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Abstract—Remaining Useful Life (RUL) estimation of complex
machinery is critical for optimizing maintenance schedules and
preventing unexpected failures in safety-critical systems. While
Transformer architecture has recently achieved state-of-the-art
performance on RUL benchmarks, their design often relies on
expert tuning or costly Neural Architecture Search (NAS), and
their predictions remain opaque to end users. In this work, we
integrate a Transformer whose hyperparameters were discov-
ered via evolutionary NAS with a gradient-based explainability
method to deliver both high accuracy and transparent, per-
prediction insights. Specifically, we adapt the Gradient Explainer
algorithm to produce global and local importance scores for each
sensor in the C-MAPSS FDO001 turbofan dataset. QOur analysis
shows that the sensors identified as most influential, such as key
temperature and pressure measurements, match domain-expert
expectations. By illuminating the internal decision process of
a complex, NAS-derived model, this study paves the way for
trustworthy adoption of advanced deep-learning prognostics in
industrial settings.

Index Terms—Remaining Useful Life (RUL), Transformers,
Neural Architecture Search (NAS), Explainable AI (XAI), Gra-
dient Explainer, C-MAPSS, Interpretability.

I. INTRODUCTION

ROGNOSTICS and Health Management (PHM) plays a
Pcritical role in modern industrial systems, enabling in-
creased reliability, optimized maintenance, and the prevention
of catastrophic failures in high-value assets such as aircraft
engines and manufacturing equipment [1]. A core component
of PHM is the accurate estimation of Remaining Useful Life
(RUL), the time before a component or system can no longer
perform its intended function.

The rise of deep learning has significantly advanced RUL
prediction. Recurrent Neural Networks (RNNs) [2], and more
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recently Transformer-based architectures [3], have demon-
strated strong performance due to their ability to model
complex temporal dependencies in multivariate sensor data.

Building on these advances, Mo Hyunho et al. [4] pro-
posed a Neural Architecture Search (NAS) framework us-
ing evolutionary algorithms to automatically discover optimal
Transformer architectures for RUL prediction. Applied to
the well-established C-MAPSS (Commercial Modular Aero-
Propulsion System Simulation) dataset [6], their NAS-derived
Transformers outperformed manually designed alternatives,
setting a new performance benchmark [4].

Despite these gains, deep-learning complex models often
operate as "black boxes" [7]. Their complex, high-dimensional
structures obscure the reasoning behind predictions.

In safety-critical settings, this lack of interpretability is a
major barrier to adoption, where understanding why a model
predicted a specific RUL is essential for trust, verification, and
regulatory acceptance.

Explainable AI (XAI) seeks to address this issue by pro-
viding human-understandable insights into model behavior.
However, most existing XAI studies focus on standard or
simpler architectures, leaving the interpretability of NAS-
derived Transformers underexplored, especially within the
PHM domain [7], [8].

To our knowledge, no prior work has applied advanced
gradient-based XAI techniques to these automatically discov-
ered architectures in the context of RUL estimation.

This paper addresses that gap by adapting SHAP’s Gradient
Explainer ; a theoretically grounded and computationally ef-
ficient method ; for use with the NAS-optimized Transformer
developed by Mo Hyunho et al. Our goal is to enhance the

Topical area: Advanced Artificial
Intelligence in Applications



76

transparency of this state-of-the-art model by generating global
and local feature attributions for RUL predictions on the C-
MAPSS FDOO01 subset.

Our contributions are threefold:

1) Gradient-based Explanation for NAS-Transformer:
We adapt and apply the Gradient Explainer algorithm to
a NAS-optimized Transformer architecture specifically
designed for RUL prediction.

2) Global and Local Attribution Analysis: We perform
comprehensive explanation analysis, including both
global sensor rankings and per-instance local saliency
maps, on the FDOO1 subset of C-MAPSS.

3) Actionable Insights for PHM: We extract interpretable,
domain-relevant insights into which sensors and time
points most influence the model’s predictions, enhanc-
ing trust, transparency, and deployability in industrial
contexts.

The rest of this paper is organized as follows:

Section 1II reviews related work on RUL prediction and
explainable AI. Section III describes the dataset, model
architecture, and the adaptation of the Gradient Explainer.
Section IV presents experimental results, including global and
local explanations. Section V concludes with future research
directions.

