
DBRow: A Density-Based algorithm for
autonomous navigation within crop rows

Peder Ø. Bukaasen, Weria Khaksar
Norwegian University of Life Sciences, Ås, Norway

Email: peder.ormen.bukaasen@nmbu.no; weria.khaksar@nmbu.no

Abstract—This paper introduces DBRow, a density-based al-
gorithm designed to improve autonomous navigation within
crop rows, addressing the growing need for efficient agricul-
tural robotics to boost productivity and tackle labour short-
ages. DBRow integrates Simultaneous Localisation and Mapping
(SLAM) with Density-Based Spatial Clustering of Applications
with Noise (DBSCAN), overcoming the limitations of previous
navigation systems that relied solely on LIDAR data for NMBU’s
FRE participation. Experiments conducted in simulated and
controlled indoor environments evaluated DBRow using A* path
planning algorithm. The results show some weaknesses in the sim-
ulated environment, but it performs well in the controlled indoor
environment. The paper calls for further testing for statistically
significant results and suggests future enhancements, including
LIDAR preprocessing improvements and machine learning inte-
gration, to optimise navigation accuracy and automate tasks like
pesticide application.

Keywords: Robotics, Navigation, Agriculture, Farming,
crop, autonomous

I. INTRODUCTION

A
AGRICULTURAL robotics is a broad field that involves
various robots performing tasks in agricultural environ-

ments, replacing or aiding humans. Such robots are often
divided into self-propelled mobile robots and robotic sensors
or actuators carried by a vehicle [24]. This paper focuses on
the first one, self-propelled mobile robots.

Navigating crop environments seems like a straightforward
task for humans: go in the middle of the row and do not
destroy any plants. Enabling navigation for a mobile robot
requires more work. First, the robot needs to have some
representation of its environment so that it can plan when and
where it should go. The representation of the environment in
this paper is a map created by a SLAM algorithm. To navigate
its environment, the robot needs a planner and a controller
to move the robot; the Robot Operating System 2 (ROS2)
Navigation stack solved this. To autonomously navigate, an
algorithm was needed to set goal points. Here, Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) was
used to extract rows and goal positions were extracted from
these rows.

II. METHODOLOGY

A. DBSCAN

DBSCAN is a clustering algorithm that can extract clusters
of varying sizes, assuming they have roughly the same density.
This algorithm was first proposed in [7]. As the name implies,

DBSCAN uses the densities of points to assign cluster labels.
Density in DBSCAN is defined as the number of points
within a specified radius eps. In the literature, this radius is
also denoted by ϵ. Compared to other clustering algorithms,
one advantage of this algorithm is that it does not require
a number of clusters to find as input. Two other advantages
are that it does not make assumptions about spherical clusters
as k-means clustering does, and it does not partition the
dataset into hierarchies that require some manual cut-off. The
DBSCAN algorithm uses three-point labels: core, border, and
noise points. These points are defined in this way:

• Core points have a minimum number of points (MinPts)
within the radius eps.

• Border points fall within the eps of another core point
but do not satisfy the MinPts within the radius eps.

• Noise points neither satisfy the condition for border nor
core points.

eps

Core points

Border points

Noise

Fig. 1. Shows the different points and the eps variable used in the DBSCAN
algorithm. All the purple points are noise, all the green points are core points,
and all the blue points are border points.

Figure 1 shows how DBSCAN can label these points. The
MinPts in this example is three, and the circle shows the
radius around the green points. One can see that the green
points are labelled as core points since they contain three or
more points within eps. The blue points are labelled border
points since they fall within the radius of the core points. The
purple points are labelled noise since they do not satisfy the
conditions for core or border points. The algorithm can be
simplified to:

1) Label all points into the three different point labels.
2) Create separate clusters for all core points or groups of

core points. Two core points are considered to be in the

Position Papers of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 109–117

DOI: 10.15439/2025F7442
ISSN 2300-5963 ACSIS, Vol. 44

©2025, PTI 109 Thematic Session: AI in Agriculture



same cluster if they fall within the radius eps of each
other.

3) Assign all border points to their respective core points.

Using these simple steps, DBSCAN can detect clusters of any
shape or form as long as they are separated and have similar
densities [19].

