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Abstract—Cell aggregation, where cells stick together, is a key
process in many biological events like how embryos form, how
tissues heal, and how microbes create communities. Studying
this involves looking at different types of data, from detailed
molecular information to images and patient data. With new
technologies, we have access to large amounts of this data
in public databases. Analyzing and combining this complex
information requires advanced computer methods. While there
are challenges in handling and integrating these diverse datasets,
exploring them helps us understand basic biology, develop models
for diseases, find new drugs, and advance regenerative medicine.
This report reviews these data types, sources, and analysis
methods to guide research in this important field.

Index Terms—Reinforcement Learning, MARL, Cell Mechan-
ics, Cell aggregation

I. INTRODUCTION

ELL aggregation [3], the process by which individual
cells adhere to one another to form multicellular struc-
tures [4], represents a fundamental biological phenomenon
observed across the tree of life. This self-assembly is not
merely a passive physical process but is frequently governed
by intricate molecular mechanisms and dynamic cellular be-
haviors. Aggregation plays critical roles in diverse contexts,
ranging from the formation of complex organisms during em-
bryonic development to the establishment of resilient microbial
communities known as biofilms [14]. It is also central to
physiological processes such as hemostasis, where platelets
aggregate to form blood clots, and immune responses, involv-
ing the clustering of lymphocytes and other immune cells
at sites of infection or within specialized lymphoid tissues.
Furthermore, in vitro cell aggregation is the foundational
principle behind the generation of three-dimensional (3D)
cell culture models, including spheroids and organoids [24],
which serve as powerful tools for studying tissue development,
disease modeling, and drug screening.
Understanding the intricacies of cell aggregation across
these varied biological systems requires the collection and
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analysis of diverse types of data. Modern high-throughput
technologies, such as next-generation sequencing, advanced
microscopy, and automated functional assays, are generating
vast amounts of quantitative data related to cellular compo-
sition, molecular profiles, spatial organization, and dynamic
behaviors within aggregating cell populations. Navigating and
leveraging these extensive datasets, often stored in public
repositories, presents both opportunities and challenges for
researchers.

Artificial Intelligence (AI) and Machine Learning (ML)

has significant uses in many areas including healthcare [9],
vehicular communication [10], e-learning [2], rehabilitation
[12] and risk management [7]. Reinforcement Learning (RL)
is one the most promising type of ML [17] that has brought
revolution in different areas and cell mechanics can also be
benefited with this technology. Multi Agent RL (MARL) is
the extension of RL where multiple agents are being used for
multiple task within a bigger task.
This paper explores the landscape of data relevant to cell
aggregation by examining key biological scenarios where it
plays a critical role. The types of data generated by various
experimental techniques are categorized, and prominent public
data repositories where these data are stored and can be
accessed are identified. The aim is to provide a structured
overview for researchers seeking to utilize existing datasets to
study cell aggregation phenomena.

II. BACKGROUND

Cell aggregation [18] is a fundamental process that under-
pins the formation, function, and maintenance of biological
structures at multiple scales. Its significance spans numerous
fields of biological and medical research [19].

In embryonic development, cell aggregation is a primary
mechanism driving morphogenesis from the zygote. Following
initial cell divisions [5], blastomeres aggregate to form the
morula, a compact ball of cells. This compaction is critical
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for establishing cell polarity and initiating the first lineage
segregation, leading to the formation of the blastocyst with
its distinct inner cell mass and trophectoderm. Subsequent
aggregation and rearrangement of cells within the developing
embryo give rise to the three germ layers—ectoderm, meso-
derm, and endoderm—which then differentiate and organize
into the precursors of all tissues and organs. The precise timing
and spatial control of these aggregation and differentiation
events are governed by complex genetic programs and cell-
cell communication mediated by signaling pathways.

Organoid formation in the laboratory directly leverages the
inherent ability of cells, particularly stem cells, to aggregate
and self-organize into 3D structures resembling native tissues.
By providing specific biochemical cues, such as growth factors
and signaling molecules, and appropriate physical environ-
ments, researchers can guide the aggregation and differenti-
ation of pluripotent or adult stem cells to generate organoids
mimicking various organs like the brain, intestine, kidney,
or liver. These 3D models offer significant advantages over
traditional two-dimensional cell cultures by better recapitulat-
ing the complex cell-cell interactions, tissue architecture, and
physiological functions of their in vivo counterparts.

In the microbial world, biofilm formation is a widespread
lifestyle characterized by the aggregation of bacteria and
other microorganisms on surfaces, encased within a self-
produced extracellular matrix (ECM). This aggregated lifestyle
provides significant advantages, including enhanced resistance
to environmental stresses, disinfectants, and antibiotics, as
well as protection from host immune responses. Biofilms
are implicated in numerous industrial issues and persistent
infections, making the study of their formation and dispersal
critical for developing effective control strategies.

Blood clotting, or platelet aggregation [20], plays a critical
role in hemostasis [13], the body’s natural process for stopping
bleeding after a blood vessel is injured. Platelets quickly
gather and stick together at the injury site, forming a plug
that’s strengthened by fibrin to seal the damaged vessel. While
essential for survival, if platelet aggregation becomes uncon-
trolled, it can lead to dangerous thrombosis—the formation of
clots within healthy blood vessels. This can result in serious
conditions like deep vein thrombosis, pulmonary embolism,
stroke, and heart attack. Understanding the mechanisms of
platelet aggregation is therefore vital for diagnosing bleeding
disorders and developing treatments to prevent clots.

