&l

Position Papers of the 20" Conference on Computer

DOI: 10.15439/2025F8934

Science and Intelligence Systems (FedCSIS) pp. 55-60 ISSN 2300-5963 ACSIS, Vol. 44

Detecting Spatial Ordering of Nanoparticles with
Geometric Deep Learning

Jan Krupinski
0009-0001-0267-7387
Cracow University of Technology
Faculty of Electrical and Computer Engineering
ul. Warszawska 24, 31-155 Krakéw, Poland
Email: jan.krupinski@pk.edu.pl

Abstract—Nanoparticle dispersion in heterogeneous catalysts
plays a critical role in catalytic performance. We propose a
robust and generalizable graph neural network (GNN) approach
that combines the edge convolutional operator (EdgeConv) with
a graph attention (GAT) layer to classify dispersion patterns
in palladium on carbon (Pd/C) catalysts. Our method leverages
GNN s to operate directly on particle location data extracted from
scanning electron microscopy (SEM) images, thereby avoiding
reliance on image features that may introduce bias. The pro-
posed method offers an advantage over traditional image-based
approaches, which risk overfitting to visual characteristics of
the image that are unrelated to the spatial distribution of the
nanoparticles. We validate the performance of our GNN archi-
tecture on multiple Pd/C samples with distinct carbon support
types, achieving an accuracy of 89.84%, and demonstrate that
our approach can reliably identify dispersion defects. The results
highlight the potential of GNNs as a promising alternative for
structure-based analysis and quality assessment of nanomaterial-
based catalysts.

Index Terms—Heterogeneous Catalysts, Graph Neural Net-

works, Deep Learning, Scanning Electron Microscopy
ANOMATERIAL-BASED catalysts are a major class
Nof heterogeneous catalysts, widely used in chemistry,
industry and medicine [1], [2]. They primarily consist of metal
nanoparticles dispersed on a solid support, forming active sites
that facilitate organic chemical reactions. Differentiated by the
type of metal or metal alloy nanoparticle, as well as by the
nature of the support material (ranging from carbon to various
oxides such as silica), they exhibit tunable catalytic properties
that can be optimized and tailored for specific reactions.
Here, we focus on palladium metal on carbon support
(Pd/C) catalysts, which are primarily used in carbon-carbon
coupling reactions (C-C coupling) and hydrogenation pro-
cesses to efficiently synthesize a wide range of organic com-
pounds [3], [4]. There exists a great variability among Pd/C
catalysts, depending on both the metal and the characteristics
of activated charcoal support used. Such factors as palladium
oxidation, dispersion of the nanoparticles, water content and
the support structure play a great role in the reactivity of
the catalyst [5]. Optimization of these parameters can lead to

improved reaction efficiency, greater selectivity, and enhanced
catalyst stability across a great range of synthetic applications.

I. INTRODUCTION
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The dispersion of nanoparticles on the carbon support can
be analyzed using scanning electron microscopy (SEM) [6].
The Pd/C morphology may range from a mostly uniform
distribution of palladium nanoparticles to the formation of
ordered structures arising from imperfections in the support
[7]. In such cases, nanoparticles can, for example, nucleate
along grain boundaries or pore edges, leading to non-uniform
distributions of active sites. These structural irregularities can
negatively impact the catalytic efficiency and consistency.

This work proposes a generalizable and robust deep learning
approach for detecting nanoparticle dispersion defects in Pd/C
catalysts based on a novel graph neural network with edge
convolutional operator (EdgeConv) [8] and a graph attention
(GAT) layer [9]. We address limitations of existing techniques
by leveraging graph neural networks to classify catalysts based
on nanoparticle spatial arrangements and geometrical patterns.
By working solely with particle location data, we aim to
eliminate potential biases introduced during image acquisition
or sample preparation. Additionally, we evaluate our model
on Pd/C samples with an alternative carbon support type to
demonstrate its effectiveness under real-world variations in
material composition.

This paper is structured as follows. Section II reviews
related research involving deep neural networks. Section III
introduces the dataset and data preparation process, followed
by a description of the graph neural network (GNN) architec-
tures and the training scheme. In Section IV, we outline the
evaluation metrics, present model performance, and compare
our approach with alternative methods. Section V concludes
our paper and provides a brief discussion.

