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Abstract—Assessing the conformity of software in measure-
ment instruments is a laborious process and a major bottle-
neck in the process of developing new devices. Large Language
Models have been shown to effectively handle complex tasks and
have the ability to surpass humans with regard to speed and
accuracy. However, integrating them into the technology stack
can bring major security and privacy risks. This position paper
performs a threat modeling in this context. By addressing the
discovered confidentiality risks the paper draws a way for safely
implementing Large Language Models as an essential tool in the

process of conformity assessment.

N the European Union, measurement instruments such
Ias electricity meters, taximeters or automatic weighing
instruments are regulated regarding their specific metrological
properties. In order to be sold on the European market,
these instruments need to pass a conformity assessment that
verifies whether the instrument complies to regulatory re-
quirements. Most modern measurement instruments have a
software component that handles, among other things, the
storage and transmission of measurement data. Thus, this
software is also subject to regulation and therefore requires
a conformity assessment. The assessment involves searching
for relevant information in software documentation provided
by the manufacturer and the decision whether it conforms with
the requirements defined for the measurement instrument. This
process depends on manual labor and is very time consuming.

Large Language Models (LLMs) have been applied to
nearly any field in natural language processing (NLP)—from
text classification, question answering or information retrieval
to named entity recognition. Those models are trained on
enormous data sets with trillions of tokens [1], consisting of
newspaper articles, websites, books, and social media entries.
However, the training data mainly holds publicly available
text [1]. The Physikalisch-Technische Bundesanstalt (PTB)!,
Germany’s national metrology institute, envisions to leverage
its vast amount of textual data to augment existing models with
metrological expertise. Especially, highly contextualized tasks
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such as conformity assessment of software documentation can
benefit from models that are adjusted for the metrological
domain.

In this position paper, we outline a path forward to stream-
line conformity assessment by integrating LLMs into the
assessment pipeline. Through threat modeling, we identify po-
tential risks associated with deploying LL.Ms in risk-sensitive
environments. Our analysis highlights confidentiality and in-
tegrity as the main security objectives in this context. To better
understand the current state of research, we review relevant
literature on information leakage in LLLMs and discuss how it
may help to protect LLM-assisted conformity assessment.

The following section provides an overview of the con-
formity assessment process and the use of NLP methods.
Section III performs threat modeling following the established
PASTA method [2], while Section IV discusses related re-
search. Section V outlines directions for future work, and
Section VI concludes the paper.

II. CONFORMITY ASSESSMENT

Measurement instruments that are used in commercial or
administrative contexts need to deliver reliable, deterministic
measurements. Most users of measurement devices or persons
affected by them are not always able to verify these mea-
surements and therefore rely on trusting that the instruments
function as intended and output correct measurements. Legal
metrology ensures this trust by formulating regulations for
measurement instruments in those contexts. These regulation
not only dictate the hardware but also the software side of
these devices. The EU Directive 2014/32/EU [3], better known
as Measurement Instruments Directive (MID), harmonizes the
national regulations and enables manufactures of measurement
instruments to produce for the entire market of the European
Union. In order to receive a MID approval, manufacturers need
to prove that their product conforms with the requirement
of the MID. In practice, this is achieved by providing a
Notified Body with the product and the appropriate hardware
and software documentation. In Germany, the PTB functions
as such a Notified Body and assesses the hardware’s and
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software’s conformity with the requirements defined in the
MID, whereas for most devices an assessment is only carried
out on document basis.

The software is typically assessed along the lines of the
WELMEC Guide Software “7.2” [4]. The WELMEC Guide
differentiates between different classes of instruments which
determine the specific requirements for the software. Those are
defined in blocks for separation and download of software as
well as for the transmission and storage of measurement data.
Furthermore, each class of measurement instrument has its
own specific requirement, e.g., electricity meters or automatic
weighing instruments. Assessing the software requires a search
for the relevant information in the provided documentation
and the comparison with the requirements in the WELMEC
Guide. The difficulty of searching in the documentation lies
in the diversity of those documents. Each manufacturer uses
their own terminology, document structure, and composition
of different documents. Thus, the assessors need to adapt their
search queries to the manufacturer’s unique language. Due to
its manual nature, this processing step has become a major
bottle-neck in conformity assessment and hinders a fast time
to market.

