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Abstract—The integration of deep learning models with UAV
captured images for plant disease detection has been explored in
many papers and has the potential to revolutionize commercial
precision agriculture, by allowing for early and efficient detection
and classification of crop disease stages. In order to address the
limitations posed by low-resolution aerial imaging, this paper
proposes the additional integration of an Enhanced Super Reso-
lution Generative Adversarial Network (ESRGAN) with a Convo-
lutional Neural Network model for field monitoring through UAV
captured imagery. UAVs are a cost effective method of monitoring
large swaths of agricultural land; however, it is difficult to capture
images of a high enough quality and clarity to be adequately
analyzed by a CNN. The images typically lack the necessary
resolution for accurate classification, especially for diseases with
smaller, less noticable symptoms. The Real-ESRGAN model is
employed to generate a dataset of high-resolution images, from
low-resolution inputs, allowing the disease detection CNN to more
accurately and effectively identify and classify disease stages in
Armillaria afflicted cherry trees. This solution offers a solution
to the problem posed by traditional UAV based approaches
that enhances classification accuracy even in suboptimal con-
ditions. Through this integrated approach, the model was able
to reach an increased validation accuracy, as well as significantly
decreased loss values due to the ESRGAN enhanced imagery
allowing for clearer detection of early stage Armillaria symptoms.
This integrated system provides a practical scalable solution
for commercial agriculture, allowing for more comprehensive
and efficient crop disease monitoring. Future research can be
explored to optimize the architecture of this model and expand
its applicability to other crops and environmental conditions,
allowing more efficient precision agriculture and paving the way
for more sustainable farming practices.

Index Terms—Crop Monitoring, Enhanced Super Resolution
GAN, Deep Learning, UAV imagery, Precision Agriculture

I. INTRODUCTION

THE advancement of deep learning has impacted com-

mercial agriculture significantly, particularly in the clas-

sification and recognition of plant diseases. Traditional crop

inspection methods are prone to human errors such as psy-

chological and cognitive biases [1]. Furthermore, the vastness

of agricultural land and the scarcity of trained plant patholo-

gists make manual monitoring impractical [2]. Deep learning,

specifically Convolutional Neural Networks (CNNs), offers

a promising alternative by automating disease detection and

classification tasks with high accuracy [3]. In order to be

properly analyzed by a CNN, UAV captured images must have

a high enough resolution and clarity so that the symptoms of

a plant disease can be seen. This problem is amplified when

said plant disease has very small symptoms, or when the farm

area is very large. The proposed solution to this limitation is

targeted sampling of a field, where images are acquired from a

small section of the field’s area. While this is a solution would

provide farmers more information than the traditional methods

of scouting for diseases, the difficulties faced by a model

when analyzing UAV images image still stand. The Enhanced

Super-Resolution Generative Adversarial Network (ESRGAN)

model detailed in the section below presents a method for crop

disease classification on low resolution images. The model is

used to generate high resolution images from low resolution

crop images. This is called Image Super Resolution (SR).

Though there are SR methods besides ESRGAN, the paper

shows that the ERAGAN model, and its successor the Real-

ESRGAN model, generate higher visual quality images than

other methods used [4][5].

II. LITERATURE REVIEW

A. Literature Review

In commercial agriculture, identifying disease severity is

crucial for making timely and effective decisions to reduce

financial losses and fight plant infections[6]. Machine Learning

models that classify different stages of a plant disease, are

therefore, most helpful. For example, the regression model

proposed in Detection and Characterization of Stressed Sweet

Cherry Tissues Using Machine Learning identifies different

stages of Amarilma, a devastating cherry tree disease that

causes annually 8 million dollars in losses in the United States

alone[7]. Commercial farmers use aerial and satellite imagery

to monitor their crop fields. According to The application

of small unmanned aerial systems for precision agriculture:

a review, UAV captured aerial imagery is a cost effective

solution that can be used for crop disease detection, reducing

the need for in person monitoring [8][9]. The use of UAVs

paired with detection technologies, is a transformative prac-

tice that will greatly facilitate the practicality of precision

agriculture[9]. These technologies enhance crop monitoring,

optimize resource use, and minimize the environmental foot-

print of farming by reducing the application of fertilizers

and pesticides. However, despite their success, these tech-

niques face challenges when applied in real-world agricultural

conditions. In order to be properly analyzed by a model,
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UAV captured images must have a high enough resolution

