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Abstract—Nanoparticle dispersion in heterogeneous catalysts
plays a critical role in catalytic performance. We propose a
robust and generalizable graph neural network (GNN) approach
that combines the edge convolutional operator (EdgeConv) with
a graph attention (GAT) layer to classify dispersion patterns
in palladium on carbon (Pd/C) catalysts. Our method leverages
GNNs to operate directly on particle location data extracted from
scanning electron microscopy (SEM) images, thereby avoiding
reliance on image features that may introduce bias. The pro-
posed method offers an advantage over traditional image-based
approaches, which risk overfitting to visual characteristics of
the image that are unrelated to the spatial distribution of the
nanoparticles. We validate the performance of our GNN archi-
tecture on multiple Pd/C samples with distinct carbon support
types, achieving an accuracy of 89.84%, and demonstrate that
our approach can reliably identify dispersion defects. The results
highlight the potential of GNNs as a promising alternative for
structure-based analysis and quality assessment of nanomaterial-
based catalysts.

Index Terms—Heterogeneous Catalysts, Graph Neural Net-
works, Deep Learning, Scanning Electron Microscopy

I. INTRODUCTION

N
ANOMATERIAL-BASED catalysts are a major class

of heterogeneous catalysts, widely used in chemistry,

industry and medicine [1], [2]. They primarily consist of metal

nanoparticles dispersed on a solid support, forming active sites

that facilitate organic chemical reactions. Differentiated by the

type of metal or metal alloy nanoparticle, as well as by the

nature of the support material (ranging from carbon to various

oxides such as silica), they exhibit tunable catalytic properties

that can be optimized and tailored for specific reactions.

Here, we focus on palladium metal on carbon support

(Pd/C) catalysts, which are primarily used in carbon-carbon

coupling reactions (C-C coupling) and hydrogenation pro-

cesses to efficiently synthesize a wide range of organic com-

pounds [3], [4]. There exists a great variability among Pd/C

catalysts, depending on both the metal and the characteristics

of activated charcoal support used. Such factors as palladium

oxidation, dispersion of the nanoparticles, water content and

the support structure play a great role in the reactivity of

the catalyst [5]. Optimization of these parameters can lead to

improved reaction efficiency, greater selectivity, and enhanced

catalyst stability across a great range of synthetic applications.

The dispersion of nanoparticles on the carbon support can

be analyzed using scanning electron microscopy (SEM) [6].

The Pd/C morphology may range from a mostly uniform

distribution of palladium nanoparticles to the formation of

ordered structures arising from imperfections in the support

[7]. In such cases, nanoparticles can, for example, nucleate

along grain boundaries or pore edges, leading to non-uniform

distributions of active sites. These structural irregularities can

negatively impact the catalytic efficiency and consistency.

This work proposes a generalizable and robust deep learning

approach for detecting nanoparticle dispersion defects in Pd/C

catalysts based on a novel graph neural network with edge

convolutional operator (EdgeConv) [8] and a graph attention

(GAT) layer [9]. We address limitations of existing techniques

by leveraging graph neural networks to classify catalysts based

on nanoparticle spatial arrangements and geometrical patterns.

By working solely with particle location data, we aim to

eliminate potential biases introduced during image acquisition

or sample preparation. Additionally, we evaluate our model

on Pd/C samples with an alternative carbon support type to

demonstrate its effectiveness under real-world variations in

material composition.

This paper is structured as follows. Section II reviews

related research involving deep neural networks. Section III

introduces the dataset and data preparation process, followed

by a description of the graph neural network (GNN) architec-

tures and the training scheme. In Section IV, we outline the

evaluation metrics, present model performance, and compare

our approach with alternative methods. Section V concludes

our paper and provides a brief discussion.

II. RELATED WORK

A. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have been success-

fully applied to problems with an underlying grid-like (i.e.,

Euclidean) data structure, particularly in image processing,

speech recognition, classification, and image segmentation

[10]. Recent applications of CNNs include bone age evalu-

ation from X-ray images to support diagnosis and treatment

planning for various disorders [11]; olive disease classification

using an adaptive ensemble of two EfficientNet-B0 models,
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which improves state-of-the-art accuracy on a publicly avail-

able dataset [12]; and semantic segmentation of complex urban

street scenes for autonomous driving, where models such as

MobileNet and ResNet50 are used as encoders in the U-Net

architecture [13].

