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Abstract—Cell aggregation, where cells stick together, is a key
process in many biological events like how embryos form, how
tissues heal, and how microbes create communities. Studying
this involves looking at different types of data, from detailed
molecular information to images and patient data. With new
technologies, we have access to large amounts of this data
in public databases. Analyzing and combining this complex
information requires advanced computer methods. While there
are challenges in handling and integrating these diverse datasets,
exploring them helps us understand basic biology, develop models
for diseases, find new drugs, and advance regenerative medicine.
This report reviews these data types, sources, and analysis
methods to guide research in this important field.

Index Terms—Reinforcement Learning, MARL, Cell Mechan-
ics, Cell aggregation

I. INTRODUCTION

C
ELL aggregation [3], the process by which individual

cells adhere to one another to form multicellular struc-

tures [4], represents a fundamental biological phenomenon

observed across the tree of life. This self-assembly is not

merely a passive physical process but is frequently governed

by intricate molecular mechanisms and dynamic cellular be-

haviors. Aggregation plays critical roles in diverse contexts,

ranging from the formation of complex organisms during em-

bryonic development to the establishment of resilient microbial

communities known as biofilms [14]. It is also central to

physiological processes such as hemostasis, where platelets

aggregate to form blood clots, and immune responses, involv-

ing the clustering of lymphocytes and other immune cells

at sites of infection or within specialized lymphoid tissues.

Furthermore, in vitro cell aggregation is the foundational

principle behind the generation of three-dimensional (3D)

cell culture models, including spheroids and organoids [24],

which serve as powerful tools for studying tissue development,

disease modeling, and drug screening.

Understanding the intricacies of cell aggregation across

these varied biological systems requires the collection and

analysis of diverse types of data. Modern high-throughput

technologies, such as next-generation sequencing, advanced

microscopy, and automated functional assays, are generating

vast amounts of quantitative data related to cellular compo-

sition, molecular profiles, spatial organization, and dynamic

behaviors within aggregating cell populations. Navigating and

leveraging these extensive datasets, often stored in public

repositories, presents both opportunities and challenges for

researchers.

Artificial Intelligence (AI) and Machine Learning (ML)

has significant uses in many areas including healthcare [9],

vehicular communication [10], e-learning [2], rehabilitation

[12] and risk management [7]. Reinforcement Learning (RL)

is one the most promising type of ML [17] that has brought

revolution in different areas and cell mechanics can also be

benefited with this technology. Multi Agent RL (MARL) is

the extension of RL where multiple agents are being used for

multiple task within a bigger task.

This paper explores the landscape of data relevant to cell

aggregation by examining key biological scenarios where it

plays a critical role. The types of data generated by various

experimental techniques are categorized, and prominent public

data repositories where these data are stored and can be

accessed are identified. The aim is to provide a structured

overview for researchers seeking to utilize existing datasets to

study cell aggregation phenomena.

II. BACKGROUND

Cell aggregation [18] is a fundamental process that under-

pins the formation, function, and maintenance of biological

structures at multiple scales. Its significance spans numerous

fields of biological and medical research [19].

In embryonic development, cell aggregation is a primary

mechanism driving morphogenesis from the zygote. Following

initial cell divisions [5], blastomeres aggregate to form the

morula, a compact ball of cells. This compaction is critical
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for establishing cell polarity and initiating the first lineage

segregation, leading to the formation of the blastocyst with

its distinct inner cell mass and trophectoderm. Subsequent

aggregation and rearrangement of cells within the developing

embryo give rise to the three germ layers—ectoderm, meso-

derm, and endoderm—which then differentiate and organize

into the precursors of all tissues and organs. The precise timing

and spatial control of these aggregation and differentiation

events are governed by complex genetic programs and cell-

cell communication mediated by signaling pathways.

Organoid formation in the laboratory directly leverages the

inherent ability of cells, particularly stem cells, to aggregate

and self-organize into 3D structures resembling native tissues.

By providing specific biochemical cues, such as growth factors

and signaling molecules, and appropriate physical environ-

ments, researchers can guide the aggregation and differenti-

ation of pluripotent or adult stem cells to generate organoids

mimicking various organs like the brain, intestine, kidney,

or liver. These 3D models offer significant advantages over

traditional two-dimensional cell cultures by better recapitulat-

ing the complex cell-cell interactions, tissue architecture, and

physiological functions of their in vivo counterparts.