B. RANSAC

Random Sample Consensus (RANSAC) is an algorithm for
fitting models to experimental data. Fisher and Bolles proposed
the algorithm in 1981 [8]. The RANSAC algorithm can be
seen as a trial-and-error approach to fitting data to a model
where the dataset is contaminated with noise. RANSAC can
be explained in four easy steps:

1) Sample the number of data points needed to fit the
model.

2) Calculate the model parameters from the collected data
points.

3) Score the model by the number of inlines with a
predefined threshold.

4) Repeat the above steps until the best possible model is
found.

Using these simple steps, RANSAC is able to fit models to
the given data [5].

C. A*

The A* search algorithm was first introduced in 1968 in
[10]. A* is a widely used pathfinding and graph traversal
technique that utilised the strengths of both Dijkstra’s algo-
rithm and Greedy Best-first search. It is designed to efficiently
compute the shortest path from a starting point to a goal
node in a graph, making it particularly useful in robotics
and game development. The algorithm is graph-based, and the
conversion described in the path planning section is necessary
for this algorithm. A* integrates the methodical search of the
Dijkstra algorithm with the heuristic-driven guidance of the
Greedy Best-First search. This guidance is implemented as
two metrics:

• g(n): The exact cost from the start node to the current
node n.

• h(n): The heuristic estimate of the cost from node n to
the goal node.

A* evaluates paths by minimising this function:

f(n) = g(n) + h(n) (1)

This function ensures a balance between the actual cost from
the start and the estimated cost to reach the goal; this leads to
efficient and optimal path planning [17]. The algorithm, when
stripped down to its basics, is quite simple; it uses two sets:
Open and Closed. The Open contains nodes that are candidates
to explore. Initially, the Open set contains only the starting
position. The Closed set contains nodes that have already been
examined and begin empty. Each node contains a pointer to its
parent to help create the optimal path at the end. The algorithm
runs through a main loop that repeatedly selects the best node

n from the Open set, which is the node with the lowest f(n)
score, and examines it. If n is the goal, the process ends;
otherwise, n is moved from the Open set to the Closed set.
Then, the neighbours of n that are already in the closed set are
ignored, and the neighbours in the open set are scheduled to
be examined. If a neighbour is not in the Open or the Closed
set, it is added to the Open set with parent n [16].

D. Hardware

The robot platform used in the simulation is Peik, which
Bård Tollef Pedersen and I built. In Figure 2(a), one can see
an image of Peik without any sensors mounted. The specs of
this robot platform are:

• Weight: 19.56 kg
• Onboard computer: Nvidia Jetson Nano ORIN
• Operating system: Jetpack 6.0
• Steering type: Skid-steer
• Driven motors: 4 x 350W motors, two on each side
• Battery: 36v 4.4Ah
• Footprint (L x W x H): 42 cm x 32 cm x 25 cm
• Max speed: 5.55 m/s
• LIDAR: Ouster OS1-64 (in the simulation)

For testing at the robotics lab, A Turtlebot3 Burger[22] was
used. In Figure 2(b), one can see the Turtlebot3 Burger. The
Turtlebot3 Burger has the following specs:

• Weight: 1 kg
• Onboard computer: Raspberry Pi 4
• Operating system: Ubuntu Server 22.04.5 LTS (64-bit)
• Steering type: Differential drive
• Driven motors: 2 x
• Battery: 11.1v 1800 mAh
• Footprint (L x W x H): 13.8 cm x 17.8 cm x 19.2 cm
• Max speed: 0.22 m/s
• LIDAR: LDS-02
• IMU: Gyroscope 3 Axis, Accelerometer 3 Axis

The simulations of Peik were run on a computer with a
dedicated GPU. The PC used for these simulations had these
specs:

• Processor (CPU): Intel Core I7-8700 6-Core 12-Thread
3.2/4.6 GHz

• Graphics Processing Unit (GPU): Nvidia GeForce GTX
1080

• Memory: 16 GB DDR4 2666 MHz
• Storage: 1000 GB M.2 SSD
• Operating System: Ubuntu 22.04 Jammy Jellyfish

Since the Turtlebot3 only has a Raspberry Pi 4, the code was
run on a PC connected to the Turtlebot3. The computer had
these specs:

• Processor (CPU): Intel Core Ultra 5 125H 14 Core 18
Thread 1.2/4.5 GHz

• Memory: 16 GB LPDDR5X
• Storage: 1000 GB M.2 SSD
• Operating System: Ubuntu 22.04 Jammy Jellyfish

110 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



(a) Peik

(b) Turtlebot3 Burger

Fig. 2. Shows the robots used in this paper, Peik (a) without any sensors
mounted and the Turtlebot3 Burger (b) with the LDS-02 LIDAR.