A. LLMs for conformity assessment

To process the vast amount of documents that are gener-
ated throughout a conformity assessment, PTB developed a
software, which allows to search the provided documentation
in regard to the requirements defined in the WELMEC Guide.
However, it fails to extract most of the information needed
for assessing the software. Therefore, a lot of manual labor
remains. Nevertheless, the approach showed major advantages
to a purely manual procedure and stresses the need for a more
automated approach to conformity assessment.

The task of conformity assessment involves two major fields
of NLP, namely classification and Information Retrieval (IR).
Traditional methods such as tf-idf [5], while being strong base-
lines for classification and IR, they fail when being exposed
to out-of-distribution data. LLMs on the other hand are able
to abstract from their training data since they embed words
or tokens in a semantically clustered vector space. LLMs use
these embeddings and efficiently model word semantics up
to sentences, paragraphs and entire documents. Especially the
transformer architecture [6] has been shown to deliver state-
of-the-art results in various language understanding tasks [7].
Transformers can be trained in parallel on large data sets and
thus have been scaled up in recent years to large language
models with billions of parameters, trained on trillions of
tokens [1], [8]. Due to the huge computational resources
needed to create such models, training a large language model
from scratch for a specific use case or domain is impracticable.
Therefore, the main application of language models shifted
to the paradigm of adjusting pre-trained language models to
a specific task or domain, better known as fine-tuning. This
paradigm gave rise of so-called foundation models that are
trained without a specific task and are later further adjusted.
While some models (e.g., [9], [10]) hide their models behind
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free or paid APIs, other models are published for local use
(e.g., [8]). These models are also known as open weight
models since their weights are freely available for researchers,
developers, and the end user.

The approach of adjusting pre-trained models to down-
stream NLP-tasks has shown impressive results on various
benchmark test sets> and is therefore suitable for the task of
conformity assessment. For the practical usage, we propose a
system that make use of an embedding model that has been
fine-tuned for retrieval of relevant text chunks for a given
query. This is done by fine-tuning the model for document
embeddings, mapping the input text to an n-dimensional
vector. By embedding the document chunks and queries into
this vector space, relevant chunks can be retrieved by a
neighborhood search. The retrieved chunks are then used as
additional context of a generative model, that has been adapted
for the task of conformity assessment. This would enable the
user to query the model with respect to certain documents
asking whether it is in line with the requirements defined
in the WELMEC guide. This method is referred as retrieval-
augmented generation (RAG) [11]. While it is possible to set
up this RAG-pipeline exclusively with pre-trained models, we
assume that those models can benefit from the rich training
data for conformity assessment inside PTB. Not only could the
envisioned system assist the assessors of software, furthermore
it could help manufacturers of measurement instruments com-
piling the documentation and thus reduce the administrative
process even more. Due to the entailed security issues of this
concept, we see the need for a thorough threat analysis even
in this early stage of development.

III. THREAT MODELING

The documentation provided by the manufactures is of
sensitive nature. Not only does it consist of publicly available
documentation such as user manuals, it is rather a full docu-
mentation of the internal function of the measurement device.
From the overall software architecture to fine details such as
start parameter for algorithms — the documentation holds
enough information to rebuild the measurement instrument
and its software from scratch. Due to that sensitive nature
of the documents, confidentiality is of hightest concern when
designing software to assist in conformity assessment.

