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Abstract—Remaining Useful Life (RUL) estimation of complex
machinery is critical for optimizing maintenance schedules and
preventing unexpected failures in safety-critical systems. While
Transformer architecture has recently achieved state-of-the-art
performance on RUL benchmarks, their design often relies on
expert tuning or costly Neural Architecture Search (NAS), and
their predictions remain opaque to end users. In this work, we
integrate a Transformer whose hyperparameters were discov-
ered via evolutionary NAS with a gradient-based explainability
method to deliver both high accuracy and transparent, per-
prediction insights. Specifically, we adapt the Gradient Explainer
algorithm to produce global and local importance scores for each
sensor in the C-MAPSS FD001 turbofan dataset. Our analysis
shows that the sensors identified as most influential, such as key
temperature and pressure measurements, match domain-expert
expectations. By illuminating the internal decision process of
a complex, NAS-derived model, this study paves the way for
trustworthy adoption of advanced deep-learning prognostics in
industrial settings.

Index Terms—Remaining Useful Life (RUL), Transformers,
Neural Architecture Search (NAS), Explainable AI (XAI), Gra-
dient Explainer, C-MAPSS, Interpretability.

I. INTRODUCTION

P
ROGNOSTICS and Health Management (PHM) plays a

critical role in modern industrial systems, enabling in-

creased reliability, optimized maintenance, and the prevention

of catastrophic failures in high-value assets such as aircraft

engines and manufacturing equipment [1]. A core component

of PHM is the accurate estimation of Remaining Useful Life

(RUL), the time before a component or system can no longer

perform its intended function.

The rise of deep learning has significantly advanced RUL

prediction. Recurrent Neural Networks (RNNs) [2], and more

recently Transformer-based architectures [3], have demon-

strated strong performance due to their ability to model

complex temporal dependencies in multivariate sensor data.

Building on these advances, Mo Hyunho et al. [4] pro-

posed a Neural Architecture Search (NAS) framework us-

ing evolutionary algorithms to automatically discover optimal

Transformer architectures for RUL prediction. Applied to

the well-established C-MAPSS (Commercial Modular Aero-

Propulsion System Simulation) dataset [6], their NAS-derived

Transformers outperformed manually designed alternatives,

setting a new performance benchmark [4].

Despite these gains, deep-learning complex models often

operate as "black boxes" [7]. Their complex, high-dimensional

structures obscure the reasoning behind predictions.

In safety-critical settings, this lack of interpretability is a

major barrier to adoption, where understanding why a model

predicted a specific RUL is essential for trust, verification, and

regulatory acceptance.

Explainable AI (XAI) seeks to address this issue by pro-

viding human-understandable insights into model behavior.

However, most existing XAI studies focus on standard or

simpler architectures, leaving the interpretability of NAS-

derived Transformers underexplored, especially within the

PHM domain [7], [8].

To our knowledge, no prior work has applied advanced

gradient-based XAI techniques to these automatically discov-

ered architectures in the context of RUL estimation.

This paper addresses that gap by adapting SHAP’s Gradient

Explainer ; a theoretically grounded and computationally ef-

ficient method ; for use with the NAS-optimized Transformer

developed by Mo Hyunho et al. Our goal is to enhance the
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transparency of this state-of-the-art model by generating global

and local feature attributions for RUL predictions on the C-

MAPSS FD001 subset.

Our contributions are threefold:

1) Gradient-based Explanation for NAS-Transformer:

We adapt and apply the Gradient Explainer algorithm to

a NAS-optimized Transformer architecture specifically

designed for RUL prediction.

2) Global and Local Attribution Analysis: We perform

comprehensive explanation analysis, including both

global sensor rankings and per-instance local saliency

maps, on the FD001 subset of C-MAPSS.

3) Actionable Insights for PHM: We extract interpretable,

domain-relevant insights into which sensors and time

points most influence the model’s predictions, enhanc-

ing trust, transparency, and deployability in industrial

contexts.

The rest of this paper is organized as follows:

Section II reviews related work on RUL prediction and

explainable AI. Section III describes the dataset, model

architecture, and the adaptation of the Gradient Explainer.

Section IV presents experimental results, including global and

local explanations. Section V concludes with future research

directions.