In the microbial world, biofilm formation is a widespread

lifestyle characterized by the aggregation of bacteria and

other microorganisms on surfaces, encased within a self-

produced extracellular matrix (ECM). This aggregated lifestyle

provides significant advantages, including enhanced resistance

to environmental stresses, disinfectants, and antibiotics, as

well as protection from host immune responses. Biofilms

are implicated in numerous industrial issues and persistent

infections, making the study of their formation and dispersal

critical for developing effective control strategies.

Blood clotting, or platelet aggregation [20], plays a critical

role in hemostasis [13], the body’s natural process for stopping

bleeding after a blood vessel is injured. Platelets quickly

gather and stick together at the injury site, forming a plug

that’s strengthened by fibrin to seal the damaged vessel. While

essential for survival, if platelet aggregation becomes uncon-

trolled, it can lead to dangerous thrombosis—the formation of

clots within healthy blood vessels. This can result in serious

conditions like deep vein thrombosis, pulmonary embolism,

stroke, and heart attack. Understanding the mechanisms of

platelet aggregation is therefore vital for diagnosing bleeding

disorders and developing treatments to prevent clots.

Immune cell aggregation is a critical aspect of the adaptive

immune response. Following recognition of foreign antigens,

lymphocytes and other immune cells proliferate and aggre-

gate in secondary lymphoid organs, forming structures like

germinal centers within B cell follicles. These aggregates

provide specialized microenvironments for processes such as

B cell affinity maturation and the generation of memory cells

and antibody-secreting plasma cells, which are essential for

long-lived immunity and effective vaccination. Immune cell

aggregation also occurs at sites of infection or inflammation,

facilitating coordinated cellular interactions to clear pathogens

or resolve tissue damage.

Fig. 1. Types of Cell Aggregation

In the context of tissue regeneration [15] and engineering,

cell aggregation techniques are employed to create multicellu-

lar building blocks, such as spheroids or organoids, which can

be used to repair or replace damaged tissues. Understanding

how cells aggregate, maintain viability, and differentiate within

these 3D structures is vital for developing effective regenera-

tive therapies [23]. Mechanical forces and cell-cell interactions

within these aggregates play a significant role in directing cell

fate and tissue organization.

Finally, neuronal aggregation [21] is a key stage in the de-

velopment of the nervous system. As newly generated neurons

migrate to their final destinations in the brain, they aggregate

with similar cell types to form distinct brain regions and layers.

This process is guided by cell-cell recognition and adhesion

molecules and is crucial for establishing the complex circuitry

of the brain. Dysregulation [11] of neuronal aggregation and

migration is implicated in various neurological disorders.

The study of these diverse cell aggregation phenomena is

fundamentally important for unraveling basic biological prin-

ciples, creating accurate models of human health and disease,

and developing innovative therapeutic and biotechnological

applications. Multi-Agent Reinforcement Learning (MARL)

emerges as a particularly promising computational paradigm.

MARL, a specialized subfield of artificial intelligence, is de-

signed to model complex systems where multiple autonomous

agents interact and learn in a shared environment. This report

explores the application of MARL to the intricate domain

of cell mechanics, aiming to address the inherent limitations

of traditional computational approaches in fully capturing the

multi-agent nature and emergent properties of cellular systems.

The subsequent sections detail the necessary revisions to

enhance the paper’s technical depth and highlight the unique

contributions of MARL to this vital field.
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III. DATA TYPES RELEVANT TO CELL AGGREGATION

STUDIES

Investigating the multifaceted nature of cell aggregation

necessitates the acquisition and analysis of data across various

scales, from the molecular interactions governing cell adhesion

to the macroscopic morphology and dynamics of the resulting

aggregates.