II. RELATED WORK
A. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have been success-
fully applied to problems with an underlying grid-like (i.e.,
Euclidean) data structure, particularly in image processing,
speech recognition, classification, and image segmentation
[10]. Recent applications of CNNs include bone age evalu-
ation from X-ray images to support diagnosis and treatment
planning for various disorders [11]; olive disease classification
using an adaptive ensemble of two EfficientNet-BO models,
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which improves state-of-the-art accuracy on a publicly avail-
able dataset [12]; and semantic segmentation of complex urban
street scenes for autonomous driving, where models such as
MobileNet and ResNet50 are used as encoders in the U-Net
architecture [13].

In the field of heterogeneous catalysis, CNNs have been ap-
plied to nanoparticle segmentation and tracking under reactive
conditions [14]. CNN architectures such as U-Net [15], which
consists of two paths (a contracting path and an expansive
path) and employs a training strategy that heavily relies on
data augmentation, have been shown to make more efficient
use of limited annotated samples. U-Net has been used to
analyze transmission electron microscopy (TEM) images and
videos, along with other architectures [16], [17]. Additionally
CNNs have been used for automated analysis to identify the
number of defects and to define anchoring and segmentation
in the study of high-entropy metal nanoparticles [16]. More
recent state-of-the-art models, such as Segment Anything
Model (SAM) [18], have also been employed to aid in the
quantification and analysis of nanoparticles [19].

CNNs have been further used to analyze SEM images of
Pd/C catalysts for the purpose of classification of nanoparticle
dispersion defects, distinguishing between defective and non-
defective morphology [20]. While high classification accuracy
(> 90%) was reported, the dataset was limited in size, and
the models were not evaluated on independent samples. As a
result, the models were shown to differentiate between spe-
cific sample identities rather than between dispersion patterns
themselves. In this work, we aim to overcome these limitations
by developing a more generalizable method.

B. Graph Neural Networks

For problems involving data that does not exhibit a regular
grid-like structure, such as point clouds or molecular struc-
tures, the data can instead be modeled as graphs [21]. Graph
Neural Networks (GNNs) represent each data point as a vertex
in a graph and construct edges based on neighborhood relation-
ships. Spatial GNNs define message-passing and aggregation
operations directly over a node’s neighborhood in the input or
feature space.

In the message-passing mechanism, each node updates its
representation by receiving and aggregating information (or
"messages") from its neighboring nodes, often using learnable
functions such as multilayer perceptrons (MLPs). This process
allows nodes to iteratively encode both local geometric struc-
ture and other features from their spatial context. Pooling is
often used to coarsen the graph or summarize neighborhood
information, followed by task-specific layers - such as fully
connected layers for classification or regression tasks [22].

Simonovsky and Komodakis [21] generalized the convolu-
tion operation from traditional CNNs on regular grids to arbi-
trary graphs. Their approach constructs deep neural networks
for graph classification by treating each point as a vertex and
connecting it to its neighbors via directed edges.

Building on this idea, Wang et al. [8] proposed the Dy-
namic Graph CNN (DGCNN) architecture, where the graph
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Fig. 1. Image A (on the left) shows an example of a disordered nanoparticle
distribution, while Image B (on the right) illustrates nanoparticles forming
ordered patterns.

is constructed in the feature space and dynamically updated
at each network layer. At its core, DGCNN uses the edge
convolutional operator (EdgeConv), which applies an MLP
as a feature learning function over edges, followed by an
aggregation function that combines information from each
point’s neighbors.

While GNNs are primarily used for analyzing point clouds
[22], they have also found broader application in fields such
as molecular modeling and physical system prediction [23].
GNNs have recently been applied to heterogeneous catalysis,
including reaction modeling [24] and catalyst screening via
binding energy prediction [25]. GNNs have also been applied
to graph classification tasks, particularly for predicting the
overall toxicity of molecular structures. To improve gener-
alization with limited labeled data, Few-Shot Learning tech-
niques have been incorporated alongside models such as Graph
Isomorphism Networks (GINs) and multi-headed attention
mechanisms [26].

III. MATERIALS AND METHODS

This section describes and analyzes the dataset, and intro-
duces the proposed graph neural network (GNN) architecture
used in this work.

A. Dataset

The dataset used in this study [7] consists of 1000 scan-
ning electron microscopy (SEM) images collected from five
different Pd/C catalyst samples. Despite its limited sample
size, the dataset encompasses a range of support materials,
imaging magnifications, and spatial sampling regions, aiming
to provide representative variability across Pd/C catalysts.
The dataset includes three types of carbon supports: graphite
powder, nanoglobular carbon, and pressed graphite bars. Each
image was labeled as either containing ordered or disordered
nanoparticle distributions. An example of both distributions is
presented on Figure 1. A summary of the images per sample
in the dataset is shown in Table I.

TABLE I
OVERVIEW OF THE PD/C SAMPLES IN THE DATASET [7].

