


Abstract—In this paper we present a genetic programming

based constructive algorithm with penalty function for a con-

current real-time optimization in embedded system design

process. Proposed approach uses genetic programming mecha-

nism to optimize detecting and assignment of unexpected tasks

process in embedded system design. Unlike others methodolo-

gies the approach described in this paper uses a penalty in ob-

jective function in optimization process. As a result during the

evolution generations of individuals can also contain solutions

which violate time constraints. Thus the approach is more

proof to stop in local minima of optimizing parameters. There-

fore the final result could be better adapted to the environment

and the optimization process can be cheaper and more effec-

tive.

Index Terms—Genetic Programming, Concurrent Real-Time

Optimization, Embedded Systems, Artificial Intelligence.

I. INTRODUCTION

MBEDDED system design process [1] can be split on

four phases[2]: modeling, implementation, validation

and assignment of unexpected tasks. Unexpected tasks [2][3]

can appear when the architecture of embedded system is pro-

duced, all known tasks are assignment to available resources

and the system works in a target environment. In [4] authors

proposed a methodology for assignment of unexpected tasks

for a group of embedded systems. Unexpected tasks that ap-

peared were the result of cooperation of the systems in bigger

environment. The first methodologies [2][5] proposed for as-

signment of unexpected tasks have one major weakness – un-

expected tasks needed to be detected externally. All values of

time and cost of execution needed to be given for every task.

In [6] the authors proposed an algorithm which was able to

detect unexpected tasks and assign them to appropriate Pro-

E

The publication has been supported by a grant from the Faculty (Faculty

of Physics, Astronomy and Applied Computer Science) under the Strategic

Programme Excellence Initiative at Jagiellonian University.

cessing Element (PE). The authors indicated that some of un-

expected situations can be solved as a result of connection of

some number of subtasks of known tasks. However not only

one connection of subtask leads to solve unexpected situation.

On the other side not every connection give the solution. Con-

nection of a subtasks that gives an appropriate solution needs

to be assignment on one of available resources. The problem

is to find which connection of subtasks is better. Such a prob-

lem was called picking an apple problem. Generally the opti-

mization process can be split into two phases. Each phase im-

pacts another in a real-time. That is why this type of optimiza-

tion was named concurrent real-time optimization. Further in-

formation about the problem and are given in next section. In

[7] the authors proposed the solution of such a problem in IoT

design. In [6] genetic algorithm was proposed to solve the

problem in embedded system design. Genetic programming

methodology [8] was also presented for such a problem. The

biggest disadvantage of the methodology was a constructive

nature of the algorithm. Such group of methodologies [9] [10]

have low complexity but are prone to stop in local minima of

optimizing parameters. It is caused because such methodolo-

gies construct the system by making decisions step by step for

every task separately. Iterative improvement algorithms [11]

[12] start from suboptimal solutions, usually the fastest, and

by local changes try to improve the system quality. Such algo-

rithms can escape local minima however the results are still

suboptimal. In [13] the authors provided the genetic program-

ming based iterative improvement method for the problem.

However the biggest disadvantages of the methodology was

that only valid individuals could be investigated in the evolu-

tion process. Therefore some of the solutions could be unob-

tainable. Concurrent real-time optimization occurs not only in

hardware design. The solution for such kind of optimization

was also proposed in game theory [14]. Proposed methodol-

ogy belonged to metaheuristics group. The authors

Constructive genetic algorithm with penalty function

for a concurrent real-time optimization

in embedded system design process

Adam M. Górski
0000-0003-3821-5333

Jagiellonian University

Faculty of Physics, Astronomy

and Applied Computer Science

ul. Prof. Stanisława

Łojasiewicza 11,

30-348 Kraków, Poland

Email: a.gorski@uj.edu.pl

Maciej J. Ogorzałek,

fellow IEEE
0000-0003-3314-269X

Jagiellonian University

Faculty of Physics, Astronomy

and Applied Computer Science

ul. Prof. Stanisława

Łojasiewicza 11,

30-348 Kraków, Poland

Email: maciej.ogorzalek@uj.edu.pl.

Position Papers of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 37–40

DOI: 10.15439/2025F5892
ISSN 2300-5963 ACSIS, Vol. 44

©2025, PTI 37 Thematic Session: Computational Optimization

proposed a grey wolf optimizer to find an automatic solution

of computer games.

In this paper we propose a genetic algorithm based meth-

odology [6][16] with penalty function for concurrent real-

time optimization in embedded system design process. Unlike

other approaches we investigate in evolution process not only

valid solutions. Therefore the algorithm is more able to escape

local minima of optimizing parameters.

