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Abstract—In this paper, we investigate the impact of speech
transcoding and noise on the performance of Arabic automatic
speech recognition (ASR) systems based on deep learning. We
apply Non-negative Matrix Factorization (NMF) as a denoising
preprocessing step to enhance robustness to noise. Three deep
architectures—CNN-LSTM, LSTM, and DNN—are evaluated
using fused acoustic features including MFCCs, Mel- spectro-
grams, and Gabor filter representations. Experiments are con-
ducted under four signal-to-noise ratio (SNR) conditions (—5
dB, 0 dB, 5 dB, and 10 dB) on both transcoded and non-
transcoded speech. Results show that the CNN-LSTM model
achieves the highest accuracy of 87% at 10 dB SNR on clean
(non-transcoded) speech using multimodal features. However,
speech recognition performance degrades by 2-4% when using
the Enhanced Voice Services (EVS) codec, especially in high-
noise environments. Specifically, accuracy drops from 65.00%
to 61.43% at —5 dB SNR, and from 87.00% to 84.00% at 10 dB
SNR due to transcoding. These findings highlight the negative
impact of mobile codec compression on ASR systems, particu-
larly under low-SNR conditions. Our study confirms the effec-
tiveness and stability of NMF-based feature fusion and denois-
ing in improving recognition, offering insights into deploying
Arabic ASR in real-world scenarios such as mobile and VoIP
communications.

Index Terms—Audio transcoding, Noise, Arabic speech,
NMF; CNN-LSTM, LSTM, DNN, SNR.

I. INTRODUCTION

UTOMATIC Speech Recognition (ASR) technologies

have achieved remarkable performance in clean, con-
trolled environments with the advancement of deep learning
and sophisticated feature extraction techniques. Their prowess
in real-world environments under hostile conditions such as
mobile communication, Voice over IP (VoIP) services, and
low-bandwidth channels remains an enduring challenge. In
these situations, speech signals are usually distorted by not
only background noise but also compression distortions due to
speech codecs, such as those employed in Enhanced Voice
Services (EVS). The dual distortions greatly impair speech in-
telligibility and acoustic coherence, leading to drastic degra-
dation of ASR performance. Traditional automatic speech
recognition (ASR) systems, being predominantly Hidden
Markov Model (HMM)- and Gaussian Mixture Model
(GMM)- based [1][2], are plagued with limited robustness in
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mildly noisy environments. Their accuracy significantly with
nonlinear distortions via lossy speech compression. Deep
learning models—Deep Neural Networks (DNNs), Long
Short-Term Memory (LSTM) networks, and hybrid Convolu-
tional Neural Network—LSTM (CNN-LSTM) architecture—
have overwhelmed such traditional practices in recent years
due to their strong ability to learn complicated speech patterns
[16]. Due to all these developments, current state-of-the-art
ASR engines are still very susceptible to non-stationary noise
and encoding artifacts, particularly in the absence of any spe-
cial preprocessing. A hard problem arises in mobile and inter-
net communication systems, where speech signals are typi-
cally compressed by low-bitrate codecs (EVS), perceptually
optimized rather than acoustically faithful [18,19]. The com-
pression causes time-frequency distortions that mask impor-
tant phonetic information, significantly degrading ASR per-
formance. Moreover, these distortions become exacerbated
under low signal-to- noise ratio (SNR) conditions, such as —5
dB, significantly making it difficult to obtain correct speech
recognitionIn order to address these challenges, a speech en-
hancement method based on Non-negative Matrix Factoriza-
tion (NMF) is put forward in this research. As an unsuper-
vised learning algorithm, NMF decomposes the magnitude
spectrogram of noisy speech into low-rank, non-negative
bases and temporal activations [8,9,10,11]. With separate
modeling of speech and noise components, efficient noise re-
duction can be achieved without prior noise training. This fea-
ture makes the approach extremely adaptive to dynamic and
changing acoustic environments. Moreover, we investigate
the impact of Enhanced Voice Services (EVS) transcoding on
the performance of Arabic automatic speech recognition
(ASR), which is an under investigated area considering the
widespread use of EVS deployment in mobile wireless net-
works. In this regard, we compare the performances of three
deep learning- based architectures: deep neural networks
(DNNs), long short-term memory (LSTM) networks, and a
hybrid convolutional-LSTM (CNN-LSTM) network [16].
These models are acquired on the basis of a multimodal fu-
sion of acoustic features like Mel-frequency Cepstral Coeffi-
cients (MFCCs), Mel-spectrograms, and Gabor filter-based
descriptors.