Sample Images Ordered Support Subset

S1 687 Yes Graphite powder  Train. / Val.

S2 63 Yes Graphite powder Testing

S3 185 No Nanoglobular C Train. / Val.

S4 50 No Graphite bars Testing

S5 15 No Graphite bars Testing
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Fig. 2. T-SNE visualization of features extracted by ViT-L from the images in
the dataset. Samples marked with dots contain spatially ordered nanoparticles,
while samples marked with diamonds are disordered. While most samples are
relatively similar visually, S3 is a clear outlier.

To explore visual similarities within the dataset, we extract
image features using a deep learning model pretrained on a
large-scale image dataset. These features are then projected
into a lower-dimensional space using t-distributed stochas-
tic neighbor embedding (t-SNE), a non-linear dimensionality
reduction technique commonly used for visualizing high-
dimensional data [27]. For this purpose, we use a Vision
Transformer (ViT) [28] pretrained using the self-supervised
DINOvV2 method on LVD-142M [29]. DINOvV2 trains vision
models without the need for labeled data by encouraging
consistency between different augmented views of the same
image, enabling the model to learn embeddings that capture
semantic and structural information in its latent feature space.
This approach is particularly suitable for our task, as it enables
meaningful feature extraction without requiring task-specific
fine-tuning.

The resulting t-SNE visualization of the dataset is shown in
Figure 2. The images are clustered primarily based on their
visual characteristics, rather than the spatial arrangement of
the nanoparticles. These visual characteristics are primarily
determined by the type of sample support (background). At
this scale, graphite powder (samples S1 and S2) appears
visually similar to graphite bars (samples S4 and S5), while
nanoglobular carbon (sample S3) looks distinctly different and
forms a separate cluster. This highlights how deep learning
models trained on the dataset can be influenced by the vi-
sual features introduced by the support material, rather than
focusing solely on the spatial distribution of nanoparticles.

B. GNN Architecture

Since our data consists of two-dimensional projections of
nanoparticle positions extracted from SEM images, we base
our GNN models on architectures commonly used for point
cloud analysis. Although the actual particle arrangements are
three-dimensional, their projections still encode meaningful
spatial structure.

The first step in such models is the construction of a
directed graph G = (V,€&) from the given positions. Here
V ={1,...,n} denotes the n nodes and £ C V x V denotes
the set of edges. We construct a k-nearest neighbors (k-NN)
graph to accomplish this task, setting k = 6 to balance graph
complexity with computational efficiency.

Our base model employs the edge convolutional operator
(EdgeConv) [8], which computes edge features for each node
x; by aggregating information from its neighborhood N (4):

> he(xillx; —xi), Q)

JEN(3)

r_
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Here the x variables are the 2D spatial coordinates of
particles and he is a learnable function implemented as a
multilayer perceptron (MLP). Max pooling is used to aggre-
gate information across neighbors. Following the Dynamic
Graph CNN (DGCNN) architecture [8], multiple EdgeConv
layers can be stacked to learn hierarchical features. However,
to avoid problems caused by excessive Laplacian smoothing
[30], we use a shallow model with only two EdgeConv layers.
As more layers are added, the features of neighboring nodes
become increasingly similar, and the representation across the
entire graph converges to a single value. This erases important
local differences, harming performance. After the EdgeConv
layers, the outputs are concatenated and pooled globally before
passing through a final MLP for binary classification.

To mitigate the effects of Laplacian smoothing in deeper
graph architectures, we also propose a hybrid model architec-
ture where the deeper EdgeConv layer is replaced by a graph
attention (GAT) layer [9]:

/!
X; = E

JEN (Ui}
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In this operator, the transformed features ®;x; of neigh-
boring nodes are weighted by attention coefficients o j,
which are learned via an additive attention mechanism. In our
architecture, the first EdgeConv layer captures local geometric
relationships by operating on an initial k-NN graph. A new k-
NN graph is then reconstructed based on the learned features.
The subsequent GAT layer models higher-order dependencies
on this updated graph by assigning learnable, context-aware
weights to neighboring nodes. This dynamic attention mecha-
nism reduces over-smoothing and improves the model’s ability
to focus on the most informative neighbors. The features are
then concatenated and pooled as before. An overview of both
models is provided in Table II.

IV. EXPERIMENTAL EVALUATION
A. Data Preprocessing

While both the image resolution (1280x890) and overall
dataset size were sufficient for training, validation, and testing
of deep learning models, the number of distinct samples was
relatively limited. To ensure that the models learn to recognize
nanoparticle ordering (rather than relying on sample-specific
characteristics or substrate structure) we partitioned the data by
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TABLE II
PROPOSED GNN ARCHITECTURES, WITH LAYER SHAPE DESCRIBING THE NUMBER OF NEURONS PER LAYER.