E. Setting up the simulation environment

Setting up the simulation environment in Gazebo consists of
a few steps: creating a world for the robot to move in, creating
a robot model, and adding a control system and sensors to
the robot. The world used for simulation in this project is
generated with code from this GitHub repository [3]. This code
has several options that change how the created field looks;
these options can change how straight the rows are if there
are holes in the crop rows and the size of the plants. These
values can be specified in a YAML file. This paper uses three
different simulated worlds with the main difference being the
roughness of the terrain.

The robot used in this paper is a simulated version of Peik.
Peik is the robot created for NMBU’s participation in the
Field Robot Event (FRE). A simulated version of this robot
was created using Unified Robot Description Format (URDF)
and Gazebo plugins for sensors and controlling the robot. The
simulated robot was simplified to a box with four wheels.
Utilising Xacro, the URDF files were further simplified with
macros for values used several times, such as the wheel’s

mass or the offset of the different wheels. The base of the
robot was created as a box with tags for the visual, collision
and inertial. The wheels of the robot were connected using
continuous joints, and the wheels also had tags for visual
collision and inertia. Controlling the robot in Gazebo was
done with this plugin libgazebo_ros_diff_drive.so [9]. This
plugin leverages the wheel joints, wheel size, and wheel
separation to facilitate robot control via the /cmd_vel topic.
Additionally, it publishes odometry data to track the robot’s
movement. Simulating the Ouster OS1-64 was done by using
the libgazebo_ros_velodyne_laser.so plugin [23] and changing
the values for horizontal and vertical scans and ranges to match
those of the Ouster OS1-64 [15]. This plugin simulates the
LIDAR in Gazebo and publishes the point cloud to a topic.
In Figure 3, one can see the simulated version of Peik in the
virtual maize environment.

Fig. 3. Shows the robot with a LIDAR sensor in the simulated maize field
environment. Here visualized in Gazebo.

F. LIDAR preprocessing

This part is only used for the simulated robot since the
Turtlebot3 had a 2D lidar and navigated in an indoor envi-
ronment. The simulated lidar is a 3D sensor, and since Nav2
is mainly used for 2D data, this point cloud was projected
into two dimensions. Before it was projected, some points
had been removed. Firstly, the points that fell on the robot’s
chassis needed to be removed. This was accomplished by using
a pcl::CropBox filter from the Point Cloud Library (PCL)
[18]. This was a straightforward process of creating a box
representing the robot, and the filter removed all points inside
the box. The unprocessed point cloud can be seen in Figure
4(a), and the point cloud with the points from the robot filtered
away can be seen in Figure 4(b).

Additionally, the ground plane needed to be filtered out
since it was not used for navigation. The ground plane was
filtered from the point cloud using RANSAC to fit the point
cloud to a plane model, utilising the RANSAC filter from
PCL. In this filter, restrictions were put such that the plane’s
normal must be within an angle threshold of the z-axis. This
filter also had a maximum number of iterations to make sure
that it did not run forever. Removing points was done using
a threshold, and all points that fell within a threshold of the
fitted plane were removed. Trial and error were used to find

PEDER ORMEN BUKAASEN, WERIA KHAKSAR: DBROW: A DENSITY-BASED ALGORITHM FOR AUTONOMOUS NAVIGATION WITHIN CROP ROWS 111



(a) Point cloud

(b) Filtered point cloud

Fig. 4. (a) shows the point cloud from the simulated ouster and (b) shows
the point cloud with the robot footprint filtered.

the best parameters for this algorithm. The point cloud with
the ground removed can be seen in Figure 5(a).

Finally, projecting the 3D point cloud into a laser scan was
done utilising the pointcloud_to_laserscan package [20]. This
package has several options for converting the point cloud
to a laser scan; among these are min_height and max_height,
which are the minimum and maximum heights to sample from
the point cloud. These two parameters were tuned such that
the points that remained in the laser scan mainly consisted of
plant stem points. This laserscan can be seen in Figure 5(b).

