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Abstract—Artificial intelligence has recently led to numer-
ous new applications in various industry sectors. Whenever
artificial intelligence modules are used in a black-box setting,
quality monitoring of such modules remains an open challenge.
This implies that users of such modules cannot predict the
modules’ performance following software updates or retraining.
Specifically for regulated devices, keeping track of an artificial
intelligence module’s behavior and compliance with requirements
is crucial. To this end, existing methods for monitoring the
functional behavior of software are investigated and evaluated
regarding their practical usability in this paper. Based on the
results of the investigation, a proposal for a new adaptive quality
monitoring scheme for artificial intelligence modules is made.

I. INTRODUCTION

A
RTIFICIAL intelligence (AI) modules are becoming in-

creasingly common in private and public sectors. [1]

Such applications range from classical machine learning algo-

rithms, e.g. object detection and classification [2], to generative

AI systems such as chatGPT [3] which can be seen as a first

step towards a general-purpose AI. In the European Union

(EU) the AI Act [4] provides terms, definitions and require-

ments for AI models and systems. It also introduces general

transparency requirements to be met by any AI system and

establishes a conformity assessment framework for so-called

"high-risk scenarios" and general-purpose AI systems, aiming

to ensure that all high-risk AI systems and general-purpose

AI systems used within the EU ensure a minimum level of

customer protection. While these high-risk applications are

limited to law enforcement, health etc., the AI Act also stresses

that AI modules within regulated products still need to pass

conformity assessment according to the relevant directives. [4]

One such regulated sector is legal metrology, covering mea-

suring instruments used for commercial transactions or official

measurements. There exist already multiple signs indicating

that the integration of AI modules into regulated measuring

instruments is imminent. In the EU, the Measuring Instruments

Directive (MID) Annex I lays down essential requirements for

regulated measuring instruments which apply to ten different

types of instruments, e.g., length measuring devices, taxime-

ters, across all EU member states. As an example, requirement

8.3 imposes the following, ”[...] Software identification shall

be easily provided by the measuring instrument. Evidence of

an intervention shall be available for a reasonable period of

time.“ WELMEC Guide 7.2 [5] provides harmonized technical

guidance regarding the interpretation of the software-related

essential requirements for all EU members. From essential

requirement 8.3, two deductions can be drawn: Firstly, since an

AI module must be interpreted as software, it shall be possible

to identify a specific version of the AI module for control

purposes. Secondly, any change to the AI module (including

its parameters) shall be traceable to provide evidence of

an intervention. This requirement aims to ensure continued

compliance of the instrument by providing traceability of

modifications. Typically, users of AI modules do not have

access to the actual executable code of the module but either

use it as a remote service or as part of a device with limited

interaction capabilities. Given the potential adaptability of AI

modules, existing static solutions for providing traceability of

modifications, e.g., hashes over executable files [5], will likely

reach their limits quickly, if the frequency of modifications

increases. In particular, any approach should not be dependent

on manual interference or classification of changes. Therefore,

a solution should be able to automatically differentiate between

simple bugfixes that do not affect a module’s intended behavior

and more fundamental modifications such as the addition

of new functionality. To this end, classical and alternative

approaches for identification and traceability of software mod-

ules are investigated in this paper, resulting in a new proposal

which aims to be generally applicable for all types of AI

modules subject to similar requirements. The resulting use

case can be summarized as follows: An AI module is used

for data processing purposes, e.g., within a cyber-physical

system for classification of input data. Any change to the

module shall be traceable, either by providing evidence of an

intervention or through demonstrating continued compliance

with predefined requirements. The remainder of the paper is

structured as follows: Section II provides an overview of dif-

ferent existing methods to identify and monitor modifications

in software modules. In Section III one selected method will

be extended to deal with the potential behavior of AI modules.

The proposal will be practically tested and compared with the
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current state of the art in Section IV. Section V concludes the

paper and provides suggestions for further work.

II. RELATED WORK

Numerous methods exist for identifying software modules

and providing traceability of changes in real-world scenarios.

