduce the datasets, evaluation 
metrics. 

A. Datasets 

This section describes the database used to train the 
speech recognition models. The speech database used in 
this paper is the ARADIGITS database [4]. It consists of a 
set of 10 digits of the Arabic language (zero to nine) 
spoken by 110 speakers of both genders with three 
repetitions for each digit. This database was recorded by 
Algerian speakers from different regions aged between 18 
and 50 years in a quiet environment with an ambient noise 
level below 35 dB, in .wav format, with a sampling 
frequency equal to 16 kHz and converting to 8kHz. We 
used two datasets: 

1. ARADIGIT_NOISE_NMF 

 Content: Arabic digits from 0 to 9. 

 Creation: Developed at the LCPTS laboratory. 

 Processing: 

o This database is contaminated with various levels 
of babble noise. 

o The noise is then estimated and removed using 
the Non-negative Matrix Factorization (NMF) 
technique. 

2. ARADIGIT_EVS_NOISE_NMF 

 Content: Arabic digits from 0 to 9. 

 Creation: Developed at the LCPTS laboratory. 

 Processing: 

o This database is also contaminated with various lev- 
els of babble noise. 

o It is then transcoded using an EVS. 

o Finally, the noise is estimated and removed using the 
NMF technique. 

These databases (as illustrated in table 1) are used to 
evaluate the performance of our feature extraction 
approache under various noisy conditions by implementing 
advanced noise reduction techniques. We used EVS 
(Enhanced Voice Services) as the speech codec 
standardized by 3GPP for voice communication over LTE 
networks (VoLTE) [18]-[19]. It was developed to 
significantly improve audio quality compared to earlier 
codecs like AMR- NB and AMR-WB, while offering 
greater robustness to packet loss and more efficient 
compression. 

B. Recognition Accuracy (RA) 

A set of experiments was conducted to test the Recognition 
Accuracy (RA) by measuring the ASR performance. The 
Recognition Accuracy is calculated by the following 
equation 

 

100(%) 



N

SDN
RA  

where N is the total number of units (words), D is the number of 
deleted errors, S is the number of substituted. 

 
IV. RESULTS OF SPEECH RECOGNITION USING HYBRID DEEP 

LEARNING ARCHITECTURES 
 

 

The following table presents the speech recognition results 
for speech corrupted by different levels of SNR with 
babble noise and estimated using the NMF technique. Two 
parameterization approaches are used: MFCC representing 
the perceptual approach and Gabor filter representing the 
approach. The recognition system used is based on DNNs 
(Deep Neural Networks). 

TABLE. 2. DNN RECOGNITION ACCURACY 
 

 
Model and 

features 

 
Signal 

 
SNR 

 
(-5dB) 

 
SNR 

(0dB) 

 
SNR 

(5Db) 

 
SNR 

(10dB) 

 
MFCC 

 
Non-trans- 
coded 

 
62% 

 
69.21% 

 
75.65% 

 
83.05% 

 
MFCC 

 
Transcoded 

 
54.39% 

 
62.15% 

 
69.82% 

 
77.08% 

GFMFCC 
Transcoded 55.34% 64.28% 73.17% 78.77% 

 

This table provides an overview of the speech recognition 
system's performance under various noise conditions, 
highlighting a comparison between MFCC and Gabor 
filter-based feature extraction methods. The use of Non-
negative Matrix Factorization (NMF) for noise reduction is 
essential for enhancing recognition accuracy in noisy 
environments. SNR Level (dB): This column denotes the 
Signal-to-Noise Ratio levels at which babble noise was 
introduced. MFCC (Perceptual Approach): This column 
shows the recognition accuracy achieved using Mel-
Frequency Cepstral Coefficients, which capture the 
perceptual features of speech. Gabor Filter: This column 
presents the recognition accuracy achieved with Gabor 
features, which are designed to improve the representation 
of speech signal parameters by analyzing time-frequency 
resolution. 
A. Description and Analysis of Results  

The Table.3 presents a comparative analysis of the 
performance of three speech recognition models— CNN-
LSTM, LSTM, and DNN—using various feature sets 
(MFCC, Mel spectrogram, and Gabor filter) under different 
noise conditions. The models are evaluated on both non-
transcoded and transcoded speech signals, with the Signal-
to-Noise Ratio (SNR) and Noise-to-Speech Ratio (NSR) 
values reported at -5 dB, 0 dB, 5 dB, and 10 dB for each 
condition. Non-Transcoded Speech:  
The CNN-LSTM model, using the combination of MFCC, 
Mel spectrogram, and Gabor filter, shows the best 
performance across all noise levels, achieving a significant 
improvement in recognition accuracy, particularly under 
higher noise conditions (NSR -5 dB to 5 dB), with the 
highest recognition accuracy of 87.00 at SNR 10 dB. 
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TABLE. 3. PERFORMANCE COMPARISON OF SPEECH 