Threat modeling is a systematic approach to identifying
potential threats, assessing associated risks, and developing
appropriate mitigation strategies. While widely used in soft-
ware development, it applies more broadly to understand-
ing the security and privacy implications of complex sys-
tems. Common threat modeling methods include PASTA [2],
STRIDE [12], and LINDDUN [13], which have different
focuses and follow different approaches. PASTA (Process for
Attack Simulation and Threat Analysis) takes a risk-centric
view, aligning business objectives with technical requirements
to derive risks from threats and known vulnerabilities. STRIDE
identifies threats based on a data flow diagram (DFD) and

Zhttps://paperswithcode.com/area/natural-language- processing
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Fig. 1.

Data flow diagram of the proposed system. Rectangles reference entities, ellipses symbol process, and cylinders represent data bases. The arrow

indicates a flow of data, whereas the direction is indicated by the head. Arrows with heads on either end stand for a bidirectional data flow. The dashed line,

here in blue and red, indicates a trust boundary.

categorizes them as spoofing, tampering, repudiation, informa-
tion disclosure, denial of service, and elevation of privilege.
LINDDUN, in turn, defines privacy-focused threat categories
such as linkability, identifiability, and non-compliance. Risk
assessment methods have also been tailored to measurement
instruments [14], however we will hold on to methods known
by a broader audience. While a threat-centric approach such
as STRIDE might seem suitable for conformity assessment, a
risk-driven method like PASTA is more appropriate due to its
independence from predefined threat categories. LINDDUN
may be well-suited for systems with high privacy require-
ments; however, practical experience shows that it can become
overly detailed. In early design stages, systems often lack the
specificity needed for such granular analysis and benefit more
from broader, flexible approaches like PASTA.

In the following, we adopt PASTA, which involves seven
stages: Stage 1 defines the context, including business objec-
tives. Stage 2 outlines the technology stack and system scope.
Stage 3 decomposes the application and identifies its actors.
Stage 4 focuses on threat identification, which is linked to
known vulnerabilities in Stage 5. Stage 6 simulates potential
attacks, and Stage 7 maps the findings back to the original
business objectives defined in the initial stage.

Context (Stage 1): The main purpose of the proposed
application is to assist the software tester, while assessing
the documentation provided by the manufacturer. Secondly,
it should help the manufacturer of measurement instruments
with compiling the appropriate software documentation needed
for the conformity assessment. These documents can hold
sensible information such as start parameters, technological
innovations or novel solutions to known problems. They might
also include typically public information such as User Manuals
but since the conformity assessment is done prior to the market
launch manufacturer have the interest to keep this information
confidential from their competitors. Thus, the documentation
documentation can not be made accessible to any 3rd-Party.
Furthermore, the regulatory environment of conformity assess-

ment makes it necessary to store these documents up two
10 years. Since the software testers should benefit from the
assistant system during their everyday work, the system needs
to be designed for high availability.

Technology Stack (Stage 2): The main component of
the system is a GPU-Cluster running a free and open-source
operating system. Due to the current dependence of the CUDA
library? while developing LLMs the cluster is equipped with
NVIDIA GPUs and thus runs proprietary drivers. The LLMs
are pre-trained by 3rd parties such as Meta (Llama), Google
(Gemma) or Mistral (Mistral). Usually these bigger models
are published as "open-weight"-models, meaning the training
algorithm and data is kept secret. Smaller models might
be published as "open-source”. Most of the models (big or
small) are obtained via Huggingface* — a platform to publish
machine learning models. It also develops a python library for
developing and running models that will most likely be used
for fine-tuning the models. Two commonly known libraries
to work with language models are Ollama’ and LangChain®,
whereas the former focuses on efficiently running the models,
the latter offers an abstraction layer to build applications
around language models. Ollama can be run in a docker
container or manually installed whereas LangChain can be
drawn into the project via the python package manager pip.

