Position Papers of the 20" Conference on Computer

DOI: 10.15439/2025F5892

Science and Intelligence Systems (FedCSIS) pp. 37-40 ISSN 2300-5963 ACSIS, Vol. 44

Constructive genetic algorithm with penalty function
for a concurrent real-time optimization
in embedded system design process

Adam M. Gorski
0000-0003-3821-5333
Jagiellonian University

Faculty of Physics, Astronomy
and Applied Computer Science
ul. Prof. Stanistawa
Lojasiewicza 11,
30-348 Krakow, Poland
Email: a.gorski@uj.edu.pl

Abstract—In this paper we present a genetic programming
based constructive algorithm with penalty function for a con-
current real-time optimization in embedded system design
process. Proposed approach uses genetic programming mecha-
nism to optimize detecting and assignment of unexpected tasks
process in embedded system design. Unlike others methodolo-
gies the approach described in this paper uses a penalty in ob-
jective function in optimization process. As a result during the
evolution generations of individuals can also contain solutions
which violate time constraints. Thus the approach is more
proof to stop in local minima of optimizing parameters. There-
fore the final result could be better adapted to the environment
and the optimization process can be cheaper and more effec-
tive.

Index Terms—Genetic Programming, Concurrent Real-Time
Optimization, Embedded Systems, Artificial Intelligence.

1. INTRODUCTION

MBEDDED system design process [1] can be split on

four phases[2]: modeling, implementation, validation
and assignment of unexpected tasks. Unexpected tasks [2][3]
can appear when the architecture of embedded system is pro-
duced, all known tasks are assignment to available resources
and the system works in a target environment. In [4] authors
proposed a methodology for assignment of unexpected tasks
for a group of embedded systems. Unexpected tasks that ap-
peared were the result of cooperation of the systems in bigger
environment. The first methodologies [2][5] proposed for as-
signment of unexpected tasks have one major weakness — un-
expected tasks needed to be detected externally. All values of
time and cost of execution needed to be given for every task.
In [6] the authors proposed an algorithm which was able to
detect unexpected tasks and assign them to appropriate Pro-

-The publication has been supported by a grant from the Faculty (Faculty
of Physics, Astronomy and Applied Computer Science) under the Strategic
Programme Excellence Initiative at Jagiellonian University.

©2025, PTI 37

Maciej J. Ogorzatek,
fellow IEEE
0000-0003-3314-269X
Jagiellonian University
Faculty of Physics, Astronomy
and Applied Computer Science
ul. Prof. Stanistawa
Lojasiewicza 11,

30-348 Krakow, Poland
Email: maciej.ogorzalek@uj.edu.pl.

cessing Element (PE). The authors indicated that some of un-
expected situations can be solved as a result of connection of
some number of subtasks of known tasks. However not only
one connection of subtask leads to solve unexpected situation.
On the other side not every connection give the solution. Con-
nection of a subtasks that gives an appropriate solution needs
to be assignment on one of available resources. The problem
is to find which connection of subtasks is better. Such a prob-
lem was called picking an apple problem. Generally the opti-
mization process can be split into two phases. Each phase im-
pacts another in a real-time. That is why this type of optimiza-
tion was named concurrent real-time optimization. Further in-
formation about the problem and are given in next section. In
[7] the authors proposed the solution of such a problem in IoT
design. In [6] genetic algorithm was proposed to solve the
problem in embedded system design. Genetic programming
methodology [8] was also presented for such a problem. The
biggest disadvantage of the methodology was a constructive
nature of the algorithm. Such group of methodologies [9] [10]
have low complexity but are prone to stop in local minima of
optimizing parameters. It is caused because such methodolo-
gies construct the system by making decisions step by step for
every task separately. Iterative improvement algorithms [11]
[12] start from suboptimal solutions, usually the fastest, and
by local changes try to improve the system quality. Such algo-
rithms can escape local minima however the results are still
suboptimal. In [13] the authors provided the genetic program-
ming based iterative improvement method for the problem.
However the biggest disadvantages of the methodology was
that only valid individuals could be investigated in the evolu-
tion process. Therefore some of the solutions could be unob-
tainable. Concurrent real-time optimization occurs not only in
hardware design. The solution for such kind of optimization
was also proposed in game theory [14]. Proposed methodol-
ogy belonged to metaheuristics group. The authors

Thematic Session: Computational Optimization



38

proposed a grey wolf optimizer to find an automatic solution
of computer games.