These range from simple version control systems to automata

learning approaches. While version control can be seen as

a static approach that does not allow automatic distinction

between minor bugfixes and major changes, automata learn-

ing can be used to quantify the scope of modifications for

certain types of automata. Subsection II-A will cover existing

active automata learning methods that require bi-directional

communication with a system under learning (SUL). Methods

that operate passively and are also applicable in black-box

scenarios will be addressed in Subsection II-B. Classical

static approaches of identifying software through hashes over

binaries will be revisited in Subsection II-C. In Subsection

II-D the differences between the approaches are discussed and

a candidate for the described use case is selected.

A. Active automata learning

In the 1987 paper ”Learning Regular Sets from Queries and

Counterexamples“ [6], Angluin outlined the now well-known

L∗ algorithm. The algorithm uses a learner L which sends

consecutive queries to a teacher T to construct and update an

automata representation of the SUL. The teacher acts as an

interface to the SUL and provides necessary abstraction for

the learner. Thus, the approach is only applicable in a white-

box or gray-box scenario. Since the learner paradigm plays a

central role in the developed method in Section III, the main

aspects of the L∗ algorithm will be reiterated here. L∗ was

originally developed for learning the behavior of deterministic

finite automata (DFAs), which are 5-tuples (Q,Σ, δ, q0, F ) [7]:

Q is a finite non-empty set of states.

Σ is a finite input alphabet.

δ : Q× Σ → Q is the transition function. (1)

q0 ∈ Q is the initial state of the DFA.

F ⊂ Q is the set of accepting states of the DFA.

During execution of L∗, the learner L sends membership and

equivalence queries to the teacher T . If the accepted language

of the SUL A is L(A) and Aut(A) is the set of all DFAs with

the same input alphabet Σ, the two queries are defined in the

following manner:

• Membership query QM : Σ∗ → {0, 1} where the learner

asks the teacher to test if a given string x is part of the

language L(A). If x ∈ L(A), the teacher’s response is 1,

0 otherwise.

• Equivalence query QE : Aut (Σ) → Σ∗ ∪ {true} where

the learner asks the teacher to test equivalence between

the SUL A and the current learned automaton represen-

tation A′ ∈ Aut(Σ).

With the aim of constructing an internal observation table

for storing the results of the queries in systematic fashion,

the learner issues membership queries until an initial model

A′ is obtained. The learner then performs an equivalence

query for A′. The teacher subsequently either acknowledges

correspondence between the learned and the true model or

supplies a counterexample c ∈ Σ∗ fulfilling the condition

c ∈ L (A) ∧ c /∈ L (A′) or c /∈ L (A) ∧ c ∈ L (A′) .

Windmüller, Neubauer, Steffen, Howar and Bauer showed in

[8] and [9] that the L∗ algorithm can be adapted to large-scale

software applications with varying degrees of complexity.

However, they also noted that this requires a lot of adaptation

by the developer within the teacher to properly abstract the

behavior of the SUL to the needs of the learner. Furthermore,

while AI modules can be interpreted as deterministic software

modules, their output for arbitrary, unknown input generally

cannot be predicted due to the complexity of implementations

such as Artificial Neural Networks (ANN). [10]

B. Passive automata learning

If white-box access to the SUL is not possible, passive

automata learning algorithms can be used as an alternative

for learning the behavior of a SUL. These algorithms usu-

ally obtain a set of traces S = {S+, S−}, where S+ are

positive traces describing the correct behavior of the SUL

and S− are traces that contain known errors that contradict

the behavior of the SUL [11]. A trace itself is a list of

input symbols and subsequently reached states represented

by the corresponding observed output symbols. The Regular

Positive Negative Inference algorithm (RPNI) [11] can be used

to learn a model of an SUL from such traces. While the

approach can correctly learn the behavior of complex software

systems given sufficient time [12], it lacks the possibility of

mapping the potentially arbitrary response of an AI module for

unknown input to a DFA. A common limitation for typical

automata learning algorithms is the inefficiency of handling

so-called deeply nested states, especially when the SUL is

highly complex. On the other hand, although passive automata

learning algorithms allow efficient learning of an SUL’s be-

havior from a provided set of traces, testing the conformance

of the learned model, e.g., checking the completeness and/or

the consistency, could result in relatively long time because the

tests are usually performed via repeatedly checking different

input combinations [12]. While [12] puts the emphasis on

inferring a complete automaton of a black-box system, this

paper focuses on monitoring a task learned by an AI module

without prior knowledge.

