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Abstract—This paper explores the use of YOLOv11 and BoT-
SORT for detecting and tracking Rumex obtusifolius and Rumex
crispus in grasslands. Two models were developed: Model A
trained on the RumexWeeds dataset, and Model B, trained
using transfer learning with additional datasets. While Model
A performed well on its training data, it struggled in unseen en-
vironments. Model B showed improved generalisation, achieving
higher performance across diverse conditions and successfully
detecting Rumex longifolius in Norwegian grasslands.

Both models were integrated with BoT-SORT and achieved
high tracking metrics, supporting GPS-based mapping. Real-time
field testing confirmed feasibility, although detection was affected
by shadows, terrain, and camera placement.

The results highlight the importance of diverse training data
for robust weed detection. Future work should focus on expand-
ing datasets, tuning hyperparameters, and improving hardware
for reliable real-world deployment.

Keywords: Weed detection, AI, YOLO, Precision farming,
digital agriculture

I. INTRODUCTION

T
HE NEED for sustainable agricultural practices has be-
come increasingly urgent due to environmental chal-

lenges, rising input costs, and labour shortages. Traditional
weed control methods, especially herbicide use, pose sig-
nificant ecological risks such as biodiversity loss and water
contamination [1], [2], and reducing chemical input is a central
objective in EU-wide sustainability strategies [3].

Two very problematic weeds in European grasslands are
Rumex obtusifolius and Rumex crispus, which degrade pasture
quality and can negatively affect livestock health [4]. In
Norway and other Northern regions, Rumex longifolius is also
widespread, but remains understudied and absent from open-
access datasets [5].

The introduction of deep learning has significantly advanced
the field of automated weed detection in agriculture [6].
Several studies have demonstrated promising results using
CNNs and YOLO-based models, with applications ranging
from UAV mapping to close-range robotic systems [7], [8],
[9], [10], [11]. However, these systems often face challenges in
generalising across environments, due to variation in lighting,
scale, background conditions, and the high cost of collecting
annotated training data [6]. Despite these limitations, UAVs
and ground robots are becoming increasingly relevant for
precision weed control, with successful demonstrations of real-
time detection, herbicide application, and object tracking in
field settings [12], [13], [14].

Machine learning has enabled progress in automatic dock
detection using UAVs and ground robots. For example, Anken
et al. [15] used CNNs to detect 90% of R. obtusifolius, while
Valente et al. [16] achieved reliable UAV-based detection.
Güldenring et al. [17] demonstrated successful detection of R.

obtusifolius and R. crispus using YOLOvX. However, models
trained on limited datasets often fail to generalise across
varying environments, lighting, and species [15], [17].

This paper, part of the SUSDOCK project [18], addresses
the lack of data from Northern environments and aims to
improve species-specific weed control. The work focuses
on detecting dock weeds using deep learning and evaluates
generalisation to R. longifolius and unseen field conditions.

Main contributions

• Developed a convolutional neural network to detect R.

obtusifolius and R. crispus using open-access datasets.
• Assessed model generalisation to R. longifolius and new

environments, with and without additional labelled data.
• Explored the use of object tracking and GPS-based map-

ping to localise dock occurrences.
• Tested the model on a robotic platform to demonstrate

feasibility for real-time weed detection.

II. METHODOLOGY

This paper follows a structured workflow to ensure a sys-
tematic and reproducible approach from data acquisition to
analysis. This section outlines the key stages of the process.

The project began by randomly splitting the dataset into
training, validation, and test sets. The YOLOv11 object detec-
tion model was trained on the training set and validated on the
validation set. After training, the model was evaluated on the
test set using standard object detection metrics. This model is
referred to as Model A throughout the remainder of this paper.

To assess generalisation, Model A was also tested on three
previously unseen datasets, two of which were annotated.
These two labelled datasets were then merged with the original
training data and used to retrain the model using the best1

weights from the initial training. This model will be referred
to as Model B. This step aimed to explore whether performance
could be improved with additional diverse data.

The next stage of the workflow involved tracking and
spatial analysis using BoT-SORT, which was applied to dataset

1The best weights defined by the Ultralytics implementation during model
training.
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sequences. This enabled the counting of dock species and
mapping of their GPS locations. The tracking performance
was then evaluated using established metrics for multi-object
tracking. Lastly, Model B was tested on a real-time robotic
platform.

A. Software and Hardware

The primary software used in this paper was Python (version
3.9.21) [19], with all scripts written in standard .py files.

