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Abstract—Artificial intelligence has recently led to numer-
ous new applications in various industry sectors. Whenever
artificial intelligence modules are used in a black-box setting,
quality monitoring of such modules remains an open challenge.
This implies that users of such modules cannot predict the
modules’ performance following software updates or retraining.
Specifically for regulated devices, keeping track of an artificial
intelligence module’s behavior and compliance with requirements
is crucial. To this end, existing methods for monitoring the
functional behavior of software are investigated and evaluated
regarding their practical usability in this paper. Based on the
results of the investigation, a proposal for a new adaptive quality
monitoring scheme for artificial intelligence modules is made.

I. INTRODUCTION

RTIFICIAL intelligence (AI) modules are becoming in-

creasingly common in private and public sectors. [1]
Such applications range from classical machine learning algo-
rithms, e.g. object detection and classification [2], to generative
Al systems such as chatGPT [3] which can be seen as a first
step towards a general-purpose Al. In the European Union
(EU) the AI Act [4] provides terms, definitions and require-
ments for Al models and systems. It also introduces general
transparency requirements to be met by any Al system and
establishes a conformity assessment framework for so-called
"high-risk scenarios" and general-purpose Al systems, aiming
to ensure that all high-risk Al systems and general-purpose
Al systems used within the EU ensure a minimum level of
customer protection. While these high-risk applications are
limited to law enforcement, health etc., the Al Act also stresses
that Al modules within regulated products still need to pass
conformity assessment according to the relevant directives. [4]
One such regulated sector is legal metrology, covering mea-
suring instruments used for commercial transactions or official
measurements. There exist already multiple signs indicating
that the integration of AI modules into regulated measuring
instruments is imminent. In the EU, the Measuring Instruments
Directive (MID) Annex I lays down essential requirements for
regulated measuring instruments which apply to ten different
types of instruments, e.g., length measuring devices, taxime-
ters, across all EU member states. As an example, requirement
8.3 imposes the following, ”[...] Software identification shall
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be easily provided by the measuring instrument. Evidence of
an intervention shall be available for a reasonable period of
time.“ WELMEC Guide 7.2 [5] provides harmonized technical
guidance regarding the interpretation of the software-related
essential requirements for all EU members. From essential
requirement 8.3, two deductions can be drawn: Firstly, since an
Al module must be interpreted as software, it shall be possible
to identify a specific version of the Al module for control
purposes. Secondly, any change to the Al module (including
its parameters) shall be traceable to provide evidence of
an intervention. This requirement aims to ensure continued
compliance of the instrument by providing traceability of
modifications. Typically, users of Al modules do not have
access to the actual executable code of the module but either
use it as a remote service or as part of a device with limited
interaction capabilities. Given the potential adaptability of Al
modules, existing static solutions for providing traceability of
modifications, e.g., hashes over executable files [5], will likely
reach their limits quickly, if the frequency of modifications
increases. In particular, any approach should not be dependent
on manual interference or classification of changes. Therefore,
a solution should be able to automatically differentiate between
simple bugfixes that do not affect a module’s intended behavior
and more fundamental modifications such as the addition
of new functionality. To this end, classical and alternative
approaches for identification and traceability of software mod-
ules are investigated in this paper, resulting in a new proposal
which aims to be generally applicable for all types of Al
modules subject to similar requirements. The resulting use
case can be summarized as follows: An Al module is used
for data processing purposes, e.g., within a cyber-physical
system for classification of input data. Any change to the
module shall be traceable, either by providing evidence of an
intervention or through demonstrating continued compliance
with predefined requirements. The remainder of the paper is
structured as follows: Section II provides an overview of dif-
ferent existing methods to identify and monitor modifications
in software modules. In Section III one selected method will
be extended to deal with the potential behavior of AI modules.
The proposal will be practically tested and compared with the
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current state of the art in Section IV. Section V concludes the
paper and provides suggestions for further work.

II. RELATED WORK

Numerous methods exist for identifying software modules
and providing traceability of changes in real-world scenarios.
These range from simple version control systems to automata
learning approaches. While version control can be seen as
a static approach that does not allow automatic distinction
between minor bugfixes and major changes, automata learn-
ing can be used to quantify the scope of modifications for
certain types of automata. Subsection II-A will cover existing
active automata learning methods that require bi-directional
communication with a system under learning (SUL). Methods
that operate passively and are also applicable in black-box
scenarios will be addressed in Subsection II-B. Classical
static approaches of identifying software through hashes over
binaries will be revisited in Subsection II-C. In Subsection
II-D the differences between the approaches are discussed and
a candidate for the described use case is selected.