1) Cartographer: Cartographer is a project developed by
Google that provides a real-time solution for indoor 2D map-
ping using a sensor-equipped backpack [11]. The algorithm is
also integrated with ROS with the cartographer ROS project.
This implementation also offers real-time SLAM for 2D and
3D environments [4]. The SLAM algorithm used by Cartog-
raphers combines local and global optimisation strategies to
maintain accurate mapping. Both of these approaches aim
to optimise the pose of LIDAR scans [11]. The two differ-
ent optimisation strategies are implemented as two related
subsystems: the local and the global SLAM. Local SLAM
constructs submaps that are locally consistent, accepting that
they may drift over time. It handles immediate data from
sensors to build submaps that are small enough to ensure
local accuracy but large enough to be distinct for effective
loop closure. Global SLAM runs in the background, focusing
on loop closure by scan-matching scans against submaps and

(a) Ground removed point cloud

(b) Laser scan

Fig. 5. (a) shows the point cloud where RANSAC has removed the ground,
and (b) shows the projected laser scan.

incorporating additional sensor data for the most consistent
global map.

2) Nav2: Nav2 is a toolbox for ROS2 that allows au-
tonomous navigation of mobile and surface robots. It is a suc-
cessor to the ROS Navigation Stack and provides packages for
perception, planning, control, localisation, and visualisation.
Nav2 uses behaviour trees to enable autonomous navigation,
which is achieved using several independent modular servers.
A server can be used to localise the robot on the map or plan
a path from point A to point B. These servers communicate
with the behaviour tree using the different ROS2 interfaces:
services, actions and topics [13]. The core of the navigation
problem can be seen as planning and controlling a robot. Four
of the servers in the Nav2 stack provide a robust solution
for planning and control: Planner, Controller, Smoother and
recovery servers [14].

G. Configuring Cartographer and Nav2

Configuring Cartographer is done by creating a *.lua file
with all the parameters needed to launch the Cartographer
package. This file was created by consulting the tuning guide
[2], and the Lua configuration reference documentation [12].

Configuring Nav2 can be quite demanding due to its multi-
ple components that require careful configuration and tuning.
For the initial setup of the planners and controllers, the guide
referenced in [21] was utilised, which outlines when to use
different planners and controllers, as well as their suitability
for various types of robots.

112 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



H. Navigation algorithm

The navigation algorithm can be divided into the in-row
and switch-row algorithms. This subsection explains the two
algorithms and the implementation of them. Both of these
navigation algorithms use the information from the global
costmap to set navigation goals. The data from the laser scan
mainly contains plant stem values, which means that the data
in the global costmap also contains plant stems. The in-row
navigation is best described in some simple steps:

1) Get the robot’s position and costmap data.
2) Cluster the costmap data using DBSCAN.
3) Find the two closest clusters to the robot, then for each

of these clusters, find the furthest points from each other
within its cluster.

4) From these four points, find the two closest pairs.
5) For these two pairs, calculate the mean, which should

be two points in the middle of the crop rows, one in
front of the robot and one behind the robot.

6) Transform the coordinates of these points into the coor-
dinate system of the robot to easily calculate which goal
is behind the robot.

7) Check if one of these goals is in front of the robot.
8) If one of the goals is in front of the robot, navigate to

this goal. If not, the robot is at the end of the row.
9) When the goal is reached, repeat from step 1.

To obtain the map’s position and the robot’s pose, subscribers
were created to track the global cost map from the global cost
map topic and the robot’s pose from the tracked pose topic.
Extracting clusters from the cost map data involved several
steps. First, lethal obstacles, defined as all values greater than
100, were extracted from the cost map. These values were then
converted into a NumPy array.

Using this array, the DBSCAN function from scikit-learn
[6] was applied to cluster the data into crop rows. Next, the
two closest clusters were identified by iterating through all
clusters and calculating the distances between them, retaining
only the two with the smallest distances. Simultaneously, the
two furthest points within each cluster were determined by
employing a nested loop to calculate the maximum distances.
The two points that were furthest apart were saved, along with
the corresponding distance for each cluster.

The goal was defined using the four points that represented
the furthest distances from each other within the two closest
clusters, visualised by the blue points in Figure 6(a). The four
distances between these points were then compared to identify
the two pairs closest to each other. From these pairs, two
potential goal positions were calculated by finding the mean
of the two closest pairs, represented by the green points in
Figure 6(b).