Immune cell aggregation is a critical aspect of the adaptive
immune response. Following recognition of foreign antigens,
lymphocytes and other immune cells proliferate and aggre-
gate in secondary lymphoid organs, forming structures like
germinal centers within B cell follicles. These aggregates
provide specialized microenvironments for processes such as
B cell affinity maturation and the generation of memory cells
and antibody-secreting plasma cells, which are essential for
long-lived immunity and effective vaccination. Immune cell
aggregation also occurs at sites of infection or inflammation,
facilitating coordinated cellular interactions to clear pathogens
or resolve tissue damage.

POSITION PAPERS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Organoid Formation

I | Microbial Biofilm |

Types of Cell
Aggregation

| Tissue Regeneration |

_ /

Embryonic |Neuronal Aggregation |
Development |

| Platelet Aggregation |

Fig. 1. Types of Cell Aggregation

In the context of tissue regeneration [15] and engineering,
cell aggregation techniques are employed to create multicellu-
lar building blocks, such as spheroids or organoids, which can
be used to repair or replace damaged tissues. Understanding
how cells aggregate, maintain viability, and differentiate within
these 3D structures is vital for developing effective regenera-
tive therapies [23]. Mechanical forces and cell-cell interactions
within these aggregates play a significant role in directing cell
fate and tissue organization.

Finally, neuronal aggregation [21] is a key stage in the de-
velopment of the nervous system. As newly generated neurons
migrate to their final destinations in the brain, they aggregate
with similar cell types to form distinct brain regions and layers.
This process is guided by cell-cell recognition and adhesion
molecules and is crucial for establishing the complex circuitry
of the brain. Dysregulation [|1] of neuronal aggregation and
migration is implicated in various neurological disorders.

The study of these diverse cell aggregation phenomena is
fundamentally important for unraveling basic biological prin-
ciples, creating accurate models of human health and disease,
and developing innovative therapeutic and biotechnological
applications. Multi-Agent Reinforcement Learning (MARL)
emerges as a particularly promising computational paradigm.
MARL, a specialized subfield of artificial intelligence, is de-
signed to model complex systems where multiple autonomous
agents interact and learn in a shared environment. This report
explores the application of MARL to the intricate domain
of cell mechanics, aiming to address the inherent limitations
of traditional computational approaches in fully capturing the
multi-agent nature and emergent properties of cellular systems.
The subsequent sections detail the necessary revisions to
enhance the paper’s technical depth and highlight the unique
contributions of MARL to this vital field.
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III. DATA TYPES RELEVANT TO CELL AGGREGATION
STUDIES

Investigating the multifaceted nature of cell aggregation
necessitates the acquisition and analysis of data across various
scales, from the molecular interactions governing cell adhesion
to the macroscopic morphology and dynamics of the resulting
aggregates.

Molecular Data [16] provides insights into the genetic
programs, protein machinery, and signaling networks that
regulate cell aggregation and the subsequent behavior of ag-
gregated cells. Transcriptomics, encompassing techniques like
bulk RNA sequencing, single-cell RNA sequencing (scRNA-
seq), and spatial transcriptomics, provides insight into gene
expression patterns. These patterns, in turn, determine a cell’s
identity, its stage of differentiation, and how it responds to
its surroundings within cellular groupings. Genomics data [1],
including DNA sequence variations, copy number changes,
and epigenetic modifications, provide the foundational genetic
and regulatory landscape influencing aggregation potential and
associated disease states. Proteomics data [8] identify the
proteins present, their abundance, and post-translational mod-
ifications, detailing the molecular machinery of cell adhesion,
ECM production, and signal transduction within aggregates.
Data on signaling pathways, including the activity of receptors,
kinases, and transcription factors, illuminate how cells perceive
and respond to their environment and coordinate collective
behaviors like aggregation, differentiation, and migration.

Cellular Data captures the physical characteristics and activ-
ities of individual cells and cell populations within aggregates.
Imaging data, acquired through various microscopy techniques
(light, confocal, electron, time-lapse, spatial), provides visual
information on cell morphology, spatial arrangement, and the
dynamic process of aggregation and structural development.
Functional assay data quantifies cellular activities such as elec-
trophysiological signaling in neuronal aggregates or organoids,
transport function in epithelial structures, or responses to exter-
nal stimuli like drugs or pathogens. Flow cytometry provides
high-throughput, single-cell analysis of protein expression, en-
abling the identification and quantification of distinct cell types
and their activation states within heterogeneous populations,
particularly relevant for immune cells and platelets.

Clinical Data [6] provides essential context for studying cell
aggregation in disease. This includes patient demographics,
medical history, lifestyle factors, treatment regimens, disease
severity, and clinical outcomes. Such data are critical for cor-
relating in vitro findings with in vivo conditions and assessing
the translational relevance of research, particularly in areas
like thrombosis and immune disorders.

IV. EXPLORING CELL AGGREGATION DATA ACROSS
BioLOGICAL CONTEXTS

The application of these diverse data types varies depending
on the specific biological context of cell aggregation bein
studied. Each scenario presents unique challenges and oppor-
tunities for data exploration .