Application decomposition (Stage 3): The data flow di-
agram in Fig. 1 shows an abstracted model of the proposed
system. The manufacturer provides the documentation to the
conformity assessment either via E-Mail, with a link for
download or uploads it to a file-sharing system (1). Those
documents are usually in the PDF file format but can also
consist of text files holding html or in the doc(x) file format.
Those documents are stored (2) in a network drive where the
software testers can access it. The data can also be accessed

3https://docs.nvidia.com/cuda/
“https://huggingface.co/
Shttps://ollama.com/
Ohttps://www.langchain.com/

63



64

(3) by the process that creates the training data for the model.
Creating the training data involves transforming the PDF and
docx files into a machine-readable format such as Markdown.
This can be done by using python libraries such as Nougat’,
Marker® or even using a LLM for layout detection. Most
importantly the overall structure of the documents need to be
kept since the software tester tend to reference the sections
in their reports. Hence, the valuable information lies in the
connection of assessment report (3a) and documentation (3b).
The creation of the training data (4) and its storage are
happening on the GPU-cluster (red dashed line), since some
pre-processing needs access to the GPUs. The training data is
then used to fine-tune existing LLMs for the task of conformity
assessment (5). The trained model will be deployed on the
same cluster for production (6). The assistant system can then
query the model for document embeddings and search or for
question-answering. A worker module ingest those queries
(7) and feeds them into the model (8) in order to efficiently
schedule the tasks. Manufactures or other Notified Bodies have
also the possibility to access the model through a dedicated
application (9) where they can check their documentation (10)
or query the model (11). That way manufacturers are able
to compile their documentation prior to handing it in for
conformity assessment. Note that the entities Manufacturer
and Notified Body are outside of the PTB trust zone (blue
dashed line), whereas the testing persons of the conformity
assessment work inside that trust zone.

Threat analysis (Stage 4): There are multiple threats
that could affect the application or even the whole service
of conformity assessment. Those can be found in Table I.
First, there is the danger of data loss. Either the documentation
provided by the manufactures or the work done by the software
testers could be irretrievably lost (1). That would be costly
in financial and reputational terms but would not threat the
whole existing application. The same should hold for the
data connected to the application used by the manufacturers.
The training data (2) itself could also be lost, but since their
creation is an automatic process it could be restored by running
the process again. There are two major threats: corrupted
integrity of data (3), meaning an undetected change of data,
intended or unintended. This could affect the correctness of the
result of the conformity assessment and is a major threat to
the whole service. Connected in some way is the threat that
the model itself outputs wrong results (4). This would lead
to lower accuracy and effectiveness in the assistant system as
well as in the manufacturer facing application. The other threat
is violating the confidentiality of the data provided by the
manufacturer (5), e.g., sharing the data with an unauthorized
third party, as this information could be used to copy products
from a competing manufacturer.

Vulnerability analysis (Stage 5): ldentifying and ad-
dressing system vulnerabilities is essential to gain a clear
understanding of the risks. In order to gather helpful insights

7https://github.com/facebookresearch/nougat
8https://github.com/VikParuchuri/marker
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TABLE I
THREAT OVERVIEW

Threat Description
1 Data loss Deletion of data needed for conformity
assessment
2 Training data loss Deletion of data used for training the
LLM

3 Corrupted data integrity ~ Undetected change of data needed for
conformity assessment and training
Factually incorrect output of the LLM
that can lead to wrong decisions in
conformity assessment

Leakage of information from confor-
mity assessment to an unauthorized
third party

4 Wrong model output

5  Information leakage

from the vulnerability analysis, we restrict it to those that
directly map to the threats identified in the previous stage.
Since the software libraries used in the system are mainly from
open-source providers, the system itself is vulnerable to coding
and configuration flaws introduces by these libraries. Further-
more, the processes in the system could gain privilege on the
server due to wrong configuration or coding imperfections.
Additionally, authentication for the manufacturers could be
imperfect, such that it would allow a manufacturer to inspect
data that does not belong to its account.

