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Abstract—We propose a novel U-net architecture, RAG4-Unet,
based on residual attention gated for brain tumor segmentation,
Swin transformer for classification task, and Yolo11 for tumor
detection. For the experiments, the Figshare dataset is employed
and the proposed architecture achieved 91.37% Dice for tu-
mor segmentation task, and Swin transformer achieved 91.74%
classification accuracy. The Yolo11 gained 89.6% of detection
precision. Comparative evaluation with the SOTA techniques
reveals that the proposed architecture outperformed the existing
methods and Yolo11. The proposed architecture improved the
tumor boundary detection, making it a promising solution for
brain tumor recognition and segmentation.

Index Terms—Tumor Segmentation, Residual Attention Gated,
Unet, Yolo11, Attention Maps.

I. INTRODUCTION

BRAIN tumors are a major health challenge, characterized

by abnormal cell growth in the brain, which can affect

its vital functions [1]. These tumors, from benign to malig-

nant, are often associated with persistent headaches, seizures,

cognitive impairments, and neurological diseases and have a

negative impact on the quality of life of patients [2]. Manual

diagnostic methods such as visual inspection of histological

slides and radiological imaging have traditionally been used,

but they take time, are subjective, and can cause human

error [3]. Radiologists are imaging modalities more frequently

because they tend to be more accurate and put patients at far

lower risk. Medical imaging data can be recorded using a vari-

ety of techniques, such as tomography [4], magnetic resonance

imaging (MRI) [5], radiography [6], and echocardiography [7].

The introduction of artificial intelligence (AI) has trans-

formed the detection of brain tumors through automation

and improved diagnostic accuracy [8]. Machine Learning

ML) approaches depend on methods for gathering features,

selecting features, and classification [9]. Deep Learning (DL)

models learn by extracting features from images. Particularly,

Convolutional Neural Networks (CNNs) are widely used in

medical imaging analysis and show vital achievements in

the identification of brain tumors, enabling advances in clas-

sification and segmentation. Several studies have proposed

innovative methods for the segmentation and classification of

brain tumors from MRI images. Zhang et al. [10] introduced

a modified U-net method with an attention mechanism for

improving segmentation accuracy. Their approach focused on

addressing limitations of traditional U-net models, such as

difficulties in handling small tumor regions and blurry tumor

boundaries. By incorporating multi-scale feature fusion and

attention mechanisms, their method demonstrated enhanced

efficiency and achieved Dice coefficients of 0.876, 0.868, and

0.814 for tumor subregions.

Ahsan et al. [11] compared object detection algorithms

(YOLOv5, Faster R-CNN, SSD) for brain tumor. They used

Figshare dataset and paired YOLOv5 with 2D U-Net for

segmentation. Yolov5 gained the highest mAP of 89.5%, and

Yolov5+2D U-Net achieved 88.1% DSC. However, the dual-

model framework increased learning complexity.

Arumaiththurai et al. [12] proposed two methods for clas-

sifying brain tumors using ML and DL algorithms. The first

method used decision trees and SVM, while the second used

pre-trained VGG19 and ResNet152 models. Figshare brain

tumor dataset assessed the effectiveness of these approaches.

The CNN-based method performed better in classification and

attained an accuracy rate of 94.67%.

Alyami et al. [13] employed AlexNet and VGG19 models

for feature extraction and the slap swarm algorithm for feature

selection. They used Kaggle brain tumor dataset and achieved

an accuracy of 99.1% with a cubic SVM using 4111 best

selected features out of 8192.

Asiri et al. [14] introduced a customized CNN model for

classification brain tumor, focusing on hyperparameter tuning

of kernel size, strides, activation, and learning rates. The model

was evaluated on two MRI datasets: a four-class dataset with

7,023 images and a binary dataset with 253 images. This

method achieved 88% accuracy.

These studies demonstrate the growing use of deep learning

models, particularly U-net, transfer learning, and attention

mechanisms, to enhance the accuracy and efficiency of brain

tumor segmentation and classification. The incorporation of

explainable AI such as LIME, attention maps, also adds a

layer of transparency, which is crucial for the deployment of

these models in clinical settings.