RECOGNITION MODELS WITH DIFFERENT FEATURE S AND 

RECOGNITION MODEL UNDER VARYING NOISE CONDITIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

This suggests that the inclusion of Mel spectrogram and 
Gabor filter features provides enhanced robustness against 
noise. The LSTM model with MFCC and Gabor filter 
features also demonstrates good performance, but it falls 
behind the CNN-LSTM model in terms of recognition 
accuracy, particularly as the noise level increases. Its best 
performance is 86.74 at SNR 10 dB. The DNN model, while 
still effective, shows the lowest performance compared to 
the CNN-LSTM and LSTM models across all noise 
conditions. This model achieves its best result (85.00) at 
SNR 10 dB. Transcoded Speech: when the speech signal 
undergoes transcoding, performance degrades across all 
models. The CNN-LSTM model still outperforms the other 
two models but with a notable drop in accuracy, especially 
under lower noise conditions (NSR -5 dB to 5 dB). It 
achieves a maxi- mum recognition accuracy of 84.00 at 
SNR 10 dB. In the similarly, the LSTM and DNN models 
exhibit reduced accuracy in the transcoded speech 
condition, with the LSTM reaching a maximum of 82.74 at 
SNR 10 dB, and the DNN reaching 82.00. 

Overall, the CNN-LSTM model with the combination of 
MFCC, Mel spectrogram, and Gabor features offers the best 
performance across both non-transcoded and trans- coded 
speech, showing strong resilience against noise. However, 
the performance degradation with transcoding highlights 
the impact of signal distortion on model effectiveness, and 
future work could explore improving robust- ness under 
transcoding scenarios. 

V. Conclusion 

 
In this study, we evaluated the robustness of Arabic 
automatic speech recognition (ASR) systems under 
challenging conditions, focusing on the combined 
effects of noise and speech transcoding using the 
Enhanced Voice Services (EVS) codec. The proposed 
approach incorporated Non- negative Matrix 
Factorization (NMF)-based denoising and multi-
acoustic feature fusion as a preprocessing strategy. 
Experimental results demonstrated that the hybrid 
CNN- LSTM model, combined with the proposed 
preprocessing pipeline, achieved the highest 
recognition accuracy of 87% at 10 dB SNR on clean 
speech. However, EVS transcoding led to a 
performance drop of 2–4%, particularly in low- SNR 

scenarios. These findings underscore the effective- ness 
of NMF-based denoising and the benefit of combining 
multiple spectral representations to enhance ASR 
robust- ness in real-world environments. Future work 
will explore advanced speech enhancement techniques 
and more sophisticated architectures, including self-
supervised learning models, to further improve robust- 
ness especially in mobile telephony and multilingual 
con- texts. 

 
REFERENCES 

 
[1] C. Aggarwal, D. Olshefski, D. Saha, Zon-Yin Shae and P. Yu, 

"CSR. (2005): Speaker Recognition from Compressed VoIP 
Packet Stream,". IEEE International Conference on Multimedia 
and Expo, Amsterdam, Netherlands,, pp. 970-973. 

[2] Drude, L., Heymann, J., Schwarz, A., & Valin, J. M. (2021). 
Multi- channel Opus compression for far-field automatic speech 
recognition with a fixed bitrate budget. arXiv preprint 
arXiv:2106.07994. 

[3] Dong, P., Wang, S., Niu, W., Zhang, C., Lin, S., Li, Z., ... & 
Tao, D. (2020). Rtmobile: Beyond real-time mobile 
acceleration of rnns for speech recognition. In 2020 57th 
ACM/IEEE Design Automation Con- ference (DAC) (pp. 1-6). 
IEEE 

[4] Amrouche, A., Debyeche, M., Taleb Ahmed, A., Rouvaen, J. 
M., & Ya- goub, M. C. E. (2010). Efficient system for speech 
recognition in ad- verse conditions using nonparametric 
regression. Engineering Applica- tions of Artificial Intelligence, 
23(1), 85–94. 

[5] Ryumin, D., Ivanko, D., & Ryumina, E. (2023). Audio-visual 
speech and gesture recognition by sensors of mobile devices. 
Sensors, 23(4), 2284., 

[6] Bouchakour, L., & Debyeche, M. (2022). Noise-robust speech 
recogni- tion in mobile network based on convolution neural 
networks. Interna- tional Journal of Speech Technology, 25(1), 
269-277. 

