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DEAR Reader it is our pleasure to present to you the
Position Papers of the 20th Conference on Computer

Science and Intelligence Systems (FedCSIS 2025), which took
place on September 14-17, 2025, in Kraków, Poland.

Position papers comprise two categories of contributions
– challenge papers and emerging research papers. Challenge
papers propose and describe research challenges in theory,
or practice, of computer science and intelligence systems.
Papers in this category are based on deep understanding
of existing research or industrial problems. Based on such
understanding and experience, they define new exciting re-
search directions and show why these directions are crucial
to the society at large. Emerging research papers present
preliminary research results from work-in-progress, based on
sound scientific approach but presenting work not completely
validated as yet. They describe precisely the research problem
and its rationale. They also define the intended future work
including the expected benefits from solution to the tackled
problem. Subsequently, they may be more conceptual than
experimental.

FedCSIS 2025 was chaired by Jarosław Wąs. Moreover,
Tomasz Hachaj was the Chair, while Marian Bubak, Marek
Grzegorowski and Łukasz Rauch, were the Co-Chairs of the
Organizing Committee.

This year, FedCSIS was organized by the Polish Information
Processing Society (Mazovia Chapter), IEEE Poland Section
Computer Society Chapter, Systems Research Institute of
Polish Academy of Sciences, The Faculty of Mathematics
and Information Science Warsaw University of Technology,
The Faculty of Electrical and Computer Engineering of the
Rzeszów University of Technology and The Faculty of Electri-
cal Engineering, Automatics, Computer Science and Biomed-
ical Engineering AGH in cooperation with The Faculty of
Metals Engineering and Industrial Computer Science AGH,
The Faculty of Materials Science and Ceramics AGH, and
Centre for Computational Personalised Medicine SANO.

FedCSIS 2025 was technically co-sponsored by IEEE
Poland Section, IEEE Poland Section Computer Society
(Gdańsk) Chapter, IEEE Czechoslovakia Section Computer
Society Chapter, IEEE Poland Section Systems, Man, and
Cybernetics Society Chapter, IEEE Serbia and Montenegro
Section Computational Intelligence Society Chapter, IEEE
Serbia and Montenegro Section Young Professionals Affin-
ity Group, Committee of Computer Science of the Polish
Academy of Sciences and Mazovia Cluster ICT.

FedCSIS 2025 was organized in collaboration with the
Strategic Partner QED Software, and sponsored by In-
tel+Lenovo, Jupiter as well as MDPI Electronics, MDPI
Applied Sciences and MDPI AI journals. Moreover, FedC-
SIS 2025 has been conducted under Honorary Patronages of
Professor Jerzy Lis, Rector of the AGH University of Kraków
and of Aleksander Miszalski, Mayor of Krakow, as well as
under patronages of the Ministry of Digital Affairs of the Re-
public of Poland, Polish Artificial Intelligence Society (PSSI),
Forum Akademickie and Naukowe Towarzystwo Informatyki
Ekonomicznej. Finally, media patronage was provided by

Krakow.pl, TVP Info, TVP3 Kraków, and Kraków Convetion
Bureau.

During FedCSIS 2025 four keynote speakers delivered
lectures providing a broader context for the conference par-
ticipants. These presentations were:

• Damaševičius, Robertas, Kaunas University of Technol-
ogy, Lithuania
Keynote title: AI-Driven Innovations in Brain Cancer
Research

• Dustdar, Schahram, TU Wien, Austria
Keynote title: Active Inference for Distributed Intelligence
in the Computing Continuum

• Jonker, Catholijn, TU Delft (main affiliation), Leiden
University, Vrije Universiteit Amsterdam, Netherlands
Keynote title: Hybrid Human-AI Intelligence to
Strengthen the Reflective and Learning Capacity of
Organisations

• Plank, Barbara, LMU Munich, Germany
Keynote title: Human-centered LLMs for Inclusive Lan-
guage Technology

Moreover, four past FedCSIS keynote speakers have been
invited to prepare and deliver special contributions, which refer
to the core focus of the conference series. These were:

• Atiquzzaman, Mohammed, University of Oklahoma,
USA
Contribution title: Q-ID: A Reinforcement Learning
Framework for Adaptive Intrusion Detection

• Blum, Christian, Artificial Intelligence Research Institute,
Spain
Contribution title: Optimizing the Optimizer: An Example
Showing the Power of LLM Code Generation

• Luković, Ivan, University of Belgrade, Serbia
Contribution title: New Education Challenges in Profiling
Digital Experts for a Digital Economy Era

• Skowron, Andrzej, Systems Research Institute Polish
Academy of Sciences, Poland
Contribution title: Interactive Granular Computing: To-
ward Computing Model for Complex Intelligent Systems

At the time, when you are reading this text, videos of the
keynote presentations and of invited contributions, delivered
during the FedCSIS 2025 conference, are already available
on the official conference website (www.fedcsis.org). We
warmly encourage you to visit the website and watch these
recordings to gain additional insights and perspectives shared
by distinguished speakers.

Finally, as a part of official Conference Opening, a special
presentation, entitled: Paths to Zero Emission Computing –
Reducing Energy Consumption, and carbon emissions in HPC
and AI environments, was delivered by Tikiri Wanduragala,
Technology Leader Lenovo Infrastructure Solutions Group
(ISG), Lenovo UK and Ireland. An extended abstract, outlining
main pints of this presentation can be found in this volume.

FedCSIS 2025 consisted of Main Track, with five Topical
Areas, and 12 Thematic Sessions. Some of Thematic Sessions
have been associated with the FedCSIS conference series for



many years, while some of them were relatively new. The role
of the Thematic Sessions is to focus and enrich discussions on
selected areas, pertinent to the general scope of the conference,
i.e. intelligence systems.

Each contribution, found in this volume, was refereed by
at least two referees. They are presented in alphabetic order,
according to the last name of the first author. The specific
Topical Area or Thematic Session that given contribution was
associated with is listed in the article metadata.

The delivery of FedCSIS 2025 required a dedicated effort of
many people. We would like to express our warmest gratitude
to all Topical Area Curators, Thematic Session organizers,
members of the FedCSIS 2025 Senior Program Committee
and members of the FedCSIS 2025 Program Committee (a
total of more than 600 individuals), for their hard work
in attracting and reviewing all submissions. We thank the
authors of papers for their great contribution to the theory
and practice of Computer Science and Intelligence Systems.
We are grateful to Keynote and Invited Speakers for sharing
their knowledge and experiences with the participants. Last,

but not least, we acknowledge, one more time, Jarosław Wąs,
Tomasz Hahaj, Łukasz Rauch, Anna Smyk, Anna Stolarczyk
Piotrowska, Marian Bubak and Marek Grzegorowski, and their
Team, Anastasiya Danilenka and Paweł Szmeja, as well as a
fantastic group of student helpers. We are very grateful for
your efforts!

We also hope to meet you again for the 21st Conference on
Computer Science and Intelligence Systems (FedCSIS 2026)
which will take place in Riga, Latvia, on August 23-26, 2026.

Co-Chairs of the FedCSIS Conference Series

Bolanowski, Marek, Rzeszów University of Technology,
Poland

Ganzha, Maria, Warsaw University of Technology, and
Systems Research Institute Polish Academy of Sciences, Poland

Maciaszek, Leszek, (Honorary Chair), Macquarie Univer-
sity, Australia and Wrocław University of Economics, Poland

Paprzycki, Marcin, Systems Research Institute Polish
Academy of Sciences, Poland

Ślęzak, Dominik, QED Software and University of Warsaw,
Poland
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Abstract—In this paper, we investigate the impact of speech 

transcoding and noise on the performance of Arabic automatic 

speech recognition (ASR) systems based on deep learning. We 

apply Non-negative Matrix Factorization (NMF) as a denoising 

preprocessing step to enhance robustness to noise. Three deep 

architectures—CNN-LSTM, LSTM, and DNN—are evaluated 

using fused acoustic features including MFCCs, Mel- spectro-

grams, and Gabor filter representations. Experiments are con-

ducted under four signal-to-noise  ratio  (SNR) conditions  (−5 

dB,  0  dB,  5  dB,  and  10  dB)  on  both  transcoded  and  non- 

transcoded speech.  Results  show that the CNN-LSTM model 

achieves the highest accuracy of 87% at 10 dB SNR on clean 

(non-transcoded) speech using multimodal features. However, 

speech recognition performance degrades by 2–4% when using 

the Enhanced Voice Services (EVS) codec, especially in high- 

noise environments. Specifically, accuracy drops from 65.00% 

to 61.43% at −5 dB SNR, and from 87.00% to 84.00% at 10 dB 

SNR due to transcoding. These findings highlight the negative 

impact of mobile codec compression on ASR systems, particu-

larly under low-SNR conditions. Our study confirms the effec-

tiveness and stability of NMF-based feature fusion and denois-

ing in improving recognition, offering insights into deploying 

Arabic ASR in real-world scenarios such as mobile and VoIP 

communications.

Index  Terms—Audio  transcoding,  Noise,  Arabic  speech, 

NMF; CNN-LSTM, LSTM, DNN, SNR.