However, the usage of LLMs introduces vulnerabilities to
the system that are inherent to machine learning models.
When used to generate text, LLMs are known to suffer from
sometimes misleading or even factual incorrect answers, also
known as hallucination [15]. They might be queried in such a
way that their response is delivering unintended results. This
vulnerability is called prompt injection. But most importantly
to the current use case, multiple research has shown, that
machine learning models are prone to reveal information about
their training data (e.g., [16], [17], [18]).

Attack Modeling (Stage 6): In the scenario of conformity
assessment, the vulnerabilities identified in the previous stage
open up an attack surface for an adversary that intends to
withdraw stored information. This adversary could be a man-
ufacturer that wants to gain information about its competitors
upcoming product. Since this information might be valuable
to the malicious manufacturer, it might allocate appropriate
resources for such an attack or even hire a contractor. The
attacker can use the manufacturer-facing application as an
entry point to run an extraction attack against the model. For
the application, it would seem like queries to the model and
therefore would be undetected. Furthermore, the adversary
can use a so called Membership Inference Attack (MIA)
either to strengthen the extraction attack or to verify that a
certain manufacturer where handing in their documentation
for conformity assessment. In a different attack scenario, a
manufacturer exploit the usage of an LLM to cheat its way
through the conformity assessment. It could hide instructions
for the model asking it to only output positive responses. This
could be achieved by using text in white color against a white
background in the documentation such that a human reviewer
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is unable to see it by only reading the document. Thus, the
malicious instructions would be passed further to the model.

Risk and Impact Analysis (Stage 7): Using a prompt
injection attack in order to pass the conformity assessment
might be viable to some malicious manufacturers but also
leave traces in the system. Note that due to the regulatory
context the documentation used for the conformity assessment
is stored for at least 10 years. Therefore, the risk of being
exposed of cheating might be to high. On the other hand,
attacking the model to gain information about its training data
seems to be a reasonable approach by a manufacturer. The
risk of being exposed is relatively low since the attack itself
leaves no obvious traces. It might also not trivial to prove
that querying the model was an attempt to gain information
about the training data. Nevertheless, every prompt to the
model and its response should be saved in order to monitor
its usage as well as tracking its behavior over time. Therefore,
the threat that confidential data is revealed to a third party is
an existing risk that should be dealt with when using LLMs
in a high risk environment such as in conformity assessment.
Maintaining the integrity of the data is a common practice in
the conformity assessment in PTB. For every file provided by
the manufacture a checksum is calculated and stored. That way
even the smallest changes in files can be detected. Therefore,
we restrict the further examination of threats to confidentiality
of training data in LLMs.

IV. ASSESSING LLM INFORMATION LEAKAGE

While confidentiality and privacy are distinct concepts,
they share common principles. Privacy refers to the rights
of individuals or groups to control access to personal data.
Confidentiality refers to restricting access to and disclosure
of information, including proprietary and personal data—thus
overlapping with privacy goals. As such, research on privacy in
LLMs offers valuable insights into their behavior when trained
on sensitive data, as in the case of conformity assessment.

While it is desired that language models memorize certain
training data such as Wikipedia articles in order to return
factually correct text, this is not the case for other training data.
For example, models trained on clinical notes might reveal
sensitive data about the patients health condition violating the
patients’ privacy ([19], [20]). In addition, research on Google’s
auto-complete system ‘Smart compose’ [21] trained on user
e-mails showed that such a model memorizes long random
numbers, e.g., social security numbers, that can be extracted
by prompting the model [17]. This is not a theoretical threat
as [18] were able to extract Personal Identifiable Information
(PII) such as names, phone numbers and e-mail addresses from
the language model GPT-2 [22].