In the study of organoid formation, a key aspect is under-
standing how these in vitro aggregates recapitulate the com-
plexity of native organs. Single-cell RNA sequencing (scRNA-
seq) is indispensable for dissecting the cellular heterogeneity
within organoids, identifying the different cell types that
emerge during differentiation, mapping their developmental
trajectories, and comparing their molecular profiles to those of
cells in primary tissues. Dedicated databases like OrganoidDB
serve as valuable resources for exploring organoid transcrip-
tomes, including extensive collections of scRNA-seq data. The
inherent variability observed between individual organoids,
even within the same culture, underscores the need for high-
throughput quantitative data collection and analysis. This vari-
ability can be assessed through large-scale scRNA-seq studies
of many organoids or through automated imaging analysis.
Imaging data, particularly from brightfield, phase contrast,
and confocal microscopy, provides crucial information on
organoid morphology, size, growth kinetics, and the formation
of complex structures like lumens. The large volume of images
generated in high-throughput organoid screens necessitates
automated image analysis tools, often employing machine
learning, to segment, quantify, and track individual organoids.
Datasets like MultiOrg specifically provide microscopy images
of organoids with annotations for training such tools. Beyond
structural and compositional analysis, functional assay data
are critical for validating whether organoids truly mimic the
physiological activities of their corresponding organs. This
includes assessing barrier function, transport activity (e.g.,
in kidney or intestinal organoids), or electrophysiological
signaling (e.g., in brain organoids). The combination of multi-
omics (genomics, transcriptomics, proteomics, metabolomics)
and functional data is essential for a thorough assessment
of organoid authenticity, stability, and translational potential,
particularly for applications in disease modeling and drug
screening.

Investigating embryonic development requires unraveling
precisely controlled spatiotemporal events, including cell ag-
gregation, migration, and differentiation. Gene expression
data, from bulk and single-cell transcriptomics, provides a
molecular narrative of these processes, revealing which genes
are active at different developmental stages and in different
cell lineages. However, understanding development requires
knowing where genes are expressed within the developing
tissue. Spatial transcriptomics addresses this need by mapping
gene expression profiles while preserving spatial information,
providing molecular maps of embryonic structures and cel-
lular organization. The four-dimensional nature of develop-
ment (3D space over time) makes the integration of spatial
and temporal data particularly crucial for linking molecular
events to dynamic cellular behaviors and structural changes.
Time-lapse microscopy captures the dynamic morphological
aspects of embryonic development, including cell division
timings, migration patterns, and the process of aggregation
and morphogenesis in living embryos over extended periods.
This generates massive datasets, particularly in applications
like IVF, which necessitate advanced computational meth-
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ods, such as machine learning, to automate analysis, extract
morphokinetic parameters, and identify predictive patterns for
embryo viability. Public repositories like GEO , TEDD ,
and the Allen Brain Atlas (Developing Mouse/Human) and
BrainSpan provide access to vast amounts of gene expression
and anatomical data from developing organisms.

The study of microbial biofilm formation relies heavily
on understanding the transition from planktonic single cells
to aggregated communities and the molecular mechanisms
underlying this process. Genomic and transcriptomic data
reveal the genes involved in surface attachment, cell-cell
adhesion, ECM production, quorum sensing, and stress re-
sponses that are upregulated or downregulated during biofilm
development. Multi-omics approaches, integrating genomics,
transcriptomics, and proteomics, provide a more comprehen-
sive view of the molecular changes and functional pathways
involved in biofilm formation and resistance. Imaging data,
particularly from confocal laser scanning microscopy (CLSM),
is essential for visualizing the 3D structure of biofilms, in-
cluding microcolonies, water channels, and the distribution
of cells and ECM components. Time-lapse imaging allows
tracking the dynamics of biofilm growth and dispersal. Public
repositories like GEO and specialized biofilm databases (e.g.,
aBiofilm, BiofOmics, Biofilms Structural Database, BRalD)
serve as sources for genomic, transcriptomic, and sometimes
image data related to biofilms. Understanding the molecular
mechanisms driving phenotypic shifts during biofilm forma-
tion is significantly enhanced by integrating multi-omics data,
while imaging captures the essential 3D structure and dynamic
processes of aggregation.

Research on platelet aggregation and thrombus formation
involves characterizing the rapid cellular and molecular events
occurring at sites of vascular injury.Data from aggregom-
etry, especially light transmission aggregometry (LTA) and
impedance aggregometry, quantifies how platelets clump to-
gether and the degree to which they do so when exposed to
different agonists. These assays provide quantitative param-
eters such as maximum aggregation, slope, and lag phase.
Microscopy images, especially time-lapse fluorescence and
DIC microscopy of thrombus formation under flow conditions,
visualize the process of platelet adhesion, shape change, ag-
gregation, and the incorporation of fibrin and other blood cells
into the growing thrombus. These images allow for quantitative
analysis of thrombus size, morphology, and dynamics. Flow
cytometry is used to analyze platelet activation markers and
identify distinct platelet subpopulations within blood samples.
Clinical data from patients with thrombotic disorders [22] or
bleeding tendencies are essential for identifying risk factors,
correlating laboratory findings with clinical outcomes, and
evaluating the effectiveness of antiplatelet and anticoagulant
therapies. Public resources like clinical trial databases (e.g.,
ClinicalTrials.gov), disease-specific registries (e.g., ISTH reg-
istries), and genomic databases (e.g., NIH GTR) provide
access to relevant clinical and genetic data.