DGCNN Model

EdgeConv + GAT Model

Layer Type Layer Shape Layer Type Layer Shape
EdgeConv 4, 64, 64, 128 EdgeConv 4, 64, 128, 256
EdgeConv 256, 128, 128, 256 GAT 256, 64 (4 heads)

Concat. + Pooling - Concat. + Pooling -

Global MLP 384, 256, 128 Global MLP 512, 256, 128

Dense (MLP) 128, 64, 2 Dense (MLP) 128, 64, 2

>

Fig. 3. Example SEM image (left) from sample S1 along with the detected
particle locations (right). The nanoparticles form ordered structures.

sample. Samples S1 and S3, which contain the most images,
were used for training and validation in an 80/20 split, while
the remaining samples (S2, S4, and S5) were reserved for
testing. This ensures a more robust assessment of model, and
prevents classification based on the sample features alone.

To prepare our data for GNNs, we extracted nanoparticle
coordinates from each image. While CNN-based methods
have previously been used for nanoparticle segmentation [14],
[16], [17], [19], classical methods have been shown to pro-
duce acceptable results in nanoparticle detection [31]. We
opted for a more computationally efficient classical approach
based on the Simple Blob Detection algorithm [32]. This
method uses intensity thresholding and contour filtering to
identify particles. Contours were filtered by size and brightness
to isolate small, bright features corresponding to individual
nanoparticles. An example SEM image and the corresponding
extracted particle locations are shown in Figure 3.

B. Model Training

The models were trained using the cross-entropy loss func-
tion, optimized via the Adam algorithm [33]. A learning
rate of 1 x 107° was chosen to ensure stable convergence.
To prevent overfitting, we employed early stopping, halting
training if no improvement was observed in the validation
loss for 10 consecutive epochs. Training was performed with
a batch size of 64, where each input sample consisted of
512 particle locations, randomly selected from the full set
of detected particles in a given image. Batch normalization
and dropout were applied throughout the network to improve
generalization.

As previously noted, samples S1 and S3 were used for
training and validation. The remaining samples were held out
to evaluate the model on previously unseen data, ensuring
robustness to variations in material and avoiding bias. Nev-
ertheless, the training dataset introduced challenges related to
both class imbalance and structural bias. Firstly, the dataset

contained significantly more ordered distributions (687) than
disordered ones (185), making it imbalanced. Additionally,
sample S3 had a unique, globular structure, not present in
the other samples. This raised the risk that the model might
learn to associate specific support characteristics with disorder,
rather than focusing on the actual nanoparticle arrangement. To
address these problems, we applied several data augmentation
techniques:

o Disordered data generation - additional disordered par-
ticle distributions were synthetically generated, to address
the class imbalance. Particle positions were initialized on
a regular grid and then perturbed by adding noise drawn
from a uniform distribution.

o Geometric transformations - particle coordinates were
flipped horizontally and vertically, rotated.

« Jittering - small random perturbations were added to
particle positions with a fixed probability.

These augmentation strategies aimed to diversify the train-
ing data and reduce overfitting to specific samples or support
types, improving the model’s ability to generalize to new Pd/C
samples.

C. Evaluation Metrics

To assess the performance of our models, we have used
typical binary classification metrics such as accuracy, recall,
precision and F1 Score (harmonic mean of recall and pre-
cision). These metrics can offer complimentary insights into
the performance of the model. In our experiments, ordered
distributions were treated as the positive class, and disordered
distributions as the negative class. In our context, both false
positives and false negatives can be problematic, therefore
special attention is given to the balance between precision
and recall. The results can also be summarized on a confusion
matrix.

D. Model Performance

Following training, both architectures described in Table II
were evaluated on the held-out test samples: S2, S4, and SS5.
The results presented in Table III show that both models
perform well on new samples and support types, achieving
strong performance in classifying both ordered and disordered
distributions. The DGCNN model, utilizing only EdgeConv
layers, reached an accuracy of 85.16%. Our proposed hybrid
model, which combines EdgeConv and GAT layers, outper-
formed DGCNN with an accuracy of 89.84%. The correspond-
ing confusion matrices are shown in Figure 4, highlighting the
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TABLE III
GNN RESULTS ON THE TEST SET.

