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Abstract—We propose a novel U-net architecture, RAG*-Unet,
based on residual attention gated for brain tumor segmentation,
Swin transformer for classification task, and Yolol1 for tumor
detection. For the experiments, the Figshare dataset is employed
and the proposed architecture achieved 91.37% Dice for tu-
mor segmentation task, and Swin transformer achieved 91.74%
classification accuracy. The Yolol1l gained 89.6% of detection
precision. Comparative evaluation with the SOTA techniques
reveals that the proposed architecture outperformed the existing
methods and Yololl. The proposed architecture improved the
tumor boundary detection, making it a promising solution for
brain tumor recognition and segmentation.

Index Terms—Tumor Segmentation, Residual Attention Gated,
Unet, Yolol1, Attention Maps.

I. INTRODUCTION

RAIN tumors are a major health challenge, characterized

by abnormal cell growth in the brain, which can affect

its vital functions [1]. These tumors, from benign to malig-
nant, are often associated with persistent headaches, seizures,
cognitive impairments, and neurological diseases and have a
negative impact on the quality of life of patients [2]. Manual
diagnostic methods such as visual inspection of histological
slides and radiological imaging have traditionally been used,
but they take time, are subjective, and can cause human
error [3]. Radiologists are imaging modalities more frequently
because they tend to be more accurate and put patients at far
lower risk. Medical imaging data can be recorded using a vari-
ety of techniques, such as tomography [4], magnetic resonance
imaging (MRI) [5], radiography [6], and echocardiography [7].
The introduction of artificial intelligence (AI) has trans-
formed the detection of brain tumors through automation
and improved diagnostic accuracy [8]. Machine Learning
ML) approaches depend on methods for gathering features,
selecting features, and classification [9]. Deep Learning (DL)
models learn by extracting features from images. Particularly,
Convolutional Neural Networks (CNNs) are widely used in
medical imaging analysis and show vital achievements in
the identification of brain tumors, enabling advances in clas-
sification and segmentation. Several studies have proposed
innovative methods for the segmentation and classification of
brain tumors from MRI images. Zhang et al. [10] introduced
a modified U-net method with an attention mechanism for
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improving segmentation accuracy. Their approach focused on
addressing limitations of traditional U-net models, such as
difficulties in handling small tumor regions and blurry tumor
boundaries. By incorporating multi-scale feature fusion and
attention mechanisms, their method demonstrated enhanced
efficiency and achieved Dice coefficients of 0.876, 0.868, and
0.814 for tumor subregions.

Ahsan et al. [11] compared object detection algorithms
(YOLOVS, Faster R-CNN, SSD) for brain tumor. They used
Figshare dataset and paired YOLOv5 with 2D U-Net for
segmentation. Yolov5 gained the highest mAP of 89.5%, and
Yolov5+2D U-Net achieved 88.1% DSC. However, the dual-
model framework increased learning complexity.

Arumaiththurai et al. [12] proposed two methods for clas-
sifying brain tumors using ML and DL algorithms. The first
method used decision trees and SVM, while the second used
pre-trained VGG19 and ResNetl52 models. Figshare brain
tumor dataset assessed the effectiveness of these approaches.
The CNN-based method performed better in classification and
attained an accuracy rate of 94.67%.

Alyami et al. [13] employed AlexNet and VGG19 models
for feature extraction and the slap swarm algorithm for feature
selection. They used Kaggle brain tumor dataset and achieved
an accuracy of 99.1% with a cubic SVM using 4111 best
selected features out of 8192.

Asiri et al. [14] introduced a customized CNN model for
classification brain tumor, focusing on hyperparameter tuning
of kernel size, strides, activation, and learning rates. The model
was evaluated on two MRI datasets: a four-class dataset with
7,023 images and a binary dataset with 253 images. This
method achieved 88% accuracy.

These studies demonstrate the growing use of deep learning
models, particularly U-net, transfer learning, and attention
mechanisms, to enhance the accuracy and efficiency of brain
tumor segmentation and classification. The incorporation of
explainable Al such as LIME, attention maps, also adds a
layer of transparency, which is crucial for the deployment of
these models in clinical settings.