Molecular Data [16] provides insights into the genetic

programs, protein machinery, and signaling networks that

regulate cell aggregation and the subsequent behavior of ag-

gregated cells. Transcriptomics, encompassing techniques like

bulk RNA sequencing, single-cell RNA sequencing (scRNA-

seq), and spatial transcriptomics, provides insight into gene

expression patterns. These patterns, in turn, determine a cell’s

identity, its stage of differentiation, and how it responds to

its surroundings within cellular groupings. Genomics data [1],

including DNA sequence variations, copy number changes,

and epigenetic modifications, provide the foundational genetic

and regulatory landscape influencing aggregation potential and

associated disease states. Proteomics data [8] identify the

proteins present, their abundance, and post-translational mod-

ifications, detailing the molecular machinery of cell adhesion,

ECM production, and signal transduction within aggregates.

Data on signaling pathways, including the activity of receptors,

kinases, and transcription factors, illuminate how cells perceive

and respond to their environment and coordinate collective

behaviors like aggregation, differentiation, and migration.

Cellular Data captures the physical characteristics and activ-

ities of individual cells and cell populations within aggregates.

Imaging data, acquired through various microscopy techniques

(light, confocal, electron, time-lapse, spatial), provides visual

information on cell morphology, spatial arrangement, and the

dynamic process of aggregation and structural development.

Functional assay data quantifies cellular activities such as elec-

trophysiological signaling in neuronal aggregates or organoids,

transport function in epithelial structures, or responses to exter-

nal stimuli like drugs or pathogens. Flow cytometry provides

high-throughput, single-cell analysis of protein expression, en-

abling the identification and quantification of distinct cell types

and their activation states within heterogeneous populations,

particularly relevant for immune cells and platelets.

Clinical Data [6] provides essential context for studying cell

aggregation in disease. This includes patient demographics,

medical history, lifestyle factors, treatment regimens, disease

severity, and clinical outcomes. Such data are critical for cor-

relating in vitro findings with in vivo conditions and assessing

the translational relevance of research, particularly in areas

like thrombosis and immune disorders.

IV. EXPLORING CELL AGGREGATION DATA ACROSS

BIOLOGICAL CONTEXTS

The application of these diverse data types varies depending

on the specific biological context of cell aggregation bein

studied. Each scenario presents unique challenges and oppor-

tunities for data exploration .

In the study of organoid formation, a key aspect is under-

standing how these in vitro aggregates recapitulate the com-

plexity of native organs. Single-cell RNA sequencing (scRNA-

seq) is indispensable for dissecting the cellular heterogeneity

within organoids, identifying the different cell types that

emerge during differentiation, mapping their developmental

trajectories, and comparing their molecular profiles to those of

cells in primary tissues. Dedicated databases like OrganoidDB

serve as valuable resources for exploring organoid transcrip-

tomes, including extensive collections of scRNA-seq data. The

inherent variability observed between individual organoids,

even within the same culture, underscores the need for high-

throughput quantitative data collection and analysis. This vari-

ability can be assessed through large-scale scRNA-seq studies

of many organoids or through automated imaging analysis.

Imaging data, particularly from brightfield, phase contrast,

and confocal microscopy, provides crucial information on

organoid morphology, size, growth kinetics, and the formation

of complex structures like lumens. The large volume of images

generated in high-throughput organoid screens necessitates

automated image analysis tools, often employing machine

learning, to segment, quantify, and track individual organoids.

Datasets like MultiOrg specifically provide microscopy images

of organoids with annotations for training such tools. Beyond

structural and compositional analysis, functional assay data

are critical for validating whether organoids truly mimic the

physiological activities of their corresponding organs. This

includes assessing barrier function, transport activity (e.g.,

in kidney or intestinal organoids), or electrophysiological

signaling (e.g., in brain organoids). The combination of multi-

omics (genomics, transcriptomics, proteomics, metabolomics)

and functional data is essential for a thorough assessment

of organoid authenticity, stability, and translational potential,

particularly for applications in disease modeling and drug

screening.

Investigating embryonic development requires unraveling

precisely controlled spatiotemporal events, including cell ag-

gregation, migration, and differentiation. Gene expression

data, from bulk and single-cell transcriptomics, provides a

molecular narrative of these processes, revealing which genes

are active at different developmental stages and in different

cell lineages. However, understanding development requires

knowing where genes are expressed within the developing

tissue. Spatial transcriptomics addresses this need by mapping

gene expression profiles while preserving spatial information,

providing molecular maps of embryonic structures and cel-

lular organization. The four-dimensional nature of develop-

ment (3D space over time) makes the integration of spatial

and temporal data particularly crucial for linking molecular

events to dynamic cellular behaviors and structural changes.