In the field of heterogeneous catalysis, CNNs have been ap-

plied to nanoparticle segmentation and tracking under reactive

conditions [14]. CNN architectures such as U-Net [15], which

consists of two paths (a contracting path and an expansive

path) and employs a training strategy that heavily relies on

data augmentation, have been shown to make more efficient

use of limited annotated samples. U-Net has been used to

analyze transmission electron microscopy (TEM) images and

videos, along with other architectures [16], [17]. Additionally

CNNs have been used for automated analysis to identify the

number of defects and to define anchoring and segmentation

in the study of high-entropy metal nanoparticles [16]. More

recent state-of-the-art models, such as Segment Anything

Model (SAM) [18], have also been employed to aid in the

quantification and analysis of nanoparticles [19].

CNNs have been further used to analyze SEM images of

Pd/C catalysts for the purpose of classification of nanoparticle

dispersion defects, distinguishing between defective and non-

defective morphology [20]. While high classification accuracy

(≥ 90%) was reported, the dataset was limited in size, and

the models were not evaluated on independent samples. As a

result, the models were shown to differentiate between spe-

cific sample identities rather than between dispersion patterns

themselves. In this work, we aim to overcome these limitations

by developing a more generalizable method.

B. Graph Neural Networks

For problems involving data that does not exhibit a regular

grid-like structure, such as point clouds or molecular struc-

tures, the data can instead be modeled as graphs [21]. Graph

Neural Networks (GNNs) represent each data point as a vertex

in a graph and construct edges based on neighborhood relation-

ships. Spatial GNNs define message-passing and aggregation

operations directly over a node’s neighborhood in the input or

feature space.

In the message-passing mechanism, each node updates its

representation by receiving and aggregating information (or

"messages") from its neighboring nodes, often using learnable

functions such as multilayer perceptrons (MLPs). This process

allows nodes to iteratively encode both local geometric struc-

ture and other features from their spatial context. Pooling is

often used to coarsen the graph or summarize neighborhood

information, followed by task-specific layers - such as fully

connected layers for classification or regression tasks [22].

Simonovsky and Komodakis [21] generalized the convolu-

tion operation from traditional CNNs on regular grids to arbi-

trary graphs. Their approach constructs deep neural networks

for graph classification by treating each point as a vertex and

connecting it to its neighbors via directed edges.

Building on this idea, Wang et al. [8] proposed the Dy-

namic Graph CNN (DGCNN) architecture, where the graph

Fig. 1. Image A (on the left) shows an example of a disordered nanoparticle
distribution, while Image B (on the right) illustrates nanoparticles forming
ordered patterns.

is constructed in the feature space and dynamically updated

at each network layer. At its core, DGCNN uses the edge

convolutional operator (EdgeConv), which applies an MLP

as a feature learning function over edges, followed by an

aggregation function that combines information from each

point’s neighbors.

While GNNs are primarily used for analyzing point clouds

[22], they have also found broader application in fields such

as molecular modeling and physical system prediction [23].

GNNs have recently been applied to heterogeneous catalysis,

including reaction modeling [24] and catalyst screening via

binding energy prediction [25]. GNNs have also been applied

to graph classification tasks, particularly for predicting the

overall toxicity of molecular structures. To improve gener-

alization with limited labeled data, Few-Shot Learning tech-

niques have been incorporated alongside models such as Graph

Isomorphism Networks (GINs) and multi-headed attention

mechanisms [26].

III. MATERIALS AND METHODS

This section describes and analyzes the dataset, and intro-

duces the proposed graph neural network (GNN) architecture

used in this work.

A. Dataset

The dataset used in this study [7] consists of 1000 scan-

ning electron microscopy (SEM) images collected from five

different Pd/C catalyst samples. Despite its limited sample

size, the dataset encompasses a range of support materials,

imaging magnifications, and spatial sampling regions, aiming

to provide representative variability across Pd/C catalysts.

The dataset includes three types of carbon supports: graphite

powder, nanoglobular carbon, and pressed graphite bars. Each

image was labeled as either containing ordered or disordered

nanoparticle distributions. An example of both distributions is

presented on Figure 1. A summary of the images per sample

in the dataset is shown in Table I.

TABLE I
OVERVIEW OF THE PD/C SAMPLES IN THE DATASET [7].

Sample Images Ordered Support Subset

S1 687 Yes Graphite powder Train. / Val.
S2 63 Yes Graphite powder Testing
S3 185 No Nanoglobular C Train. / Val.
S4 50 No Graphite bars Testing
S5 15 No Graphite bars Testing
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Fig. 2. T-SNE visualization of features extracted by ViT-L from the images in
the dataset. Samples marked with dots contain spatially ordered nanoparticles,
while samples marked with diamonds are disordered. While most samples are
relatively similar visually, S3 is a clear outlier.