[7] Bouchakour, L., Debyeche, M., & Krobba, A. (2024). Robust 
Features in Deep Neural Networks for Transcoded Speech 
Recognition DSR and 
AMR-NB. In 8th International Conference on Image and Signal 
Pro- cessing and their Applications (ISPA) (pp. 1-5). IEEE. 

[8] M. Schmidt and R. Olsson, (2006).“Single-channel speech 
separation using sparse non-negative matrix factorization,” in 
Proc. Interspeech, 
pp. 3111–3119. 

[9] R. J. Weiss and D. P. Ellis, (2006). “Estimating single-channel 
source separation masks: Relevance vector machine classifiers 
vs. pitch-based masking,” in Proc. SAPA,, pp. 31–36. 

[10] Rohlfing, C., Becker, J. M., & Wien, M. (2016,). NMF-based 
informed source separation. In IEEE international conference 
on acoustics, speech and signal processing (ICASSP) (pp. 474-
478). IEEE. 

[11] Tuomas Virtanen, “Monaural sound source separation by 
nonnegative matrix factorization with temporal continuity and 
sparseness criteria,” IEEE Transactions on Audio, Speech, and 
Language Processing, vol. 15, no. 3, pp. 1066–1074, 2007. 

[12] Abdel-Hamid, O., Mohamed, A. R., Jiang, H., Deng, L., Penn, 
G., & Yu, D. (2014). Convolutional neural networks for speech 
recogni- tion. IEEE/ACM Transactions on audio, speech, and 
language pro- cessing, 22(10), 1533-1545. 

[13] Schädler, M. R., & Kollmeier, B. (2012) Normalization of 
Spectro- Temporal Gabor Filter Bank Features for Improved 
Robust Automatic Speech Recognition Systems. In : In 
Thirteenth Annual Conference of the International Speech 
Communication Association. 

[14] Schädler, Marc René; Meyer, Bernd T.; Kollmeier, Birger 
(2012) Spec- tro-temporal modulation subspace-spanning filter 
bank features for ro- bust automatic speech recognition. In : The 
Journal of the Acoustical Society of America, vol. 131, n° 5, p. 
4134–4151. DOI: 10.1121/1.3699200. 

[15] Zhao, J., Li, R., Tian, M., & An, W. (2024). Multi-view self-
supervised learning and multi-scale feature fusion for automatic 
speech recogni- tion. Neural Processing Letters, 56(3), 168. 

[16] A. Mahmoudi and M. Deriche, (2004). "CNN-BiLSTM 
Architectures for Arabic Speech Recognition under Noise and 
Compression," Neural Computing and Applications, 2024. 

[17] Djeffal, N., Addou, D., Kheddar, H., & Selouani, S. A. (2023). 
Noise- robust speech recognition: A comparative analysis of 

Model and 
features 

Signal SNR 
(-5dB) 

SNR 
(0 dB) 

SNR 
(5 dB) 

SNR 
(10dB) 

CNN-LSTM 
(MFCC+mel_d 
b+Gabor) 

Non- 
transcoded 

65.00 71.00 77.00 87.00 

LSTM 
(MFCC+Gabor) 

Non- 
transcoded 

63.78 70.12 75.55 86.74 

DNN 
(MFCC+Gabor) 

Non- 
transcoded 

63.50 70.00 74.33 85.00 

CNN-LSTM 
(MFCC+mel_d 
b+Gabor) 

Transcoded 61.43 68.00 75.00 84.00 

LSTM 
(MFCC+Gabor) 

Transcoded 60.00 67.32 73.95 82.74 

DNN 
(MFCC+Gabor) 

Transcoded 59.50 65.00 70.33 82.00 

LALLOUANI BOUCHAKOUR ET AL.: ENHANCING ARABIC ASR IN NOISY AND TRANSCODING EVS CONDITIONS 7



LSTM and CNN approaches. In 2023 2nd International Conference on 

Electronics,  En- ergy and Measurement (IC2EM) (Vol.  1,  pp.  1-6). 

IEEE.

[18] Dietz, M., Multrus, M., Eksler, V., Malenovsky, V., Norvell, E., Pob- 

loth, H., ... & Zhu, C. (2015). Overview of the EVS codec architec-

ture. In 2015 IEEE International Conference on Acoustics, Speech and 

Sig- nal Processing (ICASSP) (pp. 5698-5702). IEEE.

[19] Wankhede,  N.,  &  Wagh,  S.  (2023).  Enhancing  biometric  speaker 

recog- nition through MFCC feature extraction and polar codes for re-

mote ap- plication. IEEE Access, 11, 133921-133930.

8 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025