Since the goals were referenced in the map’s coordinate
frame, they were transformed into the robot’s coordinate
system to determine which goals were in front of the robot. In
this transformed frame, the goals behind the robot had negative
values, while those in front had positive values. The goal with
the largest x value was selected. If this goal was too close to

the robot, it was also considered behind the robot. If both goals
were determined to be behind the robot, the process would
terminate, indicating that the robot had reached the end of the
row. To navigate to these goals, Nav2’s simple commander
was used. The algorithm for switching between the rows has

(a) Four furthest points

(b) Two possible goals

Fig. 6. Shows the clustered points, the red points represent the robot’s
position, the blue points represent the further four points in the two closest
clusters, and the green points show the two possible goals. The transparent
points show the different clusters. (a) shows the points used to calculate the
goals, and (b) shows the two possible goals.

the same first two steps as the navigate row algorithm: getting
the robot’s position, map data, and clustering the rows. This
algorithm can be described in these steps:

1) Get the robot’s position and costmap data.
2) Cluster the costmap data using DBSCAN.
3) Find the minimum distance and the closest point in each

of the clusters.
4) Transform the coordinates of these clusters into the

robot’s coordinate frame.
5) If turning left, keep all closest cluster points with a

positive y value; if turning right, keep all closest cluster
points with negative y values.

6) Select the two closest points from these clusters and find
the mean of them, this mean is then the goal point.

7) Navigate to this goal.
The first two steps of the switch row algorithm are the same
as the navigate row algorithm. Therefore, they will not be
explained further. This algorithm was implemented as an

PEDER ORMEN BUKAASEN, WERIA KHAKSAR: DBROW: A DENSITY-BASED ALGORITHM FOR AUTONOMOUS NAVIGATION WITHIN CROP ROWS 113



action server in ROS2 Humble, and it also had a custom action.
The third step of the algorithm was completed by looping

through all the clusters and calculating the closest distance
from each cluster to the robot. The closest point was then
saved together with the distance for each cluster. These points
were then transformed into the coordinate frame of the robot.
This transformation was done to easily separate the clusters to
the left and right of the robot using the y-axis of the robot’s
coordinate frame. The cluster points with positive y values are
to the left of the robot, and all cluster points with negative y
values are to the right of the robot. Depending on the turning
direction, a list of interesting clusters was created, containing
only the cluster points and distances to the left or the right.
From this list, the two closest clusters were selected, and the
goal position was calculated as the mean of the closest points
in these two clusters. These two points can be seen by the
blue points in Figure 7(a), and the goal can be seen in Figure
7(b) by the green point. The heading of this goal was set
to the inverted heading the robot had when standing at the
end of the row, which was inverted by adding 180 degrees to
it. The goal was then sent to the Nav2’s simple commander.
This implementation returned true if it was able to calculate
and navigate to the goal; otherwise, it returned false. These

(a) Closest clusters points

(b) Goal in next row

Fig. 7. Shows the clustered points, the red points represent the robot’s
position, the two closest clusters closest points, and the green points show
the goal position. The transparent points show the different clusters. Figure
(a) shows the two closest, and Figure (b) shows the goal.

two action servers were used to navigate the entire field using

two action clients implemented in one ROS2 node. For this
to work, the number of rows to navigate and the first turning
direction need to be specified. This node starts by initiating
the action clients and the required variables for tracking the
navigation, like row number and initial turning direction. Then,
a goal is sent to the navigation row server. This node then
waits for the node to finish while receiving and printing the
feedback. When the navigate row server finishes, the switch
row server is called. The robot then switches to the next row
and the direction of the switch alternates between switching
to the left and right. The node waited for the execution of this
action server while receiving and monitoring the feedback.
This node alternated between calling the navigate row action
and calling the switch row action until the specified number
of rows were navigated or the navigation failed, and the node
shut down.

I. Experiment setup

The experiments conducted in this paper can be divided into
two types: those conducted in the simulator with virtual maize
plants and those conducted in the robotics lab with Turtlebot3
and thuja plants. Here, five runs in each were completed,
following the design from here [1]. The simulated environment
was created with five plant rows, with approximately 70
centimetres between them. In Figure 8, one can see the layout
of the field used in the simulated run.

Fig. 8. Shows the layout for the simulated maize field.

In Figure 9, one can see the terrain from the simulated
environment.