However, challenges such as variability in growth patterns,
textures, and irregularity in tumors across patients, and dif-
ferent tumors have overlapping visual features and irregular
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boundaries, especially when the tumors are in early stages.
Addressing these challenges remains a critical focus of ongo-
ing research on brain tumor analysis.

To address these challenges, we introduce an innovative
architecture, RAG*-Unet, for the segmentation process, and
this framework incorporates Swin transformer and Yolo11 for
precision detection of the tumor region. The key contributions
of this work is summarized as follows:

« We introduce a novel Residual Attention Gated (RAG)
module to focus on significant spatial and contextual
features to enhance detection of brain tumor boundaries.

e We employ a Swin Transformer to leverage shifting
window sizes, utilizing its attention mechanism to learn
features hierarchically.

o We integrate YOLO11 for detection of growth regions in
brain tumors, enhancing accuracy of tumor detection.

II. METHODOLOGY
A. Data Collection and Augmentation

The FigShare Brain tumor dataset is utilized for experi-
ments. The dataset is available at https://Figshare.com/articles/
dataset/brain_tumor_dataset/1512427. This dataset includes
233 patients with three types of tumors: glioma, meningioma,
and pituitary tumor. The glioma category contains 1426 slices,
meningioma has 708 slices, and the pituitary tumor has 930
slices. Each image has a dimension of 512 x 512 with a
depth resolution of 96 dpi. The dataset is imbalanced and
that there were not enough samples for the efficient learning
of the deep learning model. Therefore, we performed an
augmentation process to increase the diversity in the dataset.
For the augmentation process, four basic transformations are
utilized: horizontal flip, rotation by 10°, vertical flip, and
solarization. After augmentation process, the samples in each
class are 4120. The augmentation process is visually presented
in Fig. 1.

T1:Horizontal Flip  T2: Rotation 10

T3: Vertical Flip T4: Solarize (threshold=192.0, p=0.5)

Fig. 1. Sample of augmentation operation on brain tumor dataset.

B. Overview of Swin Transformer

Swin Transformer is an enhanced version of the transformer
that boosts computational effectiveness and capacity for high-
resolution images. Similar to conventional CNNs, the Swin
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Transformer gradually reduces the image size by introducing
a hierarchical structure that reflects images at various sizes.
It limits attention to small windows and shifts these windows
at every level. The input RGB image is separated into non-
overlapping patches using a patch-splitting module like ViT.
Each patch is handled as a ”token” and its feature is configured
as a concatenation of raw pixel RGB values. After that, many
Swin Transformer blocks are applied to these patch tokens.
a) Swin Transformer Stages:

The Swin Transformer block, known as ”Stage 1,” maintains
a token count of %h X % when used with linear embedding.
Hierarchical representation is achieved by reducing the number
of tokens using a patch merging technique as the depth of
the neural network grows. The initial patch merging layer
concatenates the features of neighboring 2 x 2 patches and
then applies a linear layer to the 4C-dimensional features
produced. This procedure reduces the token count by a factor
of 2 x 2 = 4, while changing the output dimension to 2C.
Swin Transformer blocks are added to transform features while
keeping a resolution of % X %ﬂ. Stage 2 begins with patch
merging and feature transition. The procedure is performed
twice, resulting in “Stage 3” and “Stage 4”, with output
resolutions of ‘f—’é X %’ and % X % correspondingly. The four
stages work together to provide a hierarchical representation
with feature map resolutions equivalent to those of typical
CNNs. Swin Transformer replaces multi-head self-attention
(MSA) module in a transformer block with a module based on
the shifted window, while the other layers remain unchanged.
The Swin Transformer block consists of a shifted window-
based MSA module, a 2-layer MLP with GELU activation in
between. The layer normalization is placed before each MSA
and MLP module, followed by a residual connection.

b) Hierarchical Feature Learning:

The self-attention within localized windows enables effec-
tive modeling. The windows are positioned such that they do
not overlap and divide the image equally. The computational
complexity of a global MSA module and a window-based one,
based on an image of ¢y, X ¢, patches, assuming each window
has k x k patches:

Q(MSA) = 4¢h¢w02 + 2(¢h¢w)20 (1)
QM SA)y = 4610w C? + 2k ¢, C 2)

The computation of the Swin Transformer has linear complex-
ity when fixed, but the computational cost of traditional ViT
increases quadratically with the number of patches. Although
the W-MSA of the Swin Transformer decreases the compu-
tational cost from quadratic to linear, its modeling capability
may be limited by the absence of links and communication
between many windows. To overcome this restriction, the Swin
Transformer adds a shifted window divider that makes it easier
for nearby non-overlapping windows to share information.
In two successive Swin Transformer blocks, this method
alternates between using W-MSA and a modified SW-MSA.
By connecting adjacent non-overlapping windows, the shifted
window partitioning greatly expands the receptive field. After
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employing the shifted window divider, the computation within
two consecutive Swin Transformers is followed as:

B’ = (MSA), (LN(®*1)) + @1 3)
3’ = MLP(LN(®")) + &° 4)
PP+ = (MSA) . (LN(D)) 4 @ (5)
U+ = MLP(LN(®"+1)) + ¢b+! (6)

Where (MSA), and (MSA)s, represent window-based
multi-head self-attention and shifted window divider, respec-
tively. ®” and ®° denote resultant features of the (MSA)q,
and MLP module for block b.

Swin Transformer introduces the relative position biases
for every head during the similarity calculation, which is
formulated as:

QK"
Vd

Where @, K,V are the query, key, and value vectors, and d
denotes the dimension of @, K,V and ) is the bias vector.
The motivation behind choosing the Swin Transformer for
brain tumor analysis is its ability to process high-resolution
images and its window-based attention mechanism, which can
learn fine-grained details about the tumor region, such as tiny
tumor boundaries and growth patterns in the local context.

Att(Q, K, V) = Soft < + z/;b> 1% )

C. Proposed RAG*-Unet Architecture

U-Net is a deep learning architecture proposed for image
segmentation. It consists of three steps: encoder, bridge, and
decoder. In this work, we proposed a Residual Attention-Gated
U-Net (RAG*-Unet) for the segmentation of tumors from brain
MRI scans. RAG*-Unet consists of four residual encoders, one
bridge, and four residual decoders. All the residual encoders
are connected to the attention gate to generate the attention
maps, and the attention gates are concatenated with the de-
coders. The RAG*-Unet accepts the input of size 256 x 256 x 3.

a) Encoder Phase:

The first encoder consists of one residual block, max-
pooling with stride 2, and one dropout layer. The dropout
factor is 0.1. The residual block contains two convolutional
layers with a 3 x 3 filter size, 64 filters, and a stride of 1. The
residual encoder is desribed as follows:

01 = 0y(I) ®)
y = (dn) ©)
By = Do(0Y) (10)
3y = (02) (1
D3 = 03(Y) (12)
05 = 13(0s) (13)

Oaip = OF + 0 (14)
OreLu = A(Ouip) (15)

(16)
an

aE]El = EE‘Mpool(aReLUa s = 2)
8EI = Eldrop(aﬂfh f = 01)

Where the ). represents the convolutional operation, v is the
batch normalization, A represents the ReLU activation, Hyipeol
is max pooling, and Jg represents the dropout layer. The
second and third encoders also consist of one residual block,
max-pooling with stride 2, and one dropout layer with a 0.1
dropout factor. In the second residual block, the convolutional
layer is configured with a 3x3 filter size, 128 filters, and a
stride 1. In the third residual block, the convolutional operation
is performed by employing a 3x3 kernel size, 256 filters, and
a stride 1. In the last encoder, dropout factor is 0.2, and
convolutional inside the fourth residual block is configured
with a 1x1 kernel size, 512 filters, and a stride 1.
b) Bridge Phase:

The bridge between the encoder and decoder is the deepest
point in the network. The bridge is configured by employing
a residual block with 1024 depth and one dropout layer with
a 0.3 drop factor.

c¢) Decoder Phase:

After the Bridge, the first decoder consists of one transpose
convolutional layer configured with a 2x2 filter size, 512
depth, and 2x2 stride, one attention gate that is applied on the
fourth encoder and transpose layer. The resultant feature map
of attention-gated and transpose layers is further combined
using the concatenation layer. After that, one residual block
and dropout layer with a 0.2 drop factor is employed. The
mathematical representation is:

Oreony = 0T (B, k = 2,5 = 2,¢ch = 512) (18)
Oac = AttGate(Oendd, Oreonv) (19)
con = [H(9ac, Oreony) (20)
a1 = 0(Acon) @1

%, = a1 (Oar) (22)

a2 = 0a2(05) (23)

0y = Va2(0a2) 24)

gz = 0as(05p) (25)

8% = vas(9as) (26)

Okip = Oy + Oy (27)

9% = A9%p) (28)

98 = Barop(95, f = 2) (29)

Where |4 is the concatenation layer, AttGate is the attention
mechanism, and ()7 represents the transpose convolutional
operation. In the second decoder, the transpose convolutional
has a 2x2 filter size, 256 depth, and 2x2 stride, and the
remaining mechanisms are the same. The implementation
phenomena of the third and fourth decoders are the same.
However, the configurations of transpose convolutional and
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Fig. 2. Architecture of Swin Transformer for the classification of brain tumor

dropout layers are updated. The updated configurations are a
2x2 filter size, 128, 64 depth, and 2x2 stride, and the dropout
factor is 0.1, respectively. The architecture of the proposed
RAG*-Unet is presented in Fig. 3.

The proposed model is developed using the TensorFlow
framework and The proposed model has 99.45M parameters
bringing the model size to around 379.37 MB of memory.
33.14M are trainable and 17.66K non-trainable parameters
kept by the optimizer in memory 252.87 MB while training.
The model inference complexity is evaluated with GFLOPS.
The overall computation cost of a single forward pass is
approximately 106.25 GFLOPs.

D. Novelty: Proposed RAG Module

In this work, We designed a novel hybrid feature en-
hancement module based on Residual and Attention gated
mechanism. This module synergistically combines the residual
learning to stabilizes the gradient flow, with attention gating,
which focused on salient regions of the interest within the
brain MRI image.The tumor regions often confused with
healthy tissues. the RAG module addresses this problem by
filtering irrelevant and low importance features while enhanc-
ing the high relevance activations related to tumor boundaries
and cores. It enhances the boundary detail and localization of
tumor objects, because the attention gated mechanism reduces
irrelevant activations that strengthen the task of boundary de-
tail and out-of-distribution activations that strengthens spatial
detail of the tumor region when propagating features and
helping to ensure gradient stability.

The sequence of RAG module begins with a series of convo-
lutions to extract features from the input tensor, with the output
then entering more convolutions and subsequently Attention
Gated module, when performing spatial attention analysis,
attention maps are created using extracted features and a gating
signal is produced from a feature map. The attention maps
are resampled, and modify the original feature map, it allows
the network to learn where to increase and where to decrease
specific spatial regions and a residual connection allows the
network to skip non-linearity,if needed, thus minimizing the
possibility of vanishing gradients strengthening the source of
information and allowing for richer contextual experience for
the network over numerous forward passes. The output of this
module contains local enriched features and global semantic
guiding features useful for precise identification of the tumor
edges. the proposed RAG module is presented in Figure 4

III. RESULTS

A. Experimental Setup

The dataset is divided into training, testing, and validation.
70% data is employed for training, 10% data is employed
for the validation during the training process, and the 20%
data is utilized for the testing process. The hyperparameters
selected for Swin Transformer are batch size, number of
workers, selected optimizer ADAM, learning rate, momentum,
and epochs having values are 8, 4, 0.0004, 0.9, and 250. For
RAG*-Unet the utilized hyperparameters are learning rate is
0.0001, epochs is 100, optimizer is ADAM, batch size is 8,
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Fig. 4. Architecture of Residual Attention Gated mechanism (RAG) module

and early stopping is employed with learning decay is 0.2,
patience is 5, min_Ir is 0.00001. The evaluation metrics are
accuracy, recall, precision, fl-score, Dice, Jaccard loss, and
IoU for the segmentation and classification.