C. Integrity protection through hashes

As mentioned in Section I, [5] provides harmonized tech-

nical guidelines for all EU member states regarding the ap-

plication of securing and protection requirements for software

in regulated measuring instruments. However, the Guide cur-

rently relies on static methods such as cryptographic hashes for

providing evidence of interventions for all types of software

modules. If an AI module contains a learning facility for

adaptation in the field, any change would result in a new
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hash over binary code and necessitate a new conformity

assessment. To remedy this problem, the International Or-

ganization for Legal Metrology (OIML) published a revised

version of the OIML Document D31 [13] in 2023. This

document is, in theory, applicable to all regulated measuring

instruments world-wide and addresses provision of evidence

of intervention in a meaningful manner for AI modules. D31

treats AI modules as software modules with a predefined

structure that are controlled by a (potentially very large) set of

parameters that can be modified by means of a learning facility.

Clause 6.2.3.1 of D31:2023, for instance, provides an example

of a large ANN that uses version control for identification

of the network topology and a cryptographic hash over the

network weights in predefined order for tracing changes to

the ANN’s behavior. To avoid having to re-certify the adapted

ANN, D31 recommends providing fingerprints of the network

weights and storing the actual configuration of the weights

externally. While this method ensures that an AI module within

a regulated measuring instrument can continue to be used even

after a learning cycle, the size of the externally stored weight

configuration will increase linearly over time. It also places the

burden of monitoring compliance with legal requirements on

inspectors and market surveillance authorities. To check a spe-

cific result of the AI module, the authority has to verify if the

ANN together with the stored network weight configuration

is suitable to produce measurement results within the legally

required limits. While the method does not require access to

the development environment of an AI module, it does require

access to the weights of the ANN and thus only works in a

white-box scenario.

D. Admissibility as evidence

It should be noted that the development processes for

’classical’ software and AI modules are very similar. For

classical software, the developer constructs an initial concept

based on known requirements and available data. This concept

is implemented and tested to ensure compliance with require-

ments [14]. Figure 1 provides a visual representation of this

workflow for a measuring instrument. During use, changes

to the software can be made via updates. In the use case

investigated here, any change to the software shall produce

evidence of intervention. Consequently, any software update

must either result in a broken physical seal or a permanent

logbook entry with the same legal consequences.

Fig. 1: Classical workflow for software development: Taking

into account predefined requirements, the developer uses the

available data to create an initial implementation, which is then

validated using independent test data. During use, software

modules can be modified by means of an update.

TABLE I: Overview of the different monitoring approaches

for AI modules and their properties.

approach black-box

support

memory requirements suitable

for AI

active automata

learning

no size of learning table no

passive automata

learning

yes size of learning table +
size of saved traces

no

hash comparison no size of AI model per
update

yes

remote quality

control

yes size of AI monitor
model

yes

Development of an AI module follows a similar pattern [15].

Initially, the developer selects an AI model (such as a decision

tree or a deep ANN) taking into account known requirements.

The model is then trained to learn a certain behavior based on

the available pre-processed training data. Prior to the release

of the model, it is validated using a validation data set which

is disjunct from the data used for training, see Figure 2.

During use of the model, different scenarios for updating it

are possible:

1) Updates can follow a pattern similar to ’classical’ soft-

ware products, where the entire trained model is replaced

by a new one.

2) A modification of the AI module can be realized by

providing it with new training data and initiating another

training procedure during use.

3) A learning algorithm as part of the AI module could

use observed real-world data together with an externally

provided reference for improving its configuration. In

this scenario, all individual serial devices in the field

will demonstrate different behavior.

These three variants will be revisited in Section IV.

Fig. 2: Workflow for development of AI modules: Based on

predefined requirements, the developer selects an initial AI

model, which is then trained using pre-processed training data.

The trained model is validated using independent test data.

During use, the AI module can either be replaced during an

update or re-trained using external or internal reference data.