II. RELATED WORK

This section reviews literature pertinent to our research,

covering Remaining Useful Life (RUL) prediction with deep

learning, the role of Neural Architecture Search (NAS) in

Prognostics and Health Management (PHM), existing Explain-

able AI (XAI) techniques for complex models, and the specific

challenges and advancements in explaining Transformer and

NAS-optimized architectures.

A. RUL Prediction in PHM

Remaining Useful Life (RUL) refers to the time remaining

before a system fails, expressed as RUL = T − t, where

T is the failure time and t is the current time [1]. RUL

estimation methods are broadly categorized into model-based

and data-driven approaches. Model-based methods rely on

prior physical knowledge, which can be hard to generalize in

practice and may struggle with the complexities of real-world

degradation processes. In contrast, data-driven approaches,

particularly those leveraging deep learning (DL), have gained

prominence due to their ability to learn complex patterns

directly from sensor data and enabling end-to-end modeling,

eliminating the need for manual feature engineering [2].

Early DL applications in RUL prediction included Multi-

Layer Perceptrons (MLPs) and Convolutional Neural Net-

works (CNNs), which showed promise in feature extraction

from time-series data. Recurrent Neural Networks (RNNs),

especially Long Short-Term Memory (LSTM) and Gated

Recurrent Unit (GRU) variants, became popular for their

inherent ability to model temporal dependencies in sequential

sensor readings. However, RNNs can face challenges with

long range dependencies and computational efficiency for long

sequences [9], [10].

B. Transformer-Based Models for Time Series

Transformer architecture, originally introduced for natural

language processing in the famous paper of Vaswani et al.

[3], has emerged as a powerful self-attention mechanism

that allows it to capture global dependencies between input

sequence elements effectively, overcoming some limitations

of RNNs. Consequently, Transformers have been increasingly

adapted for various time-series forecasting tasks, including

RUL prediction, often demonstrating superior performance.

C. Neural Architecture Search (NAS) in Deep Learning

While DL models, including Transformers, offer significant

potential, their performance is highly dependent on their

architecture. Designing optimal architecture manually is a

time-consuming, iterative, and expertise-driven process [4].

Neural Architecture Search (NAS) has emerged as a field that

automates this design process, algorithmically searching for

the best-performing neural network architecture for a given

task and dataset [4].

D. Explainable AI (XAI) for Complex Models

The increasing complexity and performance of DL mod-

els, especially transformer-based models with their attention

characteristics, often come at the cost of interpretability,

leading to their characterization as "black boxes". In safety-

critical applications like PHM, this lack of transparency is

a major concern, as understanding why a model makes a

certain prediction is crucial for trust, debugging, and regulatory

compliance. Explainable AI (XAI) encompasses a range of

techniques aimed at making the decisions of AI systems more

understandable to humans [11].

Common XAI methods can be broadly categorized.

Perturbation-based methods, like LIME (Local Interpretable

Model-agnostic Explanations), explain individual predictions

by learning a simpler, interpretable model on local perturba-

tions of the input [11].

Surrogate models aim to approximate the complex model

with a more transparent one. Gradient-based methods, such

as Integrated Gradients and SmoothGrad, utilize model gradi-

ents to attribute importance to input features. SHAP (SHap-

ley Additive exPlanations), grounded in co-operative game

theory, provides a unified framework for feature attribution

by calculating Shapley values, which represent the marginal

contribution of each feature to the prediction [12].

III. MATERIAL AND METHODS

In this section, we present our methodological frame-work.

We first describe the C-MAPSS FD001 dataset and its pre-

processing pipeline. Next, we introduce the NAS-optimized

Transformer architecture used for RUL predic-tion. Finally,

we detail our adaptation of the SHAP Gradient Explainer for

feature-attribution analysis applied to this model.
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Fig. 1. Methodological Frame-Work

A. Data and Preprocessing

We base our experiments on NASA’s widely used C-

MAPSS (Commercial Modular Aero-Propulsion System Sim-

ulation) dataset, which simulates turbofan engine degradation

under different operating conditions and fault modes. C-

MAPSS comprises four subsets (FD001–FD004), each con-

taining multivariate time-series from 21 sensors and 3 operat-

ing settings.

In this work, we focus on FD001, which models a single

fault mode under one operating condition [5].

