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Abstract—The integration of deep learning models with UAV
captured images for plant disease detection has been explored in
many papers and has the potential to revolutionize commercial
precision agriculture, by allowing for early and efficient detection
and classification of crop disease stages. In order to address the
limitations posed by low-resolution aerial imaging, this paper
proposes the additional integration of an Enhanced Super Reso-
lution Generative Adversarial Network (ESRGAN) with a Convo-
lutional Neural Network model for field monitoring through UAV
captured imagery. UAVs are a cost effective method of monitoring
large swaths of agricultural land; however, it is difficult to capture
images of a high enough quality and clarity to be adequately
analyzed by a CNN. The images typically lack the necessary
resolution for accurate classification, especially for diseases with
smaller, less noticable symptoms. The Real-ESRGAN model is
employed to generate a dataset of high-resolution images, from
low-resolution inputs, allowing the disease detection CNN to more
accurately and effectively identify and classify disease stages in
Armillaria afflicted cherry trees. This solution offers a solution
to the problem posed by traditional UAV based approaches
that enhances classification accuracy even in suboptimal con-
ditions. Through this integrated approach, the model was able
to reach an increased validation accuracy, as well as significantly
decreased loss values due to the ESRGAN enhanced imagery
allowing for clearer detection of early stage Armillaria symptoms.
This integrated system provides a practical scalable solution
for commercial agriculture, allowing for more comprehensive
and efficient crop disease monitoring. Future research can be
explored to optimize the architecture of this model and expand
its applicability to other crops and environmental conditions,
allowing more efficient precision agriculture and paving the way
for more sustainable farming practices.

Index Terms—Crop Monitoring, Enhanced Super Resolution
GAN, Deep Learning, UAV imagery, Precision Agriculture

I. INTRODUCTION

HE advancement of deep learning has impacted com-

mercial agriculture significantly, particularly in the clas-
sification and recognition of plant diseases. Traditional crop
inspection methods are prone to human errors such as psy-
chological and cognitive biases [1]. Furthermore, the vastness
of agricultural land and the scarcity of trained plant patholo-
gists make manual monitoring impractical [2]. Deep learning,
specifically Convolutional Neural Networks (CNNs), offers
a promising alternative by automating disease detection and
classification tasks with high accuracy [3]. In order to be
properly analyzed by a CNN, UAV captured images must have
a high enough resolution and clarity so that the symptoms of
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a plant disease can be seen. This problem is amplified when
said plant disease has very small symptoms, or when the farm
area is very large. The proposed solution to this limitation is
targeted sampling of a field, where images are acquired from a
small section of the field’s area. While this is a solution would
provide farmers more information than the traditional methods
of scouting for diseases, the difficulties faced by a model
when analyzing UAV images image still stand. The Enhanced
Super-Resolution Generative Adversarial Network (ESRGAN)
model detailed in the section below presents a method for crop
disease classification on low resolution images. The model is
used to generate high resolution images from low resolution
crop images. This is called Image Super Resolution (SR).
Though there are SR methods besides ESRGAN, the paper
shows that the ERAGAN model, and its successor the Real-
ESRGAN model, generate higher visual quality images than
other methods used [4][5].