In this paper we propose a genetic algorithm based meth-
odology [6][16] with penalty function for concurrent real-
time optimization in embedded system design process. Unlike
other approaches we investigate in evolution process not only
valid solutions. Therefore the algorithm is more able to escape
local minima of optimizing parameters.

The paper is organized as follows: next section are prelim-
inaries, then the algorithm is described. The fourth section
contains experimental results. At the and the conclusions and
directions of future work are presented.

II. PRELIMINARIES

A. Embedded systems

Embedded systems are computer systems mostly micro-
processor or microcontroller based. They were created to ex-
ecute some special group of tasks. most of modern systems
are solved as distributed once. Such kind of systems are con-
sisted of two kinds of resources: processing elements (PEs),
responsible for executing the tasks, and communication links
(CLs) responsible for providing communication between PEs.
There are two basic kinds of PEs: programmable processors
(PPs) and hardware cores (HCs). PPs are universal resources
able to execute more than one task. HCs are specialized re-
sources dedicated to execute only one task. Therefore unex-
pected tasks can be executed only by PPs. The behaviour of
the system is specified by an acyclic directed graph called
an extended task graph G = (V, E). Each node vi € V in the
graph is a task, each edge e;; € E describes the amount of data
transferred between two connected tasks. The transmission
time t;; is equal to:

ejj
tij = (1

where b is a bandwidth of a communication link. Fig. 1
below presents the example of a task graph.

Fig 1. Example of an extended task graph

POSITION PAPERS OF THE FEDCSIS. KRAKOW, POLAND, 2025

The graph contains eight tasks. The nodes with yellow
color (T1, T3, TS5, TS, T7) marks the tasks that can be split on
subtasks. The overall cost of a system C, is described by the
following formula:

Co = Ca + Z?:l Ci + kx (t - tmax) (2)
where n is a number of tasks in an extended task graph, tmax
is a time constrain, k is a parameter given by the designer
which decides about the penalty function and therefore how
is the weight of violation of time constraints. The unit of k is
[c/t] where c is a unit of cost and t is a unit of time. The goal

of the optimization is to find the solution with the lowest value
of C,.

B. Concurrent real-time optimization — picking an apple
problem

It is possible to pick up an apple on many ways. Each of
them demands different parameters to optimize and different
tasks to execute. The question is how to find out which way
is better without picking up the apple. The problem can be
split into two phases. The first phase is responsible for the
choice of optimizing parameters. The second phase makes the
optimization and verifies the choice made in the first phase.
During the process it can be found out that some of the ways
of solving the problem do not lead to success. It is not always
known at the beginning. In such a case after executing some
of the tasks and starting optimization process the tasks to ex-
ecute and optimization parameters are changed. Therefore
each of the phases can impact another in real time. The change
of one phase changes another. Some unexpected situations
can also happen which demands to execute some unexpected
tasks. The most important issue is how to compare the results
if every can demand different parameters to optimize or opti-
mizing parameters can change during the process. Every so-
lution can be characterized by global common parameters
which can be used to compare the results. Such parameters
can be for example cost of the solution or time of execution
of all the tasks.

Such a problem occurs in embedded system design. If sys-
tem meets unexpected situation it can be solved on many
ways. Each way demands different tasks to execute. The prob-
lem is to find the optimal way to execute unexpected tasks
and to find the appropriate hardware components to execute
them. The solutions can be compared using two global param-
eters: time and cost of execution of all the tasks. As it can be
easily observed, if the time is getting lower the cost is rising.
Such relation is not proportional. Therefore, designing of em-
bedded systems belongs to pareto group of problems [15].

III. THE ALGORITHM

Unexpected tasks can appear in every moment of system
life, after every task. After appearing of such a task it needs
to be inserted on extended task graph as a separate task. Then
all the tasks need to be split on possible number of subtasks.
The algorithm starts with generating the initial population.
The number of individuals in population is dependent on