Fig. 2. Diagram of the turbofan Engine

Data preprocessing steps were aligned with those typically

employed for this dataset and consistent with the foundational

work [4]:

• Sensor Selection: From the original 21 sensor channels,

we computed the 21×21 inter-sensor Pearson correlation

matrix to identify constant or redundant signals. Any

sensor with zero variance (constant readings) or entirely

null values was removed, leaving 14 informative sensors.

• Normalization: All sensor and aggregate features were

scaled to [0, 1] using min–max normalization, with scal-

ing parameters fitted exclusively on the FD001 training

set to avoid data leakage.

• Windowing: We applied a sliding window of 40 raw

timesteps and appended 2 aggregate rows (slope and

mean), resulting in 42-timestep sequences. The target

Fig. 3. Pearson’s correlation matrix heat map of the Commercial Modular
Aero-Propulsion System

RUL is defined as the number of cycles remaining at

the final point in each window.

B. Foundational NAS-Optimized Transformer Architecture

Our work builds upon the Transformer architecture devel-

oped by Mo Hyunho et al. [4], who applied Neural Archi-

tecture Search (NAS) to design high-performing models for

RUL prediction. Rather than re-running their computationally

intensive search process, we adopt the optimal architecture

they identified as the basis for our explainability study.

This architecture was discovered using an evolutionary

algorithm that explored an 11-dimensional genotype defining

various hyperparameters of the Transformer, including em-

bedding dimensions, number of attention heads, feed-forward

layer dimensions, and the number of encoder/decoder layers.

The core structure of this NAS-optimized Transformer ar-

chitecture, as described by Mo Hyunho et al. [4], features

several key components tailored for time-series RUL predic-

tion:

• Input Representation: Each input is a multivariate time-

series window with 42 timesteps and 14 sensor channels,

resulting in an input matrix of shape (42, 14). The 42

timesteps include 40 raw cycles and 2 aggregate features

(slope and mean), as described in Section III-A.

• Embedding and Positional Encoding: Raw sensor

readings at each timestep are first passed through an

input embedding layer to project them into a higher-

dimensional space ( d_model) . To retain temporal

information, sinusoidal positional encodings are added to

these embeddings.

• Dual-Encoder Mechanism: A key feature of the archi-

tecture is its use of two parallel encoders:

– A Sensor Encoder: that applies multi-head self-

attention across the sensor dimension to assess inter-

sensor dependencies.
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– A Timestep Encoder: that uses self-attention across

the time dimension to capture temporal patterns.

Each encoder is composed of N_enc layers, each

containing multi-head attention and position-wise

feed-forward sublayers, combined with residual con-

nections and layer normalization.

• Feature Fusion:

Outputs from the sensor and timestep encoders—denoted

Fs and Ft are concatenated and passed through a fusion

layer:

Fusion(Fs, Ft) = Concat(Fs, Ft) ·W
F (1)

This operation merges sensor-wise and temporal features

into a unified representation.

• Decoder: The fused features are input to a decoder com-

posed of Ndec layers, again using multi-head attention and

feed-forward sublayers. The decoder processes only the

final α timesteps of the encoder output typicallyα = 4,

focusing on recent history for prediction. Its final output

is a scalar representing the estimated RUL.

We configured our model using the specific optimal geno-

type parameters reported by Mo Hyunho et al. [13], ensuring

consistency with the NAS-discovered Transformer architecture

used in their original work.

C. Gradient Explainer Algorithm

To interpret the predictions of the NAS-optimized Trans-

former, we adopted SHAP’s Gradient Explainer [12], a

member of the gradient-based attribution family introduced in

Section II. Gradient Explainer estimates feature contributions

by computing expected gradients relative to a background

distribution, enabling both local explanations (per Engine) and

global insights (across the dataset).

This method was chosen for its compatibility with non-

standard architecture Transformers and structured multivariate

time series, as encountered in our 42×14 input windows. While

other techniques such as LIME and Integrated Gradients are

valuable in broader explainability contexts [14], [15], SHAP

Gradient Explainer offers theoretical consistency, computa-

tional efficiency, and additive attribution, aligning well with

the goals of transparency in RUL forecasting.

1) Background Selection: : SHAP requires a background

dataset to serve as a reference for calculating expected gradi-

ents. We use all 100 training windows as the background set,

ensuring full coverage of operating conditions and RUL states.