Topical area: Network Systems and Applications
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By fusing complementary spectral and temporal Automatic Speech Recognition on Mobile Devices and

representations of speech, our work achieves increased Over- Communication Networks, and this trend is
robustness in adverse acoustic conditions. growing.

This paper advances the understanding of Automatic B. Client-server architectures for Speech Recognition

Speech Recognition (ASR) robustness in challenging Many studies focus on architectures where speech
acoustic environments  through the following key recognition is performed on a remote server, while the

contributions:

e A thorough analysis of ASR performance under
simulated combined noise and Enhanced Voice
Services (EVS)-induced distortions, considering
serious degradation trends under actual-like
unfavorable conditions.

e A novel preprocessing system with NMF as the
underlying framework to enhance the quality of
noisy and transcoded speech, significantly
enhancing downstream ASR accuracy.

e A comparative study of deep learning-based ASR
models through integrated acoustic representations,
demonstrating their ability to successfully counter
compounded speech distortions.

The remainder of this paper is organized as follows:

Section II presents speech enhancement techniques based

on Non-Negative Matrix Factorization (NMF) in order to

establish the theoretical framework for our preprocessing
approach. Section III presents the feature extraction
methods investigated in this work, noting their suitability
for noise and transcoded speech. Section IV describes the
deep learning-based Automatic Speech Recognition

(ASR) models used in this study. Section V describes the

speech corpus, experiment setup, and discusses the results

in various degradation conditions. Section VI summarizes
the paper with the most significant results and future
directions of work.

II. AUTOMATIC SPEECH RECOGNITION OVER
MOBILE NETWORK AND SPEECH
ENHANCEMENT

Today, with rapid expansion of cellular networks for

voice services, system design for making speech
recognition systems reliable and solid in the
environment is a paramount issue of research.

Noise is introduced by cellular network transmission,
bandwidth constraint, signal degradation, all of
which are certain to impact recognition. In an effort
to combat these factors, strategies from effective
robust automatic speech recognition techniques to
advanced speech enhancement approaches have
been developed. This section explains these

strategies in depth, beginning with the exploration of

how the performance of speech recognition systems
under mobile network conditions, followed by
implementing techniques such as Non-negative
Matrix Factorization for enhancing the intelligibility
and quality of speech signals

A. Speech recognition over mobile Network

The incredible developments in computing and
networking have spurred a huge interest in deploying

mobile device acts as a lightweight client. For instance,
Aggarwal et al. [1] proposed optimized protocols for real-
time transmission of compressed audio streams, reducing
latency and bandwidth consumption. These architectures
leverage the computational power of cloud data centers to
run complex recognition models

C. Audio Compression and Transmission

Recognition accuracy heavily depends on the quality of the
transmitted audio signal. Research has explored
compression methods tailored for speech recognition,
such as specialized codecs (AMR-WB, Opus) that preserve
essential speech features while minimizing bitrate. Lukas
et al. [2] studied the impact of different codecs on
recognition performance over mobile networks.

D. Robustness to Variable Network Conditions

Mobile networks (3G, 4G, 5G) experience fluctuating
bandwidth, latency, and packet loss. Kumar et al. (2020)
proposed adaptive mechanisms that dynamically adjust
audio quality and recognition model complexity based on
network conditions to ensure smooth user experience.
Cloud-Based Speech Recognition Models

With cloud computing advances, platforms like Google
Speech-to-Text, Microsoft Azure Speech Services, and IBM
Watson provide APIs accessible via mobile networks.
These services utilize deep learning models trained on
large multilingual datasets, offering high accuracy even in
noisy environments.

E. On-device vs Network-Based Recognition

Research comparing on-device and network-based speech
recognition highlights trade-offs. Chen et al. (2021)
showed that on-device recognition reduces latency and
enhances privacy but is limited by mobile hardware
constraints, justifying cloud usage for more demanding
applications.