and clarity so that the symptoms of a plant disease can be

seen. An image of this quality is hard to capture with a

UAV which is subject to wind, lighting conditions, and other

environmental challenges [9][11]. As detailed in Millimeter-

Level Plant Disease Detection From Aerial Photographs via

Deep Learning and Crowdsourced Data, this problem is am-

plified when said plant disease has very small symptoms,

or when the farm area is very large [12]. To address low-

resolution imagery, several approaches can be considered. One

example is hyperspectral imagery, which captures information

across dozens or hundreds of narrow spectral bands. This

can reveal subtle physiological and biochemical changes in

plants that are not visible in standard RGB images, improving

disease detection even at lower spatial resolutions. However,

specialized hyperspectral cameras are expensive, and the data

they produce is extremely large and complex, requiring ex-

tensive preprocessing, calibration, and storage [13]. These

requirements make hyperspectral imaging difficult to imple-

ment efficiently for routine agricultural applications. Another

alternative is SRCNN (Super-Resolution Convolutional Neural

Network). SRCNN is of the earliest deep learning based super

resolution models that employs a three-layer CNN architecture

to upscale images. However, although this architecture is

straightforward and computationally efficient, it has limited

capacity to capture complex textures or fine details, which

are critical for early detection of diseases with small and

difficult to see symptoms [14]. Another proposed solution for

this problem is to use GAN models for data augmentation

[2][15][16]. In contrast, GAN-based super-resolution methods

offer a highly practical alternative. GANs can be used to

enhance the resolution of standard RGB images captured

by UAVs, allowing models to detect fine disease symptoms

without the need for specialized sensors, requiring no extra

hardware beyond a conventional camera. Generated images

and lesions are used for data augmentation, where the model

is trained on an expanded dataset. GAN-based models are

capable of reconstructing realistic textures and subtle visual

cues. Therefore augmenting data with GAN super resolution

models can greatly improve the effectiveness of plant disease

classification models[15][16][17] The best GAN model for

this purpose seems to be the Enhanced Super-Resolution

Generative Adversarial Network (ESRGAN) model. Super-

resolution models are designed to reconstruct high-resolution

(HR) images based on low-resolution (LR) inputs. When given

a low-resolution image X ∈ R
h′

×w′
×c, the model generates

a corresponding high-resolution image Y ∈ R
h×w×c, where

h > h′ and w > w′[18]. The ESRGAN model improves upon

the earlier SRGAN framework by emphasizing perceptual

realism. Its generator network employs deep Residual-in-

Residual Dense Blocks (RRDBs) to extract important features

and recreate fine details in the images. The model also uses

a Relativistic average GAN (RaGAN) discriminator, which

compares the generated images to real images. A crop disease

detection and classification model integrated with ESRGAN

has been shown to be better at detecting crop disease than

the models that use other Super Resolution methods, with

a higher classification accuracy due to greater visual quality

[4][19]. The REAL-ESRGAN model further expands upon the

ESRGAN model, generating images of an even greater visual

quality. The generator network of this model is trained using

a combination of content, perceptual, and adversarial losses

[5]. Content loss measures pixel-wise similarity between real-

world and generated images:

Lcontent =
1

N

N
∑

i=1

∥G(Xi)− Yi∥
2

2

Perceptual loss encourages high-level similarity using fea-

ture maps from a pre-trained network, measuring how real the

images appear in terms of patterns, textures, and shapes:

Lperceptual =
1

N

N
∑

i=1

∥ϕj(G(Xi))− ϕj(Yi)∥1

Adversarial loss guides the generator to produce images that

are difficult for the discriminator to distinguish from real HR

images:

LGAN(G,D) = EY

[

log(D(Y )− EX [D(G(X))])
]

+ EX

[

log(1− (D(G(X))− EY [D(Y )]))
]

The overall generator loss is a weighted combination of

these components:

LG = Lcontent + λ · Lperceptual + η · LGAN

where λ and η balance the contributions of perceptual and

adversarial losses.

The discriminator outputs a probability map indicating

the likelihood that each pixel belongs to a real image. The

discriminator loss is calculated using a weighted sum over all

pixels. Spectral normalization is added in Real-ESRGAN to

regularize the discriminator weights:

Ŵ =
W

σ(W )

Through these enhancements, the model is better able to

handle real-world image degradation, making it more reli-

able for practical image restoration applications and an ef-

fective approach for improving the quality of aerial images

[5][19][20][21].

III. METHODOLOGY

The dataset used in this study is the Cherry Tree Disease

Detection dataset from the article above, Detection and Char-

acterization of Stressed Sweet Cherry Tissues Using Machine

Learning, which contains both hyperspectral and standard

JPG images of cherry trees at different stages of Armillaria

infection. The stages represented are healthy, stage 1, and

stage 2. To prepare the dataset for analysis, the images that

were originally organized by the day of data collection were

consolidated into broader categories corresponding to each

disease stage. This reorganization facilitated the removal of
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Fig. 1. Methodology

irrelevant or redundant images and ensured that the dataset

was structured consistently for model training and evaluation.

The first stage of the project employed a Convolutional

Neural Network (CNN) in TensorFlow to classify images of

cherry trees into the three categories described above. Data

augmentation techniques, such as resizing and rescaling, were

applied to increase the size and diversity of the training

dataset, therefore increasing the model’s robustness. After

data cleaning and augmentation, the images were divided into

training and validation sets, which were subsequently used for

model development and evaluation.

The model architecture consisted of 64 convolutional layers,

including pooling and fully connected layers. The structure

used allowed the model to learn the features and patterns in

the images associated with each different stage of the disease.