Due to the computational demands of object detection,
local hardware was deemed insufficient. Instead, remote access
to the High-Performance Computing (HPC) cluster Orion,
provided by NMBU, was used. Orion consists of 1,680 pro-
cessor cores, 12 terabytes of RAM, and 1 petabyte of storage,
accessible via a 10Gbit/s network. The operating system
is CentOS Linux 7.9. Jobs on Orion were submitted using
SLURM (Simple Linux Utility for Resource Management)
by creating batch scripts with the sbatch command. These
scripts define the resource allocation for each job.

B. The Datasets

The primary dataset used to train Model A was the
RumexWeeds dataset. Three additional external datasets were
used to evaluate the model’s ability to generalise to unseen
environments. Two of these, the Open Plant Phenotyping
Database and the UAV High-Resolution images, were also
used for training Model B, to assess if this improved gen-
eralisation to new data. An overview of the datasets and their
usage is shown in Table I.

RumexWeeds Dataset: The RumexWeeds dataset [17] con-
tains images of Rumex obtusifolius and Rumex crispus. It
consists of 5,510 RGB images with 15,519 manually annotated
bounding boxes — 81% for R. obtusifolius and 19% for R.

crispus. Data was collected at three locations in Denmark, with
two of them undergoing two recording sessions, resulting in
five distinct sessions under varying environmental conditions.
The recording sessions took place during August, September,
and October. Notably, this dataset does not contain Rumex

longifolius, Norway’s most common dock species.
Images were captured using a robotic platform equipped

with an RGB camera mounted 1m above the ground at a 75◦

angle. Each image has a resolution of 1920 × 1200 pixels.
The robot also carried GNSS, IMU, and odometry sensors,
enabling accurate georeferencing and motion tracking.

Open Plant Phenotyping Database: The Open Plant Phe-
notyping Database [20] was used to evaluate Model A and
for training and evaluation of Model B. This public dataset
includes 7,590 RGB images representing 47 plant species,
all recorded in Denmark during September and October. Of
these, 140 images contain Rumex crispus, with 6,672 bounding
boxes. The plants were grown in containers designed to
mimic natural growth conditions. The Rumex samples were
photographed 1–3 times daily from seedling emergence to full
leaf stage. The camera was positioned directly above the boxes
at a height of 1.7m.

UAV High-Resolution Images: The Unmanned Aerial Vehi-
cle (UAV) High-Resolution Images dataset [16] consists of
three images captured in Germany in April using a drone
at altitudes of 10m, 15m, and 30m. The image captured at
30m was excluded due to insufficient resolution for reliably
detecting weeds. The images taken at 10m and 15m were
divided into tiles with a resolution of 640 × 640 pixels.
This process resulted in 316 images, with 610 annotated
bounding boxes containing R. Obtusifolius. As the Open Plant
Phenotyping Dataset, this dataset was used to evaluate Model
A and to train and evaluate Model B.

Rumex in Norwegian Grasslands: The last dataset consists
of 217 unannotated images captured in Norway’s various
environments, lighting conditions, and camera angles. This
is not an open-access dataset, but is provided for this paper
through the SUSDOCK project [18]. The images contain
mostly Rumex longifolius, the most common dock species
in Norway. Although the model was trained on other Rumex

species, R. longifolius shares similar characteristics in natural
grassland settings. This dataset was used to visually assess
whether the model could detect docks in Norwegian environ-
ments. Four images will be focused on that both contain R.

longifolius.
1) Data Preprocessing: YOLOv11 requires input data

in the YOLO format, thus the original formats of the
RumexWeeds, Open Plant Phenotyping, and UAV High-
Resolution datasets were converted accordingly. A .yaml

configuration file is also required, defining the paths to the
images, label files, and a dictionary of class names.

YOLOv11 expects one label file corresponding to each im-
age in the dataset, containing information about the bounding
boxes. One bounding box is represented with the class ID, x-
and y-coordinates for the centre of the box, and the width
and height. There can be several bounding boxes in each
annotation file.

The RumexWeeds dataset was randomly split into training,
validation, and testing subsets, with 70%, 10%, and 20%
allocated to each, respectively. The class distribution was
stratified to ensure it was balanced across all splits. For training
Model B with new datasets, the training and validation were
combined with 80% of the Open Plant Phenotyping data and
80% of the UAV High-Resolution Images into the training set,
and the rest of the RumexWeeds dataset was combined for the
test set. This resulted in 80% training data and 20% test data.
The reason for this change is the limited data on the Phenotype
and UAV datasets.