The experiments are conducted on MSI GL75 Leopard
model configured with Core-i7 10 generation 2.59GHz pro-
cessor, 16 GB of RAM, 512GB of SSD storage, and GTX
GeForce 1660ti 6GB graphics card.

B. Results of Swin Transformer

The classification results of Swin Transformer on Figshare
dataset has been presented in Table I. The model achieved
91.74% accuracy, 91.64% precision, 91.73% recall, 91.52%
fl-score, 98.33% AUC, and 86.91% kappa index. The perfor-
mance across the individual classes such as pituitary tumor

gained the highest accuracy of 97.85%, precision of 95.13%,
recall of 97.85%, and fl-score of 96.48% with 2.87 (sec)
inference time. The confusion matrix gives more comprehen-
sive details about the class’s performance, as shown in Fig.
5. Glioma and pituitary tumor have the highest accuracy of
95.79%, and 97.85% respectively, because 205 samples of
glioma and 137 samples of pituitary tumor class are correctly
classified and 9 samples from the glioma and only 3 samples
from the pituitary tumor are misclassified. The meningioma
class has 75.47% of accuracy, 88.88% precision, 75.47%
recall, and 81.63% fl-score. Meningioma tumor suffers from
the considerable misclassification, the 5 samples are incorrect
classified as pituitary tumor and 21 samples are misclassified
as glioma. The overall misclassification rate of the menin-
gioma class is higher than the other two classes. The overall
confidence index of model is quite better which is 97.22%.

TABLE I
RESULTS OF SWIN TRANSFORMER ON FIGSHARE DATASET
Class-wise Accuracy | Precision | Recall F1-score
(%) (%) (%) (%)
Glioma 95.794 90.707 95.794 93.181
Meningioma 75.471 88.888 75471 81.632
Pituitary Tumor | 97.857 95.138 97.857 96.478
Overall Performance
Accuracy (%) Precision | Recall F1-score AUC (%)
(%) (%) (%)
91.74 91.64 91.73 91.52 98.33
Kappa (%) CI Inference Time (sec)
86.91 97.22 2.306

C. Results of proposed RAG*-Unet

The segmentation is implemented using the proposed
RAG*-Unet model. The images and their masks are provided
as input to the proposed model. After training the RAG*-
Unet model, the model is evaluated on the test data. The
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Fig. 5. Confusion matrix of Swin Transformer on Figshare dataset

overall performance and sample-wise results of the proposed
RAG*-Unet are presented in Table II. The proposed model
achieved 91.37% Dice, 94.74% precision, 96.23% sensitivity,
and 98.46% specificity. Some of the testing sample results
are presented in Table II. Most test samples have a high
Dice of 0.90, with consistent IoU and low Jaccard loss.
The model could segment the tumor regions accurately and
clearly distinguish the tumor portion from the surrounding
information, such as samples 1, 2, 3, 4, 7, 8, 9, and 12 have
more than 90% Dice score, 87-94% IoU, due to the clear and
uniform morphology of the tumor region and a few samples,
like 10, 11, 13, and 14, have quite better Dice scores and
IoU with the small size of the tumor. However, the model is
struggling with samples that do not clear the tumor boundary
because the results are leading to under or over-segmentation,
like in samples 5 and 6.

TABLE II
SEGMENTATION RESULTS OF PROPOSED RAG*-UNET BASED ON
FIGSHARE DATASET

Sr. Dice Jaccard | ToU Sr. | Dice | Jaccard| IoU
Loss Loss
1 0.906 | 0.171 0.828 2 0.931 | 0.127 0.872
3 0.943 | 0.106 0.893 4 0.948 | 0.097 0.902
5 0.649 | 0.519 0.481 6 0.782 | 0.357 0.642
7 0.971 0.055 0.944 8 0.945 | 0.10 0.896
9 0.950 | 0.094 0.905 | 10 | 0.957 | 0.081 0918
11 0.960 | 0.076 0923 | 12 | 0971 | 0.054 0.945
13 0.929 | 0.131 0.868 | 14 | 0.970 | 0.056 0.943
Overall Performance
Dice Dice Preci- Sensi- Specificity
Loss sion tivity
0.9137| 0.0863 | 0.9474 | 0.9623 0.9846