However, challenges such as variability in growth patterns,

textures, and irregularity in tumors across patients, and dif-

ferent tumors have overlapping visual features and irregular
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boundaries, especially when the tumors are in early stages.

Addressing these challenges remains a critical focus of ongo-

ing research on brain tumor analysis.

To address these challenges, we introduce an innovative

architecture, RAG4-Unet, for the segmentation process, and

this framework incorporates Swin transformer and Yolo11 for

precision detection of the tumor region. The key contributions

of this work is summarized as follows:

• We introduce a novel Residual Attention Gated (RAG)

module to focus on significant spatial and contextual

features to enhance detection of brain tumor boundaries.

• We employ a Swin Transformer to leverage shifting

window sizes, utilizing its attention mechanism to learn

features hierarchically.

• We integrate YOLO11 for detection of growth regions in

brain tumors, enhancing accuracy of tumor detection.

II. METHODOLOGY

A. Data Collection and Augmentation

The FigShare Brain tumor dataset is utilized for experi-

ments. The dataset is available at https://Figshare.com/articles/

dataset/brain tumor dataset/1512427. This dataset includes

233 patients with three types of tumors: glioma, meningioma,

and pituitary tumor. The glioma category contains 1426 slices,

meningioma has 708 slices, and the pituitary tumor has 930

slices. Each image has a dimension of 512 × 512 with a

depth resolution of 96 dpi. The dataset is imbalanced and

that there were not enough samples for the efficient learning

of the deep learning model. Therefore, we performed an

augmentation process to increase the diversity in the dataset.

For the augmentation process, four basic transformations are

utilized: horizontal flip, rotation by 10°, vertical flip, and

solarization. After augmentation process, the samples in each

class are 4120. The augmentation process is visually presented

in Fig. 1.

Fig. 1. Sample of augmentation operation on brain tumor dataset.

B. Overview of Swin Transformer

Swin Transformer is an enhanced version of the transformer

that boosts computational effectiveness and capacity for high-

resolution images. Similar to conventional CNNs, the Swin

Transformer gradually reduces the image size by introducing

a hierarchical structure that reflects images at various sizes.

It limits attention to small windows and shifts these windows

at every level. The input RGB image is separated into non-

overlapping patches using a patch-splitting module like ViT.

Each patch is handled as a ”token” and its feature is configured

as a concatenation of raw pixel RGB values. After that, many

Swin Transformer blocks are applied to these patch tokens.

a) Swin Transformer Stages:

The Swin Transformer block, known as ”Stage 1,” maintains

a token count of ϕh

4
× ϕw

4
when used with linear embedding.

Hierarchical representation is achieved by reducing the number

of tokens using a patch merging technique as the depth of

the neural network grows. The initial patch merging layer

concatenates the features of neighboring 2 × 2 patches and

then applies a linear layer to the 4C-dimensional features

produced. This procedure reduces the token count by a factor

of 2 × 2 = 4, while changing the output dimension to 2C.

Swin Transformer blocks are added to transform features while

keeping a resolution of ϕh

8
× ϕw

8
. Stage 2 begins with patch

merging and feature transition. The procedure is performed

twice, resulting in ”Stage 3” and ”Stage 4”, with output

resolutions of ϕh

16
× ϕw

16
and ϕh

32
× ϕw

32
correspondingly. The four

stages work together to provide a hierarchical representation

with feature map resolutions equivalent to those of typical

CNNs. Swin Transformer replaces multi-head self-attention

(MSA) module in a transformer block with a module based on

the shifted window, while the other layers remain unchanged.

The Swin Transformer block consists of a shifted window-

based MSA module, a 2-layer MLP with GELU activation in

between. The layer normalization is placed before each MSA

and MLP module, followed by a residual connection.

b) Hierarchical Feature Learning:

The self-attention within localized windows enables effec-

tive modeling. The windows are positioned such that they do

not overlap and divide the image equally. The computational

complexity of a global MSA module and a window-based one,

based on an image of ϕh×ϕw patches, assuming each window

has k × k patches:

Ω(MSA) = 4ϕhϕwC
2 + 2(ϕhϕw)

2C (1)

Ω(MSA)w = 4ϕhϕwC
2 + 2k2ϕhϕwC (2)

The computation of the Swin Transformer has linear complex-

ity when fixed, but the computational cost of traditional ViT

increases quadratically with the number of patches. Although

the W-MSA of the Swin Transformer decreases the compu-

tational cost from quadratic to linear, its modeling capability

may be limited by the absence of links and communication

between many windows. To overcome this restriction, the Swin

Transformer adds a shifted window divider that makes it easier

for nearby non-overlapping windows to share information.