Development of ’classical’ software and AI modules both

use a two-step approach that first produces an initial im-

plementation which is then validated using an independent

test dataset not included during development of the initial

implementation. Also, changes to the final implementation can

occur during use. While a software update can affect both

types of modules, the source for modifications can also be an
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internal learning procedure for an AI module. Regardless of

the fact if such a learning procedure uses a supervised or an

unsupervised training method, the main distinction compared

to ’classical’ software thus becomes the ability to dynamically

change, potentially without an external trigger. It is this

property that makes continuous monitoring of AI modules a

necessity. Table I provides a summary of the aforementioned

different approaches for providing security of evidence for

interventions. As can be seen from rows 1, 2, and 3, only

the hash comparison between different binary images of an

AI module can actually be used for providing evidence of in-

tervention while potentially needing linearly increasing chunks

of memory per modification of the AI module. At the same

time, the passive automata learning approach also supports

black-box scenarios combined with a significantly smaller

memory footprint, but is not originally able to monitor the

underlying massively complex models behind an AI module.

Thus, an extension of the passive automata learning approach

to adaptive AI modules will be investigated in the subsequent

section to derive an optimized solution with smaller memory

usage and black-box applicability.

III. REMOTE QUALITY CONTROL APPROACH

As has been demonstrated in [12], passive automata learning

algorithms can be used to learn the behavior of the software

of complex cyber-physical systems in a quasi black-box sce-

nario given sufficient learning time. To this end, the learning

algorithm generates prefixes from the observed positive and

negative traces S+ and S−. In the case of an SUL containing

an AI model, such as a deep ANN, the notion of traces

(consisting of input symbols and triggered state changes)

has to be replaced by observing pairs of input datasets I
and corresponding output datasets O. The mapping between

the two will be denoted as {I,O}. As such, the approach

developed here shows some similarity with the learner/teacher

approach from the L∗ algorithm, see Section II-A: The central

aim of the approach will be to approximate an SUL’s behavior

by the learner. To this end, a teacher instance is added to

the SUL, transforming its input I and output O into a data

format compatible with the learner. Since a specific model

structure needs to be selected prior to training of the learner, it

shall be initially assumed that an oracle exists that the learner

can use to select a specific model type. The consequences

of this restriction will be examined and discussed in Section

IV-E. It is assumed that a sufficiently complex learner can

properly monitor compliance of a given AI module with pre-

defined requirements, thus providing functional identification

of software as defined in [12]. Once an initial version of the

trained SUL exists, it is used as a teacher for a subsequent

second AI learner model. This second model will be referred

to as the AI monitor in the following text. It will be assumed

that the SUL is not modified during an initial stabilization

period tS . A graphical representation of the dataflow during

the stabilization period is shown in Figure 3. During this

stabilization period, the AI monitor will be trained using

{I,O} observed during tS . For the purpose of the experiments

Fig. 3: Stabilization phase of the proposed quality control

approach: A second AI module is fed input data I and output

data O of the SUL to perform passive learning of the SUL’s

AI module.

described in Section IV, tS was selected so that during initial

training of the AI monitor/learner, the same amount of input

data I was used as for the SUL. It should be noted that this

leads to a configuration, where the groundtruth G reference

data that corresponds to the input data I of the SUL is not

the same as the reference data O used by the AI monitor for

initialization and continuous training. After the stabilization

period, the trained model of the AI monitor will be used to

calculate an individual prediction p ∈ P for each new input

symbol i ∈ I . This will be compared with the corresponding

output symbol o ∈ O of the SUL. i, o and p thus represent

individual symbols observed by the AI monitor during normal

operation. Over a sliding window of length w matches and

mismatches between predictions P and observed output O
are monitored. If the resulting prediction accuracy is above

a threshold amin, the model of the AI monitor will be updated

using i and o. If the threshold is violated, the monitor triggers

a compliance warning to all concerned parties. The intended

workflow of the method is shown in Figure 4. The restriction

regarding the stabilization period is not strictly necessary, but

will avoid triggering a large amount of compliance warnings

at the beginning of the monitoring process. For the purpose

of experimental evaluation, amin was set here to allow a 3%
accuracy decrease relative to the initially trained learner. The

properties of the approach are shown in row 4 of Table I.