I. INTRODUCTION

UTOMATIC Speech Recognition (ASR) technologies 

have achieved remarkable performance in clean, con-

trolled environments with the advancement of deep learning 

and sophisticated feature extraction techniques. Their prowess 

in real-world environments under hostile conditions such as 

mobile communication, Voice over IP (VoIP) services, and 

low-bandwidth channels  remains an enduring challenge.  In 

these situations, speech signals are usually distorted by not 

only background noise but also compression distortions due to 

speech codecs, such as those employed in Enhanced Voice 

Services (EVS). The dual distortions greatly impair speech in-

telligibility and acoustic coherence, leading to drastic degra-

dation  of  ASR  performance.  Traditional  automatic  speech 

recognition  (ASR)  systems,  being  predominantly  Hidden 

Markov  Model  (HMM)-  and  Gaussian  Mixture  Model 

(GMM)- based [1][2], are plagued with limited robustness in 

A

mildly noisy environments. Their accuracy significantly with 

nonlinear  distortions  via  lossy  speech  compression.  Deep 

learning  models—Deep  Neural  Networks  (DNNs),  Long 

Short-Term Memory (LSTM) networks, and hybrid Convolu-

tional Neural Network–LSTM (CNN-LSTM) architecture—

have overwhelmed such traditional practices in recent years 

due to their strong ability to learn complicated speech patterns 

[16]. Due to all these developments, current state-of-the-art 

ASR engines are still very susceptible to non-stationary noise 

and encoding artifacts, particularly in the absence of any spe-

cial preprocessing. A hard problem arises in mobile and inter-

net communication systems, where speech signals are typi-

cally compressed by low-bitrate codecs (EVS), perceptually 

optimized rather than acoustically faithful [18,19]. The com-

pression causes time-frequency distortions that mask impor-

tant phonetic information, significantly degrading ASR per-

formance.  Moreover,  these  distortions  become  exacerbated 

under low signal-to- noise ratio (SNR) conditions, such as –5 

dB, significantly making it difficult to obtain correct speech 

recognitionIn order to address these challenges, a speech en-

hancement method based on Non-negative Matrix Factoriza-

tion (NMF) is put forward in this research. As an unsuper-

vised  learning  algorithm,  NMF decomposes  the  magnitude 

spectrogram  of  noisy  speech  into  low-rank,  non-negative 

bases  and  temporal  activations  [8,9,10,11].  With  separate 

modeling of speech and noise components, efficient noise re-

duction can be achieved without prior noise training. This fea-

ture makes the approach extremely adaptive to dynamic and 

changing  acoustic  environments.  Moreover,  we  investigate 

the impact of Enhanced Voice Services (EVS) transcoding on 

the  performance  of  Arabic  automatic  speech  recognition 

(ASR), which is an under investigated area considering the 

widespread use of EVS deployment in mobile wireless net-

works. In this regard, we compare the performances of three 

deep  learning-  based  architectures:  deep  neural  networks 

(DNNs), long short-term memory (LSTM) networks, and a 

hybrid  convolutional-LSTM  (CNN-LSTM)  network  [16]. 

These models are acquired on the basis of a multimodal fu-

sion of acoustic features like Mel-frequency Cepstral Coeffi-

cients  (MFCCs),  Mel-spectrograms,  and  Gabor  filter-based 

descriptors.
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By fusing complementary spectral and temporal 
representations of speech, our work achieves increased 
robustness in adverse acoustic conditions. 

This paper advances the understanding of Automatic 
Speech Recognition (ASR) robustness in challenging 
acoustic environments through the following key 
contributions: 

 

 A thorough analysis of ASR performance under 
simulated combined noise and Enhanced Voice 
Services (EVS)-induced distortions, considering 
serious degradation trends under actual-like 
unfavorable conditions. 

 A novel preprocessing system with NMF as the 
underlying framework to enhance the quality of 
noisy and transcoded speech, significantly 
enhancing downstream ASR accuracy. 

 A comparative study of deep learning-based ASR 
models through integrated acoustic representations, 
demonstrating their ability to successfully counter 
compounded speech distortions. 

The remainder of this paper is organized as follows: 
Section II presents speech enhancement techniques based 
on Non-Negative Matrix Factorization (NMF) in order to 
establish the theoretical framework for our preprocessing 
approach. Section III presents the feature extraction 
methods investigated in this work, noting their suitability 
for noise and transcoded speech. Section IV describes the 
deep learning-based Automatic Speech Recognition 
(ASR) models used in this study. Section V describes the 
speech corpus, experiment setup, and discusses the results 
in various degradation conditions. Section VI summarizes 
the paper with the most significant results and future 
directions of work. 

II. AUTOMATIC SPEECH RECOGNITION OVER 

MOBILE NETWORK AND SPEECH 

ENHANCEMENT 

Today, with rapid expansion of cellular networks for 
voice services, system design for making speech 

recognition systems reliable and solid in the 

environment is a paramount issue of research. 

Noise is introduced by cellular network transmission, 

bandwidth constraint, signal degradation, all of 
which are certain to impact recognition. In an effort 

to combat these factors, strategies from effective 
robust automatic speech recognition techniques to 

advanced speech enhancement approaches have 

been developed. This section explains these 
strategies in depth, beginning with the exploration of 

how the performance of speech recognition systems 
under mobile network conditions, followed by 

implementing techniques such as Non-negative 
Matrix Factorization for enhancing the intelligibility 

and quality of speech signals 

A. Speech recognition over mobile Network 

The incredible developments in computing and 
networking have spurred a huge interest in deploying 

Automatic Speech Recognition on Mobile Devices and 

Over Communication Networks, and this trend is 
growing. 

B. Client-server architectures for Speech Recognition 

Many studies focus on architectures where speech 
recognition is performed on a remote server, while the 

mobile device acts as a lightweight client. For instance, 

Aggarwal et al. [1] proposed optimized protocols for real-
time transmission of compressed audio streams, reducing 

latency and bandwidth consumption. These architectures 
leverage the computational power of cloud data centers to 

run complex recognition models 

C. Audio Compression and Transmission 

Recognition accuracy heavily depends on the quality of the 

transmitted audio signal. Research has explored 
compression methods tailored for speech recognition, 

such as specialized codecs (AMR-WB, Opus) that preserve 
essential speech features while minimizing bitrate. Lukas 

et al. [2] studied the impact of different codecs on 
recognition performance over mobile networks. 

D. Robustness to Variable Network Conditions 

Mobile networks (3G, 4G, 5G) experience fluctuating 

bandwidth, latency, and packet loss. Kumar et al. (2020) 

proposed adaptive mechanisms that dynamically adjust 
audio quality and recognition model complexity based on 

network conditions to ensure smooth user experience. 

Cloud-Based Speech Recognition Models 
With cloud computing advances, platforms like Google 

Speech-to-Text, Microsoft Azure Speech Services, and IBM 
Watson provide APIs accessible via mobile networks. 

These services utilize deep learning models trained on 
large multilingual datasets, offering high accuracy even in 

noisy environments. 

E. On-device vs Network-Based Recognition 

Research comparing on-device and network-based speech 

recognition highlights trade-offs. Chen et al. (2021) 

showed that on-device recognition reduces latency and 
enhances privacy but is limited by mobile hardware 

constraints, justifying cloud usage for more demanding 
applications. 

F. Speech enhancement 

Speech signals under real acoustic conditions are mostly 
corrupted by forms of acoustic interference. Speech 
enhancement techniques, particularly those using spectral 

subtraction, have proved to significantly improve the 

performance of Automatic Speech Recognition (ASR) 
systems under noisy conditions. The observed noisy 

speech signal can be modeled in the time domain as: 
 

)()()( tntxty                                          (1) 

 

where x(t) denotes the clean speech signal, y(t) represents  
the observed noisy speech, and 𝑛(ݐ) is the additive noise 
component. By applying the Short-Time Fourier  Transform 
(STFT).
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The signals are represented in the time-

frequency domain as y(݂, m),̂ݔ(f,m), and 𝑛(݂, m), 

corresponding to the noisy speech, estimated 
clean speech, and noise spectrum, respectively. 

The basic spectral subtraction method estimates 

the clean speech spectrum as follows:  

݉ ,݂)ݔ                ݉ ,݂)ݕ = ( ) − 𝑛(݂, ݉ )                           (2) 

   

G. Non-negative matrix factorization 

Non-negative Matrix Factorization (NMF) is a 

widely used technique for speech enhancement 
that decomposes the training data of noisy 
speech— typically represented as a magnitude or 

power spectrogram—into the product of two 

non-negative matrices: a basis matrix and an 

activation (or weight) matrix. This 
decomposition enables the independent 

reconstruction of the magnitude spectrograms of 

both speech and noise components [8]-[9]-[10]-
[11].  Formally, given a non-negative matrix ܸ∈ܴ≥0 𝑛×݉ NMF seeks to find two non-negative 
matricܹ ∈ ܴ≥0 𝑛×ݎ and ݎ 0≤ܴ ∋ܪ×݉ such that:  

 

                                   V = W ∗ H                                              (3) 

 

Here, ܹ contains the basis vectors (e.g., spectral 
patterns), and ܪ contains their corresponding 

activations over time. The rank ݎ is typically 

chosen such that ݎ < ݉݅𝑛(𝑛, ݉) , resulting in a 
low-rank approximation of the original matrix ࢂ. 

This decomposition allows for the modeling and 
separation of speech and noise components in the 

spectrogram domain using NMF-based 

reconstruction techniques [9]. After segmenting 
the time-domain signal, each segment is 

transformed into the frequency domain using the 
Fast Fourier Transform (FF). 

 
III. HYBRID DEEP LEARNING ARCHITECTURES 

FOR ASR 

In this study, the Deep Neural Network (DNN) 
architecture comprises three hidden layers, 

following the design proposed in [10]. The 
network is trained to perform speech 

enhancement by mapping noisy speech inputs to 

their clean counterparts. Each input sample 
consists of a log-magnitude spectrogram 

computed over a window of consecutive frames, 
providing temporal context. The dimensionality 

of the input layer corresponds directly to the size 
of the feature vector. The output layer generates 

an estimated log-magnitude spectrogram of clean 

speech, aiming to suppress noise components 
effectively. Each hidden layer activation hi is calculated 

through a linear transformation of the input, using a 
weight matrix , followed by a nonlinear activation 

function. This layer- wise transformation allows the 

DNN to learn complex mappings between noisy and 
clean speech spectra. The network is trained using a 

mean squared error loss between the predicted and 
target clean spectrograms.  

 
where. ܼ(ߥ) = (ݓ)T ߥ + ܽ, and ܹ and ܽ represent the 

weight matrix.  

respectively. 
 