A. Active automata learning

In the 1987 paper "Learning Regular Sets from Queries and
Counterexamples® [6], Angluin outlined the now well-known
L* algorithm. The algorithm uses a learner L which sends
consecutive queries to a teacher 7" to construct and update an
automata representation of the SUL. The teacher acts as an
interface to the SUL and provides necessary abstraction for
the learner. Thus, the approach is only applicable in a white-
box or gray-box scenario. Since the learner paradigm plays a
central role in the developed method in Section III, the main
aspects of the L* algorithm will be reiterated here. L* was
originally developed for learning the behavior of deterministic
finite automata (DFAs), which are 5-tuples (Q, X, §, qo, F') [7]:

@ is a finite non-empty set of states.

Y is a finite input alphabet.

6 :Q x X — Q is the transition function. €8
qo € Q is the initial state of the DFA.

F C @ is the set of accepting states of the DFA.

During execution of L*, the learner L sends membership and
equivalence queries to the teacher 7. If the accepted language
of the SUL A is L(A) and Aut(A) is the set of all DFAs with
the same input alphabet 3, the two queries are defined in the
following manner:

o Membership query Qs : ¥* — {0, 1} where the learner
asks the teacher to test if a given string «x is part of the
language L(A). If x € L(A), the teacher’s response is 1,
0 otherwise.

« Equivalence query Qg : Aut (X) — X* U {true} where
the learner asks the teacher to test equivalence between
the SUL A and the current learned automaton represen-
tation A’ € Aut(L).

With the aim of constructing an internal observation table
for storing the results of the queries in systematic fashion,
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the learner issues membership queries until an initial model
A’ is obtained. The learner then performs an equivalence
query for A’. The teacher subsequently either acknowledges
correspondence between the learned and the true model or
supplies a counterexample ¢ € ¥* fulfilling the condition

ceL(A)Acg L(A) orcd L(A)Ace L(A).

Windmiiller, Neubauer, Steffen, Howar and Bauer showed in
[8] and [9] that the L* algorithm can be adapted to large-scale
software applications with varying degrees of complexity.
However, they also noted that this requires a lot of adaptation
by the developer within the teacher to properly abstract the
behavior of the SUL to the needs of the learner. Furthermore,
while AI modules can be interpreted as deterministic software
modules, their output for arbitrary, unknown input generally
cannot be predicted due to the complexity of implementations
such as Artificial Neural Networks (ANN). [10]

B. Passive automata learning

If white-box access to the SUL is not possible, passive
automata learning algorithms can be used as an alternative
for learning the behavior of a SUL. These algorithms usu-
ally obtain a set of traces S = {S4,S_}, where S; are
positive traces describing the correct behavior of the SUL
and S_ are traces that contain known errors that contradict
the behavior of the SUL [11]. A trace itself is a list of
input symbols and subsequently reached states represented
by the corresponding observed output symbols. The Regular
Positive Negative Inference algorithm (RPNI) [11] can be used
to learn a model of an SUL from such traces. While the
approach can correctly learn the behavior of complex software
systems given sufficient time [12], it lacks the possibility of
mapping the potentially arbitrary response of an AI module for
unknown input to a DFA. A common limitation for typical
automata learning algorithms is the inefficiency of handling
so-called deeply nested states, especially when the SUL is
highly complex. On the other hand, although passive automata
learning algorithms allow efficient learning of an SUL’s be-
havior from a provided set of traces, testing the conformance
of the learned model, e.g., checking the completeness and/or
the consistency, could result in relatively long time because the
tests are usually performed via repeatedly checking different
input combinations [12]. While [12] puts the emphasis on
inferring a complete automaton of a black-box system, this
paper focuses on monitoring a task learned by an Al module
without prior knowledge.