In two successive Swin Transformer blocks, this method

alternates between using W-MSA and a modified SW-MSA.

By connecting adjacent non-overlapping windows, the shifted

window partitioning greatly expands the receptive field. After
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employing the shifted window divider, the computation within

two consecutive Swin Transformers is followed as:

Φ̂b = (MSA)w(LN(Φb−1)) + Φb−1 (3)

Φb = MLP(LN(Φ̂b)) + Φ̂b (4)

Φ̂b+1 = (MSA)sw(LN(Φb)) + Φb (5)

Φb+1 = MLP(LN(Φ̂b+1)) + Φ̂b+1 (6)

Where (MSA)w and (MSA)sw represent window-based

multi-head self-attention and shifted window divider, respec-

tively. Φ̂b and Φb denote resultant features of the (MSA)sw
and MLP module for block b.

Swin Transformer introduces the relative position biases

for every head during the similarity calculation, which is

formulated as:

Att(Q,K, V ) = Soft

(

QKT

√
d

+ ψb

)

V (7)

Where Q,K, V are the query, key, and value vectors, and d

denotes the dimension of Q,K, V , and ψb is the bias vector.

The motivation behind choosing the Swin Transformer for

brain tumor analysis is its ability to process high-resolution

images and its window-based attention mechanism, which can

learn fine-grained details about the tumor region, such as tiny

tumor boundaries and growth patterns in the local context.

C. Proposed RAG4-Unet Architecture

U-Net is a deep learning architecture proposed for image

segmentation. It consists of three steps: encoder, bridge, and

decoder. In this work, we proposed a Residual Attention-Gated

U-Net (RAG4-Unet) for the segmentation of tumors from brain

MRI scans. RAG4-Unet consists of four residual encoders, one

bridge, and four residual decoders. All the residual encoders

are connected to the attention gate to generate the attention

maps, and the attention gates are concatenated with the de-

coders. The RAG4-Unet accepts the input of size 256×256×3.

a) Encoder Phase:

The first encoder consists of one residual block, max-

pooling with stride 2, and one dropout layer. The dropout

factor is 0.1. The residual block contains two convolutional

layers with a 3× 3 filter size, 64 filters, and a stride of 1. The

residual encoder is desribed as follows:

∂1 = ∅1(I) (8)

∂
ψ
1 = ψ1(∂1) (9)

∂2 = ∅2(∂ψ1 ) (10)

∂
ψ
2 = ψ2(∂2) (11)

∂3 = ∅3(∂ψ2 ) (12)

∂
ψ
3 = ψ3(∂3) (13)

∂skip = ∂
ψ
3 + ∂

ψ
2 (14)

∂ReLU = λ(∂skip) (15)

∂⊞ = ⊞Mpool(∂ReLU, s = 2) (16)

∂⊟ = ⊟drop(∂⊞, f = 0.1) (17)

Where the ∅c represents the convolutional operation, ψ is the

batch normalization, λ represents the ReLU activation, ⊞Mpool

is max pooling, and ∂⊟ represents the dropout layer. The

second and third encoders also consist of one residual block,

max-pooling with stride 2, and one dropout layer with a 0.1

dropout factor. In the second residual block, the convolutional

layer is configured with a 3×3 filter size, 128 filters, and a

stride 1. In the third residual block, the convolutional operation

is performed by employing a 3×3 kernel size, 256 filters, and

a stride 1. In the last encoder, dropout factor is 0.2, and

convolutional inside the fourth residual block is configured

with a 1×1 kernel size, 512 filters, and a stride 1.

b) Bridge Phase:

The bridge between the encoder and decoder is the deepest

point in the network. The bridge is configured by employing

a residual block with 1024 depth and one dropout layer with

a 0.3 drop factor.

c) Decoder Phase:

After the Bridge, the first decoder consists of one transpose

convolutional layer configured with a 2×2 filter size, 512

depth, and 2×2 stride, one attention gate that is applied on the

fourth encoder and transpose layer. The resultant feature map

of attention-gated and transpose layers is further combined

using the concatenation layer. After that, one residual block

and dropout layer with a 0.2 drop factor is employed. The

mathematical representation is:

∂Tconv = ∅T (β, k = 2, s = 2, ch = 512) (18)

∂AG = AttGate(∂end4, ∂Tconv) (19)

∂Con =
⊎

(∂AG, ∂Tconv) (20)

∂d1 = ∅(∂Con) (21)

∂
ψ
d1 = ψd1(∂d1) (22)

∂d2 = ∅d2(∂ψd1) (23)

∂
ψ
d2 = ψd2(∂d2) (24)

∂d3 = ∅d3(∂ψd2) (25)

∂
ψ
d3 = ψd3(∂d3) (26)

∂dskip = ∂
ψ
d3 + ∂

ψ
d2 (27)

∂dλ = λ(∂dskip) (28)

∂d
⊟
= ⊟drop(∂

d
λ, f = 2) (29)

Where
⊎

is the concatenation layer, AttGate is the attention

mechanism, and ∅T represents the transpose convolutional

operation. In the second decoder, the transpose convolutional

has a 2×2 filter size, 256 depth, and 2×2 stride, and the

remaining mechanisms are the same. The implementation

phenomena of the third and fourth decoders are the same.

However, the configurations of transpose convolutional and
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Fig. 2. Architecture of Swin Transformer for the classification of brain tumor

dropout layers are updated. The updated configurations are a

2×2 filter size, 128, 64 depth, and 2×2 stride, and the dropout

factor is 0.1, respectively. The architecture of the proposed

RAG4-Unet is presented in Fig. 3.

The proposed model is developed using the TensorFlow

framework and The proposed model has 99.45M parameters

bringing the model size to around 379.37 MB of memory.

33.14M are trainable and 17.66K non-trainable parameters

kept by the optimizer in memory 252.87 MB while training.

The model inference complexity is evaluated with GFLOPS.

The overall computation cost of a single forward pass is

approximately 106.25 GFLOPs.

D. Novelty: Proposed RAG Module

In this work, We designed a novel hybrid feature en-

hancement module based on Residual and Attention gated

mechanism. This module synergistically combines the residual

learning to stabilizes the gradient flow, with attention gating,

which focused on salient regions of the interest within the

brain MRI image.The tumor regions often confused with

healthy tissues. the RAG module addresses this problem by

filtering irrelevant and low importance features while enhanc-

ing the high relevance activations related to tumor boundaries

and cores. It enhances the boundary detail and localization of

tumor objects, because the attention gated mechanism reduces

irrelevant activations that strengthen the task of boundary de-

tail and out-of-distribution activations that strengthens spatial

detail of the tumor region when propagating features and

helping to ensure gradient stability.

The sequence of RAG module begins with a series of convo-

lutions to extract features from the input tensor, with the output

then entering more convolutions and subsequently Attention

Gated module, when performing spatial attention analysis,

attention maps are created using extracted features and a gating

signal is produced from a feature map. The attention maps

are resampled, and modify the original feature map, it allows

the network to learn where to increase and where to decrease

specific spatial regions and a residual connection allows the

network to skip non-linearity,if needed, thus minimizing the

possibility of vanishing gradients strengthening the source of

information and allowing for richer contextual experience for

the network over numerous forward passes. The output of this

module contains local enriched features and global semantic

guiding features useful for precise identification of the tumor

edges. the proposed RAG module is presented in Figure 4

III. RESULTS

A. Experimental Setup

The dataset is divided into training, testing, and validation.

70% data is employed for training, 10% data is employed

for the validation during the training process, and the 20%

data is utilized for the testing process. The hyperparameters

selected for Swin Transformer are batch size, number of

workers, selected optimizer ADAM, learning rate, momentum,

and epochs having values are 8, 4, 0.0004, 0.9, and 250. For

RAG4-Unet the utilized hyperparameters are learning rate is

0.0001, epochs is 100, optimizer is ADAM, batch size is 8,
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Fig. 3. Architecture of proposed RAG4-Unet for brain tumor segmentation

Fig. 4. Architecture of Residual Attention Gated mechanism (RAG) module

and early stopping is employed with learning decay is 0.2,

patience is 5, min lr is 0.00001. The evaluation metrics are

accuracy, recall, precision, f1-score, Dice, Jaccard loss, and

IoU for the segmentation and classification.