For Multi-Object Tracking, randomly selected images are
not suitable; instead, continuous video sequences are required.
Therefore, all the sequences from one recording session of
the RumexWeeds dataset were turned into one video for
each sequence. The videos were annotated with tracking IDs
necessary for the MOT metrics, in MOT16 format [21]. Due
to the task’s time-consuming nature and limited available time,
only one recording session was annotated. A total of 580
annotated images were chronologically sorted, with bounding
boxes visually matched to their corresponding objects and
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TABLE I: Overview of datasets used, with the number of images, bounding boxes, and their intended usage.

Dataset Images Bounding Boxes Annotated Usage

RumexWeeds [17] 5,510 15,519 Yes Train Model A and
Model B

Open Plant Phenotyping
Database [20]

140 6,672 Yes Validate Model A,
train Model B

UAV High-Resolution
Images [16]

323 610 Yes Validate Model A,
train Model B

Rumex in Norwegian
Grasslands

217 0 No Validate Model A
and Model B

TABLE II: Modified hyperparameters for YOLOv11 training.

Hyperparameter Default Modified

Value

Reason

epochs 100 150 Allows the model more
time to converge and po-
tentially improve perfor-
mance

batch 16 8 Smaller batch size can en-
hance generalisation and
reduce overfitting, espe-
cially with limited data

dfl 1.5 2 Increases the impact of Fo-
cal Loss to better address
class imbalance

manually assigned tracking IDs.

C. YOLOv11

For object detection, the YOLOv11 was selected. This
YOLO version comes in sizes nano, small, medium, large

and x large. Small was chosen for this paper due to its
balance between speed and accuracy. The model was utilised
through the Ultralytics implementation, which offers a high-
level Python API for training, validation, and inference [22].

By default, the Ultralytics implementation uses pre-trained
weights from the COCO (Common Objects in Context)
dataset, which contains 80 object classes. These weights help
improve training efficiency and accuracy when working with
custom data. Another default setting is data augmentation.
In addition to regular data augmentation, YOLO implements
mosaic augmentation.

The default hyperparameters provided by Ultralytics include
preprocessing steps such as image resizing and pixel value
scaling. Given that hyperparameter tuning is time-consuming
and the YOLOv11 creators have already invested significant
effort in optimising the defaults, this paper primarily relied on
those standard settings. However, some key parameters were
adjusted to better align with the dataset’s characteristics, as
shown in Table II.

Ultralytics also simplifies evaluation by providing built-in
support for standard object detection metrics. For this project,
the evaluation metrics were inference speed, precision, recall,
mAP50, and mAP50-95.

D. BoT-SORT

BoT-SORT was used for object tracking, as it is the default
multi-object tracker in the Ultralytics pipeline. BoT-SORT,

Fig. 1: Extraction from the tracking video, showing a frame
with three detected Rumex obtusifolius plants, annotated with
tracking IDs 47, 49, and 52. The boxes also display class
names and detection confidence scores.

with the trained YOLOv11 model as the detection algorithm,
was applied to the videos, one for each sequence in the record-
ing session. The output included bounding boxes with unique
tracking IDs across frames, forming annotations in MOT16
format and a video visualising the tracked detections. A frame
from the tracking video is shown in Figure 1, highlighting how
detected objects are assigned consistent tracking IDs.

Tracking IDs were used to associate detected objects with
their corresponding GPS coordinates from the RumexWeeds
dataset. These locations were visualised using matplotlib for
static plots and folium for interactive maps. The ground truth
distribution in the interactive map is shown in Figure 2. When
pressing the points in the interactive map, information about
what Rumex type it is will appear: red points for R. crispus and
green points for R. obtusifolius. In addition, the total number
of tracked instances was used to estimate the number of R.

obtusifolius and R. crispus plants.
BoT-SORT was applied to shorter annotated video se-

quences to evaluate the tracking performance. The output
detections in the MOT16 format were compared to the ground
truth using the py-motmetrics library [23]. A challenge in
evaluating tracking is that the tracker may assign different
object IDs than those in the ground truth. The evaluation
addresses this challenge by mapping the tracking IDs based
on Intersection over Union (IoU), requiring a threshold of
0.5 or higher. This ID alignment ensures that metrics such
as IDF1 and MOTA accurately reflect tracking performance,
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Fig. 2: Ground truth GPS coordinates of dock plants in the
RumexWeeds dataset. Each green point represents R. obtusi-

folius and each red point represents R. crispus.

Fig. 3: A picture of the robot whilst driving in the field.

rather than being skewed by identity mismatches. The tracking
performance was assessed using the three key metrics MOTA,
MOTP and IDF1.

E. Real-Time Robotic Platform – A Proof of Concept

To test the feasibility of applying the model in a robotic
setting, Model B was selected for deployment. The test was
conducted in a field located in Askim, Norway, which contains
a high density of R. longifolius plants.