The study of immune cell aggregation, such as in ger-
minal centers or at infection sites, involves characterizing
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the cellular composition, spatial organization, and functional
interactions of immune cells. Flow cytometry, including high-
dimensional techniques like CyTOF, is widely used to identify
and quantify different immune cell subsets based on surface
protein expression and analyze their activation states within
heterogeneous populations . Repositories like ImmPort house
extensive flow cytometry data from immunology studies and
clinical trials . Imaging data, such as intravital microscopy,
allows visualization and tracking of immune cell migration
and interactions in real-time within tissues, providing spatial
and dynamic context to flow cytometry findings. Databases
like IDR and those linked through the Human Cell Atlas ini-
tiatives may contain relevant imaging data. Data on cytokines
and chemokines are critical for understanding the molecular
signals that mediate immune cell recruitment, activation, and
communication within aggregates. Databases like ImmPort
and specialized cytokine/chemokine resources (e.g., CYTO-
CON DB, Cell Interaction Knowledgebase) provide access to
these data .

For tissue regeneration and engineering, data focuses on the
behavior of cells within aggregates used as building blocks.
Cellular data, including viability, proliferation, differentiation
status (often assessed via markers), and the impact of mechan-
ical forces or environmental cues, are critical. Imaging data
captures the formation, growth, and structural organization
of these cellular aggregates, as well as the integration of
different cell types in co-cultures. Data on the composition
and properties of the extracellular matrix within aggregates or
surrounding them (e.g., hydrogels) is also important, as the
ECM provides structural support and signaling cues influenc-
ing cell behavior.

Understanding neuronal aggregation during brain develop-
ment involves characterizing the types of neurons, their migra-
tory paths, and how they organize into specific brain structures.
Imaging data, including light microscopy, electron microscopy,
and various brain imaging modalities (MRI, fMRI), provides
visual information on neuronal morphology, connectivity, and
the large-scale structure of the brain formed by aggregated
neurons . Specific data types include neuronal morphology
reconstructions (neuronal tracing data) , electrophysiological
recordings of neuronal activity , and gene expression profiles
(transcriptomics) related to neuronal development and cell type
specification. Large public databases like NeuroMorpho.Org
and the Allen Brain Atlas suite provide access to extensive
datasets on neuronal morphology, gene expression, and con-
nectivity.

V. PUBLIC DATA SOURCES

Access to publicly available data is crucial for advancing re-
search in cell aggregation. Numerous repositories host relevant
datasets, often specialized by data type or biological domain.

The Gene Expression Omnibus (GEO) serves as a prominent
international public repository for a wide range of high-
throughput functional genomics data, including genomic, tran-
scriptomic, and epigenomic datasets, including microarray
and next-generation sequencing data. GEO supports various
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organisms and experimental conditions, making it a valuable
resource for studying gene expression changes during ag-
gregation processes in diverse contexts, including embryonic
development, organoid formation, and biofilm development.
Data can be searched and downloaded via the GEO DataSets
and GEO Profiles interfaces, FTP, or programmatic access.

For organoid-specific transcriptomic data, OrganoidDB pro-
vides a comprehensive resource for bulk and single-cell RNA-
seq profiles of human and mouse organoids, integrating data
from GEO and ArrayExpress. It allows searching and brows-
ing based on organoid type, source, protocol, and developmen-
tal stage.

For neuronal morphology and related data, NeuroMor-
pho.Org is a centrally curated inventory of digitally recon-
structed neurons from various species, providing 3D mor-
phological data and associated metadata. The Allen Brain
Atlas suite provides extensive resources for neuronal data,
including gene expression atlases for adult and developing
mouse and human brains, connectivity maps, and single-
cell characterization data (morphological, electrophysiological,
transcriptomic). Data can be accessed via web portals, APIs,
and SDKs . The BRAIN Initiative Cell Census Network
(BICCN) also provides access to multimodal brain cell atlas
data through various archives like NeMO, BIL, and DANDI.

For immune cell and cytokine/chemokine data, the Im-
munology Database and Analysis Portal (ImmPort) is a major
repository for immunology research data, including clinical
trial data, flow cytometry, and multiplex cytokine/chemokine
data. ImmPort provides tools for searching, downloading, and
analyzing shared data.

The Image Data Resource (IDR) serves as a public repos-
itory for imaging data, specifically microscopy images of
cells and tissues. This resource archives image datasets from
published scientific research, accommodating diverse imaging
techniques and organisms. Users can search for and access
high-quality biological image data through this platform.

Several resources are available for clinical data concerning
thrombotic disorders. These include established clinical trial
databases (such as ClinicalTrials.gov), registries specific to
diseases (for example, those maintained by the ISTH for
rare bleeding disorders or VTE), and certain extensive claims
or electronic health record databases, though access to the
latter might be limited. Additionally, the NIH Genetic Testing
Registry (GTR) offers details on genetic tests relevant to
thrombotic conditions.

For histological images, resources like the GTEx Tissue
Image Library and specialized datasets like TissueNet or those
linked through initiatives like TCGA or Human Protein Atlas
provide access to tissue histology images, sometimes with
annotations .