II. LITERATURE REVIEW
A. Literature Review

In commercial agriculture, identifying disease severity is
crucial for making timely and effective decisions to reduce
financial losses and fight plant infections[6]. Machine Learning
models that classify different stages of a plant disease, are
therefore, most helpful. For example, the regression model
proposed in Detection and Characterization of Stressed Sweet
Cherry Tissues Using Machine Learning identifies different
stages of Amarilma, a devastating cherry tree disease that
causes annually 8 million dollars in losses in the United States
alone[7]. Commercial farmers use aerial and satellite imagery
to monitor their crop fields. According to The application
of small unmanned aerial systems for precision agriculture:
a review, UAV captured aerial imagery is a cost effective
solution that can be used for crop disease detection, reducing
the need for in person monitoring [8][9]. The use of UAVs
paired with detection technologies, is a transformative prac-
tice that will greatly facilitate the practicality of precision
agriculture[9]. These technologies enhance crop monitoring,
optimize resource use, and minimize the environmental foot-
print of farming by reducing the application of fertilizers
and pesticides. However, despite their success, these tech-
niques face challenges when applied in real-world agricultural
conditions. In order to be properly analyzed by a model,
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UAV captured images must have a high enough resolution
and clarity so that the symptoms of a plant disease can be
seen. An image of this quality is hard to capture with a
UAV which is subject to wind, lighting conditions, and other
environmental challenges [9][11]. As detailed in Millimeter-
Level Plant Disease Detection From Aerial Photographs via
Deep Learning and Crowdsourced Data, this problem is am-
plified when said plant disease has very small symptoms,
or when the farm area is very large [12]. To address low-
resolution imagery, several approaches can be considered. One
example is hyperspectral imagery, which captures information
across dozens or hundreds of narrow spectral bands. This
can reveal subtle physiological and biochemical changes in
plants that are not visible in standard RGB images, improving
disease detection even at lower spatial resolutions. However,
specialized hyperspectral cameras are expensive, and the data
they produce is extremely large and complex, requiring ex-
tensive preprocessing, calibration, and storage [13]. These
requirements make hyperspectral imaging difficult to imple-
ment efficiently for routine agricultural applications. Another
alternative is SRCNN (Super-Resolution Convolutional Neural
Network). SRCNN is of the earliest deep learning based super
resolution models that employs a three-layer CNN architecture
to upscale images. However, although this architecture is
straightforward and computationally efficient, it has limited
capacity to capture complex textures or fine details, which
are critical for early detection of diseases with small and
difficult to see symptoms [14]. Another proposed solution for
this problem is to use GAN models for data augmentation
[2][15][16]. In contrast, GAN-based super-resolution methods
offer a highly practical alternative. GANs can be used to
enhance the resolution of standard RGB images captured
by UAVs, allowing models to detect fine disease symptoms
without the need for specialized sensors, requiring no extra
hardware beyond a conventional camera. Generated images
and lesions are used for data augmentation, where the model
is trained on an expanded dataset. GAN-based models are
capable of reconstructing realistic textures and subtle visual
cues. Therefore augmenting data with GAN super resolution
models can greatly improve the effectiveness of plant disease
classification models[15][16][17] The best GAN model for
this purpose seems to be the Enhanced Super-Resolution
Generative Adversarial Network (ESRGAN) model. Super-
resolution models are designed to reconstruct high-resolution
(HR) images based on low-resolution (LR) inputs. When given
a low-resolution image X € RM *w'xe  the model generates
a corresponding high-resolution image Y € R"*™"*¢, where
h > h' and w > w'[18]. The ESRGAN model improves upon
the earlier SRGAN framework by emphasizing perceptual
realism. Its generator network employs deep Residual-in-
Residual Dense Blocks (RRDBs) to extract important features
and recreate fine details in the images. The model also uses
a Relativistic average GAN (RaGAN) discriminator, which
compares the generated images to real images. A crop disease
detection and classification model integrated with ESRGAN
has been shown to be better at detecting crop disease than
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the models that use other Super Resolution methods, with
a higher classification accuracy due to greater visual quality
[4][19]. The REAL-ESRGAN model further expands upon the
ESRGAN model, generating images of an even greater visual
quality. The generator network of this model is trained using
a combination of content, perceptual, and adversarial losses
[5]. Content loss measures pixel-wise similarity between real-
world and generated images:

N
1
Lcontem = N Z HG(Xz) - K”%
i=1

Perceptual loss encourages high-level similarity using fea-
ture maps from a pre-trained network, measuring how real the
images appear in terms of patterns, textures, and shapes:

1 N
Lperceptual = N Z ||¢J(G(Xz)) - ¢J(K)”1
=1

Adversarial loss guides the generator to produce images that
are difficult for the discriminator to distinguish from real HR
images:

Loan(G, D) = Ey [log(D(Y) — Ex[D(G(X)))]
+ Ex | log(1 — (D(G(X)) - By [D(Y)]))]

The overall generator loss is a weighted combination of
these components:

Lg = Leontent + A - Lperceptua] +n- Lgan

where \ and 7 balance the contributions of perceptual and
adversarial losses.

The discriminator outputs a probability map indicating
the likelihood that each pixel belongs to a real image. The
discriminator loss is calculated using a weighted sum over all
pixels. Spectral normalization is added in Real-ESRGAN to
regularize the discriminator weights:

- w

(W)
Through these enhancements, the model is better able to
handle real-world image degradation, making it more reli-
able for practical image restoration applications and an ef-
fective approach for improving the quality of aerial images
[51[191[20][21].

III. METHODOLOGY

The dataset used in this study is the Cherry Tree Disease
Detection dataset from the article above, Detection and Char-
acterization of Stressed Sweet Cherry Tissues Using Machine
Learning, which contains both hyperspectral and standard
JPG images of cherry trees at different stages of Armillaria
infection. The stages represented are healthy, stage 1, and
stage 2. To prepare the dataset for analysis, the images that
were originally organized by the day of data collection were
consolidated into broader categories corresponding to each
disease stage. This reorganization facilitated the removal of
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irrelevant or redundant images and ensured that the dataset
was structured consistently for model training and evaluation.

The first stage of the project employed a Convolutional
Neural Network (CNN) in TensorFlow to classify images of
cherry trees into the three categories described above. Data
augmentation techniques, such as resizing and rescaling, were
applied to increase the size and diversity of the training
dataset, therefore increasing the model’s robustness. After
data cleaning and augmentation, the images were divided into
training and validation sets, which were subsequently used for
model development and evaluation.

The model architecture consisted of 64 convolutional layers,
including pooling and fully connected layers. The structure
used allowed the model to learn the features and patterns in
the images associated with each different stage of the disease.