C. Integrity protection through hashes

As mentioned in Section I, [S] provides harmonized tech-
nical guidelines for all EU member states regarding the ap-
plication of securing and protection requirements for software
in regulated measuring instruments. However, the Guide cur-
rently relies on static methods such as cryptographic hashes for
providing evidence of interventions for all types of software
modules. If an Al module contains a learning facility for
adaptation in the field, any change would result in a new
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hash over binary code and necessitate a new conformity
assessment. To remedy this problem, the International Or-
ganization for Legal Metrology (OIML) published a revised
version of the OIML Document D31 [13] in 2023. This
document is, in theory, applicable to all regulated measuring
instruments world-wide and addresses provision of evidence
of intervention in a meaningful manner for AI modules. D31
treats Al modules as software modules with a predefined
structure that are controlled by a (potentially very large) set of
parameters that can be modified by means of a learning facility.
Clause 6.2.3.1 of D31:2023, for instance, provides an example
of a large ANN that uses version control for identification
of the network topology and a cryptographic hash over the
network weights in predefined order for tracing changes to
the ANN’s behavior. To avoid having to re-certify the adapted
ANN, D31 recommends providing fingerprints of the network
weights and storing the actual configuration of the weights
externally. While this method ensures that an AI module within
a regulated measuring instrument can continue to be used even
after a learning cycle, the size of the externally stored weight
configuration will increase linearly over time. It also places the
burden of monitoring compliance with legal requirements on
inspectors and market surveillance authorities. To check a spe-
cific result of the Al module, the authority has to verify if the
ANN together with the stored network weight configuration
is suitable to produce measurement results within the legally
required limits. While the method does not require access to
the development environment of an Al module, it does require
access to the weights of the ANN and thus only works in a
white-box scenario.

D. Admissibility as evidence

It should be noted that the development processes for
“classical’ software and AI modules are very similar. For
classical software, the developer constructs an initial concept
based on known requirements and available data. This concept
is implemented and tested to ensure compliance with require-
ments [14]. Figure 1 provides a visual representation of this
workflow for a measuring instrument. During use, changes
to the software can be made via updates. In the use case
investigated here, any change to the software shall produce
evidence of intervention. Consequently, any software update
must either result in a broken physical seal or a permanent
logbook entry with the same legal consequences.

data | — 1

@ —_— __ design + —  validation — kg
/- implementation /
update

requirements

test data

Fig. 1: Classical workflow for software development: Taking
into account predefined requirements, the developer uses the
available data to create an initial implementation, which is then
validated using independent test data. During use, software
modules can be modified by means of an update.

TABLE I: Overview of the different monitoring approaches
for AI modules and their properties.

approach black-box memory requirements | suitable
support for Al
active automata | no size of learning table no

learning

passive automata | yes size of learning table + | no

learning size of saved traces

hash comparison no size of Al model per | yes
update

remote quality | yes size of AI monitor | yes

control model

Development of an AI module follows a similar pattern [15].
Initially, the developer selects an Al model (such as a decision
tree or a deep ANN) taking into account known requirements.
The model is then trained to learn a certain behavior based on
the available pre-processed training data. Prior to the release
of the model, it is validated using a validation data set which
is disjunct from the data used for training, see Figure 2.
During use of the model, different scenarios for updating it
are possible:

1) Updates can follow a pattern similar to ’classical’ soft-
ware products, where the entire trained model is replaced
by a new one.

2) A modification of the Al module can be realized by
providing it with new training data and initiating another
training procedure during use.

3) A learning algorithm as part of the Al module could
use observed real-world data together with an externally
provided reference for improving its configuration. In
this scenario, all individual serial devices in the field
will demonstrate different behavior.

These three variants will be revisited in Section IV.

validation data

training — [ Al | — model validation "z~

@ pre-processing trained
model

training
data

B

. model
requirements

learning function

Fig. 2: Workflow for development of Al modules: Based on
predefined requirements, the developer selects an initial Al
model, which is then trained using pre-processed training data.
The trained model is validated using independent test data.
During use, the Al module can either be replaced during an
update or re-trained using external or internal reference data.