The robot was equipped with a Logitech C920s Pro HD
webcam, positioned approximately 30 cm above the ground at
an angle of 30◦. The camera has a resolution of 1920× 1080

pixels and was connected to a MacBook for simplicity and
mobility. A picture of the robot while driving in the field is
shown in Figure 3.

The output from the test consisted of a video showing
the predicted bounding boxes, along with their confidence
scores and assigned tracking IDs. An example of a frame from
the video, without any bounding boxes, is shown in Figure
4. Additionally, a text file was generated containing frame-
by-frame information, including tracking IDs, bounding box
coordinates, and confidence values.

Limitations: Due to limited time and resources, several con-
straints affected the proof-of-concept test. First, the webcam
used was not optimal for field robotics applications, but was
selected for its immediate compatibility with the MacBook.
Second, the real-time detection code was not fully optimised

Fig. 4: An example frame from the robot during recording.

for the camera settings, leading to performance limitations.
Furthermore, the vision system was not physically integrated
into the robot’s control system, as full hardware integration
would have required more development time than the project
timeframe allowed. Finally, no GPS module was connected
to either the MacBook or the robot, meaning that no spatial
localisation data was recorded during the test.

The terrain in the field was bumpy, resulting in the robot’s
inconsistent driving speed. Due to the camera’s mounting po-
sition, large portions of the surrounding landscape, including
the sky and nearby objects, were captured in many frames.
Furthermore, shadows from the robot, the operators, and the
low sun position affected the image quality.

However, this is only a proof-of-concept, which means
the conditions does not need to be ideal. In spite of these
limitations, the tests will still be able to tell the feasibility of
the model in a robotic setting.

III. RESULTS AND DISCUSSION

A. Object Detection Performance: Model A

Table III shows the evaluation metrics for Model A, trained
solely on the RumexWeeds dataset. The model performed well
on the training domain, with a high precision of 0.922, a recall
of 0.887, and mAP values of 0.949 for mAP50 and 0.703 for
mAP50-95. The lower mAP50-95 reflects the model’s reduced
localisation precision across varying IoU thresholds. On the
external Phenotype and UAV datasets, performance declined
substantially. While precision remained relatively moderate
on the Phenotype data with a value of 0.714, recall dropped
significantly to 0.001. The UAV dataset showed poor perfor-
mance across all metrics. This demonstrates a considerable
drop in performance when external data is evaluated. The
inference speed is consistent for all three datasets, ranging
from 2.761ms for the RumexWeeds dataset, 3.450ms for the
Phenotype dataset and 5.025ms for the UAV dataset. The
inference was measured on an HPC, which is significantly
faster than typical robotic platforms. The Phenotype and UAV
datasets showed slower speeds, likely due to more complex
images or larger input sizes. These differences should be
considered when deploying the model on resource-constrained
platforms.
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TABLE III: Detection performance of Model A on the validation sets. Results are reported for three datasets: RumexWeeds,
Phenotype, and UAV. Metrics include inference speed (ms per image), precision, recall, and mAP50 and mAP50-95.

Dataset Inference Speed (ms) Precision Recall mAP50 mAP50-95
RumexWeeds 2.761 0.922 0.887 0.949 0.703

Phenotype 3.450 0.714 0.001 0.359 0.198
UAV 5.025 0.015 0.051 0.015 0.009

Fig. 5: Training curves for Model A. The plots show the
progression of precision, recall, mAP50, and mAP50-95 over
150 epochs on the RumexWeeds dataset. The model converged
steadily across all metrics.

Figure 5 presents the training curves for Model A over
150 epochs. The plots illustrate the progression of precision,
recall, mAP50, and mAP50-95 throughout training on the
RumexWeeds dataset. All four metrics showed a rapid increase
during the initial epochs, particularly up to around epoch
50, followed by a more gradual improvement and eventual
stabilisation near epoch 100. The curves began at moderate
values, with precision, recall, and mAP50 starting between 0.2
and 0.4 suggesting that COCO pretraining provided a strong
foundation, while mAP50-95 starts lower, around 0.1. Some
fluctuations are observed, likely due to the small batch size,
but overall, the trends indicate convergence.

Figure 6a and Figure 6b present the precision– and re-
call–confidence curves for Model A. The model demonstrated
consistently high precision across a broad range of confidence
thresholds for both classes, though slightly higher for R.

crispus. In contrast, recall values were initially high but
declined more sharply as confidence increased. This matches
the observation of a lower mAp50-95 score, meaning the
model prioritised accurate predictions over broader detection
coverage, leading to missed detections or less precise bounding
boxes at stricter thresholds. Fine-tuning the confidence thresh-
old could improve the balance between recall and precision.
The curves followed similar trends for both R. obtusifolius and
R. crispus, with slightly lower recall observed for R. crispus,
unlike precision.