                        l

i

lTl

i

l

i avwh                                   (5) 

 

where 
l

w and  
l

a are the weight matrix and bias, 

respectively, at the hidden layer ݈,  l

ih  is the output of 

the  neuron.  

 

A. LSTM (Long Short-Term Memory) Model for Speech 
Recognition 

The Long Short-Term Memory (LSTM) network is a 
highly evolved version of the recurrent neural network 

(RNN) that was originally created to mitigate the short 
comings of standard RNNs—most notably the 

vanishing and exploding gradient issues hindering 

learning over long sequences. LSTM architecture 
consists of a memory cell and three gate mechanisms—
input, forget, and output gates—which manage the 

flow of information into, through, and out of the cell. 

This architecture enables the network to retain 

meaningful information on large time steps and thus is 
most appropriate for sequence data modeling of long-

term dependencies such as speech. This gating 
architecture allows the model to effectively extract 

long-term temporal relationships by discarding or 
main-training them suitably. Because of this capability, 

LSTM networks have proven to be particularly 

beneficial in sequential data modeling applications 
such as voice processing, where retaining context over 

time is critical. In speech recognition, it is essential to 
preserve the temporal context of phonemes and words 

to correctly interpret them. The Long Short-Term 

Memory (LSTM) model meets this need by processing 
input sequences of acoustic feature vectors, for 

instance, Mel-Frequency Cepstral Coefficients 
(MFCCs), spectrogram slices, or Gabor-based features, 

that represent the speech signal as a function of time. 
Using its internal memory characteristics, the LSTM 

effectively captures dynamic temporal patterns and 

transitions of spoken language without any need for 
spatial structure analysis.   
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Major advantages of the LSTM architecture are: 

Ability to manage long-term temporal dependencies, which 
play a significant role in the context of continuous speech 
understanding. 

Noise and variability insensitivity in the speech sequence 
length, enhancing performance under real-world 
conditions. 

A reasonably simple and computationally efficient 
architecture, and thus suitable for real-time and embedded 
speech processing tasks. 

Overall, LSTM networks continue to offer a robust and 
interpretable approach to sequence modeling in speech 
recognition tasks. 

B. CNN-LSTM Model for Speech Recognition 

Convolutional Long Short-Term Memory (CNN- LSTM) 
is a deep learning hybrid architecture which integrates 
Convolutional Neural Networks (CNNs) and Long Short-
Term Memory (LSTM) networks to efficiently learn and 
represent speech signals. In this case, CNNs operate on 
time-frequency representations such as spectrograms to 
learn spatial features—identifying significant acoustic pat- 
terns such as formants, harmonics, and local frequency 
changes. These high-level feature maps are then fed into 
the LSTM, where it extracts their temporal dynamics and 
sequential dependencies inherent in natural speech. This 
combined architecture has strong points, particularly in 
noisy acoustic scenarios. CNNs are insensitive to noise and 
local deformations, whereas LSTMs preserve long 
temporal dependencies well. In contrast to traditional 
models relying on hand-designed features, CNN-LSTM 
models learn discriminative feature representations 
automatically from raw inputs, reducing the demands of 
manual feature engineering [17]. Generally, the CNN-
LSTM architecture demonstrates superior performance in 
speech recognition tasks by leveraging spatial and temporal 
modeling capabilities in combination. It is well suited for 
application in visual time-series input tasks and has 
potential in real-world and multilingual speech processing. 

 

IV. FEATURES EXTRACTION (FRONT-END) 

The front-end analysis is the preliminary step of Automatic 
Speech Recognition (ASR), wherein the acoustic in- put 
signal is mapped into a series of acoustic feature vectors. 
This typically involves inspection of the short-term signal 
spectrum, which effectively characterizes the acoustic 
realizations of phonetic events. The optimal front- end 
analysis method must be able to retain all perceptually 
pertinent information needed for phonetic discrimination 
while remaining tolerant of variations that are linguistically 
or phonetically insignificant. We utilize two techniques for 
feature extraction in this paper. One technique is 
perceptually motivated representations of speech that we 
use to align the extracted features with human perception. 
The second is the utilization of Gabor filter-based 
representations because such representations suit 
extracting localized spectro-temporal patterns from the 
speech signal [7]. 

A. Perceptual Speech Approach 

This approach is perceptually centered on speech modeling, with 
the focus laid on how humans interpret and process auditory 
signals. Methods such as: Fourier Analysis: Used to decompose 
the speech signal into its frequency constituents, providing a 
spectral description over time. Mel-Frequency Cepstral 
Coefficients (MFCCs): A widely employed feature extraction 
algorithm that maps frequencies to the Mel scale—a more 
perceptually human auditory scale. MFCCs capture perceptually 
relevant spectral information and perform best at phoneme-level 
discrimination. In parallel, Gabor filter banks are used as a 
second alter- native, particularly for extracting spectro-temporal 
features from time-frequency representations. Originally de- 
signed for image analysis, Gabor filters mimic the response 
characteristics of visual cortex neurons by extracting local 
frequency, orientation, and texture details. In speech processing, 
they are employed to promote feature representation by 
identifying fine-grained spectrogram patterns for better 
classification performance in both clean and noisy conditions [7]. 
The Gabor features are employed here to retrieve robust spectro-
temporal information from the speech signal. Two-dimensional 
(2-D) Gabor modulation filters are employed to manipulate the 
input spectro- gram. These filters operate in frequency and time 
domains and produce 2-D feature vectors that capture the 
patterns of localized modulation. Gabor representation describes 
the envelope width as a function of modulation frequency in 
order to possess the same number of periods at every frequency. 
It possesses this property so that Gabor features can be used as a 
wavelet-like representation in frequency and time domains too 
[13]-[14]. The convolution of the Gabor functions gu,v(t, f) with 
the power spectrum X(t, f) is given by: 

 

                   Gu,v(t, f) = |X(t, f) ∗ gu,v(t, f)|                             (6) 

 

where ∗ represents the 2-D convolution operation. These 
resulting feature maps constitute a collection of image-like 
representations, each for different time-frequency modulations 
and filter parameters. The underlying spectro-temporal 
representation utilized for Gabor filtering is often obtained from 
the Short-Time Fourier Transform (STFT) or Mel spectrogram. 
The STFT is widely used for speech analysis, where the signal is 
segmented into overlapping frames and transformed via the 
Discrete Fourier Trans- form (DFT). This complex-valued STFT 
obtained has both magnitude and phase. The magnitude 
spectrogram is created by computing the absolute value of each 
STFT coefficient. In situations where the amplitude spectrum is 
modified—e.g., by masking methods—reconstruction of the 
time-domain signal will typically involve retaining the original 
phase and applying the inverse DFT. Alternatively, Non-
negative Matrix Factorization (NMF) is more likely to be applied 
in the Mel-frequency spectral domain, which offers a frequency 
resolution inspired by perception aligned with human hearing. 
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Fig. 1. The NMF model, represents the magnitude spectrum matrix V as the product of basis matrix W and H 

 

 

 
 
 
 

Fig.2. Speech recognition in mobile communication 
 

 
TABLE. 1. SUMMARY OF ARADIGITS-BASED SPEECH DATABASES 

 
Attribute ARADIGIT_NOISE_NMF ARADIGIT_EVS_NOISE_NMF 
Content Arabic digits (0 to 9) Arabic digits (0 to 9) 
Speakers 110 Algerian speakers (both 

genders) 
Same as ARADIGIT_NOISE_NMF 

Repetitions 3 repetitions per digit Same as ARADIGIT_NOISE_NMF 
Speaker Age Range 18 to 50 years Same as ARADIGIT_NOISE_NMF 

Recording Environment Quiet room, ambient noise < 35 
dB 

Same as ARADIGIT_NOISE_NMF 

File Format WAV, sampled at 16 kHz, 
downsampled to 8 kHz 

Same as ARADIGIT_NOISE_NMF 

Developed By LCPTS Laboratory LCPTS Laboratory 
Noise Type Babble noise Babble noise 

Processing Steps Noise added + NMF-based noise 
removal 

Noise added + EVS transcoding + 
NMF-based noise removal 
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V. EXPERIMENTAL SETUP       

    In this section, we introduce the datasets, evaluation 
metrics. 

A. Datasets 

This section describes the database used to train the 
speech recognition models. The speech database used in 
this paper is the ARADIGITS database [4]. It consists of a 
set of 10 digits of the Arabic language (zero to nine) 
spoken by 110 speakers of both genders with three 
repetitions for each digit. This database was recorded by 
Algerian speakers from different regions aged between 18 
and 50 years in a quiet environment with an ambient noise 
level below 35 dB, in .wav format, with a sampling 
frequency equal to 16 kHz and converting to 8kHz. We 
used two datasets: 

1. ARADIGIT_NOISE_NMF 

 Content: Arabic digits from 0 to 9. 

 Creation: Developed at the LCPTS laboratory. 

 Processing: 

o This database is contaminated with various levels 
of babble noise. 

o The noise is then estimated and removed using 
the Non-negative Matrix Factorization (NMF) 
technique. 

2. ARADIGIT_EVS_NOISE_NMF 

 Content: Arabic digits from 0 to 9. 

 Creation: Developed at the LCPTS laboratory. 

 Processing: 

o This database is also contaminated with various lev- 
els of babble noise. 

o It is then transcoded using an EVS. 

o Finally, the noise is estimated and removed using the 
NMF technique. 

These databases (as illustrated in table 1) are used to 
evaluate the performance of our feature extraction 
approache under various noisy conditions by implementing 
advanced noise reduction techniques. We used EVS 
(Enhanced Voice Services) as the speech codec 
standardized by 3GPP for voice communication over LTE 
networks (VoLTE) [18]-[19]. It was developed to 
significantly improve audio quality compared to earlier 
codecs like AMR- NB and AMR-WB, while offering 
greater robustness to packet loss and more efficient 
compression. 