II. RELATED WORK

This section reviews literature pertinent to our research,
covering Remaining Useful Life (RUL) prediction with deep
learning, the role of Neural Architecture Search (NAS) in
Prognostics and Health Management (PHM), existing Explain-
able AI (XAI) techniques for complex models, and the specific
challenges and advancements in explaining Transformer and
NAS-optimized architectures.

A. RUL Prediction in PHM

Remaining Useful Life (RUL) refers to the time remaining
before a system fails, expressed as RUL = T — ¢, where
T is the failure time and t is the current time [1]. RUL
estimation methods are broadly categorized into model-based
and data-driven approaches. Model-based methods rely on
prior physical knowledge, which can be hard to generalize in
practice and may struggle with the complexities of real-world
degradation processes. In contrast, data-driven approaches,
particularly those leveraging deep learning (DL), have gained
prominence due to their ability to learn complex patterns
directly from sensor data and enabling end-to-end modeling,
eliminating the need for manual feature engineering [2].

Early DL applications in RUL prediction included Multi-
Layer Perceptrons (MLPs) and Convolutional Neural Net-
works (CNNs), which showed promise in feature extraction
from time-series data. Recurrent Neural Networks (RNNs),
especially Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) variants, became popular for their
inherent ability to model temporal dependencies in sequential
sensor readings. However, RNNs can face challenges with
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long range dependencies and computational efficiency for long
sequences [9], [10].

B. Transformer-Based Models for Time Series

Transformer architecture, originally introduced for natural
language processing in the famous paper of Vaswani et al.
[3], has emerged as a powerful self-attention mechanism
that allows it to capture global dependencies between input
sequence elements effectively, overcoming some limitations
of RNNs. Consequently, Transformers have been increasingly
adapted for various time-series forecasting tasks, including
RUL prediction, often demonstrating superior performance.

C. Neural Architecture Search (NAS) in Deep Learning

While DL models, including Transformers, offer significant
potential, their performance is highly dependent on their
architecture. Designing optimal architecture manually is a
time-consuming, iterative, and expertise-driven process [4].
Neural Architecture Search (NAS) has emerged as a field that
automates this design process, algorithmically searching for
the best-performing neural network architecture for a given
task and dataset [4].

D. Explainable Al (XAI) for Complex Models

The increasing complexity and performance of DL mod-
els, especially transformer-based models with their attention
characteristics, often come at the cost of interpretability,
leading to their characterization as "black boxes". In safety-
critical applications like PHM, this lack of transparency is
a major concern, as understanding why a model makes a
certain prediction is crucial for trust, debugging, and regulatory
compliance. Explainable Al (XAI) encompasses a range of
techniques aimed at making the decisions of Al systems more
understandable to humans [11].

Common XAI methods can be broadly categorized.
Perturbation-based methods, like LIME (Local Interpretable
Model-agnostic Explanations), explain individual predictions
by learning a simpler, interpretable model on local perturba-
tions of the input [11].

Surrogate models aim to approximate the complex model
with a more transparent one. Gradient-based methods, such
as Integrated Gradients and SmoothGrad, utilize model gradi-
ents to attribute importance to input features. SHAP (SHap-
ley Additive exPlanations), grounded in co-operative game
theory, provides a unified framework for feature attribution
by calculating Shapley values, which represent the marginal
contribution of each feature to the prediction [12].

III. MATERIAL AND METHODS

In this section, we present our methodological frame-work.
We first describe the C-MAPSS FDOO1 dataset and its pre-
processing pipeline. Next, we introduce the NAS-optimized
Transformer architecture used for RUL predic-tion. Finally,
we detail our adaptation of the SHAP Gradient Explainer for
feature-attribution analysis applied to this model.
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Fig. 1. Methodological Frame-Work

A. Data and Preprocessing

We base our experiments on NASA’s widely used C-
MAPSS (Commercial Modular Aero-Propulsion System Sim-
ulation) dataset, which simulates turbofan engine degradation
under different operating conditions and fault modes. C-
MAPSS comprises four subsets (FDOO1-FD004), each con-
taining multivariate time-series from 21 sensors and 3 operat-
ing settings.

In this work, we focus on FDOO1, which models a single
fault mode under one operating condition [5].
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Fig. 2. Diagram of the turbofan Engine

Data preprocessing steps were aligned with those typically
employed for this dataset and consistent with the foundational
work [4]:

« Sensor Selection: From the original 21 sensor channels,
we computed the 21x21 inter-sensor Pearson correlation
matrix to identify constant or redundant signals. Any
sensor with zero variance (constant readings) or entirely
null values was removed, leaving 14 informative sensors.