F. Speech enhancement

Speech signals under real acoustic conditions are mostly
corrupted by forms of acoustic interference. Speech
enhancement techniques, particularly those using spectral
subtraction, have proved to significantly improve the
performance of Automatic Speech Recognition (ASR)
systems under noisy conditions. The observed noisy
speech signal can be modeled in the time domain as:

y(#) = x(t) + n(t) ©)
where x(£) denotes the clean speech signal, y(f) represents
the observed noisy speech, and n(t) is the additive noise

component. By applying the Short-Time Fourier Transform
(STFT).
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The signals are represented in the time-
frequency domain as y(f, m),x(fm), and n(f, m),
corresponding to the noisy speech, estimated
clean speech, and noise spectrum, respectively.
The basic spectral subtraction method estimates
the clean speech spectrum as follows:

x(f,m) =y(f,m) —n(f,m) (2)

G. Non-negative matrix factorization

Non-negative Matrix Factorization (NMF) is a
widely used technique for speech enhancement
that decomposes the training data of noisy
speech— typically represented as a magnitude or
power spectrogram—into the product of two
non-negative matrices: a basis matrix and an
activation (or  weight) matrix. This
decomposition  enables the independent
reconstruction of the magnitude spectrograms of
both speech and noise components [8]-[9]-[10]-
[11]. Formally, given a non-negative matrix
VER>0 nxm NMF seeks to find two non-negative
matricl € R>0 nxr and HE R>0 rxm such that:

V=Wx*H (3)

Here, W contains the basis vectors (e.g., spectral
patterns), and H contains their corresponding
activations over time. The rank r is typically
chosen such that r < min(n, m) , resulting in a
low-rank approximation of the original matrix V.
This decomposition allows for the modeling and
separation of speech and noise components in the
spectrogram  domain  using = NMF-based
reconstruction techniques [9]. After segmenting
the time-domain signal, each segment is
transformed into the frequency domain using the
Fast Fourier Transform (FF).

[1I. HYBRID DEEP LEARNING ARCHITECTURES
FOR ASR

In this study, the Deep Neural Network (DNN)

architecture comprises three hidden layers,
following the design proposed in [10]. The
network is trained to perform speech
enhancement by mapping noisy speech inputs to
their clean counterparts. Each input sample
consists of a log-magnitude spectrogram
computed over a window of consecutive frames,
providing temporal context. The dimensionality
of the input layer corresponds directly to the size
of the feature vector. The output layer generates
an estimated log-magnitude spectrogram of clean

speech, aiming to suppress noise components
effectively. Each hidden layer activation hi is calculated
through a linear transformation of the input, using a
weight matrix , followed by a nonlinear activation
function. This layer- wise transformation allows the
DNN to learn complex mappings between noisy and
clean speech spectra. The network is trained using a
mean squared error loss between the predicted and
target clean spectrograms.

where. Z(v) = (W)Tv + a, and W and a represent the
weight matrix.
respectively.

h = a((w{ Jv' +a! ) (5)

1

where w'and a'are the weight matrix and bias,
respectively, at the hidden layer [, h,.l is the output of

the neuron.

A. LSTM (Long Short-Term Memory) Model for Speech
Recognition

The Long Short-Term Memory (LSTM) network is a
highly evolved version of the recurrent neural network
(RNN) that was originally created to mitigate the short
comings of standard RNNs—most notably the
vanishing and exploding gradient issues hindering
learning over long sequences. LSTM architecture
consists of a memory cell and three gate mechanisms—
input, forget, and output gates—which manage the
flow of information into, through, and out of the cell.
This architecture enables the network to retain
meaningful information on large time steps and thus is
most appropriate for sequence data modeling of long-
term dependencies such as speech. This gating
architecture allows the model to effectively extract
long-term temporal relationships by discarding or
main-training them suitably. Because of this capability,
LSTM networks have proven to be particularly
beneficial in sequential data modeling applications
such as voice processing, where retaining context over
time is critical. In speech recognition, it is essential to
preserve the temporal context of phonemes and words
to correctly interpret them. The Long Short-Term
Memory (LSTM) model meets this need by processing
input sequences of acoustic feature vectors, for
instance, Mel-Frequency Cepstral Coefficients
(MFCCs), spectrogram slices, or Gabor-based features,
that represent the speech signal as a function of time.
Using its internal memory characteristics, the LSTM
effectively captures dynamic temporal patterns and
transitions of spoken language without any need for
spatial structure analysis.



Major advantages of the LSTM architecture are:

Ability to manage long-term temporal dependencies, which
play a significant role in the context of continuous speech
understanding.

Noise and variability insensitivity in the speech sequence
length, enhancing performance under real-world
conditions.

A reasonably simple and computationally efficient
architecture, and thus suitable for real-time and embedded
speech processing tasks.

Overall, LSTM networks continue to offer a robust and
interpretable approach to sequence modeling in speech
recognition tasks.