Fig. 9. Shows the terrain for the simulated maize environment

114 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



The testing environment in the robotics lab at NMBU was
created using thuja plants. These plants were used because
they were the only available plants in the robot lab. This
environment was similar to the even simulated environment
in the sense that they both have a very even ground. In the
testing with the Turtlebot3, the LIDAR preprocessing steps
were skipped since this robot has a 2D LIDAR. Four rows of
plants were created, which meant three rows for the Turtlebot3
to navigate. These rows were approximately 3 meters long and
had 0.7 meters between each row. In Figure 10, a square at the
start of the row is visible. This square was used as a starting
position for the robot to ensure similar conditions for all the
runs.

Fig. 10. Shows the testing environment in the robotics lab at NMBU.

Measuring the performance of the algorithm was done using
parameters similar to those used in the FRE competition.
The performance was measured by the time used to navigate,
the distance travelled, and how many plants were damaged.
Calculating the distance and time was done by creating a node
that subscribed to the position of the robot. This node was
started by using a topic to publish, starting and stopping from
the navigate field node. This node then used the positions over
time to calculate the distance traversed by the robot. Due to
an uncertainty in the position of the robot, a threshold was
used to eliminate noise in the position data. A plant that the
robot touched was not considered damaged; for a plant to be
considered damaged, it had to be lying on the ground or visibly
damaged. Detecting damaged plants was done by observing
the simulation and the Turtlebot3 in the robotics lab.

III. RESULTS AND DISCUSSION

A. Simulated environment

In this subsection, the results from the simulation terrain
runs are presented. In Table I, the results are presented. Here,
the average number of completed rows was 3.0, and the
average number of damaged plants was 2.0. All of the plant
damage occurred in run three. The average distance the robot
managed to travel was 24.08 meters, and the average time was
234.0 seconds.

In Figure 11, the paths taken by the robot using A* are
shown in the red line, and the green points show the plant’s

TABLE I
SHOWS THE RESULTS USING A* IN THE SIMULATED ENVIRONMENT

Run Number Plants damaged Distance [m] Time [s]

1 0.0 30.64 215.0
2 0.0 11.80 216.0
3 10.0 36.30 466.0
4 0.0 30.53 199.0
5 0.0 11.11 74.0

Average 2.0 24.08 234.0

ground truth positions. In run three, ten plants were damaged,
and where the plants were damaged can be seen by the overlap
between the red line and the green plants. Runs two and five
did not complete the field. Runs three and four had some
assistance at the last row. The overlap of the red path and
the green points in Figure 11. In runs two and five, one can
see where the robot failed in the middle of row two. The robots
in these runs were able to navigate 24.08 meters on average,
which is good since the entire field is about 30 meters. This
is promising for using DBSCAN to navigate crop rows. In
the third run, one can see that the robot struggled a lot; this
could be due to the rough terrain, causing the RANSAC not
to be able to fit the plane and remove the ground points. This
would add noise to the input data of the algorithm and could
be the cause of the plant damage in this field, And also, what
caused the robot to fail in the second and fifth runs. The robot
damaged plants can be seen by the overlap of the red line and
the green points in Figure 11. Another possible explanation
for the poor performance in runs two, three and five could be
that the rough terrain makes the point cloud laser scan pick
up leaf points in the middle of the rows due to the robot being
tilted.

B. Turtlebot3

This subsection presents the results from the testing in
the robotics lab using the Turtlebot3 Burger. Table II shows
the results for the A* planner with the Turtlebot3. Here, the
Turtlebot3 managed to complete the three rows in all runs
without damaging any plants. The average distance used was
9.29 meters with an average time of 99.2 seconds.

TABLE II
SHOWS THE RESULTS FOR THE RUNS WITH THE TURTLEBOT

Run Number Plants damaged Distance [m] Time [s]

1 0.0 9.23 95.0
2 0.0 8.72 96.0
3 0.0 9.17 94.0
4 0.0 9.51 95.0
5 0.0 9.82 116.0

Average 0.0 9.29 99.2

In Figure 12, the paths taken by the Turtlebot3 can be seen
for the five runs using A*. The path in red is plotted here on
the map generated by cartographer slam. Here, one can see
that the robot mainly navigated to the middle of the rows and
kept a distance when switching between the rows using A*.
The first row here is the lowest row of plants in Figure 12, and
the last row is the top row. At the beginning of the second row

PEDER ORMEN BUKAASEN, WERIA KHAKSAR: DBROW: A DENSITY-BASED ALGORITHM FOR AUTONOMOUS NAVIGATION WITHIN CROP ROWS 115



Fig. 11. Shows the five runs conducted in the rough terrain with A*. The
green points visualise the ground truth position of the plants, and the red line
visualises the path taken by the robot.

in run two, one can see that the robot navigated a bit closer
to the plants.