Development of ’classical’ software and Al modules both
use a two-step approach that first produces an initial im-
plementation which is then validated using an independent
test dataset not included during development of the initial
implementation. Also, changes to the final implementation can
occur during use. While a software update can affect both
types of modules, the source for modifications can also be an
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internal learning procedure for an Al module. Regardless of
the fact if such a learning procedure uses a supervised or an
unsupervised training method, the main distinction compared
to "classical’ software thus becomes the ability to dynamically
change, potentially without an external trigger. It is this
property that makes continuous monitoring of AI modules a
necessity. Table I provides a summary of the aforementioned
different approaches for providing security of evidence for
interventions. As can be seen from rows 1, 2, and 3, only
the hash comparison between different binary images of an
Al module can actually be used for providing evidence of in-
tervention while potentially needing linearly increasing chunks
of memory per modification of the Al module. At the same
time, the passive automata learning approach also supports
black-box scenarios combined with a significantly smaller
memory footprint, but is not originally able to monitor the
underlying massively complex models behind an Al module.
Thus, an extension of the passive automata learning approach
to adaptive Al modules will be investigated in the subsequent
section to derive an optimized solution with smaller memory
usage and black-box applicability.

III. REMOTE QUALITY CONTROL APPROACH

As has been demonstrated in [12], passive automata learning
algorithms can be used to learn the behavior of the software
of complex cyber-physical systems in a quasi black-box sce-
nario given sufficient learning time. To this end, the learning
algorithm generates prefixes from the observed positive and
negative traces S; and S_. In the case of an SUL containing
an Al model, such as a deep ANN, the notion of traces
(consisting of input symbols and triggered state changes)
has to be replaced by observing pairs of input datasets [
and corresponding output datasets O. The mapping between
the two will be denoted as {I,0}. As such, the approach
developed here shows some similarity with the learner/teacher
approach from the L* algorithm, see Section II-A: The central
aim of the approach will be to approximate an SUL’s behavior
by the learner. To this end, a teacher instance is added to
the SUL, transforming its input I and output O into a data
format compatible with the learner. Since a specific model
structure needs to be selected prior to training of the learner, it
shall be initially assumed that an oracle exists that the learner
can use to select a specific model type. The consequences
of this restriction will be examined and discussed in Section
IV-E. It is assumed that a sufficiently complex learner can
properly monitor compliance of a given Al module with pre-
defined requirements, thus providing functional identification
of software as defined in [12]. Once an initial version of the
trained SUL exists, it is used as a teacher for a subsequent
second Al learner model. This second model will be referred
to as the Al monitor in the following text. It will be assumed
that the SUL is not modified during an initial stabilization
period ts. A graphical representation of the dataflow during
the stabilization period is shown in Figure 3. During this
stabilization period, the AI monitor will be trained using
{I, O} observed during tg. For the purpose of the experiments
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monitor

Fig. 3: Stabilization phase of the proposed quality control
approach: A second Al module is fed input data / and output
data O of the SUL to perform passive learning of the SUL’s
Al module.

described in Section IV, tg was selected so that during initial
training of the AI monitor/learner, the same amount of input
data I was used as for the SUL. It should be noted that this
leads to a configuration, where the groundtruth G reference
data that corresponds to the input data I of the SUL is not
the same as the reference data O used by the AI monitor for
initialization and continuous training. After the stabilization
period, the trained model of the AI monitor will be used to
calculate an individual prediction p € P for each new input
symbol ¢ € I. This will be compared with the corresponding
output symbol o € O of the SUL. 4,0 and p thus represent
individual symbols observed by the AI monitor during normal
operation. Over a sliding window of length w matches and
mismatches between predictions P and observed output O
are monitored. If the resulting prediction accuracy is above
a threshold apin, the model of the Al monitor will be updated
using ¢ and o. If the threshold is violated, the monitor triggers
a compliance warning to all concerned parties. The intended
workflow of the method is shown in Figure 4. The restriction
regarding the stabilization period is not strictly necessary, but
will avoid triggering a large amount of compliance warnings
at the beginning of the monitoring process. For the purpose
of experimental evaluation, a.,;, was set here to allow a 3%
accuracy decrease relative to the initially trained learner. The
properties of the approach are shown in row 4 of Table 1.

The intention behind the proposed remote quality monitor-
ing approach is to ensure continued compliance of the SUL
with requirements while reducing memory consumption and
reducing the need for manual interventions. Compared to the
hash comparison described in OIML D31 [13] the approach
loses some resolution regarding the SUL’s behavior since
inaccurate predictions of the monitor are tolerated to a certain
extent. To check their real-world applicability, both approaches
will be described in more detail in Section IV. The section will
also perform an in-depth analysis using real-world data.