B. Recognition Accuracy (RA) 

A set of experiments was conducted to test the Recognition 
Accuracy (RA) by measuring the ASR performance. The 
Recognition Accuracy is calculated by the following 
equation 

 

100(%) 



N

SDN
RA  

where N is the total number of units (words), D is the number of 
deleted errors, S is the number of substituted. 

 
IV. RESULTS OF SPEECH RECOGNITION USING HYBRID DEEP 

LEARNING ARCHITECTURES 
 

 

The following table presents the speech recognition results 
for speech corrupted by different levels of SNR with 
babble noise and estimated using the NMF technique. Two 
parameterization approaches are used: MFCC representing 
the perceptual approach and Gabor filter representing the 
approach. The recognition system used is based on DNNs 
(Deep Neural Networks). 

TABLE. 2. DNN RECOGNITION ACCURACY 
 

 
Model and 

features 

 
Signal 

 
SNR 

 
(-5dB) 

 
SNR 

(0dB) 

 
SNR 

(5Db) 

 
SNR 

(10dB) 

 
MFCC 

 
Non-trans- 
coded 

 
62% 

 
69.21% 

 
75.65% 

 
83.05% 

 
MFCC 

 
Transcoded 

 
54.39% 

 
62.15% 

 
69.82% 

 
77.08% 

GFMFCC 
Transcoded 55.34% 64.28% 73.17% 78.77% 

 

This table provides an overview of the speech recognition 
system's performance under various noise conditions, 
highlighting a comparison between MFCC and Gabor 
filter-based feature extraction methods. The use of Non-
negative Matrix Factorization (NMF) for noise reduction is 
essential for enhancing recognition accuracy in noisy 
environments. SNR Level (dB): This column denotes the 
Signal-to-Noise Ratio levels at which babble noise was 
introduced. MFCC (Perceptual Approach): This column 
shows the recognition accuracy achieved using Mel-
Frequency Cepstral Coefficients, which capture the 
perceptual features of speech. Gabor Filter: This column 
presents the recognition accuracy achieved with Gabor 
features, which are designed to improve the representation 
of speech signal parameters by analyzing time-frequency 
resolution. 
A. Description and Analysis of Results  

The Table.3 presents a comparative analysis of the 
performance of three speech recognition models— CNN-
LSTM, LSTM, and DNN—using various feature sets 
(MFCC, Mel spectrogram, and Gabor filter) under different 
noise conditions. The models are evaluated on both non-
transcoded and transcoded speech signals, with the Signal-
to-Noise Ratio (SNR) and Noise-to-Speech Ratio (NSR) 
values reported at -5 dB, 0 dB, 5 dB, and 10 dB for each 
condition. Non-Transcoded Speech:  
The CNN-LSTM model, using the combination of MFCC, 
Mel spectrogram, and Gabor filter, shows the best 
performance across all noise levels, achieving a significant 
improvement in recognition accuracy, particularly under 
higher noise conditions (NSR -5 dB to 5 dB), with the 
highest recognition accuracy of 87.00 at SNR 10 dB. 
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TABLE. 3. PERFORMANCE COMPARISON OF SPEECH 

RECOGNITION MODELS WITH DIFFERENT FEATURE S AND 

RECOGNITION MODEL UNDER VARYING NOISE CONDITIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

This suggests that the inclusion of Mel spectrogram and 
Gabor filter features provides enhanced robustness against 
noise. The LSTM model with MFCC and Gabor filter 
features also demonstrates good performance, but it falls 
behind the CNN-LSTM model in terms of recognition 
accuracy, particularly as the noise level increases. Its best 
performance is 86.74 at SNR 10 dB. The DNN model, while 
still effective, shows the lowest performance compared to 
the CNN-LSTM and LSTM models across all noise 
conditions. This model achieves its best result (85.00) at 
SNR 10 dB. Transcoded Speech: when the speech signal 
undergoes transcoding, performance degrades across all 
models. The CNN-LSTM model still outperforms the other 
two models but with a notable drop in accuracy, especially 
under lower noise conditions (NSR -5 dB to 5 dB). It 
achieves a maxi- mum recognition accuracy of 84.00 at 
SNR 10 dB. In the similarly, the LSTM and DNN models 
exhibit reduced accuracy in the transcoded speech 
condition, with the LSTM reaching a maximum of 82.74 at 
SNR 10 dB, and the DNN reaching 82.00. 

Overall, the CNN-LSTM model with the combination of 
MFCC, Mel spectrogram, and Gabor features offers the best 
performance across both non-transcoded and trans- coded 
speech, showing strong resilience against noise. However, 
the performance degradation with transcoding highlights 
the impact of signal distortion on model effectiveness, and 
future work could explore improving robust- ness under 
transcoding scenarios. 

V. Conclusion 

 
In this study, we evaluated the robustness of Arabic 
automatic speech recognition (ASR) systems under 
challenging conditions, focusing on the combined 
effects of noise and speech transcoding using the 
Enhanced Voice Services (EVS) codec. The proposed 
approach incorporated Non- negative Matrix 
Factorization (NMF)-based denoising and multi-
acoustic feature fusion as a preprocessing strategy. 
Experimental results demonstrated that the hybrid 
CNN- LSTM model, combined with the proposed 
preprocessing pipeline, achieved the highest 
recognition accuracy of 87% at 10 dB SNR on clean 
speech. However, EVS transcoding led to a 
performance drop of 2–4%, particularly in low- SNR 

scenarios. These findings underscore the effective- ness 
of NMF-based denoising and the benefit of combining 
multiple spectral representations to enhance ASR 
robust- ness in real-world environments. Future work 
will explore advanced speech enhancement techniques 
and more sophisticated architectures, including self-
supervised learning models, to further improve robust- 
ness especially in mobile telephony and multilingual 
con- texts. 
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Abstract—This study, conducted within the Erasmus Pro-
gramme “Language, Education and Society,” investigates the
growing use of Artificial Intelligence (AI) technologies in edu-
cation and explores the future of learning through the lens of
AI and advanced Machine Learning (ML) methods i.e. Rein-
forcement Learning (RL) and deep learning. AI is the automa-
tion of cognitive processes traditionally associated with human
intelligence. It encompasses the development of computational
systems capable of performing tasks that require knowledge,
reasoning, learning, and decision-making when carried out by
humans. In the educational context, AI offers transformative
potential by enabling personalized learning pathways, automat-
ing instructional processes, and enhancing the adaptability and
effectiveness of pedagogical strategies. This research explores
how AI technologies, including ML and RL, are currently being
leveraged to optimize educational practices, and it highlights the
growing intersection between AI advancements and the evolving
demands of the educational sector.

Index Terms—Artificial Intelligence, Machine Learning, Rein-
forcement Learning, Personalized Learning, EdTech, Intelligent
Tutoring Systems, Smart Content, Educational Innovation, Dig-
ital Education.

I. INTRODUCTION

ARTIFICIAL Intelligence (AI) and Machine Learning
(ML) have profoundly transformed nearly every aspect of

modern life, including healthcare [14], transportation [1], re-
source management [2], agriculture [3], autonomous systems,
and self-organizing processes [4]. In recent years, education
has emerged as one of the most dynamic and rapidly evolving
domains for AI integration. These technologies are reshaping
traditional educational paradigms by enabling personalized
learning experiences, intelligent tutoring systems, automated
assessment, and adaptive learning environments [5].

Another highlighting factor is the growing commercial
demand for AI in education, as evidenced by substantial in-
vestments from both public institutions and private enterprises.
Leading technology companies—such as Microsoft, Google,
Meta (formerly Facebook), and Amazon—have been investing
billions of dollars into the development of AI-powered tools
that span a broad range of applications, including computer
vision, natural language processing, predictive analytics, and
virtual assistants. Notably, many of these investments also tar-

get the education sector [7]. For instance, Google’s AI-driven
“Read Along” app helps young learners improve reading
fluency using real-time speech recognition, while Microsoft’s
“Immersive Reader” enhances reading comprehension across
multiple languages and learning abilities. A notable case
study is IBM’s Watson Education platform, which leverages
AI to provide teachers with data-driven insights into student
performance, helping educators tailor instruction to meet indi-
vidual needs. Similarly, platforms like Carnegie Learning and
Squirrel AI in China utilize AI algorithms to provide adaptive
learning pathways that respond to each student’s pace and level
of understanding.

The COVID-19 pandemic [8] significantly accelerated the
adoption of AI and EdTech solutions globally. With the abrupt
shift to remote learning, educational institutions faced an
urgent need for scalable and effective digital tools. During
this period, AI-based solutions saw a surge in demand for
supporting virtual classrooms, automating administrative tasks,
and facilitating online assessments [9]. A 2021 survey con-
ducted by the University Professional and Continuing Edu-
cation Association (UPCEA) revealed that 51% of American
faculty members became more optimistic about the future
of online learning compared to their pre-pandemic views,
signaling a long-term shift in the perception of technology-
enhanced education. Furthermore, the rise of “edutainment”
— the blending of education and entertainment — has fueled
greater acceptance of AI in learning environments. Educational
apps, games, and interactive platforms powered by AI, such
as Duolingo and Khan Academy’s Smart Feedback system,
are increasingly popular for engaging learners of all ages. The
convergence of AI and education represents a paradigm shift
in how knowledge is delivered and consumed. As the demand
for lifelong learning and skill acquisition continues to grow,
AI is poised to play a pivotal role in shaping the future of
education, making it more personalized, inclusive, and data-
informed [10].
The rest of the paper is organized as follows. The next section
provides a brief technical introduction to AI technologies
enabling readers to grasp the argument. The section III is
the main section that presents use cases to understand the
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Fig. 1: Overview of AI technologies

increasing use of AI and its impact in Education. We discussed
the challenges, limitations and future directions in section IV
while we conclude the study in section V.

II. TECHNICAL BACKGROUND

This section presents a brief introduction to Artificial Intelli-
gence (AI) and Machine Learning (ML) technologies Figure 1.