This choice balances computational efficiency with stability in

the resulting attributions.

2) Batched SHAP Computation.: Due to memory con-

straints, SHAP values are computed in batches of size 10. Each

test sample (of shape 42×14) is passed to the explainer, which

returns a tensor of SHAP values with the same shape. These

represent the contribution of each sensor at each timestep (in-

cluding slope and mean rows) to the model’s RUL prediction.

IV. RESULTS AND DISCUSSION

This section presents the results of our explainability

pipeline to evaluate the NAS-optimized. We report results

on global feature importance, local attribution for specific

predictions, and validate the reliability of the explanations

through coherence checks.

1) Global Attribution.: To understand which features were

most influential across all test samples, we applied SHAP’s

Gradient Explainer using 100 stratified background windows.

The resulting SHAP values were aggregated across all test

inputs, and the top features were visualized using a bar

summary plot (Figure 4) and the beeswarm summary plot

(Figure 5).

The most impactful feature was BPR_t41, the mean value

of the Bypass Ratio sensor, which positively influenced RUL

predictions. Other highly influential features included the

slopes of phi, P30, and the mean or trend of sensors like

T24 and W32. These results confirm that both recent degrada-

tion trends (slope features) and operating-level signals (mean

features) contribute meaningfully to the model’s decisions.

The top-ranked sensors correspond to known degradation-

related physical components, supporting the model’s alignment

with domain expectations. Less informative features were

grouped into an “Other” category, highlighting the concentra-

tion of decision impact among a small subset of sensor-time

features.

Fig. 4. Global Sensor Ranking barplot
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Fig. 5. Global SHAP Summary (Beeswarm) Plot

2) Local Feature Attribution: : To explore how the model

forms individual predictions, we examined SHAP waterfall

plots for representative test samples. Figure 6 shows a case

where the predicted Remaining Useful Life (RUL) was sig-

nificantly lower than average (0.072 vs. 0.709). Negative

contributions came from slope features such as phi_t40,

NRf_t40, and P30_t40, which indicate rapid degradation

in pressure and rotational speed. A single feature, BPR_t41,

contributed positively, but only marginally.

Notably, the largest reduction in prediction came from the

aggregate contribution of 579 other features, which collec-

tively pulled the estimate downward by −0.25. This highlights

the model’s ability to synthesize both prominent and subtle

signals across the input sequence. The explanation aligns with

real-world intuition: sharp declines in critical sensors indicate

worsening engine health, justifying a lower RUL forecast.

Fig. 6. Local SHAP Waterfall Plot Engine 41

A. Coherence Checks

To assess the trustworthiness of the model’s explanations,

we conducted a qualitative analysis of the SHAP outputs.

Specifically, we reviewed whether the top-ranked features

identified by the Gradient Explainer aligned with known

degradation indicators in the turbofan engine domain.

Our global attribution analysis revealed that the most in-

fluential features included trends and mean values from key

sensors such as Bypass Ratio (BPR), high-pressure compressor

pressure (P30), rotational speeds (Nf, NRf), and temperatures

(T24, T30). These are consistent with established knowledge

about engine wear and failure modes. Similarly, local explana-

tions for individual predictions showed that decreasing trends

in these features often led to lower RUL estimates, reinforcing

their interpretability.

Although we did not formally quantify explanation ro-

bustness (e.g., using Spearman correlation), the consistent

emergence of domain-relevant features in both global and local

attributions suggests that the model has learned meaningful

and physically plausible relationships. This coherence is a

promising indicator for the model’s transparency and practical

applicability in industrial settings.

V. CONCLUSION

This paper presents an explainability study of a NAS-

optimized Transformer model for Remaining Useful Life

(RUL) prediction on the C-MAPSS FD001 benchmark. We

integrate SHAP’s Gradient Explainer into the model pipeline

to generate both global sensor importance rankings and local

per-sample attribution maps. Our results show that the model’s

most influential features, particularly sensor trends and means

in airflow, pressure, and temperature, are consistent with

known degradation indicators in jet engines.

By illuminating how the model forms each prediction, our

approach enhances transparency and supports trust in deep

learning-based prognostics. While this study focuses on a

single dataset and architecture, the method is generalizable

and can be extended to other PHM tasks or architectures.

Future work will incorporate formal stability tests, expert

validation, and broader dataset coverage.
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