(a) Precision-confidence curves
for Model A.

(b) Recall-confidence curves for
Model A.

Fig. 6: Precision and recall confidence curves for Model
A, showing performance for R. obtusifolius, R. crispus, and
combined class scores.

Fig. 7: Precision–recall curve for Model A. The model
achieved a high average precision for both R. obtusifolius

(0.957) and R. crispus (0.941), with a combined mAP50 of
0.949.

The corresponding precision–recall curve is shown in Figure
7. The model achieved a combined mAP50 of 0.949 across
both target classes. The curve demonstrates that precision re-
mains high as recall increases, particularly for R. obtusifolius,
which achieved a slightly higher average precision than R.

crispus, at 0.957 and 0.941 respectively. The curves for both
classes followed a similar shape, with minimal divergence
across most recall values. The different performances on R.

obtusifolius and R. crispus, is likely due to dataset imbalance,
where 81% of annotations were R. obtusifolius vs. 19% R.

crispus. Although focal loss was used to mitigate this, it did
not fully offset the imbalance. To improve this, more R. crispus

images should be annotated, and targeted data augmentation
may also help.

While performance on RumexWeeds was strong, Model
A’s performance dropped significantly on the Phenotype and
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UAV datasets. This is likely due to visual domain differences:
RumexWeeds images were collected under consistent, ground-
based conditions, whereas the external datasets varied in angle,
scale, lighting, background, and plant stage. These unfamiliar
conditions reduced generalisation. The limited number of
R. crispus examples further hindered generalisation to new
conditions. These results reflect a common deep learning
issue: strong performance on training data does not guarantee
robustness in new settings. Fine-tuning the model with images
better matching target deployment conditions could improve
generalisation.

B. Object Detection Performance: Model B

Table IV presents the detection performance of Model B,
which was trained using transfer learning on a combination
of three datasets. On the combined validation set, the model
achieved an inference speed of 2.335 ms, a precision of 0.932,
a recall of 0.873, an mAP50 of 0.930, and an mAP50-95
of 0.688. Performance on the RumexWeeds dataset remained
strong, with precision, recall, and mAP values comparable
to those of Model A. Notably, Model B showed substantial
improvements on the external datasets. For example, the
Phenotype dataset reached a precision of 0.934, a marked
increase compared to Model A. However, when compared
to the RumexWeeds dataset, the two new datasets exhibited
slightly lower values for recall, mAP50, and mAP50-95, and
a higher inference speed.

Model B achieved slightly better mAP50 and mAP50–95
on RumexWeeds than Model A, suggesting that base perfor-
mance was maintained or improved, partly due to extended
training. Still, mAP50–95 scores lagged behind mAP50 across
all datasets, indicating that precise localisation remains a
challenge.

The inference speed of the combined dataset were similar
to the RumexWeeds, likely due to the large proportion of
RumexWeeds images. The Phenotype and UAV datasets ran
slower at 4.444ms and 3.500ms, respectively. As with Model
A, slower speeds may be due to increased image complexity
or resolution. Interestingly, UAV was faster than Phenotype in
Model B, reversing the pattern from Model A, possibly due
to retraining effects or dataset changes.

Figure 8 shows the training curves for Model B over 150
epochs. As with Model A, the plots display the progression
of precision, recall, mAP50, and mAP50-95. The values
increased rapidly during the early stages of training and
stabilised after approximately 50 epochs. The curves started
at relatively high values, with precision, recall, and mAP50
beginning between 0.75 and 0.9, while mAP50-95 starts lower,
around 0.6. This is typical in transfer learning, where early
CNN layers retain useful low-level features. The consistent
structure of dock weeds across datasets helped the model learn
new features efficiently.

Figures 9a and 9b show the confidence-based precision and
recall curves for Model B. In the precision curve, precision
remained consistently high across the entire confidence range
for both R. obtusifolius and R. crispus. The recall curve

Fig. 8: Training curves for Model B, which was trained using
transfer learning on a combined dataset (RumexWeeds, Phe-
notype, and UAV). The plots show the evolution of precision,
recall, mAP50, and mAP50-95 over 150 epochs.

(a) Precision-confidence curves
for Model B.

(b) Recall-confidence curves for
Model B.

Fig. 9: Precision and recall confidence curves for Model
B, showing performance for R. obtusifolius, R. crispus, and
combined class scores.

showed that recall is highest at lower confidence thresholds
and decreases steadily as the confidence increases. Recall for
R. crispus drops more rapidly than for R. obtusifolius.