AI is the technology that enables machines to think like
humans. It can be a computer or robot able to learn, reason,
solve complex problems, and can understand languages. AI
tools have powerful features to recognize patterns much faster
than use that help AI based systems to make decisions and this
happens as AI mimics the cognitive abilities of human brain.
AI-powered systems learn how humans think and process
information, hence enabling them to perform tasks smartly and
more efficiently. It is important to understand how AI is being
implemented. AI is practically the sum of many technologies
including machine learning, computer vision and natural lan-
guage processing. Similarly, machine learning is the sum of
many categories including supervised learning, unsupervised
learning, semi supervised learning, Reinforcement Learning
and Deep Learning. Among these types, RL and DL are
the most advanced form of AI which enables AI to mimic
a human brain’s neural network. Reinforcement learning a
branch of machine learning, is goal-directed learning from
interaction. Reinforcement learning involves improving perfor-
mance through trial-and-error experience [14]. A method with
a software agent that interacts with an unknown environment,
selects actions dynamically and discovers which action yields
more reward [11]. Reinforcement learning focuses on teaching
algorithms to make choices by providing positive feedback
for preferred actions and negative feedback for unwanted
ones. Similarly to how behavior is influenced by rewards and
consequences in psychology, this method allows systems to
gradually develop the best strategies through a process of
trial and error as shown in Figure 2. The reward system

Fig. 2: Working of an RL agent presenting agent-environment
interaction [11].

is crucial for guiding the agent’s actions toward achieving
the final goal. It serves as a feedback mechanism, clearly
indicating whether a chosen action has led to a positive or
negative outcome. By understanding this, the agent can adjust
its strategies effectively, ensuring progress and success in
reaching its objectives.

Similarly, deep learning is the latest AI tool which has
brought transformation how machines train, learn and interact
with environment and complex data. It is the type of learning
which mimics Neural Networks (NNs) of the human brain
and thus enabling machines to autonomously uncover patterns
and make informed decisions from huge amounts of data [6].
NN is the main part of the deep learning algorithm, consists
of layers of interconnected neurons working in collaboration
to process input data. In a fully connected Deep Neural
network (DNN) data flows via multiple layers and every
neuron do nonlinear transformations, permitting the model to
learn intricate representations of the given data. In a DNN the
input layer receives data and this data is then passes through
hidden layers and these central layers further transform the
data using nonlinear functions. At the final stage, the output
layer generates the model’s prediction or output.

III. DECODING AI IN EDUCATION

This section presents the various use cases that we consider
to explain the increasing use and impact of AI solutions in
education.

A. Personalized Learning

The first case is personalized learning that we can say
is one of the best and innovative uses of AI in education.
The concept of personalized learning is getting attention
worldwide and it can be realized with the help of modern
AI and ML tools as demonstrated in Figure 3. Personalized
learning is a learning method to employ AI and ML specially
Reinforcement Learning (RL) that considers the requirements
of every individual student. Personalized learning means that
each student’s learning experience and skills are customized
to adopt their needs. Personalized learning provides an oppor-
tunity to grow using their own skills and learning experience.

The AI-powered personalized learning gives flexibility to
students in various aspects like: the use of material, quality of
material, speed to learn, and way of teaching. Although there
are various benefits of personalized learning as highlighted,
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Fig. 3: Benefits of AI on personalized learning

there are also some limitations. For example, the implemen-
tation of personalized learning is a time taking task and it
is difficult without the use of AI technology. Similarly, the
cost associated with the implementation of technology-based
infrastructure is another issue. Lastly and importantly, the
training of teachers and relevant persons on the use of modern
technology is another challenge that needs to be addressed.

B. Task Automation

The second case is how AI methods can be useful for
task automation. The presence of adaptive learning platforms
based on AI technology, can analyze student data, for example,
their learning pace, strengths, weakness and performance. This
information is feedback to AI systems for task automation
to obtain personalized pathways for every student, provid-
ing suitable and adaptive activities, resources and contents
based on their specific needs. These systems are also known
as Intelligent Tutoring Systems as they offer individualized
support and guidance to students [19]. Another advantage of
these systems is their ability to assess an individual student’s
understanding, identify areas of weakness, and provide corre-
sponding feedback, and exercises for practice. The intelligent
tutoring systems adapt to every student’s progress and adjust
the learning material accordingly.

C. Smart Content Creation

The next use case is about the innovative use of AI tech-
nology for smart content creation in the context of education
and learning. There are many examples like Information
visualization, digital lesson generation and frequent content
updates. Moreover, AI algorithms are also helpful in content
optimization and content curation as illustrated in Figure 4.
AI technology provides huge potential in improving content
creation processes, assisting students to develop engaging and
suitable content for their study objectives and tasks.

In addition, content creation using AI tools also saves time
and offers an effective way to generate relevant contents in
a short time. AI-based content optimization ensures that the
content resonates with the study goals. At the same time
students get valuable contents creation experience with the
use of AI for content creation curation and optimization. It is
important to embrace AI tools and students can use them to
their learning advantage. Smart content creation based on AI
technologies is the way forward for content creators students

Fig. 4: AI tools for contents creation

who seek to develop impactfull and engaging content in a
time-oriented task.

D. AI in Examinations

An important phase of the education system and learning
process is the examination. AI technology can assist both
teachers and students in the examination process because it is
possible to track the performance of students in examinations.
The AI-enabled systems then help teachers by providing
them detailed analytics of each students’ performance and the
performance of the whole class as well. These analytics will
assist teachers in understanding which arguments or concepts
are difficult for students and consequently can develop new
strategies to help students in grasping highlighted topics.
Similarly, AI tools are also useful to students by providing
them feedback over examinations. These modern technologies
not only help students in pointing out their weak parts but also
assist them with personalized schemes to understand a specific
topic with maximum attention and retention. Moreover, AI-
powered systems can alert teachers if a student or group of
students is lagging behind others in some subjects.

The scenario or problem as shown in Figure 5, can be
considered as the problem of personalized learning, task
management or subject selection. We have different tasks and
we have to make task selection using RL policy and feedback
to RL agent after selection of the particular task. This is an
emulated environment where different students have to learn
and perform different tasks. The performance of a student
varies from task to task and similarly, the outcome of each
task in terms of score (S1,S2,S3,S4) may be different for
different people. The probability distribution for the reward
corresponding to each task is different and is unknown. The
problem for an AI agent is to learn which task to select
in order to get the maximum score in a given amount of
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Fig. 5: An AI based subject selection system [20]

time. This problem statement is identical to a single step
Markov Decision Process (MDP). The score list (S1,S2,S3,S4)
measures different skills of a person during the execution
of a task. The better score in skills indicates more interest
and better performance for a particular task and lower score
indicates that a particular task is unsuitable for a person. After
a lot of interaction with the environment, the RL agent learns
the most suitable task for a student.

This scenario can be modeled as a problem as a MMDP
with a single state. There are in general K number of tasks
and it is possible to select anyone and each task has a certain
probability of returning a reward (score). Therefore, we have a
single state and K possible actions (one action for each task).
At each time period the agent selects one task and it receives
feedback in terms of different scores (reward). The goal of the
agent is to learn the best task/subject for each student in in
order to maximise its long term reward. A suitable machine
learning algorithm like Boltzman sampling, Epsilon decreas-
ing, Random, Softmax, and Thompson sampling algorithms
can be used to solve this MDP problem.

E. Secure and Decentralized Learning Systems

Artificial Intelligence, when integrated with emerging tech-
nologies such as blockchain, can contribute to the development
of secure and decentralized learning systems [21]. One of
the major concerns in digital education environments is the
security and privacy of learners’ data. AI-driven platforms,
enhanced with decentralized technologies, can provide a trans-
parent and tamper-proof infrastructure for storing educational
records, certificates, and learning progress. This ensures that
students have full control over their data and can securely share
their academic achievements with educational institutions or
employers without relying on centralized authorities.

Furthermore, decentralization promotes inclusivity and ac-
cessibility by enabling peer-to-peer learning networks, where
educational content and credentials are distributed across se-
cure nodes rather than hosted on a single centralized server. AI
algorithms can monitor and verify these exchanges, ensuring
content quality and relevance while maintaining integrity and

Fig. 6: An AI based subject selection system [20]

trust in the system. As a result, secure and decentralized
learning systems not only protect student data but also foster
global collaboration, democratizing access to education across
borders and socioeconomic boundaries.

F. Customized Data-Based Feedback, Closing the Skill Gap

The final use case examined the role of AI in delivering
customized feedback to students by analyzing large datasets of
their learning behavior, performance trends, and engagement
metrics. This real-time, data-driven feedback is crucial for
identifying individual strengths and weaknesses, which helps
educators design tailored learning pathways for each student as
also indicated in Figure 6. AI systems can generate predictive
analytics that forecast student outcomes and suggest timely
interventions, thereby preventing learning delays or dropouts.

Moreover, this personalized feedback mechanism plays a
vital role in addressing the skill gap between academic training
and real-world job market needs. AI can map students’ learn-
ing progress against industry requirements and recommend
specific skills or courses to align their competencies with
emerging market demands. Educational institutions and em-
ployers can also benefit from this data, as it enables more ac-
curate student profiling, workforce readiness assessments, and
targeted curriculum development. In conclusion, AI-enabled
customized feedback serves as a bridge between education
and employment, helping students acquire relevant skills and
enhancing the overall effectiveness of learning systems.

IV. DISCUSSION AND FUTURE WORK

The integration of AI in education signals a paradigm shift
in how learning is designed, delivered, and evaluated. Rein-
forcement Learning, with its capacity for modeling sequential
decision-making, offers substantial potential for tailoring edu-
cational experiences to individual learner behaviors. Similarly,
the implementation of AI-powered tools such as chatbots
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and virtual tutors allows for scalable, continuous support
that can simulate human-like interaction, providing learners
with instant feedback and guidance. The adoption of AR and
VR technologies introduces immersive learning environments
that enhance conceptual understanding through experiential
simulation. However, the widespread implementation of AI in
education also raises important considerations. These include
ethical issues surrounding data privacy and algorithmic bias,
the digital divide that limits access to advanced technologies,
and the preparedness of educators and institutions to adopt
AI-based methodologies. There is a clear need for policy
frameworks, teacher training programs, and interdisciplinary
collaboration to ensure that the benefits of AI are equitably
distributed and effectively managed.