To explore visual similarities within the dataset, we extract

image features using a deep learning model pretrained on a

large-scale image dataset. These features are then projected

into a lower-dimensional space using t-distributed stochas-

tic neighbor embedding (t-SNE), a non-linear dimensionality

reduction technique commonly used for visualizing high-

dimensional data [27]. For this purpose, we use a Vision

Transformer (ViT) [28] pretrained using the self-supervised

DINOv2 method on LVD-142M [29]. DINOv2 trains vision

models without the need for labeled data by encouraging

consistency between different augmented views of the same

image, enabling the model to learn embeddings that capture

semantic and structural information in its latent feature space.

This approach is particularly suitable for our task, as it enables

meaningful feature extraction without requiring task-specific

fine-tuning.

The resulting t-SNE visualization of the dataset is shown in

Figure 2. The images are clustered primarily based on their

visual characteristics, rather than the spatial arrangement of

the nanoparticles. These visual characteristics are primarily

determined by the type of sample support (background). At

this scale, graphite powder (samples S1 and S2) appears

visually similar to graphite bars (samples S4 and S5), while

nanoglobular carbon (sample S3) looks distinctly different and

forms a separate cluster. This highlights how deep learning

models trained on the dataset can be influenced by the vi-

sual features introduced by the support material, rather than

focusing solely on the spatial distribution of nanoparticles.

B. GNN Architecture

Since our data consists of two-dimensional projections of

nanoparticle positions extracted from SEM images, we base

our GNN models on architectures commonly used for point

cloud analysis. Although the actual particle arrangements are

three-dimensional, their projections still encode meaningful

spatial structure.

The first step in such models is the construction of a

directed graph G = (V, E) from the given positions. Here

V = {1, . . . , n} denotes the n nodes and E ⊆ V × V denotes

the set of edges. We construct a k-nearest neighbors (k-NN)

graph to accomplish this task, setting k = 6 to balance graph

complexity with computational efficiency.

Our base model employs the edge convolutional operator

(EdgeConv) [8], which computes edge features for each node

xi by aggregating information from its neighborhood N (i):

x
′
i =

∑

j∈N (i)

hΘ(xi ∥xj − xi), (1)

Here the x variables are the 2D spatial coordinates of

particles and hΘ is a learnable function implemented as a

multilayer perceptron (MLP). Max pooling is used to aggre-

gate information across neighbors. Following the Dynamic

Graph CNN (DGCNN) architecture [8], multiple EdgeConv

layers can be stacked to learn hierarchical features. However,

to avoid problems caused by excessive Laplacian smoothing

[30], we use a shallow model with only two EdgeConv layers.

As more layers are added, the features of neighboring nodes

become increasingly similar, and the representation across the

entire graph converges to a single value. This erases important

local differences, harming performance. After the EdgeConv

layers, the outputs are concatenated and pooled globally before

passing through a final MLP for binary classification.

To mitigate the effects of Laplacian smoothing in deeper

graph architectures, we also propose a hybrid model architec-

ture where the deeper EdgeConv layer is replaced by a graph

attention (GAT) layer [9]:

x
′
i =

∑

j∈N (i)∪{i}

αi,jΘtxj , (2)

In this operator, the transformed features Θtxj of neigh-

boring nodes are weighted by attention coefficients αi,j ,

which are learned via an additive attention mechanism. In our

architecture, the first EdgeConv layer captures local geometric

relationships by operating on an initial k-NN graph. A new k-

NN graph is then reconstructed based on the learned features.

The subsequent GAT layer models higher-order dependencies

on this updated graph by assigning learnable, context-aware

weights to neighboring nodes. This dynamic attention mecha-

nism reduces over-smoothing and improves the model’s ability

to focus on the most informative neighbors. The features are

then concatenated and pooled as before. An overview of both

models is provided in Table II.

IV. EXPERIMENTAL EVALUATION

A. Data Preprocessing

While both the image resolution (1280×890) and overall

dataset size were sufficient for training, validation, and testing

of deep learning models, the number of distinct samples was

relatively limited. To ensure that the models learn to recognize

nanoparticle ordering (rather than relying on sample-specific

characteristics or substrate structure) we partitioned the data by
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TABLE II
PROPOSED GNN ARCHITECTURES, WITH LAYER SHAPE DESCRIBING THE NUMBER OF NEURONS PER LAYER.