The paper is organized as follows: next section are prelim-

inaries, then the algorithm is described. The fourth section

contains experimental results. At the and the conclusions and

directions of future work are presented.

II. PRELIMINARIES

A. Embedded systems

Embedded systems are computer systems mostly micro-

processor or microcontroller based. They were created to ex-

ecute some special group of tasks. most of modern systems

are solved as distributed once. Such kind of systems are con-

sisted of two kinds of resources: processing elements (PEs),

responsible for executing the tasks, and communication links

(CLs) responsible for providing communication between PEs.

There are two basic kinds of PEs: programmable processors

(PPs) and hardware cores (HCs). PPs are universal resources

able to execute more than one task. HCs are specialized re-

sources dedicated to execute only one task. Therefore unex-

pected tasks can be executed only by PPs. The behaviour of

the system is specified by an acyclic directed graph called

an extended task graph G = (V, E). Each node vi є V in the

graph is a task, each edge eij є E describes the amount of data

transferred between two connected tasks. The transmission

time tij is equal to:

 𝑡௜௝ = ௘೔ೕ௕ (1)

where b is a bandwidth of a communication link. Fig. 1

below presents the example of a task graph.

The graph contains eight tasks. The nodes with yellow

color (T1, T3, T5, T5, T7) marks the tasks that can be split on

subtasks. The overall cost of a system Co is described by the

following formula:

௢ܥ = ௔ܥ + ∑ ௜ܥ +௡௜=1 ݇ ∗ (𝑡 − 𝑡௠௔௫) (2)

where n is a number of tasks in an extended task graph, tmax

is a time constrain, k is a parameter given by the designer

which decides about the penalty function and therefore how

is the weight of violation of time constraints. The unit of k is

[c/t] where c is a unit of cost and t is a unit of time. The goal

of the optimization is to find the solution with the lowest value

of Co.

B. Concurrent real-time optimization – picking an apple

problem

It is possible to pick up an apple on many ways. Each of

them demands different parameters to optimize and different

tasks to execute. The question is how to find out which way

is better without picking up the apple. The problem can be

split into two phases. The first phase is responsible for the

choice of optimizing parameters. The second phase makes the

optimization and verifies the choice made in the first phase.

During the process it can be found out that some of the ways

of solving the problem do not lead to success. It is not always

known at the beginning. In such a case after executing some

of the tasks and starting optimization process the tasks to ex-

ecute and optimization parameters are changed. Therefore

each of the phases can impact another in real time. The change

of one phase changes another. Some unexpected situations

can also happen which demands to execute some unexpected

tasks. The most important issue is how to compare the results

if every can demand different parameters to optimize or opti-

mizing parameters can change during the process. Every so-

lution can be characterized by global common parameters

which can be used to compare the results. Such parameters

can be for example cost of the solution or time of execution

of all the tasks.

Such a problem occurs in embedded system design. If sys-

tem meets unexpected situation it can be solved on many

ways. Each way demands different tasks to execute. The prob-

lem is to find the optimal way to execute unexpected tasks

and to find the appropriate hardware components to execute

them. The solutions can be compared using two global param-

eters: time and cost of execution of all the tasks. As it can be

easily observed, if the time is getting lower the cost is rising.

Such relation is not proportional. Therefore, designing of em-

bedded systems belongs to pareto group of problems [15].

III. THE ALGORITHM

Unexpected tasks can appear in every moment of system

life, after every task. After appearing of such a task it needs

to be inserted on extended task graph as a separate task. Then

all the tasks need to be split on possible number of subtasks.

The algorithm starts with generating the initial population.

The number of individuals in population is dependent on

Fig 1. Example of an extended task graph

38 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

a number of programmable processors p and a number of

tasks n in the extended task graph. It is equal to:

ߎ = ߙ ∗ ݌ ∗ ݊ (3)

where α is given by a designer. It controls the size of the

population. In each of the individuals unexpected tasks are

solved as a random connection of randomly chosen number

of subtasks. Not every connection gives the solution of unex-

pected situation. Such solutions are not passed over. Next

generations of individuals are created using standard genetic

operators: crossover, mutation, cloning and selection. In this

paper we decided to choose rank selection. After generating

each population the genotypes are ranked by cost. All of the

individuals on a rank list have probability of being chosen

during the evolution process. The probability P depends on

a position r of an individual in a rank list. It is described by

the following equation:

 ܲ = ௽−௥௽ (4)

Crossover selects Ψ individuals and randomly connects
them in pairs. Then for each genotype in each pair randomly

a cutting point is chosen. The genes of two parents are

swapped. The number of individuals created by crossover is

presented on equation 4 below:

ߖ = ߛ ∗ (5) ߎ

where γ is a parameter given by the designer, γ є (0,1).
Mutation selects Ω genotypes. Then randomly a gene is

chosen. The number of a PE in the gene is substituted by an-

other. The mutation can also change the connection of sub-

tasks solving unexpected situation. The number of individuals

created using mutation operator is equal to:

 Ω = ߚ ∗ (6) ߎ

where β є (0,1) and is given by a designer.
Cloning copies Φ individuals to a new population without

any changes. Φ is equal to:

ߔ = ߜ ∗ (7) ߎ

where δ є (0,1). It is given by a designer.
To have the same number of individuals in all of the popu-

lations the sum of the parameters β, γ and δ needs to be equal
to 1:

ߚ + ߛ + ߜ = 1 (8)

The algorithm finishes its execution after ε generations

without a better result.

IV. EXPERIMENTAL RESULTS

In this section the results of the experiments are presented.

The results were compared with genetic programming meth-

odology [13] proposed by Górski and Ogorzałek (GP 2025).

Table 1 contains the results. The results were made for bench-

marks with 10, 20 and 30 nodes. The parameters were set as

follows for both of algorithms: α = 100, γ = 0,7, β = 0,2, δ =

0,1 and ε = 5. The first results seem promising. However it is

needed to underline that presented results are first obtained

and the algorithm needs further investigation with different

parameters, time constrains and bigger graphs.

Algorithm presented in this paper (GA 2025) was able to

provide better results for every benchmarks. For the graph

with ten nodes the difference between the best results ob-

tained by GP 2025 and GA 2025 was the lowest – it was equal

only 15 units of cost. The cost of the best solutions generated

by both algorithms was the same and equal to 100. That could

be an effect of a small size of the graph. For a such a graph

the search space is smaller and maybe it could be reasonable

to decrease the value of α parameter. The difference between

obtained values of cost for a graph with 20 nodes was the

greatest – more than 700 cost units (1643 for GA 2025 and

2358 for GP 2025). Such a difference is surprising however

we cannot forgot about probabilistic nature of the algorithms.

As a consequence of such a type of algorithms one or a few

results can be very different from the majority. For a graph

with 30 nodes there was not such a big difference of costs – it

was appropriately 1643 for GA 2025 and 2358 for GP 2025.

It is worth to mention that even that GP 2025 produced the

results which were more expansive the time of the solutions

was faster in most of cases than the time of results generated

by GA 2025. Such a situation was expected because, as it was

mentioned before, investigated problem in hardware design

belongs to pareto group of problems. It also can be observed

that GA 2025 generated less populations than GP 2025 – 17,

14 and 18 for graphs with 10, 20 and 30 nodes meanwhile GP

2025 produced appropriately 22, 15 and 23 generations.

graph.

TABLE I.

EXPERIMENTAL RESULTS

Graph
GA 2025 GP 2025

cost time generation cost time generation

10 197 100 17 212 100 22

20 1643 2497 14 2358 2394 15

30 1997 2956 18 2244 2873 23

ADAM GÓRSKI, MACIEJ OGORZALEK: CONSTRUCTIVE GENETIC ALGORITHM WITH PENALTY FUNCTION 39

Fig 2. Comparison of obtained results

In fig. 2 the graphical comparison of the results were pre-

sented. It contains best obtained results for every used

benchmark. Algorithm GP 2025 was compared with GP

2024 [8] and was more efficient.

V. CONCLUSIONS

In this paper a constructive genetic algorithm for a con-

current real-time optimization in embedded systems design

process was proposed. Solving the problem in hardware de-

sign can make the design faster and cheaper. It can also help

with adapting embedded systems to a changing environment

and thus making the systems more universal.

In the paper only first results were presented. Therefore

the algorithm needs more examination. The experiments

should be made using bigger graphs, different parameters

and time constrains.

In the future we plan to deliver more algorithms to solve

the problem investigated in hardware design. It seems that

good direction is to develop genetic programming solutions.

We also plan to propose new solutions to concurrent real-

time optimization problem in other areas too, not only in

embedded system design. Therefore the future work will be

divided into two directions. The first direction will include

improvement of proposed algorithms for hardware design.