A. Future Directions

Although, artificial intelligence and machine learning tools
have shown significant applications in almost all aspects of
human life and education sector is one of them. but still there
are many challenges and limitations that need to be addressed
as a way forward [15]. In this study, we highlight some of
the key points that need to be considered to translate the
potential of AI technologies into effective educational practice
and learning:

Teacher Training: As we discussed, teachers skills in effi-
cient use of modern technologies is key to implement AI tools
in education and learning. Educators must be equipped with
the skills and tools to understand and integrate AI technologies
into their pedagogical practice [17]. Therefore, it is essential
and strategic to start investing in teachers and educational
staff. This process requires mandatory training and equipped
classrooms and labs with necessary equipment. The training
should include both technical training and the development of
critical perspectives on AI’s role in education.

Ethical Guidelines and Data Governance: One of the
most critical aspects of the use of AI technologies in each
sector is the lack of ethical guidelines and lack of formal
protocols. As in any other area, there should be formal ethical
guidance on the use of AI and machine learning tools in
education . In addition, it is necessary to have data governance
and protocols to protect both teachers and students privacy and
security. In conclusion, educational institutions should make
and implement policies regarding data usage, user privacy, and
transparency in AI decision-making processes.

Easy Access to AI Tools: When we talk about AI applica-
tions, it is normally discussed more about its usage, benefits
and drawbacks but one aspect that is comparatively discussed
less is the accessibility of these technologies to the masses.
We all know that in the education sectors we have students
as well as teachers from diverse backgrounds in terms of
many factors. Therefore, it is very essential to ensure uniform
and easy access to modern resources to everyone. So it is
recommended that AI-empowered educational technologies
should be designed and deployed with a focus on accessibility
to students from different backgrounds and regions.

Cross-sector Collaboration: We highlighted the need of
teachers and educators training for better use of AI in ed-
ucation and quipping classrooms, labs with modern infras-
tructures. The training and infrastructure purchase require a
considerable investment and it is important to have a strong
collaboration with private sector, companies and other stake-
holders. Secondly, we discussed ethical and data governance
protocols which is not possible without the involvement of
government institutions. In summary, partnerships between
educational institutions, policymakers, the AI community, and
the private sector are necessary for the responsible scaling and
innovation of AI solutions in education.

Support Continuous Evaluation: To sum up all previous
arguments, we can state that it is important we support the
positive use of AI technologies in education and learning.
In conclusion, implementations should be subject to ongoing
assessment to ensure they fulfill educational goals, bring
innovations, meet students and teachers needs, and adapt to
emerging challenges.

V. CONCLUSION

In conclusion, artificial intelligence particularly reinforce-
ment learning offers a mathematically sound and practically
effective framework for optimizing learning decisions and
customizing educational experiences. This study provided a
comprehensive exploration of AI applications across several
key areas, including personalized learning, immersive tech-
nologies, and intelligent tutoring systems. The convergence of
AI with education holds transformative potential, yet it also
necessitates thoughtful consideration of the ethical, infrastruc-
tural, and pedagogical dimensions involved. Future research
and development efforts should focus on creating inclusive,
transparent, and adaptive AI systems that complement human
teaching and foster lifelong learning. With strategic planning,
stakeholder collaboration, and evidence-based implementation,
AI can serve as a powerful catalyst in shaping the future of
education
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Ž., Jejić, O.A., Furtula, F., Ljubisavljević, M.D., Luković, I.S. and
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Abstract—This narrative review explores the integration of 

Artificial Intelligence (AI) and Serious Games (SGs) as a novel, 

interdisciplinary approach to fostering socio-emotional skills in 

children with Autism Spectrum Disorder (ASD). As ASD is char-

acterized by persistent challenges in emotional understanding, 

social  communication,  and  behavioral  regulation,  there  is  a 

growing need for interventions that are both effective and per-

sonalized.  SGs  provide  structured,  interactive  environments 

where children can practice skills such as emotion recognition, 

joint attention, and empathy in a safe and motivating way. When 

augmented with AI, these games offer real-time feedback, dy-

namic personalization, and adaptive learning experiences tai-

lored to individual cognitive and emotional profiles. This review 

synthesizes recent empirical evidence on AI-powered SGs tar-

geting socio-emotional development in children with ASD. It ex-

amines the design strategies, targeted competencies, and evalua-

tion methods used across current literature. The integration of 

SGs and AI is positioned as a promising and scalable tool to pro-

mote autonomy, emotional well-being, and social inclusion in 

neurodiverse children.

Index Terms—Serious Games, Artificial Intelligence, Autism 

Spectrum Disorder,  Socio-emotional  skills,  Emotion Recogni-

tion, Personalized Intervention

I. INTRODUCTION

UTISM Spectrum Disorder (ASD) is a complex, life-
long  neurodevelopmental  condition  characterized  by 

persistent difficulties in social communication and interac-
tion, along with restricted and repetitive patterns of behavior, 
interests, or activities [1]. With the growing global prevalence 
of ASD, there is an urgent need for effective, individualized 
interventions that address the unique profiles and evolving 
needs of autistic children and their families. Among the most 
critical domains for intervention is the development of socio-

A

emotional competencies, which are foundational for overall 
well-being, meaningful relationships, and successful partici-
pation in school and community life. This need is supported 
by  developmental  frameworks  such  as  Bandura’s  Social 
Learning Theory [2], which emphasizes learning through ob-
servation and interaction,  and cognitive-behavioral  models 
that highlight the role of emotional awareness and regulation 
in adaptive functioning. These perspectives provide a theoret-
ical basis for designing digital tools that scaffold emotional 
development  and  promote  meaningful  social  engagement. 
Difficulties in emotional understanding, behavioral  regula-
tion, and interpersonal engagement often lead to heightened 
anxiety, social withdrawal, and limited opportunities for in-
clusion [3]. In response to these challenges, Serious Games 
(SGs) have emerged as innovative tools in therapeutic and ed-
ucational contexts. Designed with specific learning or clinical 
objectives, SGs provide structured, immersive environments 
where children with ASD can safely practice and generalize 
socio-emotional skills. These game-based interventions lever-
age the affinity many autistic children have for digital and 
rule-based  systems,  increasing  engagement  and  retention 
while reducing the unpredictability of real-life interactions 
[4]. At the same time, Artificial Intelligence (AI) has emerged 
as a powerful tool for personalizing and optimizing interven-
tions. Through machine learning, natural language process-
ing, and real-time feedback systems, AI can monitor behavior, 
assess progress, and adapt content to individual needs  [5]. 
When combined with SGs, AI enhances their adaptability, re-
sponsiveness,  and effectiveness,  providing tailored support 
that evolves with the user [6]. Together, SGs and AI offer a 
promising framework for delivering targeted, engaging, and 
personalized socio-emotional interventions for children with 
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ASD. This narrative review aims to explore key trends and 
thematic insights into the integration of Serious Games and 
Artificial Intelligence in the promotion of socio-emotional de-
velopment in children with ASD. It examines key applica-
tions, benefits, and evaluation strategies, and addresses the 
challenges,  ethical  considerations,  and future  directions  in 
this rapidly evolving field [7]. Building on the author’s previ-
ous research on AI-driven autism interventions and VR-based 
serious games for adolescents [6, 7], the present work narrows 
its focus to the use of AI-powered SGs to enhance socio-emo-
tional competencies in children with ASD. The aim is to syn-
thesize current evidence and identify future directions for re-
search, development, and implementation of these promising 
tools. This review is guided by the following questions: (1) 
How are Serious Games enhanced by AI used to foster socio-
emotional development in children with ASD? (2) What evi-
dence exists regarding their effectiveness, design strategies, 
and implementation challenges? These questions inform the 
structure and scope of the present synthesis.

II. BACKGROUND: SERIOUS GAMES AND AUTISM

An expanding body of research highlights the diverse ap-
plications of SGs in supporting children with ASD. These 
tools have been used to target a wide range of skills, including 
social communication, turn-taking, empathy, and collabora-
tion. Rather than aiming for exhaustive coverage, this section 
provides a thematic overview of key developments in the use 
of Serious Games for children with ASD, as reported in se-
lected studies and literature reviews. Recent developments in 
reinforcement learning systems for healthcare support have 
shown how AI can provide adaptive decision-making in real 
time, adjusting treatment pathways based on patient interac-
tion patterns  [10]. This work illustrates how reinforcement 
learning frameworks, although not ASD-specific, can be re-
purposed for responsive intervention delivery in SG contexts. 
Such mechanisms could be leveraged in SGs to optimize emo-
tional feedback loops and behavioral reinforcement in chil-
dren with ASD.

Many SGs leverage immersive technologies such as virtual 
reality to simulate realistic environments where children can 
safely practice social interactions. Other games are designed 
to  support  emotion  recognition  and  regulation  by  helping 
users identify facial expressions, vocal cues, and contextual 
emotional indicators [11]. SGs have also been applied to areas 
like attention control, executive functioning, and language de-
velopment, including vocabulary building and vocalization. 
In  addition  to  core  developmental  skills,  SGs  have  been 
shown to support learning in academic and functional life do-
mains. Some games teach numeracy, literacy, and problem-
solving skills, while others focus on everyday tasks such as 
navigating  public  transportation,  understanding  health  and 
safety practices, or applying basic first aid. These experiences 
not only promote cognitive development but also enhance in-
dependence and self-confidence in real-world situations [12].