Fig. 6 presents a visual comparison of the original ground
truth and predicted ground truth with the overlap maps for
further investigation of the above samples. In overlapping
maps, the green region indicates the original mask, the red
region demonstrates the predicted mask, and the yellow region
indicates the perfect match between the predicted and original
masks. In addition, in the last column of Fig. 6, the attention

POSITION PAPERS OF THE FEDCSIS. KRAKOW, POLAND, 2025

maps are generated by the proposed model to further evaluate
the transparency. The generated attention maps highlighted
the focus of the RAG*-Unet during the segmentation process.
These maps show the areas of the segmentation process where
the model concentrates. The tumor locations are prominently
highlighted in the attention maps, signifying that the model ef-
fectively suppresses background noise and prioritizes relevant
areas. For samples 5 and 6, as shown in Fig. 6, the model
generated a weaker or scattered focus, which indicated low
performance. For the overall performance, generating attention
maps are a suitable instrument for interpreting the decision-
making process of the model.

D. Results of Yolol1 model

In this section, the Yolol1 model is implemented for the
detection of tumor region from the brain MRI and the metrics
are presented in Table III. The Yolo11 model achieved 89.6%
boundary box precision, demonstrates that the model has high
rate of correct detections with the less false positive. While,
the recall box is 87.4% indicates that the model has quite
number of missed detections and the mAP50 and mAP50-
95 are 86.4% and 81.76% respectively. The inference time is
also measure for the Yolol11 which is 1.3 (sec), reveals that the
model is fast and responsive. The fitness score which is 0.7443
exposes the balance among the accuracy and computational
cost. The overall pre and post processing of Yolol1 is 9.5
and 18.6265 (sec) respectively, reflecting the computation
strength to arranged the brain MRI for detection. Table III
also presents the speed, preprocessing, inference time, and
confidence of the few individual cases. The each individual
case the preprocessing time is lies between the 7.8 to 11.3
(sec) and the 1.3 (sec) is need for all the most cases. Few
of samples such as 1,4,5, and 14 have high confidence scores
which is 0.88, 0.96, 0.91, and 0.90, respectively, highlighting
the effective predictions with tumor localization while the
sample 3 achieved the confidence score of 0.00 which indicates
the complete failure of detection of tumor region. Similarly, the
samples that have overlapping visual features tend to results
in low confidence score.

Fig. 6 shows visual comparison results between the Yolo11
detection and proposed RAG*-Unet model. In this figure,
Yolo1l1 model fails to align with the tumor boundaries, ev-
idently, clearly visual in samples such as 5,6,and 9 and in
some samples the boundary boxes has missed of the tumor
and include non-tumor regions, indicating that the model faces
the challenges when tumor has complex and irregular shape. In
contrast, the proposed RAG*-Unet segmentation maps indicat-
ing the higher boundary alignment. The segmented region by
the RAG*-Unet model are more closely to the original ground
truth. In addition, the proposed model provides a detailed
representation of tumor boundaries that Yololl boundary
boxes cannot match and the Yolol1 is unable in detecting and
localizing the tumor regions with the high precision such as
in sample 3 and 10, the Yolol1 model missed and incorrectly
detect the tumor region.
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TABLE III
DETECTION RESULTS OF YOLO11 MODEL ON FIGSHARE DATASET
Sr. Speed (ms) | Preprocess | Inference| Confidence
(ms) (ms) (%)
1 2.4 7.8 1.2 0.88
2 2.5 8.7 1.3 0.47
3 2.7 104 0.6 0.00
4 2.5 9.8 1.5 0.96
5 2.9 10.6 13 0.91
6 2.6 8.9 14 0.42
7 2.6 9.8 13 0.64
8 2.7 8.2 1.2 0.60
9 2.7 9.5 13 0.30
10 2.6 10.0 14 0.41
11 2.7 10.7 1.3 0.80
12 2.7 9.5 1.3 0.78
13 2.6 11.3 1.3 0.77
14 2.5 9.3 14 0.90
Overall Performance
Precision(B) Recall(B) mAP50(B) mAP50-95(B)
0.896 0.876 0.864 0.8176
Preprocessing Inference Fitness Post process
0.494 4.260 0.7443 18.6265