In the second stage of the project, the Enhanced Super-

Resolution Generative Adversarial Network (ESRGAN) was

integrated and used to generate a new higher resolution version

of the original cherry tree dataset. The ESRGAN model was

fine-tuned on a super resolution dataset composed of paired

high-resolution and low-resolution images, thereby enhancing

image resolution and clarity.

Fig. 2. Graph of various losses over epochs

The fine-tuning process began with downloading the pub-

licly available Real-ESRGAN model from its GitHub repos-

itory. The options file was then modified so that the training

and validation sections used the custom dataset of paired high-

resolution and low-resolution images. Once the training script

was executed, the dataset was iteratively adjusted to improve

super resolution performance. After several refinements, this

process yielded an optimized balance between image clarity

and model runtime.

Fig. 3. Image up-scaling

By running the finetuned ESRGAN model on the original

Cherry Tree Dataset, high-resolution versions of images from

the dataset were generated. The generated images were used

as input for classification, allowing for a direct comparison of

performance and accuracy between the baseline CNN and the

ESRGAN augmented CNN.

A. Results

Fig. 4. Baseline model

The integrated system achieved a 94 percent validation

accuracy in classifying cherry tree disease stages, compared to

83 percent for the original CNN model. Images enhanced by

ESRGAN consistently produced higher accuracy and greater

confidence values during classification. Additionally, loss val-

ues decreased significantly when compared directly with the
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Fig. 5. New model

original CNN trained on the standard dataset. This is due

to the fact that the enhanced model could detect subtle

symptoms of Armillaria that were difficult to discern in lower-

resolution images. Therefore, the combined use of the two

models allowed the system to classify plant disease stages

more effectively, even from lower-quality images, compared

to using the original CNN alone.

B. Discussion and Applications

The increased validation accuracy achieved by integrating

the two models demonstrates its effectiveness in discerning

between healthy cherry trees and those in various stages

of Armillaria. These results show the importance of high

resolution imaging in plant disease detection, validating the

performance of the integrated system.

This accuracy level shows that the ESRGAN enhanced

images provide greater visual clarity for the CNN to make

proper classifications, compared to the original images. The

results show that the CNN will be able to make reliable

classifications, even when the original UAV captured images

lack resolution,because of the integration of the ESRGAN

Model, suggesting that the system has successfully mitigated

the challenges posed by the difficulty of getting high resolution

crop images from UAVs.

The results reflect that the upscaled images provided by

ESRGAN significantly improve the model’s ability to detect

Armillaria symptoms, which is crucial for timely intervention

in commercial cherry tree farming. The high accuracy and

confidence levels reflected by this system means that commer-

cial farms could rely on this to detect and classify Armillaria

disease stages with few errors, increasing the efficiency of

crop inspection, and allowing for better monitoring of plant

disease. This in turn allows for early stage detection, allowing

for better disease management, minimizing yield loss.

This method solves the problems from previous papers that

struggled with the limits posed by the resolution of UAV

captured images. By introducing a super resolution model,

however, these become much less challenging. Unlike previous

models that required time consuming targeted sampling to be

practical for commercial farming, this system allows for more

efficient analysis of broader areas, with a stable accuracy.

So, the results prove that the system is both effective and

practical for commercial farming in the real world. By enhanc-

ing image clarity, ESRGAN allows the CNN to easily identify

lesions that would be too hard for models that take in lower

resolution images, proving that super resolution techniques can

help improve ML models in agriculture.

C. Conclusion

The research presents a large advancement in crop disease

detection through the integration of ESRGAN model and

CNN model to classify UAV captured images. By successful

enhancement and accurate classification, the model shows near

perfect accuracy in identifying the stages of Armillaria in

cherry trees. The integrated hybrid approach addresses the

challenge posed by low quality images captured by UAVs,

providing a proper solution for real world applications in

commercial agriculture.

Areas for future research would include expanding the

dataset to include a wider range of diseases. Additionally,

working on detection for other, more widely grown crop

types would both increase the model’s robustness, but also its

real world applicability. Exploration of different enhancement

techniques along with ESRGAN could cause improvements

in classification accuracy. It would be prudent to investigate

the model’s performance in various environmental conditions,

like harsh weather, or unclear lighting, to see if it would still

perform as well, providing insights into practicality.

Another avenue for future research includes optimization

of the model architecture. Exploring different configurations

and techniques, like using larger pretrained models that would

have to be finetuned (YOLO) could enhance the system’s

performance [22]. This model would not only classify different

images, but also identify the specific locations of each indi-

vidual lesion. This would help the practicality of the system

proposed in this paper immensely, because it would allow

images to be taken over a broader region, and would allow

for more precise disease identification. This was not used in

this paper due to lack of available data.

Using UAV data for predictive modeling has strong ap-

plications in the future as well. In conclusion, the research

establishes a foundation for leveraging Super Resolution image

augmentation techniques for Agricultural disease classifica-

tion, paving the way for solutions that enhance productivity

and sustainability in farming.
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