For biofilm genomic and transcriptomic data, in addition
to GEO, specialized databases like BBSdb and the Biofilms
Structural Database (BSD) exist, though access methods vary.
Some data may also be available in generalist repositories like
Dryad or institutional repositories.

VI. MULTI AGENT REINFORCEMENT LEARNING AND
MACHINE LEARNING TO CELL AGGREGATION

A. Cancer: Histopathology and scRNA-seq Data Analysis

1) Image Analysis (Histopathology): Deep learning models
(e.g., Convolutional Neural Networks - CNNs) can be trained
on histopathology images to identify cancerous aggregation
patterns, tumor boundaries, and predict malignancy. Multi-
RL can then be used to optimize image segmentation and
classification by learning from different expert annotations or
even guiding the sampling of new image regions for analysis.

2) scRNA-seq for cell state and interaction: ML algorithms
such as clustering (e.g., t-SNE, UMAP, K-means) can iden-
tify distinct cell populations and their aggregation tendencies
from scRNA-seq data. Multi-RL can be employed to model
the dynamic interactions between different cell types (e.g.,
cancer cells, immune cells, stromal cells) within the tumor
microenvironment. Each cell type could be considered an
agent, learning optimal strategies for proliferation, migration,
or interaction based on the transcriptional states of neighboring
cells, allowing for prediction of tumor growth or response to
therapy.

B. Wound Healing: Microscopy and scRNA-seq Data Analysis

1) Time Lapse Microscopy for Cell Dynamics: ML algo-
rithms can track individual cell movements and aggregation
dynamics from time-lapse microscopy images. Multi-RL can
model the collective behavior of cells (e.g. fibroblasts, immune
cells, keratinocytes) during wound closure. Each cell or a
group of cells can act as an agent, learning policies for
migration, proliferation, and extracellular matrix remodeling to
optimize healing efficiency, potentially identifying bottlenecks
or aberrant healing processes.

2) Spatial Transcriptomics for Cellular Coordination:
Integrating scRNA-seq with spatial information allows us to
understand how different cell types spatially interact during
wound healing. ML can identify spatial gene expression
patterns that indicate successful healing. Multi-RL can then
simulate the “decision-making” of cells based on their local
environment and gene expression, learning how to coordinate
their actions (e.g., secreting growth factors, migrating towards
specific cues) to achieve optimal tissue regeneration.

C. Embryogenesis: Live Imaging and Spatial RNA-seq Data
Analysis

1) Modeling Morphogenesis: Live imaging data provides
dynamic information on cell shape changes and movements.
ML models can be trained to predict developmental outcomes
based on initial cell configurations. Multi-RL is highly suitable
for modeling complex, self-organizing processes of embryo-
genesis. Each cell or group of cells can be an agent, learning
from its neighbors and environmental cues to make ’decisions”
regarding division, differentiation, migration, and adhesion,
ultimately forming complex tissues and organs. The “reward”
signal could be the successful formation of a specific tissue
structure or stage of development.
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2) Spatial Transcriptomics for Developmental Programs:
Spatial RNA-seq data reveals gene expression patterns across
developing tissues. ML can identify gene regulatory networks
driving cell aggregation and differentiation. Multi-RL agents,
representing different cell lineages, can learn optimal strate-
gies for gene expression changes and physical interactions
to achieve proper tissue patterning and organogenesis. This
could involve simulating how cells interpret and respond to
morphogen gradients and mechanical forces to reach their
correct positions and fates.

D. Immune Swarming: Immune Imaging and scRNA-seq Data
Analysis

1) Tracking Immune Cell Dynamics: Immune imaging data
allows for tracking the movement and interactions of immune
cells. ML can identify different immune cell subsets and their
migration paths. Multi-RL can simulate immune swarming by
treating individual immune cells or groups as agents. These
agents can learn to chemotax (move along chemical gradients),
interact with pathogens, and coordinate with other immune
cells to effectively clear infections or respond to inflamma-
tion. The “reward” could be the successful containment of a
pathogen or resolution of inflammation.

2) Predicting Immune Response Outcomes: scRNA-seq
provides insights into the transcriptional states of immune
cells during aggregation. ML can correlate these states with
disease outcomes. Multi-RL can be used to model the adaptive
strategies of immune cells in response to evolving threats,
optimizing their aggregation and effector functions. For exam-
ple, agents could learn to upregulate specific receptors, secrete
cytokines, or initiate cell-to-cell contact based on the presence
of pathogens or signals from other immune cells, leading to a
more efficient and coordinated immune response.

E. Neural Aggregation: Brain Organoids and scRNA-seq Data
Analysis

1) Predicting Neuronal Migration and Circuit Formation:
ML models can analyze time-lapse imaging, gene expression
data, and spatial transcriptomics data from brain organoids to
predict the trajectories of migrating neurons and the formation
of neural circuits. Multi-RL can simulate the intricate dance
of neuronal migration and circuit assembly. Individual neurons
or neuronal clusters can be agents that learn to navigate com-
plex environments, form connections with appropriate partners
(synaptogenesis), and integrate into functional networks. The
“reward” signal could be the successful formation of a mature
neural circuit with specific functional properties, as assessed
by electrophysiological recordings or imaging data.