SGs  offer  multiple  advantages  for  children  with  ASD. 
Their structured, predictable, and customizable nature aligns 

well with the preferences of many autistic learners, helping to 
reduce anxiety and sensory overload. They provide opportu-
nities to engage in repeated practice at an individualized pace, 
with feedback tailored to specific learning profiles. The inter-
active nature of SGs increases motivation and engagement, 
which are crucial for the success of therapeutic and educa-
tional programs. Moreover, the use of multisensory feedback 
and realistic simulations supports memory,  self-regulation, 
and emotional awareness, encouraging the transfer of learned 
skills to everyday settings [13]. While SGs provide a struc-
tured and engaging medium for practicing skills, AI intro-
duces the capability  to  personalize  and dynamically  adapt 
these interventions. The next section explores how AI tech-
nologies contribute to the broader landscape of autism inter-
ventions, laying the groundwork for their integration within 
game-based contexts.

III. BACKGROUND: ARTIFICIAL INTELLIGENCE IN 
INTERVENTIONS FOR AUTISM

AI has found a wide range of applications in tools and inter-
ventions developed to support children with ASD. One of its 
most impactful uses is in the personalization of learning expe-
riences  through machine learning algorithms and adaptive 
platforms that provide real-time feedback. These systems can 
monitor user behavior, track progress, and dynamically adjust 
content,  making  learning  more  responsive  and  individual-
ized [14].

AI is also used to support the development of social skills. 
It powers interactive systems such as virtual agents, conversa-
tional chatbots, and social robots that simulate real-life inter-
actions. These tools support turn-taking, nonverbal cue recog-
nition,  and  social  problem-solving  in  controlled  environ-
ments [15].

In communication, AI enhances Augmentative and Alter-
native Communication (AAC) tools by incorporating features 
like predictive text, intelligent voice recognition, and adaptive 
vocabulary suggestions.  These capabilities help users with 
limited verbal communication express themselves more effi-
ciently, and systems improve over time by learning from us-
age patterns [16].

Emotional understanding is another key domain where AI 
contributes significantly. Intelligent systems can detect and 
interpret facial expressions, vocal tone, and body language us-
ing computer vision and affective computing. Children re-
ceive immediate feedback from avatars or virtual tutors, help-
ing them improve emotion recognition and regulation [17].

AI also supports the analysis of social behavior through 
natural language processing and multimodal data interpreta-
tion. These systems assess user engagement, attention, and re-
sponse patterns, providing valuable insights for clinicians and 
educators. In some cases, AI can offer autonomous support 
during learning sessions without direct human supervision.

Another important application is in early screening and di-
agnosis. By analyzing data such as gaze patterns, movement, 
vocalizations, and neuroimaging, AI systems can help detect 
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early signs of ASD, improving the timeliness and accuracy of 
assessments [18].

Overall, AI enables highly adaptive and scalable interven-
tions that align with the diverse learning needs of children 
with ASD. When integrated into virtual or gamified environ-
ments,  AI  increases  engagement,  promotes  independent 
learning, and supports the acquisition of social, emotional, 
and cognitive skills. Its ability to process large datasets and re-
fine its responses over time makes it a valuable tool in both 
educational and therapeutic contexts [19]. This section high-
lights recurring applications of AI identified across various 
studies and conceptual papers, illustrating the breadth of its 
contribution to autism interventions.

IV. METHOD

A computerized search was carried out using the Scopus data-
base to  identify studies  on the integration of  SGs and AI 
aimed at supporting socio-emotional development in children 
with ASD. The search was limited to publications in English, 
published between 2014 and 2024, and focused on interven-
tion-based studies involving SGs designed to improve emo-
tional and social functioning in children with ASD. The fol-
lowing search string was used in the TITLE-ABS-KEY field: 
“serious games” AND “autism” AND “emotions”. This query 
returned thirty-one records. After an initial screening of titles 
and abstracts, articles that did not meet the preliminary inclu-
sion criteria were excluded. These included studies focusing 
solely on physical rehabilitation, motor coordination, sensory 
processing, or diagnostic methods without the use of game-
based or AI-enhanced interventions. From this initial set, six 
studies were identified as directly meeting the eligibility crite-
ria for detailed narrative synthesis. These included five empir-
ical interventions and one systematic review, all focusing on 
the explicit integration of Serious Games with Artificial Intel-
ligence to promote socio-emotional development in children 
with ASD. 
The six included studies were:

1. Zirkus Empathico 2.0 [20]: RCT – multiplayer SG 
with adaptive feedback for emotion recognition and 
empathy;

2. EMOCASH  [21]:  pilot  study  –  intelligent  agent-
based  multiplayer  game  using  the  ASPECTS™ 
model;

3. JeStiMulE [22]: pre-post study – multimodal facial 
expression training game with adaptive feedback;

4. Game-Based Social Interaction Platform [23]: pilot 
study – integrated eye-tracking with emotion recog-
nition tasks;

5. Interactive game using physiological sensors  [24]: 
pilot  study – real-time biofeedback for  emotional 
state classification;

6. Emotion Detectives  [25]: quasi-experimental ABA 
design – SG with adaptive learning for emotion dis-
crimination.

Eligible  articles  addressed  key  domains  such  as  emotion 
recognition, emotional regulation, empathy, joint attention, 
and social interaction, and employed AI features such as real-
time  feedback,  gaze  tracking,  physiological  sensing,  and 

adaptive personalization algorithms. For example, the Game-
Based Social Interaction Platform [23] utilized real-time eye-
tracking combined with facial emotion recognition tasks to 
assess user engagement and emotional responses.

V. NARRATIVE REVIEW

This narrative review aims to synthesize and critically com-
pare recent literature on the use of AI-powered SGs to foster 
socio-emotional  development  in  children  with  ASD.  The 
originality of this contribution lies in: (a) the focus on SGs 
specifically  enhanced by AI components  such as  adaptive 
feedback, emotion recognition, and personalization systems; 
and (b) the thematic analysis of socio-emotional outcomes 
such  as  empathy,  joint  attention,  emotion  regulation,  and 
prosocial behavior. 
A total of twenty-two studies were identified through the ini-
tial screening. Among these, six empirical interventions were 
retained for in-depth synthesis, based on their integration of 
AI-driven components and their  targeted impact on socio-
emotional development in ASD. The remaining studies were 
used to support background discussion on broader trends, im-
plementation challenges, and design principles.
Zirkus Empathico 2.0 [20], a bilingual mobile serious game 
tested in Germany and Pakistan, significantly improved emo-
tional awareness and empathy in children with ASD after an 
8-week  randomized  controlled  trial.  Notably,  participants 
were able to apply learned emotional skills in real-world con-
texts, showing potential for generalization beyond the digital 
environment. 
Similarly, EMOCASH [21], a virtual agent-based multiplayer 
game, was designed to teach both financial literacy and emo-
tion recognition within a 3D virtual shop. The game, tailored 
to Egyptian children with ASD using the ASPECTS™ design 
index, demonstrated high usability and educational impact by 
facilitating real-life skill transfer in a socially simulated envi-
ronment. Another line of research explored emotion recogni-
tion via multimodal feedback systems. 
The game JeStiMulE [22], focused on improving facial ex-
pression recognition, showed significant pre-post improve-
ments in accuracy on standardized emotion tasks in a sample 
of Moroccan children with ASD. These outcomes highlight 
the importance of integrating multimodal feedback, repetitive 
training, and adaptive interfaces based on functioning level.
A fourth study [23] the Game-Based Social Interaction Plat-
form, integrated real-time eye-tracking with facial emotion 
recognition tasks. Reduced fixation on positive expressions 
was interpreted as a digital biomarker of engagement.
An additional study [24] used physiological sensors within an 
interactive game to assess and classify emotional states, lay-
ing the groundwork for future emotionally responsive game-
based interventions. 
Finally, the Emotion Detectives [25] game demonstrated im-
provements in emotion discrimination and self-regulation in 
children  with  neurodevelopmental  conditions,  including 
ASD, with gains maintained at a one-month follow-up.
From a design perspective, the reviewed literature  empha-
sizes  the  relevance  of  co-design  practices  involving  both 
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autistic users and key stakeholders such as parents and educa-
tors. Games developed with Tangible User Interfaces (TUIs) 
[26] proved particularly effective in maintaining attention and 
facilitating  emotional  understanding.  Despite  encouraging 
outcomes, the field still suffers from limited clinical valida-
tion, small sample sizes, and short follow-up periods. Further-
more, most reviewed games were developed for high-func-
tioning children with ASD, revealing a need for more inclu-
sive designs. Overall, the integration of AI in SGs provides a 
scalable and adaptable framework for delivering engaging, 
personalized, and evidence-informed socio-emotional inter-
ventions in autistic populations.

VI. DISCUSSION

This discussion integrates both the main empirical findings 
and broader implications of the reviewed studies. It begins by 
synthesizing key socio-emotional outcomes across interven-
tions,  then explores  design considerations,  methodological 
limitations, and opportunities for future research in the field 
of AI-powered Serious Games for children with ASD.

The reviewed studies collectively illuminate promising di-
rections in the development and application of SGs and im-
mersive technologies to support socio-emotional learning in 
children with ASD. While the integration of such tools has not 
yet reached full methodological maturity, emerging patterns 
suggest tangible benefits for emotion recognition, behavioral 
regulation, and engagement in children with ASD.

Recent evidence underscores the pivotal role of immersive 
environments  in  modulating  emotional  activation  and  im-
proving performance in emotion recognition tasks. The pilot 
study utilizing Unreal Engine 4 [27], although conducted on 
neurotypical adults, demonstrated heightened emotional en-
gagement in 3D environments compared to traditional set-
tings. These findings are especially relevant for ASD inter-
ventions, where attention and motivation are often reduced. It 
is plausible that immersive graphics and interactive feedback 
may scaffold attentional focus and facilitate deeper emotional 
processing in children with ASD - a hypothesis that warrants 
further empirical validation in clinical populations. 