ADAM GORSKI, MACIE] OGORZALEK: CONSTRUCTIVE GENETIC ALGORITHM WITH PENALTY FUNCTION

anumber of programmable processors p and a number of
tasks n in the extended task graph. It is equal to:
II=a*xpxn 3)
where o is given by a designer. It controls the size of the
population. In each of the individuals unexpected tasks are
solved as a random connection of randomly chosen number
of subtasks. Not every connection gives the solution of unex-
pected situation. Such solutions are not passed over. Next
generations of individuals are created using standard genetic
operators: crossover, mutation, cloning and selection. In this
paper we decided to choose rank selection. After generating
each population the genotypes are ranked by cost. All of the
individuals on a rank list have probability of being chosen
during the evolution process. The probability P depends on
a position r of an individual in a rank list. It is described by
the following equation:
In-r
- @)
Crossover selects W individuals and randomly connects
them in pairs. Then for each genotype in each pair randomly
a cutting point is chosen. The genes of two parents are
swapped. The number of individuals created by crossover is
presented on equation 4 below:
V=y=xIl &)
where v is a parameter given by the designer, y € (0,1).
Mutation selects Q genotypes. Then randomly a gene is
chosen. The number of a PE in the gene is substituted by an-
other. The mutation can also change the connection of sub-
tasks solving unexpected situation. The number of individuals
created using mutation operator is equal to:

QA== 6)
where B € (0,1) and is given by a designer.
Cloning copies ® individuals to a new population without
any changes. @ is equal to:

S =51 @)
where 6 € (0,1). It is given by a designer.
To have the same number of individuals in all of the popu-

lations the sum of the parameters 3, y and 4 needs to be equal
to 1:

pP=

The algorithm finishes its execution after € generations
without a better result.

IV. EXPERIMENTAL RESULTS

In this section the results of the experiments are presented.
The results were compared with genetic programming meth-
odology [13] proposed by Gorski and Ogorzatek (GP 2025).
Table 1 contains the results. The results were made for bench-
marks with 10, 20 and 30 nodes. The parameters were set as
follows for both of algorithms: o = 100, y =0,7, 3=0,2,3 =
0,1 and € = 5. The first results seem promising. However it is
needed to underline that presented results are first obtained
and the algorithm needs further investigation with different
parameters, time constrains and bigger graphs.

Algorithm presented in this paper (GA 2025) was able to
provide better results for every benchmarks. For the graph
with ten nodes the difference between the best results ob-
tained by GP 2025 and GA 2025 was the lowest — it was equal
only 15 units of cost. The cost of the best solutions generated
by both algorithms was the same and equal to 100. That could
be an effect of a small size of the graph. For a such a graph
the search space is smaller and maybe it could be reasonable
to decrease the value of o parameter. The difference between
obtained values of cost for a graph with 20 nodes was the
greatest — more than 700 cost units (1643 for GA 2025 and
2358 for GP 2025). Such a difference is surprising however
we cannot forgot about probabilistic nature of the algorithms.
As a consequence of such a type of algorithms one or a few
results can be very different from the majority. For a graph
with 30 nodes there was not such a big difference of costs — it
was appropriately 1643 for GA 2025 and 2358 for GP 2025.
It is worth to mention that even that GP 2025 produced the
results which were more expansive the time of the solutions
was faster in most of cases than the time of results generated
by GA 2025. Such a situation was expected because, as it was
mentioned before, investigated problem in hardware design
belongs to pareto group of problems. It also can be observed
that GA 2025 generated less populations than GP 2025 — 17,
14 and 18 for graphs with 10, 20 and 30 nodes meanwhile GP
2025 produced appropriately 22, 15 and 23 generations.
graph.

L+y+d6=1 )
TABLE 1.
EXPERIMENTAL RESULTS
GA 2025 GP 2025
Graph - - - -
cost time generation cost time generation
10 197 100 17 212 100 22
20 1643 2497 14 2358 2394 15
30 1997 2956 18 2244 2873 23




40

2500
2000
1500
1000

500
o I mm
10

20 30

Fig 2. Comparison of obtained results

In fig. 2 the graphical comparison of the results were pre-
sented. It contains best obtained results for every used
benchmark. Algorithm GP 2025 was compared with GP
2024 [8] and was more efficient.

V. CONCLUSIONS

In this paper a constructive genetic algorithm for a con-
current real-time optimization in embedded systems design
process was proposed. Solving the problem in hardware de-
sign can make the design faster and cheaper. It can also help
with adapting embedded systems to a changing environment
and thus making the systems more universal.

In the paper only first results were presented. Therefore
the algorithm needs more examination. The experiments
should be made using bigger graphs, different parameters
and time constrains.

In the future we plan to deliver more algorithms to solve
the problem investigated in hardware design. It seems that
good direction is to develop genetic programming solutions.
We also plan to propose new solutions to concurrent real-
time optimization problem in other areas too, not only in
embedded system design. Therefore the future work will be
divided into two directions. The first direction will include
improvement of proposed algorithms for hardware design.
The second direction will be concentrated on investigated
problem — its constrains, areas of appearance and searching
its different solutions.