The experiments are conducted on MSI GL75 Leopard

model configured with Core–i7 10 generation 2.59GHz pro-

cessor, 16 GB of RAM, 512GB of SSD storage, and GTX

GeForce 1660ti 6GB graphics card.

B. Results of Swin Transformer

The classification results of Swin Transformer on Figshare

dataset has been presented in Table I. The model achieved

91.74% accuracy, 91.64% precision, 91.73% recall, 91.52%

f1-score, 98.33% AUC, and 86.91% kappa index. The perfor-

mance across the individual classes such as pituitary tumor

gained the highest accuracy of 97.85%, precision of 95.13%,

recall of 97.85%, and f1-score of 96.48% with 2.87 (sec)

inference time. The confusion matrix gives more comprehen-

sive details about the class’s performance, as shown in Fig.

5. Glioma and pituitary tumor have the highest accuracy of

95.79%, and 97.85% respectively, because 205 samples of

glioma and 137 samples of pituitary tumor class are correctly

classified and 9 samples from the glioma and only 3 samples

from the pituitary tumor are misclassified. The meningioma

class has 75.47% of accuracy, 88.88% precision, 75.47%

recall, and 81.63% f1-score. Meningioma tumor suffers from

the considerable misclassification, the 5 samples are incorrect

classified as pituitary tumor and 21 samples are misclassified

as glioma. The overall misclassification rate of the menin-

gioma class is higher than the other two classes. The overall

confidence index of model is quite better which is 97.22%.

TABLE I
RESULTS OF SWIN TRANSFORMER ON FIGSHARE DATASET

Class-wise Accuracy

(%)

Precision

(%)

Recall

(%)

F1-score

(%)

Glioma 95.794 90.707 95.794 93.181

Meningioma 75.471 88.888 75.471 81.632

Pituitary Tumor 97.857 95.138 97.857 96.478

Overall Performance

Accuracy (%) Precision

(%)

Recall

(%)

F1-score

(%)

AUC (%)

91.74 91.64 91.73 91.52 98.33

Kappa (%) CI Inference Time (sec)
86.91 97.22 2.306

C. Results of proposed RAG4-Unet

The segmentation is implemented using the proposed

RAG4-Unet model. The images and their masks are provided

as input to the proposed model. After training the RAG4-

Unet model, the model is evaluated on the test data. The
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Fig. 5. Confusion matrix of Swin Transformer on Figshare dataset

overall performance and sample-wise results of the proposed

RAG4-Unet are presented in Table II. The proposed model

achieved 91.37% Dice, 94.74% precision, 96.23% sensitivity,

and 98.46% specificity. Some of the testing sample results

are presented in Table II. Most test samples have a high

Dice of 0.90, with consistent IoU and low Jaccard loss.

The model could segment the tumor regions accurately and

clearly distinguish the tumor portion from the surrounding

information, such as samples 1, 2, 3, 4, 7, 8, 9, and 12 have

more than 90% Dice score, 87-94% IoU, due to the clear and

uniform morphology of the tumor region and a few samples,

like 10, 11, 13, and 14, have quite better Dice scores and

IoU with the small size of the tumor. However, the model is

struggling with samples that do not clear the tumor boundary

because the results are leading to under or over-segmentation,

like in samples 5 and 6.