A. Attack Scenarios

The fact that a machine learning model memorizes parts
of its training data can be exploited by two major attacks.
The most prominent attack is the Membership Inference
Attack (MIA), where an adversary tries to infer whether
some data point was a member of the training data, hence

was used to train the model under attack [16]. While most
of the proposed attacks assume access to the output vector
of the model (grey-box scenario) [19], some attacks also
work on output labels (black-box scenario) [23]. The intuition
behind MIA is, that a model is expected to be more “certain”
predicting the label or token for data it has seen during training
than for unknown data. An adversary can use this information
to train a model that predicts the membership status of a given
data point. To test and train this model the adversary needs
a dataset for which they can be sure that it was part of the
training dataset. For proprietary models, the training dataset is
usually not available, but as [16] have shown a dataset from a
similar distribution is sufficient. Recalling the attack scenario
in the previous section a manufacturer that has access to the
model would know if its data were used, since their approval
is needed when using their data. Furthermore, their dataset
is from a similar distribution if they previously handed in
documentation for the conformity assessment.

The authors of [16] trained so-called shadow models on
that data and then queried with unknown data and data it has
seen while training. This results in a dataset for classification
where a data point consists of the output vector of the shadow
models with a binary label indicating whether that data point
was part of the training dataset. After being trained on this
dataset the attack model is able to predict the membership for a
given data point by using the output of the model under attack.
This reference based approach has been applied to LLMs by
[18] but remains computationally expensive for large models.
Other approaches calculate the model’s loss over the target
sample [24] and extending approaches such as calibrating with
zlib entropy [18], and a neighborhood comparison approach
[25].

Generative models such as GPT have been shown to be
particular vulnerable to attacks that aim to gain PIIs ([18],
[26]). For example, PII reconstruction aims to reconstruct PII
for a given data point. In the case of language models the
adversary queries the model with an incomplete sentence or
masked item for the to be reconstructed PII, for example “John
Doe lives in [MASK], England”. The missing item can be
filled by a masked language model and the resulting sentence
acts as a query to the target model. The perplexity of the
target model is then used to infer whether the sentence has
been seen during training. Perplexity is the measure for a
generative model on how “surprised” by a token the model
is. A variant of PII reconstruction is PII inference where the
adversary wants to infer which item in a set of candidates
was part in the training. As for PII reconstruction, the PII
candidate is inferred by the lowest perplexity. In the scenario
of conformity assessment a adversarial manufacturer could
prompt the model for parameters of a known product from
a competitor. Both of these attacks assume that the adversary
has background knowledge on what PII to extract from the
model. However, [26] showed that it is also possible to extract
PII by simply generating text. The intuition behind this attack
is that the model tends to generate text it has seen during
training. The authors generated thousands of sentences and
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used a named entity recognition algorithm such as flair® or
spaCy'? to find text with PIIs. By cross-checking with the
developers of GPT at OpenAl they found that their method
was able to extract 23% of PII with a precision of 30%.

B. Quantifying LLM Confidentiality

The leakage of sensitive information through language
models is closely tied with memorization of training data
([17], [27], [28]). The intuition behind this observation is
that the model first generalizes over data through the first
epochs of training and then starts to memorize the data in
later epochs. This is due to the fact that it encounters the
same text multiple times and adjusts its weights accordingly.
In its extreme case, memorization leads to overfitting, where
the weights of the model shifted towards the training dataset
unable to generalize from it any more. Overfitting is indicated
by a bigger difference between the evaluation metric for the
training and validation set. While overfitting is seen as a
natural marker for memorization and thus information leakage,
it has been shown that training data does get memorized
without any overfitting of the model ([28], [27]).

Memorization in a model and thus the likelihood to leak its
training data is usually measured by the performance of an
MIA. While it might be tempting to use accuracy as a metric
of performance, it lacks expressiveness when it is applied in
the context of confidentiality. While some data might not be
extracted and thus the false negative rate rises, false positives
directly influence the usability of the attack model by diluting
its positive results [29]. Area Under ROC Curve is a slightly
more informative measure as it takes different classification
thresholds into account. Still, it is an aggregate measure that
fails to give a good sense on whether an attack delivers
successful results with a low false positive rate. The authors
of [29] therefore suggest reporting the true positive rate at
extremely low false positive rates, e.g., at 0.1 %.