2) Modeling Neuroplasticity and Disease Progression:
Multi-RL can be used to model neuroplasticity, where neu-
rons learn to adapt their connections and firing patterns in
response to stimuli. In the context of neurodevelopmental
or neurodegenerative diseases, Multi-RL could simulate how
aberrant aggregation or connectivity leads to dysfunction.
Agents (neurons) could learn to compensate for damage or
disease-related changes, or conversely, models could identify
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tipping points where the system transitions to a diseased state.
This could inform strategies for intervention or rehabilitation.

F. Cardiac Cell Repair: Heart Tissue Imaging Data Analysis

1) Modeling Myocardial: Regeneration Multi-RL can sim-
ulate the complex interplay of various cell types involved
in cardiac repair, including cardiomyocytes, fibroblasts, and
immune cells. Each cell type could be an agent, learning
to respond to signals from the damaged microenvironment
(e.g., inflammatory cues, growth factors) to contribute to tissue
regeneration. This could involve learning optimal strategies
for proliferation, differentiation, and secretion of extracellular
matrix components to promote functional tissue repair and
prevent maladaptive remodeling. This type of modeling could
lead to the identification of novel therapeutic targets to enhance
cardiac repair.

2) Optimizing Cell Delivery and Engraftment: ML al-
gorithms can analyze heart tissue imaging (e.g., histology,
gene expression profiles) to assess the survival, integration,
and functional impact of transplanted cells (e.g., stem cells,
cardiomyocytes) in damaged heart tissue. Multi-RL can then
be employed to optimize cell delivery strategies. Agents (e.g.,
individual transplanted cells or surrounding host cells) could
learn to interact optimally to promote engraftment, vascular-
ization, and functional integration into the host myocardium.
The “reward” could be measured by improvements in cardiac
function, reduced scar tissue formation, or successful electrical
coupling.

VII. FORMULATING A CELL MECHANICS PROBLEM INTO
MARL

The process of formulating a cell mechanics problem into
a Multi-Agent Reinforcement Learning (MARL) framework
requires translating biological phenomena into computational
elements while preserving the complex, emergent nature of
multicellular systems.

In this formulation:

A. Agents

Agents correspond to autonomous biological cells (e.g.,
blastomeres, epithelial cells, immune responders), each acting
based on local perceptions and internal states.

B. States

States encapsulate multidimensional cell features such as
spatial coordinates, polarity vectors, cell cycle phase, gene
expression profiles, mechanical tension, and adhesion strength.
These may be derived from real-time imaging, transcriptomics,
and biomechanical simulations.

C. Actions

Actions include discrete and continuous choices like mi-
gration, division, differentiation, polarity realignment, ECM
remodeling, and intercellular signaling.
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D. Reward Functions

Reward Functions are formulated to capture biologically
meaningful objectives—such as optimizing tissue cohesion,
minimizing energy expenditure, achieving correct positional
fate, or synchronizing morphogenetic movements. These may
include sparse or dense feedback and require multi-objective
optimization.

E. Environment

Environment refers to the spatial-temporal tissue context,
characterized by dynamic morphogen gradients, extracellular
matrix properties, boundary conditions, and interactions with
neighboring agents.

VIII. DISCUSSION

A.  Advantages of MARL Over Single-Agent RL in Cell
Mechanics

1) Decentralized Coordination: Biological cells function as
autonomous entities, responding to local signals and engaging
in self-organized behavior. MARL mirrors this natural decen-
tralization, enabling accurate modeling of emergent develop-
mental processes.

2) Modeling Emergent Properties: Complex multicellular
phenomena such as morphogenesis and spatial patterning arise
from local interactions. MARL is inherently suited to discover
and simulate these emergent properties through distributed
policy learning.

3) Robustness to Perturbations : In fluctuating and noisy
biological environments, MARL provides resilience by allow-
ing agents to adapt locally. This makes the system robust
against disruptions, mimicking biological fault tolerance.

B. Challenges and Future Directions

Despite its transformative potential, applying Multi-Agent
Reinforcement Learning (MARL) to cell mechanics is
constrained by three core challenges. First, the vast spatial,
temporal, and molecular complexity of multicellular systems
creates high-dimensional environments that challenge MARL
scalability. Second, designing biologically valid and multi-
objective reward functions is non-trivial, requiring precise
alignment with physiological outcomes. Third, integrating
diverse data types like imaging, transcriptomics, and spatial
omics into unified agent frameworks demands advanced
modeling strategies. Addressing these challenges will require
interdisciplinary advances in Al, systems biology, and data
integration to fully leverage MARL for biological discovery.

Future research in MARL for cell mechanics should
prioritize the development of biologically constrained multi-
agent architectures, capable of encoding known intercellular
signaling networks and mechanotransduction rules. Hybrid
learning models that integrate reinforcement learning with
supervised or self-supervised modules will be essential
to leverage annotated biological datasets. Simultaneously,
scalable data assimilation frameworks must be established
to incorporate real-time spatial transcriptomics, live-cell

imaging, and dynamic tissue properties. Integrating these
MARL systems with in vitro experimental platforms via
co-simulation or closed-loop control could enable predictive
modeling of morphogenesis and regeneration. Collectively,
these efforts will transform MARL into a practical and
predictive toolset for mechanobiology, synthetic development,
and regenerative engineering.