Time-lapse microscopy captures the dynamic morphological

aspects of embryonic development, including cell division

timings, migration patterns, and the process of aggregation

and morphogenesis in living embryos over extended periods.

This generates massive datasets, particularly in applications

like IVF, which necessitate advanced computational meth-
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ods, such as machine learning, to automate analysis, extract

morphokinetic parameters, and identify predictive patterns for

embryo viability. Public repositories like GEO , TEDD ,

and the Allen Brain Atlas (Developing Mouse/Human) and

BrainSpan provide access to vast amounts of gene expression

and anatomical data from developing organisms.

The study of microbial biofilm formation relies heavily

on understanding the transition from planktonic single cells

to aggregated communities and the molecular mechanisms

underlying this process. Genomic and transcriptomic data

reveal the genes involved in surface attachment, cell-cell

adhesion, ECM production, quorum sensing, and stress re-

sponses that are upregulated or downregulated during biofilm

development. Multi-omics approaches, integrating genomics,

transcriptomics, and proteomics, provide a more comprehen-

sive view of the molecular changes and functional pathways

involved in biofilm formation and resistance. Imaging data,

particularly from confocal laser scanning microscopy (CLSM),

is essential for visualizing the 3D structure of biofilms, in-

cluding microcolonies, water channels, and the distribution

of cells and ECM components. Time-lapse imaging allows

tracking the dynamics of biofilm growth and dispersal. Public

repositories like GEO and specialized biofilm databases (e.g.,

aBiofilm, BiofOmics, Biofilms Structural Database, BRaID)

serve as sources for genomic, transcriptomic, and sometimes

image data related to biofilms. Understanding the molecular

mechanisms driving phenotypic shifts during biofilm forma-

tion is significantly enhanced by integrating multi-omics data,

while imaging captures the essential 3D structure and dynamic

processes of aggregation.

Research on platelet aggregation and thrombus formation

involves characterizing the rapid cellular and molecular events

occurring at sites of vascular injury.Data from aggregom-

etry, especially light transmission aggregometry (LTA) and

impedance aggregometry, quantifies how platelets clump to-

gether and the degree to which they do so when exposed to

different agonists. These assays provide quantitative param-

eters such as maximum aggregation, slope, and lag phase.

Microscopy images, especially time-lapse fluorescence and

DIC microscopy of thrombus formation under flow conditions,

visualize the process of platelet adhesion, shape change, ag-

gregation, and the incorporation of fibrin and other blood cells

into the growing thrombus. These images allow for quantitative

analysis of thrombus size, morphology, and dynamics. Flow

cytometry is used to analyze platelet activation markers and

identify distinct platelet subpopulations within blood samples.

Clinical data from patients with thrombotic disorders [22] or

bleeding tendencies are essential for identifying risk factors,

correlating laboratory findings with clinical outcomes, and

evaluating the effectiveness of antiplatelet and anticoagulant

therapies. Public resources like clinical trial databases (e.g.,

ClinicalTrials.gov), disease-specific registries (e.g., ISTH reg-

istries), and genomic databases (e.g., NIH GTR) provide

access to relevant clinical and genetic data.

The study of immune cell aggregation, such as in ger-

minal centers or at infection sites, involves characterizing

the cellular composition, spatial organization, and functional

interactions of immune cells. Flow cytometry, including high-

dimensional techniques like CyTOF, is widely used to identify

and quantify different immune cell subsets based on surface

protein expression and analyze their activation states within

heterogeneous populations . Repositories like ImmPort house

extensive flow cytometry data from immunology studies and

clinical trials . Imaging data, such as intravital microscopy,

allows visualization and tracking of immune cell migration

and interactions in real-time within tissues, providing spatial

and dynamic context to flow cytometry findings. Databases

like IDR and those linked through the Human Cell Atlas ini-

tiatives may contain relevant imaging data. Data on cytokines

and chemokines are critical for understanding the molecular

signals that mediate immune cell recruitment, activation, and

communication within aggregates. Databases like ImmPort

and specialized cytokine/chemokine resources (e.g., CYTO-

CON DB, Cell Interaction Knowledgebase) provide access to

these data .

