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Abstract—In this paper we present a genetic programming 

based constructive algorithm with penalty function for a con-

current  real-time  optimization  in  embedded  system  design 

process. Proposed approach uses genetic programming mecha-

nism to optimize detecting and assignment of unexpected tasks 

process in embedded system design. Unlike others methodolo-

gies the approach described in this paper uses a penalty in ob-

jective function in optimization process. As a result during the 

evolution generations of individuals can also contain solutions 

which  violate  time  constraints.  Thus  the  approach  is  more 

proof to stop in local minima of optimizing parameters. There-

fore the final result could be better adapted to the environment 

and the optimization process can be cheaper and more effec-

tive.

Index Terms—Genetic Programming, Concurrent Real-Time 

Optimization, Embedded Systems, Artificial Intelligence.

I. INTRODUCTION

MBEDDED  system design process [1] can be split on 

four  phases[2]:  modeling,  implementation,  validation 

and assignment of unexpected tasks. Unexpected tasks [2][3] 

can appear when the architecture of embedded system is pro-

duced, all known tasks are assignment to available resources 

and the system works in a target environment. In [4] authors 

proposed a methodology for assignment of unexpected tasks 

for a group of embedded systems. Unexpected tasks that ap-

peared were the result of cooperation of the systems in bigger 

environment. The first methodologies [2][5] proposed for as-

signment of unexpected tasks have  one major weakness – un-

expected tasks needed to be detected externally. All values of 

time and cost of execution needed to be given for every task. 

In [6] the authors proposed an algorithm which was able to 

detect unexpected tasks and assign them to appropriate Pro-
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cessing Element (PE). The authors indicated that some of un-

expected situations can be solved as a result of connection of 

some number of subtasks of known tasks. However not only 

one connection of subtask leads to solve unexpected situation. 

On the other side not every connection give the solution. Con-

nection of a subtasks that gives an appropriate solution needs 

to be assignment on one of available resources. The problem 

is to find which connection of subtasks is better. Such a prob-

lem was called picking an apple problem. Generally the opti-

mization process can be split into two phases. Each phase im-

pacts another in a real-time. That is why this type of optimiza-

tion was named concurrent real-time optimization. Further in-

formation about the problem and are given in next section. In 

[7] the authors proposed the solution of such a problem in IoT 

design. In [6] genetic algorithm was proposed to solve the 

problem in embedded system design. Genetic programming 

methodology [8] was also presented for such a problem. The 

biggest disadvantage of the methodology was a constructive 

nature of the algorithm. Such group of methodologies [9] [10] 

have low complexity but are prone to stop in local minima of 

optimizing parameters. It is caused because such methodolo-

gies construct the system by making decisions step by step for 

every task separately. Iterative improvement algorithms [11]

[12] start from suboptimal solutions, usually the fastest, and 

by local changes try to improve the system quality. Such algo-

rithms can escape local minima however the results are still 

suboptimal. In [13] the authors provided the genetic program-

ming based iterative improvement method for the problem. 

However the biggest disadvantages of the methodology was 

that only valid individuals could be investigated in the evolu-

tion process. Therefore some of the solutions could be unob-

tainable. Concurrent real-time optimization occurs not only in 

hardware design. The solution for such kind of optimization 

was also proposed in game theory [14]. Proposed methodol-

ogy  belonged  to  metaheuristics  group.  The  authors
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proposed a grey wolf optimizer to find an automatic solution 

of computer games. 

In this paper we propose a genetic algorithm based meth-

odology [6][16] with penalty function for concurrent real-

time optimization in embedded system design process. Unlike 

other approaches we investigate in evolution process not only 

valid solutions. Therefore the algorithm is more able to escape 

local minima of optimizing parameters.  

The paper is organized as follows: next section are prelim-

inaries, then the algorithm is described. The fourth section 

contains experimental results. At the and the conclusions and 

directions of future work are presented. 

II. PRELIMINARIES 

A. Embedded systems 

Embedded systems are computer systems mostly micro-

processor or microcontroller based. They were created to ex-

ecute some special group of tasks. most of modern systems 

are solved as distributed once. Such kind of systems are con-

sisted of two kinds of resources: processing elements (PEs), 

responsible for executing the tasks, and communication links 

(CLs) responsible for providing communication between PEs. 