B. CNN-LSTM Model for Speech Recognition

Convolutional Long Short-Term Memory (CNN- LSTM)
is a deep learning hybrid architecture which integrates
Convolutional Neural Networks (CNNs) and Long Short-
Term Memory (LSTM) networks to efficiently learn and
represent speech signals. In this case, CNNs operate on
time-frequency representations such as spectrograms to
learn spatial features—identifying significant acoustic pat-
terns such as formants, harmonics, and local frequency
changes. These high-level feature maps are then fed into
the LSTM, where it extracts their temporal dynamics and
sequential dependencies inherent in natural speech. This
combined architecture has strong points, particularly in
noisy acoustic scenarios. CNNs are insensitive to noise and
local deformations, whereas LSTMs preserve long
temporal dependencies well. In contrast to traditional
models relying on hand-designed features, CNN-LSTM
models learn discriminative feature representations
automatically from raw inputs, reducing the demands of
manual feature engineering [17]. Generally, the CNN-
LSTM architecture demonstrates superior performance in
speech recognition tasks by leveraging spatial and temporal
modeling capabilities in combination. It is well suited for
application in visual time-series input tasks and has
potential in real-world and multilingual speech processing.

IV. FEATURES EXTRACTION (FRONT-END)

The front-end analysis is the preliminary step of Automatic
Speech Recognition (ASR), wherein the acoustic in- put
signal is mapped into a series of acoustic feature vectors.
This typically involves inspection of the short-term signal
spectrum, which effectively characterizes the acoustic
realizations of phonetic events. The optimal front- end
analysis method must be able to retain all perceptually
pertinent information needed for phonetic discrimination
while remaining tolerant of variations that are linguistically
or phonetically insignificant. We utilize two techniques for
feature extraction in this paper. One technique is
perceptually motivated representations of speech that we
use to align the extracted features with human perception.
The second is the utilization of Gabor filter-based
representations  because such representations  suit
extracting localized spectro-temporal patterns from the
speech signal [7].
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A. Perceptual Speech Approach

This approach is perceptually centered on speech modeling, with
the focus laid on how humans interpret and process auditory
signals. Methods such as: Fourier Analysis: Used to decompose
the speech signal into its frequency constituents, providing a
spectral description over time. Mel-Frequency Cepstral
Coefficients (MFCCs): A widely employed feature extraction
algorithm that maps frequencies to the Mel scale—a more
perceptually human auditory scale. MFCCs capture perceptually
relevant spectral information and perform best at phoneme-level
discrimination. In parallel, Gabor filter banks are used as a
second alter- native, particularly for extracting spectro-temporal
features from time-frequency representations. Originally de-
signed for image analysis, Gabor filters mimic the response
characteristics of visual cortex neurons by extracting local
frequency, orientation, and texture details. In speech processing,
they are employed to promote feature representation by
identifying fine-grained spectrogram patterns for better
classification performance in both clean and noisy conditions [7].
The Gabor features are employed here to retrieve robust spectro-
temporal information from the speech signal. Two-dimensional
(2-D) Gabor modulation filters are employed to manipulate the
input spectro- gram. These filters operate in frequency and time
domains and produce 2-D feature vectors that capture the
patterns of localized modulation. Gabor representation describes
the envelope width as a function of modulation frequency in
order to possess the same number of periods at every frequency.
It possesses this property so that Gabor features can be used as a
wavelet-like representation in frequency and time domains too
[13]-[14]. The convolution of the Gabor functions gu,v(t, f) with
the power spectrum X(t, f) is given by:

Gu,v(t, f) = [X(t, ) * gu,v(t, )| 6)