TABLE II
SEGMENTATION RESULTS OF PROPOSED RAG4-UNET BASED ON

FIGSHARE DATASET

Sr. Dice Jaccard

Loss

IoU Sr. Dice Jaccard

Loss

IoU

1 0.906 0.171 0.828 2 0.931 0.127 0.872

3 0.943 0.106 0.893 4 0.948 0.097 0.902

5 0.649 0.519 0.481 6 0.782 0.357 0.642

7 0.971 0.055 0.944 8 0.945 0.10 0.896

9 0.950 0.094 0.905 10 0.957 0.081 0.918

11 0.960 0.076 0.923 12 0.971 0.054 0.945

13 0.929 0.131 0.868 14 0.970 0.056 0.943

Overall Performance

Dice Dice
Loss

Preci-
sion

Sensi-
tivity

Specificity

0.9137 0.0863 0.9474 0.9623 0.9846

Fig. 6 presents a visual comparison of the original ground

truth and predicted ground truth with the overlap maps for

further investigation of the above samples. In overlapping

maps, the green region indicates the original mask, the red

region demonstrates the predicted mask, and the yellow region

indicates the perfect match between the predicted and original

masks. In addition, in the last column of Fig. 6, the attention

maps are generated by the proposed model to further evaluate

the transparency. The generated attention maps highlighted

the focus of the RAG4-Unet during the segmentation process.

These maps show the areas of the segmentation process where

the model concentrates. The tumor locations are prominently

highlighted in the attention maps, signifying that the model ef-

fectively suppresses background noise and prioritizes relevant

areas. For samples 5 and 6, as shown in Fig. 6, the model

generated a weaker or scattered focus, which indicated low

performance. For the overall performance, generating attention

maps are a suitable instrument for interpreting the decision-

making process of the model.

D. Results of Yolo11 model

In this section, the Yolo11 model is implemented for the

detection of tumor region from the brain MRI and the metrics

are presented in Table III. The Yolo11 model achieved 89.6%

boundary box precision, demonstrates that the model has high

rate of correct detections with the less false positive. While,

the recall box is 87.4% indicates that the model has quite

number of missed detections and the mAP50 and mAP50-

95 are 86.4% and 81.76% respectively. The inference time is

also measure for the Yolo11 which is 1.3 (sec), reveals that the

model is fast and responsive. The fitness score which is 0.7443

exposes the balance among the accuracy and computational

cost. The overall pre and post processing of Yolo11 is 9.5

and 18.6265 (sec) respectively, reflecting the computation

strength to arranged the brain MRI for detection. Table III

also presents the speed, preprocessing, inference time, and

confidence of the few individual cases. The each individual

case the preprocessing time is lies between the 7.8 to 11.3

(sec) and the 1.3 (sec) is need for all the most cases. Few

of samples such as 1,4,5, and 14 have high confidence scores

which is 0.88, 0.96, 0.91, and 0.90, respectively, highlighting

the effective predictions with tumor localization while the

sample 3 achieved the confidence score of 0.00 which indicates

the complete failure of detection of tumor region. Similarly, the

samples that have overlapping visual features tend to results

in low confidence score.

Fig. 6 shows visual comparison results between the Yolo11

detection and proposed RAG4-Unet model. In this figure,

Yolo11 model fails to align with the tumor boundaries, ev-

idently, clearly visual in samples such as 5,6,and 9 and in

some samples the boundary boxes has missed of the tumor

and include non-tumor regions, indicating that the model faces

the challenges when tumor has complex and irregular shape. In

contrast, the proposed RAG4-Unet segmentation maps indicat-

ing the higher boundary alignment. The segmented region by

the RAG4-Unet model are more closely to the original ground

truth. In addition, the proposed model provides a detailed

representation of tumor boundaries that Yolo11 boundary

boxes cannot match and the Yolo11 is unable in detecting and

localizing the tumor regions with the high precision such as

in sample 3 and 10, the Yolo11 model missed and incorrectly

detect the tumor region.
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Fig. 6. Segmentation visualizations of predicted mask, overlapping maps, attention maps, and yolo 11 detection for analyzing the RAG4-Unet

TABLE III
DETECTION RESULTS OF YOLO11 MODEL ON FIGSHARE DATASET

Sr. Speed (ms) Preprocess

(ms)

Inference

(ms)

Confidence

(%)

1 2.4 7.8 1.2 0.88

2 2.5 8.7 1.3 0.47

3 2.7 10.4 0.6 0.00

4 2.5 9.8 1.5 0.96

5 2.9 10.6 1.3 0.91

6 2.6 8.9 1.4 0.42

7 2.6 9.8 1.3 0.64

8 2.7 8.2 1.2 0.60

9 2.7 9.5 1.3 0.30

10 2.6 10.0 1.4 0.41

11 2.7 10.7 1.3 0.80

12 2.7 9.5 1.3 0.78

13 2.6 11.3 1.3 0.77

14 2.5 9.3 1.4 0.90

Overall Performance

Precision(B) Recall(B) mAP50(B) mAP50-95(B)