There are two basic kinds of PEs: programmable processors 

(PPs) and hardware cores (HCs). PPs are universal resources 

able to execute more than one task. HCs are specialized re-

sources dedicated to execute only one task. Therefore unex-

pected tasks can be executed only by PPs. The behaviour of 

the system is specified by an acyclic directed graph called 

an extended task graph G = (V, E). Each node vi є V in the 

graph is a task, each edge eij є E describes the amount of data 

transferred between two connected tasks. The transmission 

time tij is equal to:  

 𝑡௜௝ = ௘೔ೕ௕  (1) 

where b is a bandwidth of a communication link. Fig. 1 

below presents the example of a task graph. 

 

 

 

The graph contains eight tasks. The nodes with yellow 

color (T1, T3, T5, T5, T7) marks the tasks that can be split on 

subtasks. The overall cost of a system Co is described by the 

following formula:  

௢ܥ  = ௔ܥ + ∑ ௜ܥ +௡௜=1  ݇ ∗ (𝑡 − 𝑡௠௔௫) (2) 

where n is a number of tasks in an extended task graph, tmax 

is a time constrain, k is a parameter given by the designer 

which decides about the penalty function and therefore how 

is the weight of violation of time constraints. The unit of k is 

[c/t] where c is a unit of cost and t is a unit of time. The goal 

of the optimization is to find the solution with the lowest value 

of Co. 

B. Concurrent real-time optimization – picking an apple 

problem 

It is possible to pick up an apple on many ways. Each of 

them demands different parameters to optimize and different 

tasks to execute. The question is how to find out which way 

is better without picking up the apple. The problem can be 

split into two phases. The first phase is responsible for the 

choice of optimizing parameters. The second phase makes the 

optimization and verifies the choice made in the first phase. 

During the process it can be found out that some of the ways 

of solving the problem do not lead to success. It is not always 

known at the beginning. In such a case after executing some 

of the tasks and starting optimization process the tasks to ex-

ecute and optimization parameters are changed. Therefore 

each of the phases can impact another in real time. The change 

of one phase changes another. Some unexpected situations 

can also happen which demands to execute some unexpected 

tasks. The most important issue is how to compare the results 

if every can demand different parameters to optimize or opti-

mizing parameters can change during the process. Every so-

lution can be characterized by global common parameters 

which can be used to compare the results. Such parameters 

can be for example cost of the solution or time of execution 

of all the tasks. 

Such a problem occurs in embedded system design. If sys-

tem meets unexpected situation it can be solved on many 

ways. Each way demands different tasks to execute. The prob-

lem is to find the optimal way to execute unexpected tasks 

and to find the appropriate hardware components to execute 

them. The solutions can be compared using two global param-

eters: time and cost of execution of all the tasks. As it can be 

easily observed, if the time is getting lower the cost is rising. 

Such relation is not proportional. Therefore, designing of em-

bedded systems belongs to pareto group of problems [15]. 

III. THE ALGORITHM 

Unexpected tasks can appear in every moment of system 

life, after every task. After appearing of such a task it needs 

to be inserted on extended task graph as a separate task. Then 

all the tasks need to be split on possible number of subtasks. 

The algorithm starts with generating the initial population. 

The number of individuals in population is dependent on 

 

Fig 1. Example of an extended task graph 
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a number of programmable processors p and a number of 

tasks n in the extended task graph. It is equal to:  

ߎ  = ߙ ∗ ݌ ∗ ݊ (3) 

where α is given by a designer. It controls the size of the 

population. In each of the individuals unexpected tasks are 

solved as a random connection of randomly chosen number 

of subtasks. Not every connection gives the solution of unex-

pected situation. Such solutions are not passed over. Next 

generations of individuals are created using standard genetic 

operators: crossover, mutation, cloning and selection. In this 

paper we decided to choose rank selection. After generating 

each population the genotypes are ranked by cost. All of the 

individuals on a rank list have probability of being chosen 

during the evolution process. The probability P depends on 

a position r of an individual in a rank list. It is described by 

the following equation:  

 ܲ = ௽−௥௽  (4) 

Crossover selects Ψ individuals and randomly connects 
them in pairs. Then for each genotype in each pair randomly 

a cutting point is chosen. The genes of two parents are 

swapped. The number of individuals created by crossover is 

presented on equation 4 below:  