where * represents the 2-D convolution operation. These
resulting feature maps constitute a collection of image-like
representations, each for different time-frequency modulations
and filter parameters. The underlying spectro-temporal
representation utilized for Gabor filtering is often obtained from
the Short-Time Fourier Transform (STFT) or Mel spectrogram.
The STFT is widely used for speech analysis, where the signal is
segmented into overlapping frames and transformed via the
Discrete Fourier Trans- form (DFT). This complex-valued STFT
obtained has both magnitude and phase. The magnitude
spectrogram is created by computing the absolute value of each
STFT coefficient. In situations where the amplitude spectrum is
modified—e.g., by masking methods—reconstruction of the
time-domain signal will typically involve retaining the original
phase and applying the inverse DFT. Alternatively, Non-
negative Matrix Factorization (NMF) is more likely to be applied
in the Mel-frequency spectral domain, which offers a frequency
resolution inspired by perception aligned with human hearing.
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Fig.2. Speech recognition in mobile communication
TABLE. 1. SUMMARY OF ARADIGITS-BASED SPEECH DATABASES
Attribute ARADIGIT_NOISE_NMF ARADIGIT_EVS_NOISE_NMF
Content Arabic digits (0 to 9) Arabic digits (0 to 9)
Speakers 110 Algerian speakers (both Same as ARADIGIT_NOISE_NMF
genders)
Repetitions 3 repetitions per digit Same as ARADIGIT_NOISE_NMF
Speaker Age Range 18 to 50 years Same as ARADIGIT_NOISE_NMF
Recording Environment Quiet room, ambient noise < 35 Same as ARADIGIT_NOISE_NMF
dB
File Format WAV, sampled at 16 kHz, Same as ARADIGIT_NOISE_NMF
downsampled to 8 kHz
Developed By LCPTS Laboratory LCPTS Laboratory
Noise Type Babble noise Babble noise

Processing Steps

Noise added + NMF-based noise
removal

Noise added + EVS transcoding +
NMF-based noise removal




V. EXPERIMENTAL SETUP

In this section, we introduce the datasets, evaluation
metrics.

A. Datasets

This section describes the database used to train the
speech recognition models. The speech database used in
this paper is the ARADIGITS database [4]. It consists of a
set of 10 digits of the Arabic language (zero to nine)
spoken by 110 speakers of both genders with three
repetitions for each digit. This database was recorded by
Algerian speakers from different regions aged between 18
and 50 years in a quiet environment with an ambient noise
level below 35 dB, in .wav format, with a sampling
frequency equal to 16 kHz and converting to 8kHz. We
used two datasets:

1. ARADIGIT_NOISE_NMF
e Content: Arabic digits from 0 to 9.

e  Creation: Developed at the LCPTS laboratory.
e Processing:

o This database is contaminated with various levels
of babble noise.

o The noise is then estimated and removed using
the Non-negative Matrix Factorization (NMF)
technique.

2. ARADIGIT_EVS_NOISE_NMF
e Content: Arabic digits from 0 to 9.

e  Creation: Developed at the LCPTS laboratory.
e  Processing:

o This database is also contaminated with various lev-
els of babble noise.

o Itis then transcoded using an EVS.

o Finally, the noise is estimated and removed using the
NMF technique.

These databases (as illustrated in table 1) are used to
evaluate the performance of our feature extraction
approache under various noisy conditions by implementing
advanced noise reduction techniques. We used EVS
(Enhanced Voice Services) as the speech codec
standardized by 3GPP for voice communication over LTE
networks (VoLTE) [18]-[19]. It was developed to
significantly improve audio quality compared to earlier
codecs like AMR- NB and AMR-WB, while offering
greater robustness to packet loss and more efficient
compression.

B. Recognition Accuracy (RA)

A set of experiments was conducted to test the Recognition
Accuracy (RA) by measuring the ASR performance. The
Recognition Accuracy is calculated by the following
equation

N-D-S§

RA(%) = x100
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where N is the total number of units (words), D is the number of
deleted errors, S is the number of substituted.

IV. RESULTS OF SPEECH RECOGNITION USING HYBRID DEEP
LEARNING ARCHITECTURES

The following table presents the speech recognition results
for speech corrupted by different levels of SNR with
babble noise and estimated using the NMF technique. Two
parameterization approaches are used: MFCC representing
the perceptual approach and Gabor filter representing the
approach. The recognition system used is based on DNNs
(Deep Neural Networks).

TABLE. 2. DNN RECOGNITION ACCURACY

Model and | Signal SNR SNR SNR SNR
features
(-5dB) (0dB) (5Db) (10dB)

MFCC Non-trans- 62% 69.21% 75.65% | 83.05%

coded
MFCC Transcoded 54.39% | 62.15% 69.82% | 77.08%
GFMFCC

Transcoded 55.34% | 64.28% 73.17% | 78.77%

This table provides an overview of the speech recognition
system's performance under various noise conditions,
highlighting a comparison between MFCC and Gabor
filter-based feature extraction methods. The use of Non-
negative Matrix Factorization (NMF) for noise reduction is
essential for enhancing recognition accuracy in noisy
environments. SNR Level (dB): This column denotes the
Signal-to-Noise Ratio levels at which babble noise was
introduced. MFCC (Perceptual Approach): This column
shows the recognition accuracy achieved using Mel-
Frequency Cepstral Coefficients, which capture the
perceptual features of speech. Gabor Filter: This column
presents the recognition accuracy achieved with Gabor
features, which are designed to improve the representation

of speech signal parameters by analyzing time-frequency
resolution.