The intention behind the proposed remote quality monitor-

ing approach is to ensure continued compliance of the SUL

with requirements while reducing memory consumption and

reducing the need for manual interventions. Compared to the

hash comparison described in OIML D31 [13] the approach

loses some resolution regarding the SUL’s behavior since

inaccurate predictions of the monitor are tolerated to a certain

extent. To check their real-world applicability, both approaches

will be described in more detail in Section IV. The section will

also perform an in-depth analysis using real-world data.

IV. EXPERIMENTAL EVALUATION

For the purpose of this evaluation, SULs will be seen as

compliant as long as they perform an originally acquired

task correctly. Due to the different scenarios of modifying an

AI module, this section is divided as follows: Section IV-A

describes the algorithms used for evaluation as well as the
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Fig. 4: Monitoring phase of the proposed quality control

approach: The second AI module (the AI monitor) continues

to monitor the behavior of the SUL and calculates its own

prediction accuracy over a sliding window w. If the prediction

accuracy drops below a predefined threshold amin, the AI

monitor triggers a warning. Otherwise, the newly observed

pair of i and o is used to update the AI monitor.

datasets used for experiments. Section IV-B describes how

iterative additions of new reference datasets were used to

update the SUL and the reaction of the examined methods.

Section IV-C extends the use case of providing new global

reference datasets to individual reference data for each AI

module in use. A replacement of the SUL is addressed in

Section IV-D. Section IV-E presents a completely different

type of SUL to investigate potential bias in the experiments.

Section IV-F discusses the results.

A. Utilized algorithms and datasets

With the aim of testing the applicability of the proposed

method of providing evidence of intervention for AI modules,

a convolutional neural network (CNN) with six convolutional

layers was selected to perform a typical classification task

in legal metrology, for which CNNs have already proven

their suitability: If speed measurements are performed by law

enforcement personell, the used measuring instruments usually

incorporate a feature for automatic vehicle classification since

different types of vehicles, i.e., cars, trucks, buses, and motor-

cycles may be subject to different speed limits. As such, this

example fits into the EU legislation on measuring instruments

and the applicable requirements. It also includes aspects of

object detection and recognition, applications for which AI

modules have already demonstrated their suitability [2]. This

CNN shall serve as the SUL for the remainder of Section IV,

except for the use case with CNN3, see Table II. The CNN was

implemented using PyTorch and Tensorflow libraries. Training

and validation data were obtained from the publicly available

CIFAR-10 dataset for images of cars and trucks as well as the

CIFAR-100 dataset [16] for images of buses and motorcycles.

CIFAR-10 contains 6000 images for 10 different types of

objects, whereas the CIFAR-100 dataset contains 100 different

classes of objects with 600 images each. The combined dataset

used here, thus contained 12000 images of cars and trucks

and 1200 images of buses and motorcycles, each image being

labeled as belonging to one of the vehicle classes. Exemplary

images from each class are shown in Figure 5. For the purpose

(a) cars

(b) trucks

(c) buses

(d) motorcycles

Fig. 5: Exemplary images from the combined CIFAR-10 and

CIFAR-100 datasets [16] for the classes ”car/automobile“,

”truck“, ”motorcycle“.

of this experimental evaluation, the input data I are thus the

individual training images, whereas the groundtruth G are the

corresponding classification labels assigned to those images.

The remote quality control approach described in Section

III was similarly implemented using Python Tensorflow and

PyTorch libraries. Initially, the internal structure of the AI

monitor’s model was chosen to be a CNN identical to the

one of the SUL. Unless mentioned otherwise, this internal

model was used for all subsequent experiments. The AI

monitor was used to iteratively learn the behavior of the SUL

for all use cases described in Sections IV-B to IV-E using

the available input and output data {I,O} of the SUL only.

Stabilization time tS and lower accuracy bound amin were

configured as described in Section III. The hash comparison

algorithm described in [13] was implemented as a reference

method in the following manner: The network structure given

above was automatically translated to an identifier string

that uses a single character to denote the type of the layer,

e.g. ’c’ for ’convolutional’, ’l’ for ’linear’, followed by the

output shape for each layer, where individual dimensions

are separated by slash symbols. This results in the string

c128/256/64/1c128/256/64/1c128/128/64/1

c128/128/64/1c128/64/64/1l128/4 for the

described CNN. Similarly, SHA256 hashes were calulated

over the exported parameter sets of the CNN for the initial

trained network. Both are given in row 1 of Table II.