« Normalization: All sensor and aggregate features were
scaled to [0, 1] using min—max normalization, with scal-
ing parameters fitted exclusively on the FDOOI training
set to avoid data leakage.

« Windowing: We applied a sliding window of 40 raw
timesteps and appended 2 aggregate rows (slope and
mean), resulting in 42-timestep sequences. The target
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Fig. 3. Pearson’s correlation matrix heat map of the Commercial Modular
Aero-Propulsion System

RUL is defined as the number of cycles remaining at
the final point in each window.

B. Foundational NAS-Optimized Transformer Architecture

Our work builds upon the Transformer architecture devel-
oped by Mo Hyunho et al. [4], who applied Neural Archi-
tecture Search (NAS) to design high-performing models for
RUL prediction. Rather than re-running their computationally
intensive search process, we adopt the optimal architecture
they identified as the basis for our explainability study.

This architecture was discovered using an evolutionary
algorithm that explored an 11-dimensional genotype defining
various hyperparameters of the Transformer, including em-
bedding dimensions, number of attention heads, feed-forward
layer dimensions, and the number of encoder/decoder layers.

The core structure of this NAS-optimized Transformer ar-
chitecture, as described by Mo Hyunho et al. [4], features
several key components tailored for time-series RUL predic-
tion:

« Input Representation: Each input is a multivariate time-
series window with 42 timesteps and 14 sensor channels,
resulting in an input matrix of shape (42, 14). The 42
timesteps include 40 raw cycles and 2 aggregate features
(slope and mean), as described in Section III-A.

« Embedding and Positional Encoding: Raw sensor
readings at each timestep are first passed through an
input embedding layer to project them into a higher-
dimensional space ( d_model) . To retain temporal
information, sinusoidal positional encodings are added to
these embeddings.

o Dual-Encoder Mechanism: A key feature of the archi-
tecture is its use of two parallel encoders:

— A Sensor Encoder: that applies multi-head self-
attention across the sensor dimension to assess inter-
sensor dependencies.
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— A Timestep Encoder: that uses self-attention across
the time dimension to capture temporal patterns.
Each encoder is composed of N_enc layers, each
containing multi-head attention and position-wise
feed-forward sublayers, combined with residual con-
nections and layer normalization.

« Feature Fusion:
Outputs from the sensor and timestep encoders—denoted
F, and F; are concatenated and passed through a fusion
layer:

Fusion(F;, F}) = Concat(Fy, F}) - wt (1)

This operation merges sensor-wise and temporal features
into a unified representation.

o Decoder: The fused features are input to a decoder com-
posed of Ny layers, again using multi-head attention and
feed-forward sublayers. The decoder processes only the
final « timesteps of the encoder output typicallya = 4,
focusing on recent history for prediction. Its final output
is a scalar representing the estimated RUL.

We configured our model using the specific optimal geno-
type parameters reported by Mo Hyunho et al. [13], ensuring
consistency with the NAS-discovered Transformer architecture
used in their original work.

C. Gradient Explainer Algorithm

To interpret the predictions of the NAS-optimized Trans-
former, we adopted SHAP’s Gradient Explainer [12], a
member of the gradient-based attribution family introduced in
Section II. Gradient Explainer estimates feature contributions
by computing expected gradients relative to a background
distribution, enabling both local explanations (per Engine) and
global insights (across the dataset).

This method was chosen for its compatibility with non-
standard architecture Transformers and structured multivariate
time series, as encountered in our 42x14 input windows. While
other techniques such as LIME and Integrated Gradients are
valuable in broader explainability contexts [14], [15], SHAP
Gradient Explainer offers theoretical consistency, computa-
tional efficiency, and additive attribution, aligning well with
the goals of transparency in RUL forecasting.

1) Background Selection: : SHAP requires a background
dataset to serve as a reference for calculating expected gradi-
ents. We use all 100 training windows as the background set,
ensuring full coverage of operating conditions and RUL states.
This choice balances computational efficiency with stability in
the resulting attributions.