ߖ  = ߛ ∗  (5) ߎ

where γ is a parameter given by the designer, γ є (0,1). 
Mutation selects Ω genotypes. Then randomly a gene is 

chosen. The number of a PE in the gene is substituted by an-

other. The mutation can also change the connection of sub-

tasks solving unexpected situation. The number of individuals 

created using mutation operator is equal to:  

 Ω = ߚ ∗  (6) ߎ

where β є (0,1) and is given by a designer. 
Cloning copies Φ individuals to a new population without 

any changes. Φ is equal to:  

ߔ  = ߜ ∗  (7) ߎ

where δ є (0,1). It is given by a designer. 
To have the same number of individuals in all of the popu-

lations the sum of the parameters β, γ and δ needs to be equal 
to 1:  

ߚ  + ߛ + ߜ = 1 (8) 

The algorithm finishes its execution after ε generations 

without a better result. 

IV. EXPERIMENTAL RESULTS 

In this section the results of the experiments are presented. 

The results were compared with genetic programming meth-

odology [13] proposed by Górski and Ogorzałek (GP 2025). 

Table 1 contains the results. The results were made for bench-

marks with 10, 20 and 30 nodes. The parameters were set as 

follows for both of algorithms: α = 100, γ = 0,7, β = 0,2, δ = 

0,1 and ε = 5. The first results seem promising. However it is 

needed to underline that presented results are first obtained 

and the algorithm needs further investigation with different 

parameters, time constrains and bigger graphs.  

Algorithm presented in this paper (GA 2025) was able to 

provide better results for every benchmarks. For the graph 

with ten nodes the difference between the best results ob-

tained by GP 2025 and GA 2025 was the lowest – it was equal 

only 15 units of cost. The cost of the best solutions generated 

by both algorithms was the same and equal to 100. That could 

be an effect of a small size of the graph. For a such a graph 

the search space is smaller and maybe it could be reasonable 

to decrease the value of α parameter. The difference between 

obtained values of cost for a graph with 20 nodes was the 

greatest – more than 700 cost units (1643 for GA 2025 and 

2358 for GP 2025). Such a difference is surprising however 

we cannot forgot about probabilistic nature of the algorithms. 

As a consequence of such a type of algorithms one or a few 

results can be very different from the majority. For a graph 

with 30 nodes there was not such a big difference of costs – it 

was appropriately 1643 for GA 2025 and 2358 for GP 2025. 

It is worth to mention that even that GP 2025 produced the 

results which were more expansive the time of the solutions 

was faster in most of cases than the time of results generated 

by GA 2025. Such a situation was expected because, as it was 

mentioned before, investigated problem in hardware design 

belongs to pareto group of problems. It also can be observed 

that GA 2025 generated less populations than GP 2025 – 17, 

14 and 18 for graphs with 10, 20 and 30 nodes meanwhile GP 

2025 produced appropriately 22, 15 and 23 generations.  

graph. 

 

TABLE I. 

EXPERIMENTAL RESULTS 

Graph 
GA 2025 GP 2025 

cost time generation cost time generation 

10 197 100 17 212 100 22 

20 1643 2497 14 2358 2394 15 

30 1997 2956 18 2244 2873 23 
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Fig 2. Comparison of obtained results

In fig. 2 the graphical comparison of the results were pre-

sented.  It  contains  best  obtained  results  for  every  used 

benchmark.  Algorithm  GP  2025  was  compared  with  GP 

2024 [8] and was more efficient.

V. CONCLUSIONS

In this paper a constructive genetic algorithm for a con-

current real-time optimization in embedded systems design 

process was proposed. Solving the problem in hardware de-

sign can make the design faster and cheaper. It can also help 

with adapting embedded systems to a changing environment 

and thus making the systems more universal.

In the paper only first results were presented. Therefore 

the  algorithm  needs  more  examination.  The  experiments 

should be  made using bigger  graphs,  different  parameters 

and time constrains. 

In the future we plan to deliver more algorithms to solve 

the problem investigated in hardware design. It seems that 

good direction is to develop genetic programming solutions. 

We also plan to propose new solutions to concurrent real-

time optimization problem in other  areas  too,  not  only in 

embedded system design. Therefore the future work will be 

divided into two directions. The first direction will include 

improvement of proposed algorithms for hardware design. 

The second direction will  be concentrated on investigated 

problem – its constrains, areas of appearance and searching 

its different solutions.
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