E. Comparison with SOTA

The comprehensive comparison has been conducted be-
tween the proposed and state-of-the-art methods, as shown
in Table IV. Authors in [11] employed U-net architecture
for the segmentation and conducted experiments on Figshare
dataset. They achieved 88.1% of accuracy. In [14], the authors
proposed customized CNN for the classification of tumor types

using the Figshare dataset and they achieved 88% accuracy.
Authors in [15] implemented ResNetS0 model using deep
transfer learning method on private dataset and they gained
90% of accuracy. In [16], the authors employed semi deep
learning framework based on customized Unet and histogram
features. The performed experiments on BITE dataset and they
achieved 91%. However, our proposed methods achieved the
highest accuracy of 91.74% using the swin transformer and
91.37% Dice score using proposed RAG*-Unet in segmenta-
tion task.

TABLE IV
COMPREHENSIVE COMPARISON BETWEEN THE PROPOSED FRAMEWORK
AND STATE-OF-THE-ART METHOD

Ref Year | Dataset Methodology Accuracy
Ahsan et al. [11] 2024 | Figshare Unet architecture 88.1%
Asiri et al. [14] 2024 | Figshare Customized CNN 88%
Rajput et al. [15] | 2024 | Private ResNet50 90%
Shiny et al. [16] 2024 | BITE Semi Deep learning 91%
Proposed Work Figshare | Swin Transformer 91.74%
Figshare | RAG*-Unet 91.37%

IV. STATISTICAL ASSESSMENT

In order to fully assess the consistency and reliability of
the proposed RAG*-Unet model, we utilized Z-score method
of the Dice similarity produced from the 14 test samples.
the z-score for the each dice score is calculated using the
equation 38.

(30)
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where d; represents the Dice score of each sample, u
denotes the mean across all samples, and o is the standard
deviation. The value of the standard deviation is 0.0853 and
the mean is 0.9216.

All samples (12 out of 14) showed Z-scores that fell within
-1.0 and +1.0 which means that the most of the Dice values
are close to the mean and demonstrate consistent segmentation
performance across the samples in the test data. Sample 5 with
a Dice score of 0.649 produced a Z-score of -3.20 indicating
it was a significant outlier case, as shown in Figure 7. This
Z-score indicated a material drop in performance relatively
speaking for that one case, which could have been due to noise,
complicated tumor morphology. Sample 6 had a moderately
low Z-score of -1.635 which indicates that it did perform
below the mean relative to the remaining samples. Sample
7, Sample 12 and Sample 14 had Z-scores that were above
+0.5, indicating those samples performed above and beyond
the average segmentation performance.

Dice Score

—e— Dice Scores

0.7 === Mean

~=- Upper Threshold
~=- Lower Threshold

0 2 4 8 10 12

6
Sample Index
Fig. 7. Z-score Analysis of Dice Coefficients

V. CONCLUSION

In this work, we proposed a novel RAG*-Unet architecture
for the segmentation task integrated with swin transformer and
Yolol1 for the classification and detection task. The proposed
RAG*-Unet architecture addresses the challenges of irregular
shapes of boundaries and intersecting visual features of tumors
by employing the residual attention gated mechanism. The
proposed model achieved 91.73% of Dice coefficient, 94.74%
of precision, 96.23% of sensitivity, and 98.46% specificity
and swin transformer achieves 91.74% of accuracy, 91.64% of
precision, 91.73% of recall, 91.52% of f1-score, 98.33 AUC,
86.91 kappa index, and 97.22% of confidence index with 2.306
(sec) inference time. The Yolol1 model achieves a boundary
precision o 86.6%. The limitation of the proposed work is the
proposed model goes under segmentation and low Dice when
tumor size are small and Yolol1 lead to inaccurate boundary
boxes when the tumor are complex.

In future work, we will focus on addressing these limitations
using more diverse datasets and we will further explore and

POSITION PAPERS OF THE FEDCSIS. KRAKOW, POLAND, 2025

refine the attention mechanism to improve the tumor boundary
delineation.
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