0.896 0.876 0.864 0.8176

Preprocessing Inference Fitness Post process

0.494 4.260 0.7443 18.6265

E. Comparison with SOTA

The comprehensive comparison has been conducted be-

tween the proposed and state-of-the-art methods, as shown

in Table IV. Authors in [11] employed U-net architecture

for the segmentation and conducted experiments on Figshare

dataset. They achieved 88.1% of accuracy. In [14], the authors

proposed customized CNN for the classification of tumor types

using the Figshare dataset and they achieved 88% accuracy.

Authors in [15] implemented ResNet50 model using deep

transfer learning method on private dataset and they gained

90% of accuracy. In [16], the authors employed semi deep

learning framework based on customized Unet and histogram

features. The performed experiments on BITE dataset and they

achieved 91%. However, our proposed methods achieved the

highest accuracy of 91.74% using the swin transformer and

91.37% Dice score using proposed RAG4-Unet in segmenta-

tion task.

TABLE IV
COMPREHENSIVE COMPARISON BETWEEN THE PROPOSED FRAMEWORK

AND STATE-OF-THE-ART METHOD

Ref Year Dataset Methodology Accuracy

Ahsan et al. [11] 2024 Figshare Unet architecture 88.1%

Asiri et al. [14] 2024 Figshare Customized CNN 88%

Rajput et al. [15] 2024 Private ResNet50 90%

Shiny et al. [16] 2024 BITE Semi Deep learning 91%

Proposed Work Figshare Swin Transformer 91.74%

Figshare RAG4-Unet 91.37%

IV. STATISTICAL ASSESSMENT

In order to fully assess the consistency and reliability of

the proposed RAG4-Unet model, we utilized Z-score method

of the Dice similarity produced from the 14 test samples.

the z-score for the each dice score is calculated using the

equation 38.

∂z =
di − µ

σ
(30)
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where di represents the Dice score of each sample, µ

denotes the mean across all samples, and σ is the standard

deviation. The value of the standard deviation is 0.0853 and

the mean is 0.9216.

All samples (12 out of 14) showed Z-scores that fell within

-1.0 and +1.0 which means that the most of the Dice values

are close to the mean and demonstrate consistent segmentation

performance across the samples in the test data. Sample 5 with

a Dice score of 0.649 produced a Z-score of -3.20 indicating

it was a significant outlier case, as shown in Figure 7. This

Z-score indicated a material drop in performance relatively

speaking for that one case, which could have been due to noise,

complicated tumor morphology. Sample 6 had a moderately

low Z-score of -1.635 which indicates that it did perform

below the mean relative to the remaining samples. Sample

7, Sample 12 and Sample 14 had Z-scores that were above

+0.5, indicating those samples performed above and beyond

the average segmentation performance.

Fig. 7. Z-score Analysis of Dice Coefficients

V. CONCLUSION

In this work, we proposed a novel RAG4-Unet architecture

for the segmentation task integrated with swin transformer and

Yolo11 for the classification and detection task. The proposed

RAG4-Unet architecture addresses the challenges of irregular

shapes of boundaries and intersecting visual features of tumors

by employing the residual attention gated mechanism. The

proposed model achieved 91.73% of Dice coefficient, 94.74%

of precision, 96.23% of sensitivity, and 98.46% specificity

and swin transformer achieves 91.74% of accuracy, 91.64% of

precision, 91.73% of recall, 91.52% of f1-score, 98.33 AUC,

86.91 kappa index, and 97.22% of confidence index with 2.306

(sec) inference time. The Yolo11 model achieves a boundary

precision o 86.6%. The limitation of the proposed work is the

proposed model goes under segmentation and low Dice when

tumor size are small and Yolo11 lead to inaccurate boundary

boxes when the tumor are complex.

In future work, we will focus on addressing these limitations

using more diverse datasets and we will further explore and

refine the attention mechanism to improve the tumor boundary

delineation.
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