The runs with the Turtlebot3 show good promise for this
algorithm. One explanation of this performance could be that
this environment is much simpler than the simulated one. The
Turtlebot3 also did not need the preprocessing steps used in
the simulated environment to remove the ground and extract
stem points, since it used a 2D LIDAR and the ground in this
environment was flat.

For both the Simulated and runs, one could not draw any
definite conclusions since only five runs were conducted.

These runs can only give an indication of the algorithm’s
performance.

Fig. 12. Shows the five runs conducted with the Turtlebot. Here, the path is
plotted in red on the map created by cartographer.

IV. CONCLUSION

To conclude, this paper introduces the DBRow navigation
algorithm for autonomous navigation within crop rows. This
algorithm addresses the limitation of the algorithm used in
NMBU’s last participation in FRE, which relied solely on
LIDAR data. Through experiments conducted across different
terrains and setups, this algorithm shows potential for being
a more robust solution. This algorithm struggled a bit in
the simulated terrain, but performed well in the robotics lab.
A key weakness of these results is the limited number of
experiments that restrict definitive conclusions. This limited
number of experiments highlights the need for more expensive
testing to achieve statistically significant results. The focus of
further work should be on improving the lidar preprocessing
and adding some object detection models for stem detection
could also enhance the navigation algorithm. Conducting
more extensive testing is crucial to validate the preliminary
findings and refine the algorithm for practical deployment in
actual agricultural environments. Additionally, adapting the
navigation task to automate the manual task could enhance
the algorithms’ use case for agricultural operations.

ACKNOWLEDGMENT

This work is a part of the DLT-Farming project funded by
the research council of Norway with the agreement number

116 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



344288.

REFERENCES

[1] Francisco Affonso et al. “CROW: A Self-Supervised
Crop Row Navigation Algorithm for Agricultural
Fields”. en. In: Journal of Intelligent & Robotic Systems

111.1 (Feb. 2025), p. 28. ISSN: 1573-0409. DOI: 10 .
1007/s10846-025-02219-2. URL: https://link.springer.
com / 10 . 1007 / s10846 - 025 - 02219 - 2 (visited on
03/10/2025).

[2] Algorithm walkthrough for tuning — Cartographer ROS

documentation. URL: https://google- cartographer- ros.
readthedocs.io/en/latest/algo_walkthrough.html (visited
on 03/17/2025).

[3] Johannes Barthel et al. Virtual Maize Field. URL: https:
//github.com/FieldRobotEvent/virtual_maize_field.

[4] Cartographer ROS Integration — Cartographer ROS

documentation. URL: https://google- cartographer- ros.
readthedocs.io/en/latest/ (visited on 03/17/2025).

[5] Stanchniss Cyrill. RANSAC – Random Sample Consen-

sus. Photogrammetry & Robotics Lab. University of
Bonn. URL: https://www.ipb.uni-bonn.de/html/teaching/
photo12-2021/2021-pho2-06- ransac.pptx.pdf (visited
on 04/04/2025).

[6] DBSCAN — scikit-learn 1.6.1 documentation. URL:
https : / / scikit - learn . org / stable / modules / generated /
sklearn.cluster.DBSCAN.html (visited on 04/13/2025).

[7] Martin Ester et al. “A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with
Noise”. en. In: (1996). (Visited on 02/17/2025).

[8] Martin A. Fischler and Robert C. Bolles. “Random
sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartogra-
phy”. en. In: Communications of the ACM 24.6 (June
1981), pp. 381–395. ISSN: 0001-0782, 1557-7317. DOI:
10.1145/358669.358692. URL: https://dl.acm.org/doi/
10.1145/358669.358692 (visited on 03/24/2025).

[9] gazebo_ros_pkgs/gazebo_plugins/worlds/gazebo_ros_sk

id_steer_drive_demo.world at ros2 · ros-

simulation/gazebo_ros_pkgs. URL: https : / / github .
com / ros - simulation / gazebo _ ros _ pkgs / blob / ros2 /
gazebo_plugins/worlds/gazebo_ros_skid_steer_drive_
demo.world (visited on 04/09/2025).