IV. EXPERIMENTAL EVALUATION

For the purpose of this evaluation, SULs will be seen as
compliant as long as they perform an originally acquired
task correctly. Due to the different scenarios of modifying an
Al module, this section is divided as follows: Section IV-A
describes the algorithms used for evaluation as well as the
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Fig. 4: Monitoring phase of the proposed quality control
approach: The second AI module (the AI monitor) continues
to monitor the behavior of the SUL and calculates its own
prediction accuracy over a sliding window w. If the prediction
accuracy drops below a predefined threshold ap,, the Al
monitor triggers a warning. Otherwise, the newly observed
pair of ¢ and o is used to update the Al monitor.

datasets used for experiments. Section IV-B describes how
iterative additions of new reference datasets were used to
update the SUL and the reaction of the examined methods.
Section IV-C extends the use case of providing new global
reference datasets to individual reference data for each Al
module in use. A replacement of the SUL is addressed in
Section IV-D. Section IV-E presents a completely different
type of SUL to investigate potential bias in the experiments.
Section IV-F discusses the results.

A. Utilized algorithms and datasets

With the aim of testing the applicability of the proposed
method of providing evidence of intervention for Al modules,
a convolutional neural network (CNN) with six convolutional
layers was selected to perform a typical classification task
in legal metrology, for which CNNs have already proven
their suitability: If speed measurements are performed by law
enforcement personell, the used measuring instruments usually
incorporate a feature for automatic vehicle classification since
different types of vehicles, i.e., cars, trucks, buses, and motor-
cycles may be subject to different speed limits. As such, this
example fits into the EU legislation on measuring instruments
and the applicable requirements. It also includes aspects of
object detection and recognition, applications for which Al
modules have already demonstrated their suitability [2]. This
CNN shall serve as the SUL for the remainder of Section IV,
except for the use case with CNN3, see Table II. The CNN was
implemented using PyTorch and Tensorflow libraries. Training
and validation data were obtained from the publicly available
CIFAR-10 dataset for images of cars and trucks as well as the
CIFAR-100 dataset [16] for images of buses and motorcycles.
CIFAR-10 contains 6000 images for 10 different types of
objects, whereas the CIFAR-100 dataset contains 100 different
classes of objects with 600 images each. The combined dataset
used here, thus contained 12000 images of cars and trucks

and 1200 images of buses and motorcycles, each image being
labeled as belonging to one of the vehicle classes. Exemplary
images from each class are shown in Figure 5. For the purpose

£ Pr

(a) cars

EasD

(b) trucks

2LEE

(c) buses

e S

(d) motorcycles

Fig. 5: Exemplary images from the combined CIFAR-10 and
CIFAR-100 datasets [16] for the classes “car/automobile®,
“truck®, “motorcycle®.

of this experimental evaluation, the input data I are thus the
individual training images, whereas the groundtruth G are the
corresponding classification labels assigned to those images.

The remote quality control approach described in Section
III was similarly implemented using Python Tensorflow and
PyTorch libraries. Initially, the internal structure of the Al
monitor’s model was chosen to be a CNN identical to the
one of the SUL. Unless mentioned otherwise, this internal
model was used for all subsequent experiments. The Al
monitor was used to iteratively learn the behavior of the SUL
for all use cases described in Sections IV-B to IV-E using
the available input and output data {I,O} of the SUL only.
Stabilization time tg and lower accuracy bound ap;, were
configured as described in Section III. The hash comparison
algorithm described in [13] was implemented as a reference
method in the following manner: The network structure given
above was automatically translated to an identifier string
that uses a single character to denote the type of the layer,
e.g. ’c’ for ’convolutional’, I’ for ’linear’, followed by the
output shape for each layer, where individual dimensions
are separated by slash symbols. This results in the string
c128/256/64/1c128/256/64/1c128/128/64/1
cl28/128/64/1cl28/64/64/11128/4 for the
described CNN. Similarly, SHA256 hashes were calulated
over the exported parameter sets of the CNN for the initial
trained network. Both are given in row 1 of Table II.