Another way of evaluating memorization in a model is
to measure exposure or extractability. In [17], canary text
is inserted into the training data holding a “secret” random
number. To measure how much a specific canary is memorized
by the model they calculate an exposure metric using the
log-perplexity of the sequence. The authors of [17] report a
positive correlation for the number of insertions of a canary
and exposure, hence the degree of memorization. They tested,
how exposure influences the probability of the canary sequence
to be extracted and found that when exposure exceeds a certain
threshold, in their case 30, the probability of extraction quickly
shifts from near O to near 1. This hints that the more a sequence
is memorized by a model, the more likely it is to be extracted,
by accident or by a malicious actor.

For [18], a string is extractable from an language model
(LM) if there exist a prefix or context for which the LM
outputs the string. From that they give a definition of mem-
orization where a string is “k-eidetic memorized” if it is

“https://huggingface.co/flair/ner-english-ontonotes-large
Ohttps://spacy.io
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extractable from the LM and occurs in k examples of the
training data. Hence, if a string is only present in a few
documents and can be extracted, it is much worse that if
a string occurs all over the training data [18]. Measuring
k-eidetic memorization is thus a good method to determine
whether a model is vulnerable to disclose parts of its training
data.

In [27], a slightly different notion of memorization is used
to study the effects of memorization. It defines a string as
memorized if there exist a string s and a prompt p such that
the output of the LM is equal to s when prompted with p.
The authors of [27] found an effect of model size on the
speed of memorization. Smaller models need to encounter
a training example more often that larger models to fully
memorize it. Thus, when training larger models the danger of
memorizing sensitive data increases. In [30] also the length
of the prompt is taken into account. It reports that larger
models generally memorize more of its training data. Not
only in overall quantity but also for the particular string.
Smaller models tend to output only fractions of a training
example or only thematically similar text. In accordance with
[18], it found that repetition of examples in the training data
increases memorization. Furthermore, if a prompt to a model
is longer, then more memorization of the model is discovered.
Interestingly, [30] found that some tokens require more context
to be extracted from the model.

Furthermore, recent work [31] has tried to predict memo-
rization from smaller models to larger ones in order to give
developers a hint, if the model shows unwanted behavior. Even
though it was found that small models might not act as a
forecast for bigger models, this direction of research is still
a challenging path to follow, as different forecasting methods
are still left untouched.

C. Mitigations against Privacy Leaks

Information leaks of language models can be mitigated
at different levels in the development and deployment of
these models. With regard to memorization of PII equivalent
material, sanitation of the training data is practical method.
This can be done by blacklisting sensitive strings and removing
them from the training data. However, [17] notes that this
approach, while being best practice, is far from being perfect
and can still miss sensitive strings. Moreover, [26] show that
while PII scrubbing reduces the extraction rate, it does not
protect against membership inference attacks.

As [30] and [17] have discussed, the number of occurrences
of a specific training examples increase their chance to be
memorized. This observation is in accordance with [26] and
[32]. Intuitively, removal of duplicate training examples seems
as a promising starting point to reduce memorization in a
language model. In [32], the authors showed that by dedu-
plicating the training data, they were able to lower the chance
of a membership inference attack. Furthermore, deduplication
also benefits the model performance itself, when duplicates
are removed between the training and the test set [33].
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In addition to methods that apply in the pre-training stage of
the language model, which should reduce the overall memo-
rization of the model, privacy preserving training methods such
as differentially private stochastic gradient decent (DP-SGD)
[34] can be used. In [17], it is shown that by using DP-SGD,
the exposure of their inserted canaries dropped significantly.
The learning algorithm bases on Differential Privacy (DP) [35]
that gives a strong privacy guarantee to individual training
examples. While in differential private databases the privacy
guarantee is given to individual rows, the situation in huge text
corpora is different. It might make sense to apply differential
privacy on per document level, yet private and sensitive text
might occur across multiple documents. Moreover in the
domain of conformity assessment, a manufacturer might use
the same components across multiple instruments and thus
sensitive information about that component are distributed
over multiple documents. Thus, a carefully defined usage of
differential private learning algorithms is necessary to protect
training data from being leaked. Despite DP-SGD presents
itself as an optimal mitigation against MIAs and extraction
attacks, it is far from being perfect, since it comes with a
utility cost manifesting in increased compute and decrease
performance of the model.