IX. CONCLUSIONS

Cell aggregation is a fundamental biological process occur-
ring across diverse scales and contexts, from the formation of
multicellular organisms to the organization of microbial com-
munities and the coordination of cellular responses in health
and disease. Studying these phenomena requires integrating
data from a wide array of experimental technologies, including
genomics, transcriptomics, proteomics, advanced microscopy,
functional assays, flow cytometry, and clinical data [12].

The exploration of cell aggregation data is significantly
enhanced by the availability of public repositories. Databases
like GEO, OrganoidDB, NeuroMorpho.Org, the Allen Brain
Atlas suite, ImmPort, IDR, and specialized biofilm and clinical
databases provide access to vast amounts of data, enabling
researchers to investigate molecular mechanisms, cellular be-
haviors, and clinical correlations related to aggregation.

The inherent complexity and often high-throughput nature
of data generated in cell aggregation studies, such as the large
volumes of images from time-lapse microscopy of develop-
ing embryos or the high-dimensional data from single-cell
transcriptomics and flow cytometry of organoids or immune
cells, necessitate the use of advanced computational analysis
methods, including machine learning and sophisticated visu-
alization tools.

Future efforts in cell aggregation data exploration should
focus on improving data integration across different modalities
and repositories, developing standardized metadata and data
formats to facilitate data sharing and reuse, and creating
user-friendly computational tools that enable researchers from
diverse backgrounds to effectively analyze and interpret these
complex datasets. By leveraging the wealth of available data
and developing innovative analytical approaches, the scientific
community can gain deeper insights into the fundamental
principles of cell aggregation and translate this knowledge into
advancements in regenerative medicine, disease understanding,
and therapeutic development.

ACKNOWLEDGMENT

This research has been partially supported by the Eu-
ropean Union - Next Generation EU through the Project
of National Relevance “Innovative mathematical modeling
for cell mechanics: global approach from micro-scale mod-
els to experimental validation integrated by reinforcement
learning”, financed by European Union-Next-GenerationEU-
National Recovery and Resilience Plan-NRRP-M4C1-I 1.1,
CALL PRIN 2022 PNRR D.D. 1409 14-09-2022—(Project
code P2022MXCJ2, CUP F53D23010080001) granted by the
Italian MUR.

105



106

(1]

[2]

[3]

(4]

[5]

[6]

(71

(8]

(91

[10]

(1]

[12]

[13]

REFERENCES

Database resources of the national genomics data center, china national
center for bioinformation in 2025. Nucleic Acids Research, 53(D1):D30—
D44, 2025. https://doi.org/10.1093/nar/gkae978.

Fares Abomelha and Paul Newbury. A vark learning style-based
recommendation system for adaptive e-learning. Annals of Computer
Science and Information Systems, 41:1-8, 2024.

Anika Alexandrova-Watanabe, Emilia Abadjieva, Lidia Gartcheva,
Ariana Langari, Miroslava Ivanova, Margarita Guenova, Tihomir
Tiankov, Velichka Strijkova, Sashka Krumova, and Svetla Todi-
nova. The impact of targeted therapies on red blood cell aggre-
gation in patients with chronic lymphocytic leukemia evaluated us-
ing software image flow analysis. Micromachines, 16(1):95, 2025.
https://doi.org/10.3390/mil16010095.

Mario Argenziano, Massimiliano Zingales, Arsenio Cutolo, Emanuela
Bologna, and Massimiliano Fraldi. Competition between elasticity and
adhesion in caterpillar locomotion. Journal of the Royal Society Inter-

face, 22(225):20240703, 2025. https://doi.org/10.1098/rsif.2024.0703.

Hugo Cano-Ferndndez, Tazzio Tissot, Miguel Brun-Usan, and Isaac
Salazar-Ciudad. A mathematical model of development shows that
cell division, short-range signaling and self-activating gene networks
increase developmental noise while long-range signaling and epithe-
lial stiffness reduce it. Developmental Biology, 518:85-97, 2025.
https://doi.org/10.1016/j.ydbio.2024.11.014.

Oluwadamilola M Fayanju, Elliott R Haut, and Kamal Itani. Prac-
tical guide to clinical big data sources. JAMA surgery, 2025.
https://jamanetwork.com/journals/jamasurgery/article-abstract/2828666.
Mario Fiorino, Muddasar Naeem, Mario Ciampi, and Antonio Coronato.
Defining a metric-driven approach for learning hazardous situations.
Technologies, 12(7):103, 2024.

Tiannan Guo, Judith A Steen, and Matthias Mann. Mass-spectrometry-
based proteomics: from single cells to clinical applications. Nature,
638(8052):901-911, 2025. https://www.nature.com/articles/s41586-025-
08584-0.

Ahsan Ismail, Muddasar Naeem, Madiha Syed, Musarat Abbas, and
Antonio Coronato. Advancing patient care with an intelligent and
personalized medication engagement system. Information, 15:609, 10
2024.

Mansoor Jamal, Zaib Ullah, Muddasar Naeem, Musarat Abbas, and An-
tonio Coronato. A hybrid multi-agent reinforcement learning approach
for spectrum sharing in vehicular networks. Future Internet, 16(5):152,
2024.