The precision–recall curve in Figure 10 shows that Model
B achieves an mAP50 of 0.930. Average precision for R.

obtusifolius is 0.953, while R. crispus reaches 0.907. The
class-wise curves follow a similar shape, with high precision
across most recall levels. These patterns closely mirror those
observed for Model A.

Model B was trained using transfer learning from Model
A, with additional labelled data from the Phenotype and
UAV datasets. It showed strong detection performance on the
combined dataset and improved results on the external datasets
compared to Model A. As shown in Table IV, precision,
recall, and mAP scores increased significantly on both external
datasets, reflecting greater robustness to varied image condi-
tions. This improvement stems from the added data diversity
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TABLE IV: Detection performance of Model B on the validation sets. Model B was trained using transfer learning with
data from RumexWeeds, Phenotype, and UAV datasets. Metrics include inference speed (ms per image), precision, recall, and
mAP50 and mAP50-95.

Dataset Inference Speed (ms) Precision Recall mAP50 mAP50-95
Combined Data 2.335 0.932 0.873 0.930 0.688
RumexWeeds 2.259 0.946 0.888 0.959 0.733

Phenotype 4.444 0.934 0.765 0.836 0.607
UAV 3.500 0.879 0.775 0.836 0.560

Fig. 10: Precision–recall curve for Model B, trained using
transfer learning. The model achieved strong performance on
R. obtusifolius (0.953) and slightly lower average precision on
R. crispus (0.907), with a combined mAP50 of 0.930.

and the benefits of transfer learning, where Model A’s weights
provided a solid starting point.

C. Generalisation to Norwegian Grasslands

Detection results were visualised on images collected from
Norwegian grasslands containing mostly Rumex longifolius to
evaluate how well the models generalise to unseen environ-
ments and species. Four images were selected, each shown
with predicted bounding boxes from both Model A and Model
B.

In the examples, both models identified dock plants in varied
settings, including dense vegetation and challenging lighting
conditions. Some variation in the number and classification of
detections can be observed between the two models. Predic-
tions included both R. obtusifolius and R. crispus labels.

Figures 11 and 12 show detection results in scenes with vi-
sual complexity. These images contain background distractions
such as shoes, camera equipment, and uneven lighting, making
the detection task more difficult. The Rumex longifolius plants
are not immediately noticeable even to the human eye. In
Figure 11, Model A produced a single prediction in a bright
area near a camera leg. In contrast, Model B identified a R.

crispus leaf, though the prediction has low confidence and
is accompanied by a duplicated bounding box. In figure 12
Model A detected a central plant as R. crispus with a con-
fidence of 0.69. Model B also identified this plant, but with
slightly lower confidence. Additionally, Model B predicted two
extra detections with low confidence in areas where no dock
plants are visible. It also detected a plant in the upper left with
0.54 confidence, which Model A missed entirely.

TABLE V: BoT-SORT tracking metrics for Model A and
Model B. Metrics include Multiple Object Tracking Accuracy
(MOTA), Precision (MOTP), and IDF1.

Model MOTA MOTP IDF1
Model A 0.894 0.893 0.883
Model B 0.898 0.89 0.883

The qualitative results from the Norwegian grasslands
dataset provide insight into how well the models generalise to
completely unseen environments and species. Neither Model
A nor Model B was trained on images of Rumex longifolius,
yet both produced detections on the unlabelled Norwegian
images. Model B showed a better overall result. However, both
models also displayed false positives, including misclassifica-
tions of sunlit areas, plant residues, and patches of grass. This
suggests that although the models are capable of transferring
some learned features to unfamiliar conditions, their ability
to distinguish R. longifolius from the background remains
limited. The improved responsiveness of Model B indicates
that additional training data from varied domains contributes
to broader generalisation, but the presence of misclassifications
also highlights the need for further adaptation or fine-tuning
when deploying such models in new and different environ-
ments.

D. Tracking Evaluation Using BoT-SORT

Tracking performance for Model A and Model B was
evaluated using the BoT-SORT tracking algorithm. Table V
presents the resulting scores across three standard multi-object
tracking metrics: MOTA, MOTP and IDF1. The results showed
that both models achieved similar performance, with only
minor differences observed in MOTA and MOTP, with values
between 0.89 and 0.90. The IDF1 score remained identical at
0.883 for both.

To further assess how well the models perform in tracking
dock plants over time, the predicted number of detections was
compared to the manually annotated ground truth. As shown
in Table VI, both models correctly detect five instances of R.

crispus, while both overestimate the number of R. obtusifolius

plants by ten. In addition, both models produced a distribution
that closely matched the expected locations. Most predictions
were concentrated along a path.