B. Iterative provision of new external reference data

For the initial model, 500 training images + 100 validation

images from each of the four classes were used for its first

training. To determine how the two evaluated algorithms react

to a modified more precise SUL, CNN1 was updated after

its initial training. The update was performed iteratively by

adding 1000 images to the training dataset with each new
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TABLE II: Identifiers produced by the hash comparison described in [13] for the various SULs used for experimental evaluation.

no. AI model classes topology ID parameter hash digest

1 original

CNN1

car, truck, bus,
motorcycle

c128/256/64/1c128/256/64/1c128/128/64/1

c128/128/64/1c128/64/64/1c128/64/64/1/l128/4

53899e22277658092a576cb65f29e443

64107c39080c687cbc29e9afe392d69f

2 CNN1

update 1

car, truck, bus,
motorcycle

c128/256/64/1c128/256/64/1c128/128/64/1

c128/128/64/1c128/64/64/1c128/64/64/1/l128/4

9aaba668b4cb6f99d608e54b7fa051de

1cf3465994dc2722888ec2db9df1855d

3 CNN1

update 2

car, truck, bus,
motorcycle

c128/256/64/1c128/256/64/1c128/128/64/1

c128/128/64/1c128/64/64/1c128/64/64/1/l128/4

b8e431a95e7f1b335f1779a61854fd8f

dee9de46e416aa56864de3c045175422

4 CNN1

update 3

car, truck, bus,
motorcycle

c128/256/64/1c128/256/64/1c128/128/64/1

c128/128/64/1c128/64/64/1c128/64/64/1/l128/4

09143768afae4bff1b814de3777a7185

72445e807728b75a1e056362d059eb4f

5 CNN1

update 4

car, truck, bus,
motorcycle

c128/256/64/1c128/256/64/1c128/128/64/1

c128/128/64/1c128/64/64/1c128/64/64/1/l128/4

4c8f57d109b4e4deabf8f53b1be4f730

126fc5f505e43fa67572eb1e4cc7eed7

7 CNN2 car, truck, bus,
motorcycle

c128/512/64/1c128/512/64/1c128/256/64/1

c128/256/64/1c128/128/64/1c128/128/64/1/l128/4

c5e303dcb9d30729cc5e65ef44054283

1650ff6cc9490132ff4ce90744347ca3

8 CNN3 horse, bird, car,
truck

c128/256/64/1c128/256/64/1c128/128/64/1

c128/128/64/1c128/64/64/1c128/64/64/1/l128/4

3cd2c07c569770c7f5bdbae50007bc7f

08f00102f6f0678e56832d7e44790dce

9 ResNet50 car, truck, bus,
motorcycle

c128/256/1/1c128/256/1/1c128/256/1/1

c128/512/1/1c128/512/1/1c128/512/1/1

c128/512/1/1c128/512/1/1c128/1024/1/1...

98318830b1eccd5a51422c5c5cf11c4f

7428e0f664dc0cda43e8a76732980ac1

dataset pair {I∆, G∆} being used to retrain the SUL. The

resulting classification accuracy for each incremental mod-

ification is given in Figure 6. At the same time, the AI

monitor was fed in-between classification output of the SUL

for smaller chunks of added images consisting of 250 images

each, to continually observe the SULs behavior within a

sliding window. Figure 7 illustrates this continuous monitoring

for an excerpt of Figure 6 between the original CNN1 and

its first update. In the excerpt, the AI-monitor’s accuracy

changes slightly with each new batch of images, as these

are unknown to both SUL and monitor. Nevertheless, amin is

not violated within this excerpt. It should be noted that the

accuracy of the SUL is measured between its classification

output O and the groundtruth G. For the AI monitor however,

accuracy is measured between its own prediction P and

the SUL’s classification output O. Thus, the AI monitor’s

accuracy can, theoretically, be higher than that of the SUL.

This would indicate that the AI monitor has learned the SUL’s

behavior correctly, even when the SUL itself performs false

classifications. As can be seen from Figure 6, the AI monitor

continually achieves an accuracy above the threshold amin.

Consequently, the AI monitor’s model is updated to include

new classification output from the SUL for the observed

chunks of images.