For tissue regeneration and engineering, data focuses on the

behavior of cells within aggregates used as building blocks.

Cellular data, including viability, proliferation, differentiation

status (often assessed via markers), and the impact of mechan-

ical forces or environmental cues, are critical. Imaging data

captures the formation, growth, and structural organization

of these cellular aggregates, as well as the integration of

different cell types in co-cultures. Data on the composition

and properties of the extracellular matrix within aggregates or

surrounding them (e.g., hydrogels) is also important, as the

ECM provides structural support and signaling cues influenc-

ing cell behavior.

Understanding neuronal aggregation during brain develop-

ment involves characterizing the types of neurons, their migra-

tory paths, and how they organize into specific brain structures.

Imaging data, including light microscopy, electron microscopy,

and various brain imaging modalities (MRI, fMRI), provides

visual information on neuronal morphology, connectivity, and

the large-scale structure of the brain formed by aggregated

neurons . Specific data types include neuronal morphology

reconstructions (neuronal tracing data) , electrophysiological

recordings of neuronal activity , and gene expression profiles

(transcriptomics) related to neuronal development and cell type

specification. Large public databases like NeuroMorpho.Org

and the Allen Brain Atlas suite provide access to extensive

datasets on neuronal morphology, gene expression, and con-

nectivity.

V. PUBLIC DATA SOURCES

Access to publicly available data is crucial for advancing re-

search in cell aggregation. Numerous repositories host relevant

datasets, often specialized by data type or biological domain.

The Gene Expression Omnibus (GEO) serves as a prominent

international public repository for a wide range of high-

throughput functional genomics data, including genomic, tran-

scriptomic, and epigenomic datasets, including microarray

and next-generation sequencing data. GEO supports various
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organisms and experimental conditions, making it a valuable

resource for studying gene expression changes during ag-

gregation processes in diverse contexts, including embryonic

development, organoid formation, and biofilm development.

Data can be searched and downloaded via the GEO DataSets

and GEO Profiles interfaces, FTP, or programmatic access.

For organoid-specific transcriptomic data, OrganoidDB pro-

vides a comprehensive resource for bulk and single-cell RNA-

seq profiles of human and mouse organoids, integrating data

from GEO and ArrayExpress. It allows searching and brows-

ing based on organoid type, source, protocol, and developmen-

tal stage.

For neuronal morphology and related data, NeuroMor-

pho.Org is a centrally curated inventory of digitally recon-

structed neurons from various species, providing 3D mor-

phological data and associated metadata. The Allen Brain

Atlas suite provides extensive resources for neuronal data,

including gene expression atlases for adult and developing

mouse and human brains, connectivity maps, and single-

cell characterization data (morphological, electrophysiological,

transcriptomic). Data can be accessed via web portals, APIs,

and SDKs . The BRAIN Initiative Cell Census Network

(BICCN) also provides access to multimodal brain cell atlas

data through various archives like NeMO, BIL, and DANDI.

For immune cell and cytokine/chemokine data, the Im-

munology Database and Analysis Portal (ImmPort) is a major

repository for immunology research data, including clinical

trial data, flow cytometry, and multiplex cytokine/chemokine

data. ImmPort provides tools for searching, downloading, and

analyzing shared data.

The Image Data Resource (IDR) serves as a public repos-

itory for imaging data, specifically microscopy images of

cells and tissues. This resource archives image datasets from

published scientific research, accommodating diverse imaging

techniques and organisms. Users can search for and access

high-quality biological image data through this platform.

Several resources are available for clinical data concerning

thrombotic disorders. These include established clinical trial

databases (such as ClinicalTrials.gov), registries specific to

diseases (for example, those maintained by the ISTH for

rare bleeding disorders or VTE), and certain extensive claims

or electronic health record databases, though access to the

latter might be limited. Additionally, the NIH Genetic Testing

Registry (GTR) offers details on genetic tests relevant to

thrombotic conditions.