The second direction will be concentrated on investigated

problem – its constrains, areas of appearance and searching

its different solutions.

ACKNOWLEDGMENT

The publication has been supported by a grant “Solving

real-time optimization problems” from the Faculty of

Physics, Astronomy and Applied Computer Science under

the Strategic Programme Excellence Initiative at Jagiel-

lonian University.

REFERENCES

[1] G. C. Duarte, D. S. Loubach and I. Sander, "High-Level Reconfig-

urable Embedded System Design Based on Heterogeneous Models of

Computation," in IEEE Access, vol. 13, 2025, pp. 63918-63934,

[2] A. Górski and M., J. Ogorzałek, “Assignment of unexpected tasks in

embedded system design process”. Microprocessors and Microsys-

tems, Elsevier vol. 44, 2016 pp. 17– 21.

[3] A. Górski and M., J. Ogorzałek, “Auto-detection and assignment of

unexpected tasks in embedded systems design process”. Proceedings

of the 23rd International Workshop of the European Group for Intelli-

gent Computing in Engineering, 2016, pages 179 – 188.

[4] A. Górski and M., J. Ogorzałek, “Assignment of unexpected tasks for

a group of embedded systems. IFAC-PapersOnLine, vol. 51, Issue 6,

2018, pp. 102-106.

[5] A. Górski and M., J. Ogorzałek, “Assignment of unexpected tasks in

embedded system design process using genetic programming”. Pro-

ceedings of the 6th International Conference on the Dynamics of In-

formation Systems (DIS 2023), Lecture Notes in Computer Science,

vol. 14321, Springer, Cham., 2024, pp 93 – 101.

[6] A. Górski and M., J. Ogorzałek, “Concurrent real-time optimization in

embedded system design process using genetic algorithm”. Progress

in Polish Artificial Intelligence Research 5: proceedings of the 5th

Polish Conference on Artificial Intelligence (PP-RAI’2024), 2024, pp.

331-337.

[7] A. Górski and M., J. Ogorzałek, “Concurrent Real-Time optimization

of detecting unexpected tasks in IoT design process using GA”. Late

Breaking Papers from the IEEE 2023 Congress on Evolutionary Com-

putation, Chicago, IL, USA, IEEE, 2023, pp. 74 – 77.

[8] A. Górski and M., J. Ogorzałek, “Detecting and assignment of

unexpected tasks in SoC design process using genetic programming”.

Proceedings of the 21st International SoC Design Conference

(ISOCC), Sapporo, Japan, august 2024 pp. 398-399.

[9] B. P. Dave, G. Lakshminarayana and N. K. Jha, "COSYN: Hardware-

software co-synthesis of heterogeneous distributed embedded sys-

tems," in IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 7, no. 1, March 1999, pp. 92-104.

[10] S. Q. Liu and E. Kozan, “A hybrid metaheuristic algorithm to optimise

a real-world robotic cell”, Computers & Operations Research. Vol.

84, Elsevier, 2017, pp. 188-194.

[11] J. A. Austin, M. A. Barras, and C. M. Sullivan. "Safe and effective

digital anticoagulation: a continuous iterative improvement approach."

ACI open 5.02 (2021), pp. e116-e124.

[12] H. Lu, X. Zhang, S. Yang, A, “earning-based iterative method for

solving vehicle routing problems” International Conference on learn-

ing Representations, 2020.

[13] A. M. Górski and M., J. Ogorzałek, “Genetic programming iterative

improvement algorithm for a concurrent real-time optimization in em-

bedded system design process” Proceedings of the 6th Polish Confer-

ence on Artificial Intelligence (PP-RAI’2025), 2025 (in press).

[14] A. M. Górski and M., J. Ogorzałek, “Grey wolf optimization

algorithm for a concurrent real-time optimization problem in game

theory” Proc. Journal of Automation, Mobile Robotics and Intelligent

Systems, vol. 19 no. 2, 2025, pp. 65-72.

[15] S. Mahajan, A. Chauhan, and S. K. Gupta “On Pareto optimality using

novel goal programming approach for fully intuitionistic fuzzy multi-

objective quadratic problems”. Expert Systems with Applications, vol.

243, Elsevier, 2024.

[16] K. Gmyrek, M. Antkiewicz and P. Myszkowski ” Genetic Algorithm

for Planning and Scheduling Problem -- StarCraft II Build Order case

study” Proceedings of the 18th Conference on Computer Science and

Intelligence Systems, Annals of Computer Science and Information

Systems, vol. 35, 0223 pp. 131–140.

40 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