ACKNOWLEDGMENT

The publication has been supported by a grant “Solving
real-time optimization problems” from the Faculty of
Physics, Astronomy and Applied Computer Science under
the Strategic Programme Excellence Initiative at Jagiel-
lonian University.

(1]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

POSITION PAPERS OF THE FEDCSIS. KRAKOW, POLAND, 2025

REFERENCES

G. C. Duarte, D. S. Loubach and I. Sander, "High-Level Reconfig-
urable Embedded System Design Based on Heterogeneous Models of
Computation," in /EEE Access, vol. 13, 2025, pp. 63918-63934,

A. Gorski and M., J. Ogorzatek, “Assignment of unexpected tasks in
embedded system design process”. Microprocessors and Microsys-
tems, Elsevier vol. 44, 2016 pp. 17— 21.

A. Gorski and M., J. Ogorzalek, “Auto-detection and assignment of
unexpected tasks in embedded systems design process ”. Proceedings
of the 23rd International Workshop of the European Group for Intelli-
gent Computing in Engineering, 2016, pages 179 — 188.

A. Gorski and M., J. Ogorzatek, “Assignment of unexpected tasks for
a group of embedded systems. /FAC-PapersOnlLine, vol. 51, Issue 6,
2018, pp. 102-106.

A. Gorski and M., J. Ogorzatek, “Assignment of unexpected tasks in
embedded system design process using genetic programming”. Pro-
ceedings of the 6th International Conference on the Dynamics of In-
formation Systems (DIS 2023), Lecture Notes in Computer Science,
vol. 14321, Springer, Cham., 2024, pp 93 — 101.

A. Gorski and M., J. Ogorzatek, “Concurrent real-time optimization in
embedded system design process using genetic algorithm”. Progress
in Polish Artificial Intelligence Research 5: proceedings of the 5th
Polish Conference on Artificial Intelligence (PP-RAI’2024), 2024, pp.
331-337.

A. Gorski and M., J. Ogorzatek, “Concurrent Real-Time optimization
of detecting unexpected tasks in IoT design process using GA”. Late
Breaking Papers from the IEEE 2023 Congress on Evolutionary Com-
putation, Chicago, IL, USA, IEEE, 2023, pp. 74 — 77.

A. Gorski and M., J. Ogorzatek, “Detecting and assignment of
unexpected tasks in SoC design process using genetic programming”.
Proceedings of the 2lst International SoC Design Conference
(ISOCC), Sapporo, Japan, august 2024 pp. 398-399.

B. P. Dave, G. Lakshminarayana and N. K. Jha, "COSYN: Hardware-
software co-synthesis of heterogeneous distributed embedded sys-
tems," in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 7, no. 1, March 1999, pp. 92-104.

S. Q. Liu and E. Kozan, “A hybrid metaheuristic algorithm to optimise
a real-world robotic cell”, Computers & Operations Research. Vol.
84, Elsevier, 2017, pp. 188-194.

J. A. Austin, M. A. Barras, and C. M. Sullivan. "Safe and effective
digital anticoagulation: a continuous iterative improvement approach."
ACI open 5.02 (2021), pp. el 16-c124.

H. Lu, X. Zhang, S. Yang, A, “earning-based iterative method for
solving vehicle routing problems” International Conference on learn-
ing Representations, 2020.

A. M. Gorski and M., J. Ogorzalek, “Genetic programming iterative
improvement algorithm for a concurrent real-time optimization in em-
bedded system design process” Proceedings of the 6th Polish Confer-
ence on Artificial Intelligence (PP-RAI’2025), 2025 (in press).

A. M. Gorski and M., J. Ogorzatek, “Grey wolf optimization
algorithm for a concurrent real-time optimization problem in game
theory” Proc. Journal of Automation, Mobile Robotics and Intelligent
Systems, vol. 19 no. 2, 2025, pp. 65-72.

S. Mahajan, A. Chauhan, and S. K. Gupta “On Pareto optimality using
novel goal programming approach for fully intuitionistic fuzzy multi-
objective quadratic problems”. Expert Systems with Applications, vol.
243, Elsevier, 2024.

K. Gmyrek, M. Antkiewicz and P. Myszkowski ” Genetic Algorithm
for Planning and Scheduling Problem -- StarCraft II Build Order case
study " Proceedings of the 18th Conference on Computer Science and
Intelligence Systems, Annals of Computer Science and Information
Systems, vol. 35, 0223 pp. 131-140.