DGCNN Model EdgeConv + GAT Model
Layer Type Layer Shape Layer Type Layer Shape

EdgeConv 4, 64, 64, 128 EdgeConv 4, 64, 128, 256
EdgeConv 256, 128, 128, 256 GAT 256, 64 (4 heads)

Concat. + Pooling - Concat. + Pooling -
Global MLP 384, 256, 128 Global MLP 512, 256, 128
Dense (MLP) 128, 64, 2 Dense (MLP) 128, 64, 2

Fig. 3. Example SEM image (left) from sample S1 along with the detected
particle locations (right). The nanoparticles form ordered structures.

sample. Samples S1 and S3, which contain the most images,

were used for training and validation in an 80/20 split, while

the remaining samples (S2, S4, and S5) were reserved for

testing. This ensures a more robust assessment of model, and

prevents classification based on the sample features alone.

To prepare our data for GNNs, we extracted nanoparticle

coordinates from each image. While CNN-based methods

have previously been used for nanoparticle segmentation [14],

[16], [17], [19], classical methods have been shown to pro-

duce acceptable results in nanoparticle detection [31]. We

opted for a more computationally efficient classical approach

based on the Simple Blob Detection algorithm [32]. This

method uses intensity thresholding and contour filtering to

identify particles. Contours were filtered by size and brightness

to isolate small, bright features corresponding to individual

nanoparticles. An example SEM image and the corresponding

extracted particle locations are shown in Figure 3.

B. Model Training

The models were trained using the cross-entropy loss func-

tion, optimized via the Adam algorithm [33]. A learning

rate of 1 × 10−5 was chosen to ensure stable convergence.

To prevent overfitting, we employed early stopping, halting

training if no improvement was observed in the validation

loss for 10 consecutive epochs. Training was performed with

a batch size of 64, where each input sample consisted of

512 particle locations, randomly selected from the full set

of detected particles in a given image. Batch normalization

and dropout were applied throughout the network to improve

generalization.

As previously noted, samples S1 and S3 were used for

training and validation. The remaining samples were held out

to evaluate the model on previously unseen data, ensuring

robustness to variations in material and avoiding bias. Nev-

ertheless, the training dataset introduced challenges related to

both class imbalance and structural bias. Firstly, the dataset

contained significantly more ordered distributions (687) than

disordered ones (185), making it imbalanced. Additionally,

sample S3 had a unique, globular structure, not present in

the other samples. This raised the risk that the model might

learn to associate specific support characteristics with disorder,

rather than focusing on the actual nanoparticle arrangement. To

address these problems, we applied several data augmentation

techniques:

• Disordered data generation - additional disordered par-

ticle distributions were synthetically generated, to address

the class imbalance. Particle positions were initialized on

a regular grid and then perturbed by adding noise drawn

from a uniform distribution.

• Geometric transformations - particle coordinates were

flipped horizontally and vertically, rotated.

• Jittering - small random perturbations were added to

particle positions with a fixed probability.

These augmentation strategies aimed to diversify the train-

ing data and reduce overfitting to specific samples or support

types, improving the model’s ability to generalize to new Pd/C

samples.

C. Evaluation Metrics

To assess the performance of our models, we have used

typical binary classification metrics such as accuracy, recall,

precision and F1 Score (harmonic mean of recall and pre-

cision). These metrics can offer complimentary insights into

the performance of the model. In our experiments, ordered

distributions were treated as the positive class, and disordered

distributions as the negative class. In our context, both false

positives and false negatives can be problematic, therefore

special attention is given to the balance between precision

and recall. The results can also be summarized on a confusion

matrix.

D. Model Performance

Following training, both architectures described in Table II

were evaluated on the held-out test samples: S2, S4, and S5.

The results presented in Table III show that both models

perform well on new samples and support types, achieving

strong performance in classifying both ordered and disordered

distributions. The DGCNN model, utilizing only EdgeConv

layers, reached an accuracy of 85.16%. Our proposed hybrid

model, which combines EdgeConv and GAT layers, outper-

formed DGCNN with an accuracy of 89.84%. The correspond-

ing confusion matrices are shown in Figure 4, highlighting the
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TABLE III
GNN RESULTS ON THE TEST SET.