A. Description and Analysis of Results

The Table.3 presents a comparative analysis of the
performance of three speech recognition models— CNN-
LSTM, LSTM, and DNN-—using various feature sets
(MFCC, Mel spectrogram, and Gabor filter) under different
noise conditions. The models are evaluated on both non-
transcoded and transcoded speech signals, with the Signal-
to-Noise Ratio (SNR) and Noise-to-Speech Ratio (NSR)
values reported at -5 dB, 0 dB, 5 dB, and 10 dB for each
condition. Non-Transcoded Speech:

The CNN-LSTM model, using the combination of MFCC,
Mel spectrogram, and Gabor filter, shows the best
performance across all noise levels, achieving a significant
improvement in recognition accuracy, particularly under
higher noise conditions (NSR -5 dB to 5 dB), with the
highest recognition accuracy of 87.00 at SNR 10 dB.
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TABLE. 3. PERFORMANCE COMPARISON OF SPEECH
RECOGNITION MODELS WITH DIFFERENT FEATURE S AND
RECOGNITION MODEL UNDER VARYING NOISE CONDITIONS

Model and = Signal SNR SNR SNR SNR
features (-5dB) (0 dB) (5 dB) (10dB)
CNN-LSTM Non- 65.00 71.00 77.00 87.00
(MFCC+mel_d transcoded

b+Gabor)

LST™M Non- 63.78 70.12 75.55 86.74
(MFCC+Gabor)  transcoded

DNN Non- 63.50 70.00 74.33 85.00
(MFCC+Gabor)  transcoded

CNN-LSTM Transcoded 61.43 68.00 75.00 84.00
(MFCC+mel_d

b+Gabor)

LST™M Transcoded 60.00 67.32 73.95 82.74
(MFCC+Gabor)

DNN Transcoded 59.50 65.00 70.33 82.00
(MFCC+Gabor)

This suggests that the inclusion of Mel spectrogram and
Gabor filter features provides enhanced robustness against
noise. The LSTM model with MFCC and Gabor filter
features also demonstrates good performance, but it falls
behind the CNN-LSTM model in terms of recognition
accuracy, particularly as the noise level increases. Its best
performance is 86.74 at SNR 10 dB. The DNN model, while
still effective, shows the lowest performance compared to
the CNN-LSTM and LSTM models across all noise
conditions. This model achieves its best result (85.00) at
SNR 10 dB. Transcoded Speech: when the speech signal
undergoes transcoding, performance degrades across all
models. The CNN-LSTM model still outperforms the other
two models but with a notable drop in accuracy, especially
under lower noise conditions (NSR -5 dB to 5 dB). It
achieves a maxi- mum recognition accuracy of 84.00 at
SNR 10 dB. In the similarly, the LSTM and DNN models
exhibit reduced accuracy in the transcoded speech
condition, with the LSTM reaching a maximum of 82.74 at
SNR 10 dB, and the DNN reaching 82.00.

Overall, the CNN-LSTM model with the combination of
MEFCC, Mel spectrogram, and Gabor features offers the best
performance across both non-transcoded and trans- coded
speech, showing strong resilience against noise. However,
the performance degradation with transcoding highlights
the impact of signal distortion on model effectiveness, and
future work could explore improving robust- ness under
transcoding scenarios.

V. Conclusion

In this study, we evaluated the robustness of Arabic
automatic speech recognition (ASR) systems under
challenging conditions, focusing on the combined
effects of noise and speech transcoding using the
Enhanced Voice Services (EVS) codec. The proposed
approach incorporated Non- negative Matrix
Factorization (NMF)-based denoising and multi-
acoustic feature fusion as a preprocessing strategy.
Experimental results demonstrated that the hybrid
CNN- LSTM model, combined with the proposed
preprocessing  pipeline, achieved the highest
recognition accuracy of 87% at 10 dB SNR on clean
speech. However, EVS transcoding led to a
performance drop of 2—4%, particularly in low- SNR

scenarios. These findings underscore the effective- ness
of NMF-based denoising and the benefit of combining
multiple spectral representations to enhance ASR
robust- ness in real-world environments. Future work
will explore advanced speech enhancement techniques
and more sophisticated architectures, including self-
supervised learning models, to further improve robust-
ness especially in mobile telephony and multilingual
con- texts.
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