In the second stage of the project, the Enhanced Super-
Resolution Generative Adversarial Network (ESRGAN) was
integrated and used to generate a new higher resolution version
of the original cherry tree dataset. The ESRGAN model was
fine-tuned on a super resolution dataset composed of paired
high-resolution and low-resolution images, thereby enhancing
image resolution and clarity.
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Fig. 2. Graph of various losses over epochs

The fine-tuning process began with downloading the pub-

licly available Real-ESRGAN model from its GitHub repos-
itory. The options file was then modified so that the training
and validation sections used the custom dataset of paired high-
resolution and low-resolution images. Once the training script
was executed, the dataset was iteratively adjusted to improve
super resolution performance. After several refinements, this
process yielded an optimized balance between image clarity
and model runtime.

Fig. 3. Image up-scaling

By running the finetuned ESRGAN model on the original
Cherry Tree Dataset, high-resolution versions of images from
the dataset were generated. The generated images were used
as input for classification, allowing for a direct comparison of
performance and accuracy between the baseline CNN and the
ESRGAN augmented CNN.

A. Results
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Fig. 4. Baseline model

The integrated system achieved a 94 percent validation
accuracy in classifying cherry tree disease stages, compared to
83 percent for the original CNN model. Images enhanced by
ESRGAN consistently produced higher accuracy and greater
confidence values during classification. Additionally, loss val-
ues decreased significantly when compared directly with the
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Fig. 5. New model

original CNN trained on the standard dataset. This is due
to the fact that the enhanced model could detect subtle
symptoms of Armillaria that were difficult to discern in lower-
resolution images. Therefore, the combined use of the two
models allowed the system to classify plant disease stages
more effectively, even from lower-quality images, compared
to using the original CNN alone.

B. Discussion and Applications

The increased validation accuracy achieved by integrating
the two models demonstrates its effectiveness in discerning
between healthy cherry trees and those in various stages
of Armillaria. These results show the importance of high
resolution imaging in plant disease detection, validating the
performance of the integrated system.

This accuracy level shows that the ESRGAN enhanced
images provide greater visual clarity for the CNN to make
proper classifications, compared to the original images. The
results show that the CNN will be able to make reliable
classifications, even when the original UAV captured images
lack resolution,because of the integration of the ESRGAN
Model, suggesting that the system has successfully mitigated
the challenges posed by the difficulty of getting high resolution
crop images from UAVs.

The results reflect that the upscaled images provided by
ESRGAN significantly improve the model’s ability to detect
Armillaria symptoms, which is crucial for timely intervention
in commercial cherry tree farming. The high accuracy and
confidence levels reflected by this system means that commer-
cial farms could rely on this to detect and classify Armillaria
disease stages with few errors, increasing the efficiency of
crop inspection, and allowing for better monitoring of plant
disease. This in turn allows for early stage detection, allowing
for better disease management, minimizing yield loss.

This method solves the problems from previous papers that
struggled with the limits posed by the resolution of UAV
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captured images. By introducing a super resolution model,
however, these become much less challenging. Unlike previous
models that required time consuming targeted sampling to be
practical for commercial farming, this system allows for more
efficient analysis of broader areas, with a stable accuracy.

So, the results prove that the system is both effective and
practical for commercial farming in the real world. By enhanc-
ing image clarity, ESRGAN allows the CNN to easily identify
lesions that would be too hard for models that take in lower
resolution images, proving that super resolution techniques can
help improve ML models in agriculture.

C. Conclusion

The research presents a large advancement in crop disease
detection through the integration of ESRGAN model and
CNN model to classify UAV captured images. By successful
enhancement and accurate classification, the model shows near
perfect accuracy in identifying the stages of Armillaria in
cherry trees. The integrated hybrid approach addresses the
challenge posed by low quality images captured by UAVs,
providing a proper solution for real world applications in
commercial agriculture.

Areas for future research would include expanding the
dataset to include a wider range of diseases. Additionally,
working on detection for other, more widely grown crop
types would both increase the model’s robustness, but also its
real world applicability. Exploration of different enhancement
techniques along with ESRGAN could cause improvements
in classification accuracy. It would be prudent to investigate
the model’s performance in various environmental conditions,
like harsh weather, or unclear lighting, to see if it would still
perform as well, providing insights into practicality.

Another avenue for future research includes optimization
of the model architecture. Exploring different configurations
and techniques, like using larger pretrained models that would
have to be finetuned (YOLO) could enhance the system’s
performance [22]. This model would not only classify different
images, but also identify the specific locations of each indi-
vidual lesion. This would help the practicality of the system
proposed in this paper immensely, because it would allow
images to be taken over a broader region, and would allow
for more precise disease identification. This was not used in
this paper due to lack of available data.

Using UAV data for predictive modeling has strong ap-
plications in the future as well. In conclusion, the research
establishes a foundation for leveraging Super Resolution image
augmentation techniques for Agricultural disease classifica-
tion, paving the way for solutions that enhance productivity
and sustainability in farming.
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