C. Iterative provision of individual reference data

From the point of view of both the D31 method [13] and

the remote quality control method, no distinction can be made

between AI modules being updated with new common external

reference data and provision of individual reference data per

AI module. Thus, all results from Section IV-B also apply for

this use case. The main distinction lies in the required memory

capacity needed for storing the configuration of the CNNs

for later manual inspection: If each AI module can change

independently, such traceability data also must be provided for

each module, thus increasing memory requirements linearly

with the number of AI modules used in the field.

Fig. 6: Timeseries of the AI monitor’s classification accuracy

for iterative updates. The AI monitor’s accuracy is measured

relative to the classification output O of the SUL. The SUL’s

accuracy is measured relative to the groundtruth G.

Fig. 7: Timeseries of the AI monitor’s classification accuracy

for chunks of new images between updates of the SUL (CNN1

to CNN1 update 1). The AI monitor’s accuracy is measured

relative to the classification output O of the SUL. The SUL’s

accuracy is measured relative to the groundtruth G.
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Fig. 8: Timeseries of the AI monitor’s accuracy of classifica-

tion results for the replaced SUL. The AI monitor’s accuracy

is measured relative to the classification output O of the SUL.

The SUL’s accuracy is measured against the groundtruth G.

D. Replacement of the CNN

To test the provision of evidence of an intervention by

the two algorithms for a modified SUL, the CNN1 was

replaced by a different CNN2 with six convolutional layers

and one linear layer, where each layer has twice the number

of neurons. CNN2 was trained using the aforementioned

combined vehicle training dataset from CIFAR-10 and CIFAR-

100. Consequently, the topology identification string changed

to c128/512/64/1c128/512/64/1c128/256/64/1

c128/256/64/1c128/128/64/1c128/128/64/1

l128/4, and all weights within the CNN of the SUL were

abruptly changed, too. The new identifications provided

by the D31 method are shown in row 7 of Table II. The

classification accuracy of the AI monitor for CNN1 and

CNN2 is shown in Figure 8. Even though CNN2 uses a

different network topology, the AI monitor still achieves an

accuracy similar to the one for the original SUL CNN1.

In order to compare observations made for the classification

task performed by CNN1 and CNN2 with a common refer-

ence, a third CNN3 was trained to detect birds, horses and cars

from the CIFAR-10 dataset, i.e., with different groundtruth

data. The identifications obtained by the D31 method for this

new SUL CNN3 are shown in row 8 of Table II. Similarly,

the reaction of the AI monitor was tested by providing it input

data and the SUL’s output classification for CNN3 for the

image classification task. The resulting change in classification

accuracy is shown in Figure 8. As anticipated, the accuracy

drops to below 40%, indicating that there is a mismatch

between behavior of SUL and AI monitor. How modifications

of tS can influence the detection rate, will be discussed in

Section IV-F. At the same time, the output of the D31 method

does indicate a modification, but fails to illustrate the impact

of the modifications compliance with requirements.

E. Comparison with a reference classifier

To avoid bias because of the known network structure of

CNN1 during experiments, a generic KERAS ImageClassifier

with the preset ”resnet_50_imagenet“ (afterwards referred to

as ResNet50) was used as an additional reference. It consists

of a total of 49 convolutional layers and one output layer.

The resulting data are shown in row 9 of Table II, where the

topology ID produced by the D31 method had to be truncated

since it is too long to be repeated here. In practice, this

corresponds to a scenario where the internal topology of the

SUL is unknown and the oracle introduced in Section III is no

longer needed. However, the learner still needs to know the

general task performed by the SUL, i.e., the classification of

images into predefined classes. Thus, the oracle from Section

III is reduced to providing a general task description which

can easily be done by a human expert with knowledge of the

data types for I and O. The corresponding prediction accuracy

of the AI monitor after stabilization was 76.95%. As can be

seen from Figure 8, the AI monitor successfully learned the

behavior of ResNet50 despite its unknown internal structure.

F. Analysis

From Table II, it should be clear that due to the avalanche

effect in cryptographic hashes [17], even slight modifications

of the network weights result in a completely different hash

digest. Differentiating between incremental improvements and

the complete replacement of the SUL from the hash digest

alone thus becomes impossible. Even when combined with the

topology ID, the hash digest only provides general information

on whether or not any parameter of the ANN was changed.