B. Iterative provision of new external reference data

For the initial model, 500 training images + 100 validation
images from each of the four classes were used for its first
training. To determine how the two evaluated algorithms react
to a modified more precise SUL, CNN1 was updated after
its initial training. The update was performed iteratively by
adding 1000 images to the training dataset with each new
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TABLE II: Identifiers produced by the hash comparison described in [13] for the various SULs used for experimental evaluation.

parameter hash digest

53899e22277658092a576cb65£29%9e443
64107c39080c687cbc29e9afe392d69f

9aaba668b4cb6£99d608e54b7fa051de
1cf3465994dc2722888ec2db9df1855d

b8e431a95e7f1b335£1779a61854£d8f
dee9ded6ed16aa56864de3c045175422

09143768afaedbfflb814de3777a7185
72445e807728b75a1e056362d059%eb4 f

4c8£57d109b4eddeabf8£53blbed£730
126fc5£505e43fa67572ebledccTeed’

c5e303dcb9d30729cc5e65ef44054283

1650££6cc9490132ff4ce90744347ca3

3cd2c07c¢c569770c7£5bdbae50007bc7£
08f00102f6£0678e56832d7e44790dce

no. | Al model | classes topology ID
1 original car, truck, bus, cl28/256/64/1c128/256/64/1c128/128/64/1
CNN1 motorcycle c128/128/64/1c128/64/64/1c128/64/64/1/1128/4
2 CNN1 car, truck, bus, | c128/256/64/1c128/256/64/1c128/128/64/1
update 1 motorcycle c128/128/64/1c128/64/64/1c128/64/64/1/1128/4
3 CNN1 car, truck, bus, | ¢128/256/64/1c128/256/64/1c128/128/64/1
update 2 motorcycle cl28/128/64/1cl128/64/64/1cl28/64/64/1/1128/4
4 CNN1 car, truck, bus, | c128/256/64/1c128/256/64/1c128/128/64/1
update 3 | motorcycle c128/128/64/1c128/64/64/1c128/64/64/1/1128/4
5 CNN1 car, truck, bus, cl28/256/64/1c128/256/64/1c128/128/64/1
update 4 motorcycle c128/128/64/1c128/64/64/1c128/64/64/1/1128/4
7 CNN2 car, truck, bus, | ¢c128/512/64/1c128/512/64/1c128/256/64/1
motorcycle c128/256/64/1c128/128/64/1c128/128/64/1/1128/4
8 CNN3 horse, bird, car, | ¢128/256/64/1c128/256/64/1c128/128/64/1
truck cl28/128/64/1c128/64/64/1cl128/64/64/1/1128/4
9 ResNet50 | car, truck, bus, | c128/256/1/1¢c128/256/1/1c128/256/1/1
motorcycle cl128/512/1/1c128/512/1/1c128/512/1/1
c128/512/1/1c128/512/1/1c128/1024/1/1...

98318830bleccd5a51422c5c5cfllc4f
7428e0f664dc0cdadl3e8a76732980acl

dataset pair {In,Ga} being used to retrain the SUL. The
resulting classification accuracy for each incremental mod-
ification is given in Figure 6. At the same time, the Al
monitor was fed in-between classification output of the SUL
for smaller chunks of added images consisting of 250 images
each, to continually observe the SULs behavior within a
sliding window. Figure 7 illustrates this continuous monitoring
for an excerpt of Figure 6 between the original CNN1 and
its first update. In the excerpt, the Al-monitor’s accuracy
changes slightly with each new batch of images, as these
are unknown to both SUL and monitor. Nevertheless, ami, iS
not violated within this excerpt. It should be noted that the
accuracy of the SUL is measured between its classification
output O and the groundtruth G. For the Al monitor however,
accuracy is measured between its own prediction P and
the SUL’s classification output O. Thus, the AI monitor’s
accuracy can, theoretically, be higher than that of the SUL.
This would indicate that the AI monitor has learned the SUL’s
behavior correctly, even when the SUL itself performs false
classifications. As can be seen from Figure 6, the AI monitor
continually achieves an accuracy above the threshold apiy.
Consequently, the Al monitor’s model is updated to include
new classification output from the SUL for the observed
chunks of images.

C. lIterative provision of individual reference data

From the point of view of both the D31 method [13] and
the remote quality control method, no distinction can be made
between Al modules being updated with new common external
reference data and provision of individual reference data per
Al module. Thus, all results from Section IV-B also apply for
this use case. The main distinction lies in the required memory
capacity needed for storing the configuration of the CNNs
for later manual inspection: If each AI module can change
independently, such traceability data also must be provided for
each module, thus increasing memory requirements linearly
with the number of Al modules used in the field.