For histological images, resources like the GTEx Tissue

Image Library and specialized datasets like TissueNet or those

linked through initiatives like TCGA or Human Protein Atlas

provide access to tissue histology images, sometimes with

annotations .

For biofilm genomic and transcriptomic data, in addition

to GEO, specialized databases like BBSdb and the Biofilms

Structural Database (BSD) exist, though access methods vary.

Some data may also be available in generalist repositories like

Dryad or institutional repositories.

VI. MULTI AGENT REINFORCEMENT LEARNING AND

MACHINE LEARNING TO CELL AGGREGATION

A. Cancer: Histopathology and scRNA-seq Data Analysis

1) Image Analysis (Histopathology): Deep learning models

(e.g., Convolutional Neural Networks - CNNs) can be trained

on histopathology images to identify cancerous aggregation

patterns, tumor boundaries, and predict malignancy. Multi-

RL can then be used to optimize image segmentation and

classification by learning from different expert annotations or

even guiding the sampling of new image regions for analysis.

2) scRNA-seq for cell state and interaction: ML algorithms

such as clustering (e.g., t-SNE, UMAP, K-means) can iden-

tify distinct cell populations and their aggregation tendencies

from scRNA-seq data. Multi-RL can be employed to model

the dynamic interactions between different cell types (e.g.,

cancer cells, immune cells, stromal cells) within the tumor

microenvironment. Each cell type could be considered an

agent, learning optimal strategies for proliferation, migration,

or interaction based on the transcriptional states of neighboring

cells, allowing for prediction of tumor growth or response to

therapy.

B. Wound Healing: Microscopy and scRNA-seq Data Analysis

1) Time Lapse Microscopy for Cell Dynamics: ML algo-

rithms can track individual cell movements and aggregation

dynamics from time-lapse microscopy images. Multi-RL can

model the collective behavior of cells (e.g. fibroblasts, immune

cells, keratinocytes) during wound closure. Each cell or a

group of cells can act as an agent, learning policies for

migration, proliferation, and extracellular matrix remodeling to

optimize healing efficiency, potentially identifying bottlenecks

or aberrant healing processes.

2) Spatial Transcriptomics for Cellular Coordination:

Integrating scRNA-seq with spatial information allows us to

understand how different cell types spatially interact during

wound healing. ML can identify spatial gene expression

patterns that indicate successful healing. Multi-RL can then

simulate the ”decision-making” of cells based on their local

environment and gene expression, learning how to coordinate

their actions (e.g., secreting growth factors, migrating towards

specific cues) to achieve optimal tissue regeneration.

C. Embryogenesis: Live Imaging and Spatial RNA-seq Data

Analysis

1) Modeling Morphogenesis: Live imaging data provides

dynamic information on cell shape changes and movements.

ML models can be trained to predict developmental outcomes

based on initial cell configurations. Multi-RL is highly suitable

for modeling complex, self-organizing processes of embryo-

genesis. Each cell or group of cells can be an agent, learning

from its neighbors and environmental cues to make ”decisions”

regarding division, differentiation, migration, and adhesion,

ultimately forming complex tissues and organs. The ”reward”

signal could be the successful formation of a specific tissue

structure or stage of development.
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2) Spatial Transcriptomics for Developmental Programs:

Spatial RNA-seq data reveals gene expression patterns across

developing tissues. ML can identify gene regulatory networks

driving cell aggregation and differentiation. Multi-RL agents,

representing different cell lineages, can learn optimal strate-

gies for gene expression changes and physical interactions

to achieve proper tissue patterning and organogenesis. This

could involve simulating how cells interpret and respond to

morphogen gradients and mechanical forces to reach their

correct positions and fates.

D. Immune Swarming: Immune Imaging and scRNA-seq Data

Analysis

1) Tracking Immune Cell Dynamics: Immune imaging data

allows for tracking the movement and interactions of immune

cells. ML can identify different immune cell subsets and their

migration paths. Multi-RL can simulate immune swarming by

treating individual immune cells or groups as agents. These

agents can learn to chemotax (move along chemical gradients),

interact with pathogens, and coordinate with other immune

cells to effectively clear infections or respond to inflamma-

tion. The ”reward” could be the successful containment of a

pathogen or resolution of inflammation.