Kevin G Johnston, Bereket T Berackey, Kristine M Tran, Alon Gelber,
Zhaoxia Yu, Grant R MacGregor, Eran A Mukamel, Zhiqun Tan, Kim N
Green, and Xiangmin Xu. Single-cell spatial transcriptomics reveals
distinct patterns of dysregulation in non-neuronal and neuronal cells in-
duced by the trem2 r47h alzheimer’s risk gene mutation. Molecular Psy-
chiatry, 30(2):461-477, 2025. https://www.nature.com/articles/s41380-
024-02651-0.

Umamah Khalid, Muddasar Naeem, Fabrizio Stasolla, Madiha Syed,
Musarat Abbas, and Antonio Coronato. Impact of ai-powered solu-
tions in rehabilitation process: Recent improvements and future trends.
International Journal of General Medicine, 17:943-969, 03 2024.
https://doi.org/10.2147/IJGM.S453903.

Aziz Kubaev, Fadhil Faez Sead, Mohammad Pirouzbakht, Mobina
Nazari, Hani Riyahi, Omolbanin Sargazi Aval, Alireza Hasanvand,

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

POSITION PAPERS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Forough Mousavi, and Hamed Soleimani Samarkhazan. Platelet-
derived extracellular vesicles: emerging players in hemostasis and
thrombosis.  Journal of Liposome Research, pages 1-11, 2025.
https://doi.org/10.1080/08982104.2025.2495261.

Jiaming Lan, Jingyu Zou, He Xin, Jin Sun, Tao Han, Mengchi Sun, and
Meng Niu. Nanomedicines as disruptors or inhibitors of biofilms: Oppor-
tunities in addressing antimicrobial resistance. Journal of Controlled Re-
lease, page 113589, 2025. https://doi.org/10.1016/j.jconrel.2025.113589.
Sang Jin Lee, Zhenzhen Wu, Mengyu Huang, Chao Liang, Ziqi Huang,
Siyuan Chen, Vidhyashree Rajasekar, Mohamed Mahmoud Abdalla,
Haram Nah, Dong Nyoung Heo, et al. Crosslinker-free in situ hy-
drogel induces self-aggregation of human dental pulp stem cells with
enhanced antibacterial activity. Materials Today Bio, 31:101451, 2025.
https://doi.org/10.1016/j.mtbio.2025.101451.

Tiging Liu, Linda Hwang, Stephen K Burley, Carmen I Nitsche,
Christopher Southan, W Patrick Walters, and Michael K Gilson.

Bindingdb in 2024: a fair knowledgebase of protein-small molecule
binding data. Nucleic acids research, 53(D1):D1633-D1644, 2025.

https://doi.org/10.1093/nar/gkae1075.

Cu Kim Long, Vijender Kumar Solanki, Nguyen Viet Anh, Luu Hoang
Bach, Cu Ngoc Son, et al. Machine learning-based prediction models
for sentiment analysis on online customer reviews: A case study on
airbnb. Annals of Computer Science and Information Systems, 42:103—
116, 2024.

Muddasar Naeem, Mario Fiorino, Pia Addabbo, Antonio Coronato, et al.
Integrating artificial intelligence techniques in cell mechanics. ANNALS
OF COMPUTER SCIENCE AND INFORMATION SYSTEMS, 41:111-
116, 2024.

Hafza Qayyum, Syed Rizvi, Muddasar Naeem, Umamah Khalid,
Musarat Abbas, and Antonio Coronato. Enhancing diagnostic accu-
racy for skin cancer and covid-19 detection: A comparative study
using a stacked ensemble method. Technologies, 12:142, 08 2024.
https://doi.org/10.3390/technologies12090142.

Swathy Krishna Reghukumar and Iwona Inkielewicz-Stepniak. Tumour
cell-induced platelet aggregation in breast cancer: Scope of metal
nanoparticles. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer,
page 189276, 2025. https://doi.org/10.1016/j.bbcan.2025.189276.

S Berlin Shaheema, Naresh Babu Muppalaneni, et al. An
explainable liquid neural network combined with path aggre-
gation residual network for an accurate brain tumor diagno-
sis. Computers and Electrical Engineering, 122:109999, 2025.
https://doi.org/10.1016/j.compeleceng.2024.109999.

Christine Van Laer, Renaud Lavend’homme, Sarissa Baert, Koenraad
De Wispelaere, Chantal Thys, Cyrielle Kint, Sam Noppen, Kathelijne
Peerlinck, Chris Van Geet, Dominique Schols, et al. Functional as-
sessment of genetic variants in thrombomodulin detected in patients
with bleeding and thrombosis.  Blood, 145(17):1929-1942, 2025.
https://doi.org/10.1182/blood.2024026454.

Hilal Yilmaz, Israa F Abdulazez, Sevda Gursoy, Yagmur Kazancioglu,
and Cem Bulent Ustundag. Cartilage tissue engineering in multilayer
tissue regeneration. Annals of Biomedical Engineering, 53(2):284-317,
2025. https://link.springer.com/article/10.1007/s10439-024-03626-6.
Mengru Zhu, Hao Zhang, Qirong Zhou, Shihao Sheng, Qianmin Gao,
Zhen Geng, Xiao Chen, Yuxiao Lai, Yingying Jing, Ke Xu, et al. Dy-
namic gelma/dna dual-network hydrogels promote woven bone organoid
formation and enhance bone regeneration. Advanced Materials, page
2501254, 2025. https://doi.org/10.1002/adma.202501254.