100

mmm SUL =@ Al monitor ©—a_min

90
o 80
=
-~
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H]
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=
S
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2 40
<
2 30
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original CNN1 CNNI updt. 1 CNNI updt. 2 CNN1 updt. 3 CNNI updt. 4
Al models

Fig. 6: Timeseries of the Al monitor’s classification accuracy
for iterative updates. The AI monitor’s accuracy is measured
relative to the classification output O of the SUL. The SUL’s
accuracy is measured relative to the groundtruth G.
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Fig. 7: Timeseries of the AI monitor’s classification accuracy
for chunks of new images between updates of the SUL (CNN1
to CNN1 update 1). The Al monitor’s accuracy is measured
relative to the classification output O of the SUL. The SUL’s
accuracy is measured relative to the groundtruth G.
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Fig. 8: Timeseries of the Al monitor’s accuracy of classifica-
tion results for the replaced SUL. The AI monitor’s accuracy
is measured relative to the classification output O of the SUL.
The SUL’s accuracy is measured against the groundtruth G.

D. Replacement of the CNN

To test the provision of evidence of an intervention by
the two algorithms for a modified SUL, the CNNI1 was
replaced by a different CNN2 with six convolutional layers
and one linear layer, where each layer has twice the number
of neurons. CNN2 was trained using the aforementioned
combined vehicle training dataset from CIFAR-10 and CIFAR-
100. Consequently, the topology identification string changed
to cl28/512/64/1cl128/512/64/1c128/256/64/1
cl28/256/64/1c128/128/64/1cl28/128/64/1
1128/4, and all weights within the CNN of the SUL were
abruptly changed, too. The new identifications provided
by the D31 method are shown in row 7 of Table II. The
classification accuracy of the AI monitor for CNNI and
CNN2 is shown in Figure 8. Even though CNN2 uses a
different network topology, the AI monitor still achieves an
accuracy similar to the one for the original SUL CNNI.

In order to compare observations made for the classification
task performed by CNN1 and CNN2 with a common refer-
ence, a third CNN3 was trained to detect birds, horses and cars
from the CIFAR-10 dataset, i.e., with different groundtruth
data. The identifications obtained by the D31 method for this
new SUL CNN3 are shown in row 8 of Table II. Similarly,
the reaction of the Al monitor was tested by providing it input
data and the SUL’s output classification for CNN3 for the
image classification task. The resulting change in classification
accuracy is shown in Figure 8. As anticipated, the accuracy
drops to below 40%, indicating that there is a mismatch
between behavior of SUL and AI monitor. How modifications
of tg can influence the detection rate, will be discussed in
Section IV-F. At the same time, the output of the D31 method
does indicate a modification, but fails to illustrate the impact
of the modifications compliance with requirements.

E. Comparison with a reference classifier

To avoid bias because of the known network structure of
CNNI1 during experiments, a generic KERAS ImageClassifier
with the preset “resnet_50_imagenet* (afterwards referred to

as ResNet50) was used as an additional reference. It consists
of a total of 49 convolutional layers and one output layer.
The resulting data are shown in row 9 of Table II, where the
topology ID produced by the D31 method had to be truncated
since it is too long to be repeated here. In practice, this
corresponds to a scenario where the internal topology of the
SUL is unknown and the oracle introduced in Section III is no
longer needed. However, the learner still needs to know the
general task performed by the SUL, i.e., the classification of
images into predefined classes. Thus, the oracle from Section
IIT is reduced to providing a general task description which
can easily be done by a human expert with knowledge of the
data types for I and O. The corresponding prediction accuracy
of the AI monitor after stabilization was 76.95%. As can be
seen from Figure 8, the Al monitor successfully learned the
behavior of ResNet50 despite its unknown internal structure.