DGCNN | EdgeConv + GAT
Accuracy 85.16% 89.84%
Precision 84.38% 90.32%
Recall 85.71% 88.89%
F1 Score 85.04% 89.60%
DGCNN EdgeConv + GAT

Actual
Disordered

Ordered

Ordered
Predicted

Disordered

Ordered
Predicted

Disordered

Fig. 4. Confusion matrices for the GNN results on the test set. The
performance for both classes is very similar in both models. Out proposed
architecture outperforms DGCNN.

models’ balanced performance across both classes, as well as
the improvement achieved by our hybrid model.

E. Comparison With CNNs

Recent studies have shown that CNNs can achieve high
accuracy when applied to the classification of SEM images
of Pd/C catalysts [20]. However, we have raised concerns
that CNNs might learn visual sample and support structure
characteristics, rather than nanoparticle ordering. To test this
claim we have trained two CNN architectures on the dataset:
ResNet34 [34] and ConvNeXt [35]. Both models were trained
using a similar scheme as described for GNNs, however with
starting weights pretrained on the ImageNet [36] dataset with
a 224x224 input size.

The results on the training, validation and testing sets are
presented in Table IV. Although both CNNs achieved excellent
performance on the training and validation data, they failed
to generalize to new samples and carbon support types, with
test accuracy dropping to 49.22%. As such, their use in real-
world scenarios may be limited. CNNs classified all testing
images as containing ordered nanoparticle patters, which can
be explained as being due to the visual characteristics of the
carbon support in the testing images. Samples S4 and S5 use
graphite bars as the support, which in SEM images is more
visually similar to graphite powder (ordered samples S1, S2)
than to nanoglobular carbon present in the sample S3. This
conclusion is based on our previous t-SNE visualization of
the dataset, presented on Figure 2.

V. CONCLUSION

In this paper, we propose a novel geometric deep learning
approach for classifying dispersion patterns in palladium on
carbon (Pd/C) catalysts. Our method is based on graph neural
networks (GNNs) and operates directly on particle location

TABLE IV
CNN ACCURACY ON THE TRAINING, VALIDATION AND TESTING IMAGES.
ResNet34 | ConvNeXt
Train. 90.15% 94.22%
Val. 94.53% 98.44%
Test. 49.22% 49.22%

data extracted from scanning electron microscopy (SEM) im-
ages. This approach enables classification of catalysts based on
the spatial arrangement and geometrical patterns of nanopar-
ticles. As a result, it offers significant advantages over tradi-
tional image-based methods, which are prone to overfitting
due to irrelevant visual features unrelated to nanoparticle
distribution.

First, we present a Dynamic Graph CNN (DGCNN) archi-
tecture [8] applied to the classification of dispersion patterns
in Pd/C catalysts. Second, in order to mitigate the effects
of Laplacian smoothing in deeper graph architectures, we
introduce a hybrid deep learning model that incorporates a
Graph Attention (GAT) layer stacked on top of a EdgeConv
layer. These architectures are compared with standard convo-
lutional neural networks (CNNs), specifically ResNet34 [34]
and ConvNeXt [35].

The dataset we used in our study consists of 1000 scanned
electron microscopy (SEM) images collected from five differnt
Pd/C catalyst samples [7]. We tested our methods on multiple
Pd/C samples with distinct carbon support types to the ones
used in training, demonstrating that our proposed methods can
reliably detect dispersion defects under real-world variations
in material composition..

To assess the performance of the proposed deep learning
architectures (DGCNN [8], EdgeConv + GAT, ResNet34 [34],
and ConvNeXt [35]), we used standard binary classification
metrics, including accuracy, recall, precision, and F1 score.
Our results show that the hybrid model combining EdgeConv
and GAT layers outperforms the DGCNN, achieving an accu-
racy of 89.84% compared to 85.16% (see Figure 4 for details).
In contrast, the image-based CNNs, ResNet34 and ConvNeXt,
both achieved significantly lower accuracy scores of 49.22%
(see Table IV) on testing data.

These results demonstrate that both the DGCNN and our
proposed EdgeConv + GAT model outperform traditional CNN
architectures, with the hybrid model achieving the highest
accuracy among all tested methods. Overall, our findings
highlight the potential of graph neural networks as a powerful
alternative to image-based methods for structure-aware analy-
sis and quality assessment of nanomaterial-based catalysts.

In future work, our GNN architecture could be trained and
evaluated on a more diverse set of catalyst types. Depending on
the characteristics of the SEM images, this may also require
incorporating deep learning—based nanoparticle detection or
segmentation methods. Additionally, further research could
explore strategies for deepening the GNN architecture while
maintaining training stability and enhancing performance.
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