2) Predicting Immune Response Outcomes: scRNA-seq

provides insights into the transcriptional states of immune

cells during aggregation. ML can correlate these states with

disease outcomes. Multi-RL can be used to model the adaptive

strategies of immune cells in response to evolving threats,

optimizing their aggregation and effector functions. For exam-

ple, agents could learn to upregulate specific receptors, secrete

cytokines, or initiate cell-to-cell contact based on the presence

of pathogens or signals from other immune cells, leading to a

more efficient and coordinated immune response.

E. Neural Aggregation: Brain Organoids and scRNA-seq Data

Analysis

1) Predicting Neuronal Migration and Circuit Formation:

ML models can analyze time-lapse imaging, gene expression

data, and spatial transcriptomics data from brain organoids to

predict the trajectories of migrating neurons and the formation

of neural circuits. Multi-RL can simulate the intricate dance

of neuronal migration and circuit assembly. Individual neurons

or neuronal clusters can be agents that learn to navigate com-

plex environments, form connections with appropriate partners

(synaptogenesis), and integrate into functional networks. The

”reward” signal could be the successful formation of a mature

neural circuit with specific functional properties, as assessed

by electrophysiological recordings or imaging data.

2) Modeling Neuroplasticity and Disease Progression:

Multi-RL can be used to model neuroplasticity, where neu-

rons learn to adapt their connections and firing patterns in

response to stimuli. In the context of neurodevelopmental

or neurodegenerative diseases, Multi-RL could simulate how

aberrant aggregation or connectivity leads to dysfunction.

Agents (neurons) could learn to compensate for damage or

disease-related changes, or conversely, models could identify

tipping points where the system transitions to a diseased state.

This could inform strategies for intervention or rehabilitation.

F. Cardiac Cell Repair: Heart Tissue Imaging Data Analysis

1) Modeling Myocardial: Regeneration Multi-RL can sim-

ulate the complex interplay of various cell types involved

in cardiac repair, including cardiomyocytes, fibroblasts, and

immune cells. Each cell type could be an agent, learning

to respond to signals from the damaged microenvironment

(e.g., inflammatory cues, growth factors) to contribute to tissue

regeneration. This could involve learning optimal strategies

for proliferation, differentiation, and secretion of extracellular

matrix components to promote functional tissue repair and

prevent maladaptive remodeling. This type of modeling could

lead to the identification of novel therapeutic targets to enhance

cardiac repair.

2) Optimizing Cell Delivery and Engraftment: ML al-

gorithms can analyze heart tissue imaging (e.g., histology,

gene expression profiles) to assess the survival, integration,

and functional impact of transplanted cells (e.g., stem cells,

cardiomyocytes) in damaged heart tissue. Multi-RL can then

be employed to optimize cell delivery strategies. Agents (e.g.,

individual transplanted cells or surrounding host cells) could

learn to interact optimally to promote engraftment, vascular-

ization, and functional integration into the host myocardium.

The ”reward” could be measured by improvements in cardiac

function, reduced scar tissue formation, or successful electrical

coupling.

VII. FORMULATING A CELL MECHANICS PROBLEM INTO

MARL

The process of formulating a cell mechanics problem into

a Multi-Agent Reinforcement Learning (MARL) framework

requires translating biological phenomena into computational

elements while preserving the complex, emergent nature of

multicellular systems.

In this formulation:

A. Agents

Agents correspond to autonomous biological cells (e.g.,

blastomeres, epithelial cells, immune responders), each acting

based on local perceptions and internal states.

B. States

States encapsulate multidimensional cell features such as

spatial coordinates, polarity vectors, cell cycle phase, gene

expression profiles, mechanical tension, and adhesion strength.

These may be derived from real-time imaging, transcriptomics,

and biomechanical simulations.

C. Actions

Actions include discrete and continuous choices like mi-

gration, division, differentiation, polarity realignment, ECM

remodeling, and intercellular signaling.
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D. Reward Functions

Reward Functions are formulated to capture biologically

meaningful objectives—such as optimizing tissue cohesion,

minimizing energy expenditure, achieving correct positional

fate, or synchronizing morphogenetic movements. These may

include sparse or dense feedback and require multi-objective

optimization.