E Analysis

From Table II, it should be clear that due to the avalanche
effect in cryptographic hashes [17], even slight modifications
of the network weights result in a completely different hash
digest. Differentiating between incremental improvements and
the complete replacement of the SUL from the hash digest
alone thus becomes impossible. Even when combined with the
topology ID, the hash digest only provides general information
on whether or not any parameter of the ANN was changed.
The topology identification on the other hand does allow
a human expert to evaluate if the network is still able to
perform a certain classification task after a modification. As
described in Section II-C, OIML Document D31 solves this
issue of differentiating between two identical networks trained
for different tasks by imposing storage requirements on the
parameter set used for each instance of the ANN. In the
particular setup, the CNNs 1 and 3 have 1,153,114 param-
eters due to the number of connections between successive
layers and the ouput layers respectively. CNN2 similarly uses
4,591,642 parameters. For later manual inspection of a specific
instance of the CNNs, CNN1 and CNN3 thus require 92.83
MB storage capacity, whereas CNN2 requires 370.92 MB.
The remote monitoring approach proposed here, however,
does not detect minor gradual changes of an Al module, see
Figure 6. In fact, a complete replacement of the SUL with
another CNN performing an identical task does not result in
any compliance warnings. Only the abrupt modification of
the SUL, in case it is replaced with a CNN that portrays
a different behavior for similar input data, is automatically
detected, see Figure 8. However, if a replacement is done
gradually, without violating api, within tg, the AI monitor
would similarly fail to trigger any warnings. The detection
of compliance violations is influenced significantly by the
allowed stabilization time tg for training an Al monitor and
by the allowed lower accuracy bound ai,. While both can be
fine-tuned for a specific task, an inadequate selection of one or
the other can result in either too many or too few compliance.
While the default values chosen in Section IV-A may have
worked for the examined use cases, they are not guaranteed



to work as well in other settings. In practice, ts could be set to
a default value, such as one day and then decreased iteratively,
if too many changes occur. Similarly, ayi, could be initialized
with a value of 90% and then be reduced to fit the particular
application. The applicability of the method developed here
does not only depend on the parameter settings, but also on
the size of available observed data. Minimum requirements
for these data for different use cases and AI models still
remain to be formally specified. A full oracle, which can tell
the topology of a SUL, is not always needed, see Section
IV-E. In fact, one could envision a scenario where, in Legal
Metrology in particular, the usage of certain types of ANNs
is prescribed for specific tasks, thus eliminating the need for
an oracle altogether. At the moment, it appears unfeasible to
use a general-purpose Al model and attempt to learn an SUL’s
behavior using an extremely large observation dataset {I, O}.
It does, however appear plausible that the setup and AI monitor
used here, can also be applied to different kinds of image or
more general signal classification tasks. Nevertheless, there
is the potential bias in the findings shown here since image
classification is particularly suitable for the remote monitoring
approach proposed here. Therefore, further work will include
extending the method developed here to audio classification
and other common Al tasks.

V. SUMMARY

As stated in Section IV the D31 method described in [13]
appears to be realizable for providing evidence of intervention
for AI modules in practice if a white-box scenario is given.
However, the method has very high memory consumption if
traceability of individual changes is required. Nevertheless,
this paper can be seen as a first proof of concept of the method
from [13]. In addition, the AI monitor introduced here was
able to correctly identify compliance violations as required, for
example, for regulated measuring instruments in the EU. [18]
As demonstrated in Section IV-F, the Al monitor can be seen
as another form of the functional identification of a software
module introduced in [12]. It would allow inspectors or market
surveillance authorities to remotely monitor the compliance of
Al modules in quasi black-box settings in regulated industry
sectors, such as legal metrology. Moreover, the method could
equally be applied by users of Al services in other industry
sectors to determine if a service quality is reduced without
prior warning. Of course, the monitoring approach requires
resources similar to those for operating the actual SUL.
The obvious advantage of the approach, however, is that the
monitoring does not have to be conducted permanently. The
monitoring can also be carried out at a later point when re-
sources are available as long as observed data can be buffered
for an intermediate timespan. Further work will address the
tradeoff between resources and algorithmic complexity as well
as the impact of tg and an;, on monitoring accuracy. It will
also include application of the remote monitoring method to
other use cases and investigations into minimal observable data
requirements for different use cases. Such investigations would
also provide some insight into the applicability of general-

POSITION PAPERS OF THE FEDCSIS. KRAKOW, POLAND, 2025

purpose Al modules as Al monitors for a larger range of
tasks. Additionally, benchmark tests comparing actual memory
usage between the remote monitoring system and traditional
techniques will be performed.
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