The topology identification on the other hand does allow

a human expert to evaluate if the network is still able to

perform a certain classification task after a modification. As

described in Section II-C, OIML Document D31 solves this

issue of differentiating between two identical networks trained

for different tasks by imposing storage requirements on the

parameter set used for each instance of the ANN. In the

particular setup, the CNNs 1 and 3 have 1,153,114 param-

eters due to the number of connections between successive

layers and the ouput layers respectively. CNN2 similarly uses

4,591,642 parameters. For later manual inspection of a specific

instance of the CNNs, CNN1 and CNN3 thus require 92.83

MB storage capacity, whereas CNN2 requires 370.92 MB.

The remote monitoring approach proposed here, however,

does not detect minor gradual changes of an AI module, see

Figure 6. In fact, a complete replacement of the SUL with

another CNN performing an identical task does not result in

any compliance warnings. Only the abrupt modification of

the SUL, in case it is replaced with a CNN that portrays

a different behavior for similar input data, is automatically

detected, see Figure 8. However, if a replacement is done

gradually, without violating amin within tS , the AI monitor

would similarly fail to trigger any warnings. The detection

of compliance violations is influenced significantly by the

allowed stabilization time tS for training an AI monitor and

by the allowed lower accuracy bound amin. While both can be

fine-tuned for a specific task, an inadequate selection of one or

the other can result in either too many or too few compliance.

While the default values chosen in Section IV-A may have

worked for the examined use cases, they are not guaranteed
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to work as well in other settings. In practice, tS could be set to

a default value, such as one day and then decreased iteratively,

if too many changes occur. Similarly, amin could be initialized

with a value of 90% and then be reduced to fit the particular

application. The applicability of the method developed here

does not only depend on the parameter settings, but also on

the size of available observed data. Minimum requirements

for these data for different use cases and AI models still

remain to be formally specified. A full oracle, which can tell

the topology of a SUL, is not always needed, see Section

IV-E. In fact, one could envision a scenario where, in Legal

Metrology in particular, the usage of certain types of ANNs

is prescribed for specific tasks, thus eliminating the need for

an oracle altogether. At the moment, it appears unfeasible to

use a general-purpose AI model and attempt to learn an SUL’s

behavior using an extremely large observation dataset {I,O}.

It does, however appear plausible that the setup and AI monitor

used here, can also be applied to different kinds of image or

more general signal classification tasks. Nevertheless, there

is the potential bias in the findings shown here since image

classification is particularly suitable for the remote monitoring

approach proposed here. Therefore, further work will include

extending the method developed here to audio classification

and other common AI tasks.

V. SUMMARY

As stated in Section IV the D31 method described in [13]

appears to be realizable for providing evidence of intervention

for AI modules in practice if a white-box scenario is given.

However, the method has very high memory consumption if

traceability of individual changes is required. Nevertheless,

this paper can be seen as a first proof of concept of the method

from [13]. In addition, the AI monitor introduced here was

able to correctly identify compliance violations as required, for

example, for regulated measuring instruments in the EU. [18]

As demonstrated in Section IV-F, the AI monitor can be seen

as another form of the functional identification of a software

module introduced in [12]. It would allow inspectors or market

surveillance authorities to remotely monitor the compliance of

AI modules in quasi black-box settings in regulated industry

sectors, such as legal metrology. Moreover, the method could

equally be applied by users of AI services in other industry

sectors to determine if a service quality is reduced without

prior warning. Of course, the monitoring approach requires

resources similar to those for operating the actual SUL.

The obvious advantage of the approach, however, is that the

monitoring does not have to be conducted permanently. The

monitoring can also be carried out at a later point when re-

sources are available as long as observed data can be buffered

for an intermediate timespan. Further work will address the

tradeoff between resources and algorithmic complexity as well

as the impact of tS and amin on monitoring accuracy. It will

also include application of the remote monitoring method to

other use cases and investigations into minimal observable data

requirements for different use cases. Such investigations would

also provide some insight into the applicability of general-

purpose AI modules as AI monitors for a larger range of

tasks. Additionally, benchmark tests comparing actual memory

usage between the remote monitoring system and traditional

techniques will be performed.
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