E. Environment

Environment refers to the spatial-temporal tissue context,

characterized by dynamic morphogen gradients, extracellular

matrix properties, boundary conditions, and interactions with

neighboring agents.

VIII. DISCUSSION

A. Advantages of MARL Over Single-Agent RL in Cell

Mechanics

1) Decentralized Coordination: Biological cells function as

autonomous entities, responding to local signals and engaging

in self-organized behavior. MARL mirrors this natural decen-

tralization, enabling accurate modeling of emergent develop-

mental processes.

2) Modeling Emergent Properties: Complex multicellular

phenomena such as morphogenesis and spatial patterning arise

from local interactions. MARL is inherently suited to discover

and simulate these emergent properties through distributed

policy learning.

3) Robustness to Perturbations : In fluctuating and noisy

biological environments, MARL provides resilience by allow-

ing agents to adapt locally. This makes the system robust

against disruptions, mimicking biological fault tolerance.

B. Challenges and Future Directions

Despite its transformative potential, applying Multi-Agent

Reinforcement Learning (MARL) to cell mechanics is

constrained by three core challenges. First, the vast spatial,

temporal, and molecular complexity of multicellular systems

creates high-dimensional environments that challenge MARL

scalability. Second, designing biologically valid and multi-

objective reward functions is non-trivial, requiring precise

alignment with physiological outcomes. Third, integrating

diverse data types like imaging, transcriptomics, and spatial

omics into unified agent frameworks demands advanced

modeling strategies. Addressing these challenges will require

interdisciplinary advances in AI, systems biology, and data

integration to fully leverage MARL for biological discovery.

Future research in MARL for cell mechanics should

prioritize the development of biologically constrained multi-

agent architectures, capable of encoding known intercellular

signaling networks and mechanotransduction rules. Hybrid

learning models that integrate reinforcement learning with

supervised or self-supervised modules will be essential

to leverage annotated biological datasets. Simultaneously,

scalable data assimilation frameworks must be established

to incorporate real-time spatial transcriptomics, live-cell

imaging, and dynamic tissue properties. Integrating these

MARL systems with in vitro experimental platforms via

co-simulation or closed-loop control could enable predictive

modeling of morphogenesis and regeneration. Collectively,

these efforts will transform MARL into a practical and

predictive toolset for mechanobiology, synthetic development,

and regenerative engineering.

IX. CONCLUSIONS

Cell aggregation is a fundamental biological process occur-

ring across diverse scales and contexts, from the formation of

multicellular organisms to the organization of microbial com-

munities and the coordination of cellular responses in health

and disease. Studying these phenomena requires integrating

data from a wide array of experimental technologies, including

genomics, transcriptomics, proteomics, advanced microscopy,

functional assays, flow cytometry, and clinical data [12].

The exploration of cell aggregation data is significantly

enhanced by the availability of public repositories. Databases

like GEO, OrganoidDB, NeuroMorpho.Org, the Allen Brain

Atlas suite, ImmPort, IDR, and specialized biofilm and clinical

databases provide access to vast amounts of data, enabling

researchers to investigate molecular mechanisms, cellular be-

haviors, and clinical correlations related to aggregation.

The inherent complexity and often high-throughput nature

of data generated in cell aggregation studies, such as the large

volumes of images from time-lapse microscopy of develop-

ing embryos or the high-dimensional data from single-cell

transcriptomics and flow cytometry of organoids or immune

cells, necessitate the use of advanced computational analysis

methods, including machine learning and sophisticated visu-

alization tools.

Future efforts in cell aggregation data exploration should

focus on improving data integration across different modalities

and repositories, developing standardized metadata and data

formats to facilitate data sharing and reuse, and creating

user-friendly computational tools that enable researchers from

diverse backgrounds to effectively analyze and interpret these

complex datasets. By leveraging the wealth of available data

and developing innovative analytical approaches, the scientific

community can gain deeper insights into the fundamental

principles of cell aggregation and translate this knowledge into

advancements in regenerative medicine, disease understanding,

and therapeutic development.
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