2) Batched SHAP Computation.: Due to memory con-
straints, SHAP values are computed in batches of size 10. Each
test sample (of shape 42x14) is passed to the explainer, which
returns a tensor of SHAP values with the same shape. These
represent the contribution of each sensor at each timestep (in-
cluding slope and mean rows) to the model’s RUL prediction.
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IV. RESULTS AND DISCUSSION

This section presents the results of our explainability
pipeline to evaluate the NAS-optimized. We report results
on global feature importance, local attribution for specific
predictions, and validate the reliability of the explanations
through coherence checks.

1) Global Attribution.: To understand which features were
most influential across all test samples, we applied SHAP’s
Gradient Explainer using 100 stratified background windows.
The resulting SHAP values were aggregated across all test
inputs, and the top features were visualized using a bar
summary plot (Figure 4) and the beeswarm summary plot
(Figure 5).

The most impactful feature was BPR_t 41, the mean value
of the Bypass Ratio sensor, which positively influenced RUL
predictions. Other highly influential features included the
slopes of phi, P30, and the mean or trend of sensors like
T24 and W32. These results confirm that both recent degrada-
tion trends (slope features) and operating-level signals (mean
features) contribute meaningfully to the model’s decisions.

The top-ranked sensors correspond to known degradation-
related physical components, supporting the model’s alignment
with domain expectations. Less informative features were
grouped into an “Other” category, highlighting the concentra-
tion of decision impact among a small subset of sensor-time
features.

Top 10 SHAP Feature Importances

515-8PR_td1

512-phi_tdo

57-P30_t40

SB:NI_td1

$2.T24_t40

feature

= s11-Ps30_t40

$21-W32_tdl

54-T50_t40

$8-NI_t40

$3730_ta1

0000 0005 0010 0015 0020 0025 0030 0035 0040
Mean [SHAP value|

Fig. 4. Global Sensor Ranking barplot
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Fig. 5. Global SHAP Summary (Beeswarm) Plot

2) Local Feature Attribution: : To explore how the model
forms individual predictions, we examined SHAP waterfall
plots for representative test samples. Figure 6 shows a case
where the predicted Remaining Useful Life (RUL) was sig-
nificantly lower than average (0.072 vs. 0.709). Negative
contributions came from slope features such as phi_t40,
NRf_t40, and P30_t40, which indicate rapid degradation
in pressure and rotational speed. A single feature, BPR_t41,
contributed positively, but only marginally.

Notably, the largest reduction in prediction came from the
aggregate contribution of 579 other features, which collec-
tively pulled the estimate downward by —0.25. This highlights
the model’s ability to synthesize both prominent and subtle
signals across the input sequence. The explanation aligns with
real-world intuition: sharp declines in critical sensors indicate
worsening engine health, justifying a lower RUL forecast.
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Fig. 6. Local SHAP Waterfall Plot Engine 41

A. Coherence Checks

To assess the trustworthiness of the model’s explanations,
we conducted a qualitative analysis of the SHAP outputs.
Specifically, we reviewed whether the top-ranked features
identified by the Gradient Explainer aligned with known
degradation indicators in the turbofan engine domain.

Our global attribution analysis revealed that the most in-
fluential features included trends and mean values from key
sensors such as Bypass Ratio (BPR), high-pressure compressor
pressure (P30), rotational speeds (Nf, NRf), and temperatures
(T24, T30). These are consistent with established knowledge

about engine wear and failure modes. Similarly, local explana-
tions for individual predictions showed that decreasing trends
in these features often led to lower RUL estimates, reinforcing
their interpretability.

Although we did not formally quantify explanation ro-
bustness (e.g., using Spearman correlation), the consistent
emergence of domain-relevant features in both global and local
attributions suggests that the model has learned meaningful
and physically plausible relationships. This coherence is a
promising indicator for the model’s transparency and practical
applicability in industrial settings.

V. CONCLUSION

This paper presents an explainability study of a NAS-
optimized Transformer model for Remaining Useful Life
(RUL) prediction on the C-MAPSS FD0O1 benchmark. We
integrate SHAP’s Gradient Explainer into the model pipeline
to generate both global sensor importance rankings and local
per-sample attribution maps. Our results show that the model’s
most influential features, particularly sensor trends and means
in airflow, pressure, and temperature, are consistent with
known degradation indicators in jet engines.

By illuminating how the model forms each prediction, our
approach enhances transparency and supports trust in deep
learning-based prognostics. While this study focuses on a
single dataset and architecture, the method is generalizable
and can be extended to other PHM tasks or architectures.

Future work will incorporate formal stability tests, expert
validation, and broader dataset coverage.
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