[10] Peter Hart, Nils Nilsson, and Bertram Raphael. “A For-
mal Basis for the Heuristic Determination of Minimum
Cost Paths”. In: IEEE Transactions on Systems Science

and Cybernetics 4.2 (1968), pp. 100–107. ISSN: 0536-
1567. DOI: 10 .1109 /TSSC.1968 .300136. URL: http :
/ / ieeexplore . ieee .org /document /4082128/ (visited on
03/31/2025).

[11] Wolfgang Hess et al. “Real-time loop closure in 2D LI-
DAR SLAM”. en. In: 2016 IEEE International Confer-

ence on Robotics and Automation (ICRA). Stockholm,
Sweden: IEEE, May 2016, pp. 1271–1278. ISBN: 978-1-
4673-8026-3. DOI: 10.1109/ICRA.2016.7487258. URL:

http://ieeexplore.ieee.org/document/7487258/ (visited
on 03/17/2025).

[12] Lua configuration reference documentation — Cartog-

rapher ROS documentation. URL: https : / / google -
cartographer-ros.readthedocs.io/en/latest/configuration.
html (visited on 04/09/2025).

[13] Nav2 — Nav2 1.0.0 documentation. URL: https://docs.
nav2.org/ (visited on 02/27/2025).

[14] Navigation Concepts — Nav2 1.0.0 documentation.
URL: https : / / docs . nav2 . org / concepts / index . html #
concepts (visited on 02/27/2025).

[15] OS1: High-Res Mid-Range Lidar Sensor for Automation

& Security | Ouster. URL: https://ouster.com/products/
hardware/os1-lidar-sensor (visited on 04/09/2025).

[16] Patel. Implementation notes. URL: https : / /
theory . stanford . edu / ~amitp / GameProgramming /
ImplementationNotes.html (visited on 04/01/2025).

[17] Patel. Introduction to A*. URL: https://theory.stanford.
edu/~amitp/GameProgramming/AStarComparison.html
(visited on 04/01/2025).

[18] Point Cloud Library (PCL): pcl::CropBox<

pcl::PCLPointCloud2 > Class Reference. URL: https :
//pointclouds.org/documentation/classpcl_1_1_crop_
box_3_01pcl_1_1_p_c_l_point_cloud2_01_4.html
(visited on 04/09/2025).

[19] Sebastian Raschka and Vahid Mirjalili. “Locating re-
gions of high density via DBSCAN”. eng. In: Python

machine learning: machine learning and deep learn-

ing with Python, scikit-learn, and TensorFlow 2. 3rd
ed. Birmingham: Packt Publishing, 2020, pp. 376–383.
ISBN: 978-1-78995-575-0 978-1-78995-829-4.

[20] ros-perception/pointcloud_to_laserscan: Converts a 3D

Point Cloud into a 2D laser scan. URL: https://github.
com/ros-perception/pointcloud_to_laserscan (visited on
04/09/2025).

[21] Setting Up Navigation Plugins — Nav2 1.0.0 docu-

mentation. URL: https: / /docs.nav2.org/setup_guides/
algorithm / select _ algorithm . html # select - algorithm
(visited on 03/05/2025).

[22] TurtleBot3. URL: https : / / emanual . robotis . com / docs /
en / platform / turtlebot3 / features / #features (visited on
04/09/2025).

[23] velodyne_simulator/velodyne_description/urdf/VLP-

16.urdf.xacro at master · lmark1/velodyne_simulator.
URL: https: / /github.com/lmark1/velodyne_simulator/
blob / master / velodyne _ description / urdf / VLP -
16.urdf.xacro (visited on 04/09/2025).

[24] Stavros G. Vougioukas. “Agricultural Robotics”. en. In:
Annual Review of Control, Robotics, and Autonomous

Systems 2.1 (May 2019), pp. 365–392. ISSN: 2573-
5144, 2573-5144. DOI: 10 . 1146 / annurev - control -
053018-023617. URL: https://www.annualreviews.org/
doi/10.1146/annurev-control-053018-023617 (visited
on 04/25/2025).

PEDER ORMEN BUKAASEN, WERIA KHAKSAR: DBROW: A DENSITY-BASED ALGORITHM FOR AUTONOMOUS NAVIGATION WITHIN CROP ROWS 117