Sensitive information can also be protected in a post-
training stage. Simply filtering out sensitive information during
inference is a naive approach that cannot hold to its promises.
The authors [36] reported that a filter-approach can prevent
generating verbatim text from the training data. However, the
model is still able to produce text holding sensitive information
by avoiding verbatim repetition and generating alternative texts
with synonyms. Applying DP to inference of the model is
another approach of preserving privacy of the training data.
In [37], multiple LMs were fine-tuned with disjoint private
data. During inference all models are queried and if all models
come to a consensus about the predicted token, the generated
token is seen as not holding private data. On the other hand, if
the models disagree the prediction of a public model is mixed
in. While this approach achieves comparable privacy to DP-
SGD, storage and computation increase.

As has been shown above, data curation methods such
as deduplication can significantly reduce memorization of
training data but do not fully prevent a model from leaking
private data. Differential Private Learning on the other hand
can give such a privacy guarantee, but suffers from increased
compute and is prone to ill-defined privacy scopes. It also
comes with a utility cost. Filtering a models output only
prevent certain text from being generated by do not apply for
non-verbatim extraction.

V. OPPORTUNITIES FOR FURTHER RESEARCH

In the following, we outline directions for future research
aimed at assessing and mitigating information leakage risks in
LLMs within the context of conformity assessment.

Building on the attacks outlined in Section IV-A, further
research should focus on evaluating their impact on the
proposed system, particularly for embedding or classification

models, as these are most relevant. In order to evaluate these
attacks, a notion of sensitive strings need to be developed.
Analogously to PII for the privacy domain, extraction attacks
are to be evaluated with regard to how many sensitive strings
can be extracted. Furthermore, gradually weighting informa-
tion leakage can help to grade the severity of a violation of
confidentiality. Additionally, broader forms of extraction need
to be examined. While parts of the training data may contain
secret sequences, it remains unclear whether entire concepts,
such as novel solutions developed by the manufacturer, can be
extracted. In such cases, no suitable evaluation method exists
to quantify the information leakage, as current approaches rely
primarily on string comparison. Semantic string comparison
may offer a promising starting point for assessing whether
entire concepts can be extracted from a model.

Mitigation strategies against information leakage would
benefit from this research, as improved semantic string com-
parison and a notion of sensitive strings could enable effective
data sanitation similar to PII scrubbing and support dedupli-
cation. In the long term, manufacturers, notified bodies, and
conformity assessment could collaboratively define a training
dataset that is safe for model training, with minimal risk of
memorization. While such a data set would be a desirable
solution, its development and coordination are likely to be
time-consuming. In the meantime, creating synthetic data sets
might be a suitable interim solution.

VI. CONCLUSION

In this paper, we have shown that LLMs can be utilized in
conformity assessment of software in measurement devices.
We sketched a system that can benefit software testers, No-
tified Bodies as well as manufacturers. Due to the sensitive
nature of the documents involved in conformity assessment,
we conducted a threat modeling using the established PASTA
framework. The threat modeling yielded a possible threat of
violating confidentiality. A literature review on information
leakage by LLMs showed that LLMs tend to memorize parts of
their training data, which can be extracted via multiple attack
methods. Fortunately, mitigation such as data sanitation and
differential privacy in training exist but come with a certain
utility cost. Nevertheless, the overall advantages of utilizing
LLMs for conformity assessment persist and the path of
integrating them into an assistant system for software testers,
manufacturers, and other notified bodies should be consistently
followed in order to streamline conformity assessment.
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