The tracking results using BoT-SORT show that both Model
A and Model B maintained high tracking performance across
video sequences. This suggests that as long as the object detec-
tor provides consistent and confident detections, the tracking
algorithm is able to assign and maintain identities effectively.
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(a) Model A

(b) Model B

Fig. 11: Detection results in a sparse vegetation scene with
visual distractions such as camera equipment and bright light-
ing. Model A (top) produced one detection near the camera
leg, while Model B (bottom) detected a dock leaf with low
confidence and overlapping boxes.

TABLE VI: Number of dock plants detected by Model A and
Model B compared to the manually annotated ground truth.

Rumex Obtusifolius Rumex Crispus
Ground truth 41 5

Model A 51 5
Model B 51 5

When comparing the number of tracked detections with the
ground truth, both models correctly identified all instances of
R. crispus, but overestimated the number of R. obtusifolius.
This overcount likely results from multiple detections on the
same plant across frames or slightly offset bounding boxes
being treated as separate objects. This observation coincides
with the low recall and mAP50-95 values of both Model A
and Model B on high confidence thresholds. Since bounding
box offset is a contributing factor, this points to potential
improvements in the tracking pipeline. Despite these minor

(a) Model A

(b) Model B

Fig. 12: Detection results in a visually cluttered scene. Model
A (top) identified one dock plant with high confidence.
Model B (bottom) detected the same plant and additional
low-confidence detections, some of which appear to be false
positives.

inaccuracies, the spatial distribution of tracked detections
closely matched the expected GPS coordinates, indicating that
the pipeline is suitable for mapping dock presence in the field.

This demonstrates the potential of the combined detection
and tracking pipeline for supporting automated weed monitor-
ing and management in real-world farming environments.

E. Real-Time Robotic Platform Performance

Model B was tested in a real-world field environment,
resulting in six different video sequences with corresponding
text files containing detection information. Table VII sum-
marises the results from each sequence, including the number
of frames, the number of unique tracking IDs, the number
of unique tracking IDs with average confidence above 0.50
and the number of actual R. longifolius plants present in the
sequences. The tracking ID number does not correspond well
with the ground truth number, due to several false positives.

126 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



TABLE VII: Statistics from the six sequences showing infor-
mation about the number of frames, tracking IDs, and ground
truth counts.

Sequence Frames Tracking IDs Average
confidence >

0.50

Ground
Truth
Docks

1 433 28 13 2
2 715 60 34 2
3 607 41 19 3
4 762 17 11 2
5 637 81 53 3
6 708 31 16 8

Fig. 13: Frame from sequence 1 showing multiple bounding
boxes around a dock and background elements.

In addition to this information, the text files contained a
line saying “Coordinates: Location not available" for each
detection, meaning it tried to collect the GPS information, but
was not able to since there was no GPS module connected.

As illustrated in Figure 13, sequence 1 shows a R. longi-

folius plant with two relatively confident bounding boxes.
As the robot moved, an additional bounding box appeared
around the same dock. Significant background content, such
as the sky, trees, and red farming equipment, is also visible,
likely leading to false positives where background objects were
misclassified as Rumex in later frames. Figure 14 provides an
example where a non-Rumex object was confidently classified
as a dock.

Figure 15 shows a cropped frame from sequence 3, where
a R. longifolius appears very close to the camera. Only part of
the dock is detected, with relatively low confidence. A similar
situation is visible in Figure 16 from sequence 5, where the
same dock is divided into multiple bounding boxes across
different leaves, each with varying confidence levels.

Figure 17 shows two frames from sequence 4. In this situa-
tion, the sun is shining directly into the camera, causing strong
image diffusion. As a result, the two visible R. longifolius

plants were not detected at all. A similar issue occurred
in sequence 6, where sunlight again affected the camera’s
visibility. According to Table VII, sequence 6 generated 31
unique tracking IDs, but only two out of eight actual docks
were detected. This pattern, where most docks were missed,
is unique to sequences 4 and 6. In contrast, in the other
sequences, all docks were detected in some form, although

Fig. 14: Frame from sequence 1 showing a non-Rumex object
incorrectly classified as Rumex.

Fig. 15: Frame from sequence 3 showing a close-up of R.

longifolius with partial and low-confidence detection.

with too many, too few, or poorly placed bounding boxes.
The robotic platform test served as a proof-of-concept to

assess whether it would be possible to detect R. longifolius

in the field using a robot. The overall results were not ideal.
However, in cases where the conditions were favourable, such
as in Figure 13, the platform successfully detected the dock
plants, though with several bounding boxes. This suggests that
under improved conditions, the system has the potential to
perform significantly better.