DGCNN EdgeConv + GAT

Accuracy 85.16% 89.84%

Precision 84.38% 90.32%

Recall 85.71% 88.89%

F1 Score 85.04% 89.60%

Disordered Ordered
Predicted

Di
so

rd
er

ed
Or

de
re

dAc
tu

al

55 10

9 54

DGCNN

Disordered Ordered
Predicted

59 6

7 56

EdgeConv + GAT

Fig. 4. Confusion matrices for the GNN results on the test set. The
performance for both classes is very similar in both models. Out proposed
architecture outperforms DGCNN.

models’ balanced performance across both classes, as well as

the improvement achieved by our hybrid model.

E. Comparison With CNNs

Recent studies have shown that CNNs can achieve high

accuracy when applied to the classification of SEM images

of Pd/C catalysts [20]. However, we have raised concerns

that CNNs might learn visual sample and support structure

characteristics, rather than nanoparticle ordering. To test this

claim we have trained two CNN architectures on the dataset:

ResNet34 [34] and ConvNeXt [35]. Both models were trained

using a similar scheme as described for GNNs, however with

starting weights pretrained on the ImageNet [36] dataset with

a 224x224 input size.

The results on the training, validation and testing sets are

presented in Table IV. Although both CNNs achieved excellent

performance on the training and validation data, they failed

to generalize to new samples and carbon support types, with

test accuracy dropping to 49.22%. As such, their use in real-

world scenarios may be limited. CNNs classified all testing

images as containing ordered nanoparticle patters, which can

be explained as being due to the visual characteristics of the

carbon support in the testing images. Samples S4 and S5 use

graphite bars as the support, which in SEM images is more

visually similar to graphite powder (ordered samples S1, S2)

than to nanoglobular carbon present in the sample S3. This

conclusion is based on our previous t-SNE visualization of

the dataset, presented on Figure 2.

V. CONCLUSION

In this paper, we propose a novel geometric deep learning

approach for classifying dispersion patterns in palladium on

carbon (Pd/C) catalysts. Our method is based on graph neural

networks (GNNs) and operates directly on particle location

TABLE IV
CNN ACCURACY ON THE TRAINING, VALIDATION AND TESTING IMAGES.

ResNet34 ConvNeXt

Train. 90.15% 94.22%

Val. 94.53% 98.44%

Test. 49.22% 49.22%

data extracted from scanning electron microscopy (SEM) im-

ages. This approach enables classification of catalysts based on

the spatial arrangement and geometrical patterns of nanopar-

ticles. As a result, it offers significant advantages over tradi-

tional image-based methods, which are prone to overfitting

due to irrelevant visual features unrelated to nanoparticle

distribution.

First, we present a Dynamic Graph CNN (DGCNN) archi-

tecture [8] applied to the classification of dispersion patterns

in Pd/C catalysts. Second, in order to mitigate the effects

of Laplacian smoothing in deeper graph architectures, we

introduce a hybrid deep learning model that incorporates a

Graph Attention (GAT) layer stacked on top of a EdgeConv

layer. These architectures are compared with standard convo-

lutional neural networks (CNNs), specifically ResNet34 [34]

and ConvNeXt [35].

The dataset we used in our study consists of 1000 scanned

electron microscopy (SEM) images collected from five differnt

Pd/C catalyst samples [7]. We tested our methods on multiple

Pd/C samples with distinct carbon support types to the ones

used in training, demonstrating that our proposed methods can

reliably detect dispersion defects under real-world variations

in material composition..

To assess the performance of the proposed deep learning

architectures (DGCNN [8], EdgeConv + GAT, ResNet34 [34],

and ConvNeXt [35]), we used standard binary classification

metrics, including accuracy, recall, precision, and F1 score.

Our results show that the hybrid model combining EdgeConv

and GAT layers outperforms the DGCNN, achieving an accu-

racy of 89.84% compared to 85.16% (see Figure 4 for details).

In contrast, the image-based CNNs, ResNet34 and ConvNeXt,

both achieved significantly lower accuracy scores of 49.22%

(see Table IV) on testing data.

These results demonstrate that both the DGCNN and our

proposed EdgeConv + GAT model outperform traditional CNN

architectures, with the hybrid model achieving the highest

accuracy among all tested methods. Overall, our findings

highlight the potential of graph neural networks as a powerful

alternative to image-based methods for structure-aware analy-

sis and quality assessment of nanomaterial-based catalysts.

In future work, our GNN architecture could be trained and

evaluated on a more diverse set of catalyst types. Depending on

the characteristics of the SEM images, this may also require

incorporating deep learning–based nanoparticle detection or

segmentation methods. Additionally, further research could

explore strategies for deepening the GNN architecture while

maintaining training stability and enhancing performance.
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