Several factors could have contributed to the false positives
observed during the field test. The camera on the robot was
positioned relatively low, and a higher mounting position
would likely have captured a more complete view of the scene.
Additionally, tilting the camera further towards the ground
could reduce background noise, such as trees and the sky.

Fig. 16: Frame from sequence 5 showing a R. longifolius with
multiple overlapping bounding boxes.
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Fig. 17: Both images show a R. longifolius that has not been
detected. The frames have become diffused due to the sun.

Güldenring et al. [17] used a camera height of approximately
1m and an angle of 75◦, which appeared to be more effective.
Another challenge was that the test was conducted when the
sun was relatively low in the sky, causing strong shadows and
uneven lighting. Capturing images closer to midday would
likely improve lighting conditions. Finally, the use of a non-
specialised camera and detection code that was not fully
optimised for the hardware may also have contributed to the
reduced detection performance.

In addition to false positives in detection, a high number of
unique tracking IDs were observed. The ground surface was
uneven and textured, causing the robot to move unpredictably
across the grassland. The BoT-SORT algorithm predicts object
movement to maintain consistent tracking IDs. However, the
irregular movement of the camera likely made it difficult
for the tracking algorithm to generate stable and meaningful
tracking results. In future applications, using a larger or
wider robot platform could help reduce camera instability and
improve tracking accuracy.

Lastly, the absence of GPS coordinates meant that mapping
dock occurrences in the field was not possible. However, the
proof-of-concept demonstrated that it would be feasible to
collect GPS data alongside detection results if such data were
available. This indicates a promising potential for mapping
dock occurrences in future applications.

IV. CONCLUSION AND FURTHER WORK

This paper explored the use of YOLOv11 and BoT-SORT
for detecting and tracking dock weeds in grasslands, focusing
on improving generalisation across different environments
and species. Two models were trained and tested: Model A,
trained only on the RumexWeeds dataset, and Model B, which
used transfer learning with additional datasets to improve
robustness.

The results showed that Model A performed very well on
the RumexWeeds dataset but struggled to generalise to new
environments, such as the Open Plant Phenotyping Database
and UAV High-Resolution Images. Model B, trained with ad-
ditional data, improved performance on these external datasets
while maintaining high accuracy on the original RumexWeeds
data. Both models detected R. longifolius in images from

Norwegian grasslands, with Model B performing slightly
better. These findings demonstrate that adding more diverse
training data is an effective way to improve the generalisation
of deep learning models for weed detection.

The tracking results showed that both Model A and Model
B achieved high scores across all evaluated tracking metrics.
This indicates that the combined detection and tracking sys-
tem worked reliably for counting and mapping dock weeds.
However, challenges such as slightly inaccurate bounding
boxes and overcounting suggest that further improvements to
detection precision and tracking stability are needed.

Testing the system in real-time using a robotic platform
showed that it is possible to detect R. longifolius plants under
field conditions, although the results were not ideal. Factors
such as strong shadows, a low camera angle, background
distractions, and an uneven ground surface likely affected
detection accuracy. These results highlight that hardware setup
and environmental conditions are critical factors when apply-
ing the model outside controlled environments. Despite these
challenges, the proof-of-concept showed promising potential
for real-time robotic weed detection in future applications.

Further Work: The promising results of this paper show
that the system has strong potential and should be developed
further. Based on the findings discussed above, several specific
areas for improvement have been identified that could further
strengthen the system.

First, the project would benefit greatly from expanding the
training datasets. If the focus remains on R. obtusifolius and
R. crispus, it would be essential to collect additional images of
R. crispus to better balance the class distribution. In addition,
given the emphasis on Norwegian grasslands, creating a large,
open-access dataset specifically for R. longifolius would be
highly valuable. Another idea worth exploring is training R.

crispus and R. obtusifolius as a single class, as done by
Güldenring et al. [17]. Since both species are targeted for re-
moval in the same way, merging them into one detection class
could simplify the classification task and possibly improve the
model’s ability to detect R. longifolius as well.

Model B was trained using the same hyperparameters as
Model A for simplicity. Future work could investigate tuning
the hyperparameters specifically for Model B, as this may
further improve performance, particularly when training on
more varied data.

For the robotic platform, it would be beneficial to implement
the improvements suggested in the discussion, such as opti-
mising camera position and movement stability. In addition,
designing a camera flash solution that provides consistent
lighting, similar to the one used by Kilter [13], could help
reduce issues caused by varying weather and lighting condi-
tions during field operations.
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