Games leveraging multisensory tools—such as real-time 
eye-tracking, physiological sensors, and spatialized audio—
demonstrated potential for broader accessibility and improved 
user engagement.

The adaptive capabilities of SGs, powered by AI, are in-
creasingly recognized as essential to their efficacy. Games 
such as JeStiMulE  [22] and Emotion Detectives  [25] inte-
grated feedback mechanisms that responded dynamically to 
user  behavior,  allowing  for  personalized  pacing  and  rein-
forcement. These features align well with the cognitive and 
emotional heterogeneity characteristic of ASD. Intervention 
outcomes from these studies demonstrated not only signifi-
cant improvements in targeted emotion discrimination tasks 
but also observable behavioral gains in naturalistic settings, 
suggesting generalization beyond the digital context.

For instance, in the Emotion Detectives study [25], the sys-
tem adjusted the difficulty and type of emotion recognition 

tasks in real time based on the child’s performance, offering 
immediate visual and auditory reinforcement when correct re-
sponses were detected. This dynamic feedback loop helped 
maintain engagement and reinforce emotional learning in a 
personalized manner.

Personalization  remains  a  critical  factor  in  intervention 
success. The variability in cognitive profiles among children 
with ASD - particularly between high- and low-functioning 
individuals -  necessitates differentiated user interfaces and 
multimodal content. For example, the JeStiMulE [22] study 
revealed that children with high-functioning autism signifi-
cantly outperformed their lower-functioning peers in emotion 
recognition tasks,  highlighting the need for adaptable sys-
tems. Multisensory feedback tools, including eye-tracking (as 
seen in the Game-Based Social Interaction Platform  [23]), 
spatialized audio, and physiological sensors, may enhance ac-
cessibility and foster engagement across a broader segment of 
the autism spectrum.

Beyond empirical outcomes, several design and usability 
insights were noted.

A recurring theme is the divergence between user motiva-
tion and therapeutic intention. Studies grounded in user-cen-
tered frameworks, such as the one referencing Whyte et al.’s 
model  [28], showed that autistic youth prioritize engaging, 
visually rich gameplay, while professionals emphasize gener-
alizable skill acquisition. Bridging this divide requires partici-
patory design approaches that incorporate the lived experi-
ences and preferences of children with ASD, ensuring both 
usability and therapeutic relevance. 

Despite encouraging findings, methodological limitations 
remain. Sample sizes across studies were often small,  and 
long-term assessments were rarely conducted. Additionally, 
there is a notable gap regarding the use of AI to dynamically 
adapt emotional feedback and narrative progression within 
SGs. 

In practical terms, an emotionally attuned system would 
use multimodal inputs - such as facial expression analysis, vo-
cal tone monitoring, and physiological sensors - to detect a 
child’s emotional state and adapt gameplay accordingly. For 
example, if signs of frustration or disengagement are detected, 
the system could simplify tasks, slow down interactions, or in-
troduce calming stimuli to re-engage the user.

Nevertheless, the convergence of AI, adaptive learning en-
vironments, and game-based delivery represents a compelling 
frontier for inclusive and scalable ASD interventions.

VII. FUTURE DIRECTIONS AND RESEARCH GAPS

Despite the growing interest and positive initial findings re-
garding SGs and AI for children with ASD, emerging themes 
and conceptual gaps identified across the literature suggest 
several promising areas for future exploration.

One promising future direction involves the development 
of more advanced AI algorithms capable of deeper personal-
ization and nuanced real-time adaptation to a child’s learning 
style, emotional state, and progress. Such systems could pro-
vide finely tuned interventions that evolve continuously based 
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on user interaction [29]. Another emerging area is the creation 
of hybrid AI-human learning models, where AI supports but 
does not replace human instruction or therapy. Hybrid AI-hu-
man models have been tested in platforms like Woebot [30] or 
Replika  [31], where automated responses are supported by 
clinician supervision or feedback. These models may com-
bine the scalability of digital tools with the irreplaceable rela-
tional and contextual insight of human facilitators. Related to 
this is the need to leverage multimodal data inputs - such as 
text, audio, facial expressions, gesture, and biosignals - to de-
sign more natural and emotionally attuned learning experi-
ences [32].

Designing SGs that address sensory sensitivities and sup-
port imaginative play is another crucial area for development. 
These capabilities could significantly expand the emotional 
and behavioral range of digital interventions, particularly for 
children who have trouble with unstructured or abstract tasks. 
Furthermore, the field would benefit from interdisciplinary 
design frameworks that bring together educators, clinicians, 
game developers, families, and neurodiverse individuals to 
co-create content. This participatory approach would ensure 
that SGs reflect real-world needs and diverse lived experi-
ences [33].

Advanced time-series prediction models, such as GLinear 
[34], offer new possibilities for decoding physiological and 
behavioral signals in real time. GLinear and similar architec-
tures have been proposed for modeling arousal and engage-
ment in real time using physiological data streams [34]. These 
architectures could enhance SG responsiveness by enabling 
more accurate modeling of attention, arousal,  and engage-
ment patterns.

Generative AI, which allows for the creation of dynamic 
narratives, characters, and interactive environments based on 
user input, represents another exciting frontier. Generative AI 
systems, such as GPT-based narrative engines, can dynami-
cally adjust storylines and dialogue based on user preferences 
or detected emotions. By generating personalized stories or 
scenarios, such systems may enhance engagement, emotional 
learning, and long-term retention. On the research side, longi-
tudinal studies are essential to evaluate the sustained impact 
of AI-integrated SGs on socio-emotional development, aca-
demic outcomes, and real-life functioning. Additional studies 
should examine the role of social interactions within multi-
player SGs, particularly how these experiences transfer to off-
line settings [35].

There are several critical gaps that must be addressed to 
strengthen the  field.  These  include the  limited number  of 
long-term and ecologically valid studies, and the lack of re-
search examining how cultural and socioeconomic factors af-
fect the success and accessibility of SG and AI interventions. 
Furthermore, there is a pressing need for more inclusive sam-
pling to represent the full diversity of the autism spectrum, as 
well as greater focus on underexplored domains such as emo-
tional regulation in high-stress or unpredictable contexts. An-
other persistent issue is the generalization gap - that is, the 

challenge of ensuring that skills practiced within SGs trans-
late meaningfully to everyday environments. Lastly, there re-
mains an absence of standardized frameworks for evaluating 
and  comparing  different  AI-enhanced  SG  interventions, 
which  hinders  both  replication  and  broader  implementa-
tion [36].

Emerging  metric-driven  approaches  designed  for  the 
recognition  of  hazardous  or  high-stakes  situations  offer 
promising frameworks for modeling stress responses and pre-
dicting behavioral escalations  [37]. These could inform the 
design of emotionally aware SGs capable of anticipating dis-
tress and dynamically modulating difficulty or content.

Future research must address these shortcomings through 
rigorous, long-term, and multisite studies. There is also a need 
to explore emerging AI applications and to develop standard-
ized, reliable outcome measures. Doing so will help establish 
stronger evidence base and improve the design and delivery of 
effective, inclusive, and sustainable digital interventions for 
children with ASD.

VIII. CONCLUSION

The integration of SGs and AI represents a rapidly growing 
and highly promising frontier in the promotion of socio-emo-
tional skills among children with ASD. This combined ap-
proach leverages the immersive, interactive nature of game-
based learning and the adaptive, data-driven capabilities of AI 
to deliver interventions that are not only engaging but also 
finely tailored to the unique and heterogeneous profiles of 
autistic learners [38].

SGs provide structured, low-risk environments where chil-
dren can repeatedly practice and reinforce critical skills such 
as emotion recognition, turn-taking, and social communica-
tion.  These  environments  benefit  learners  who  experience 
anxiety or sensory overload in real-life contexts. AI further 
enhances these games by enabling dynamic personalization - 
adjusting content  and difficulty  in  real  time based on the 
child’s behavioral patterns, emotional cues, and performance 
data. When combined, SGs and AI support a wide array of so-
cio-emotional competencies, including self-regulation, empa-
thy, joint attention, and behavioral flexibility. As such, this in-
tegrated approach serves as a powerful complement to tradi-
tional therapeutic and educational interventions [39].

Research to date has yielded encouraging results, with nu-
merous  studies  documenting  measurable  improvements  in 
specific target areas following the use of AI-enhanced SGs. 
However, the field is still evolving, and there remains consid-
erable variation in study methodologies, sample sizes, and as-
sessment tools. These inconsistencies limit the ability to draw 
firm conclusions about generalizability and long-term effec-
tiveness. A stronger evidence base is needed to guide the de-
sign, implementation, and evaluation of these tools across di-
verse  populations  and  real-world  settings.
In particular, future studies should address the generalization 
gap - ensuring that skills learned in digital contexts transfer 
meaningfully  to  everyday  social  environments. Future  re-
search must focus on longitudinal studies involving larger and 
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more diverse participant groups to better capture the full spec-
trum of ASD and the contextual factors that influence inter-
vention outcomes [40]. 

At the same time, the field must prioritize transparency and 
fairness in algorithm design to avoid reinforcing existing dis-
parities or excluding vulnerable users. By balancing innova-
tion with ethical responsibility, AI-powered Serious Games 
can evolve into truly inclusive and impactful tools for sup-
porting the emotional well-being and social inclusion of chil-
dren with ASD.

Despite its potential, this approach also presents a number 
of critical challenges. Key concerns include the need for in-
clusive, sensory-accessible design; transparent and ethical use 
of personal data; algorithmic fairness; and equitable access 
across cultural and socio-economic backgrounds. Addition-
ally, developers and practitioners must guard against the risk 
of over-reliance on technology, ensuring that these tools sup-
plement, rather than replace, essential human interactions and 
relationships. 

To ensure sustainable progress, interdisciplinary collabora-
tion will be essential - bringing together children with ASD, 
caregivers, educators, clinicians, AI developers, and game de-
signers  throughout  the  research  and  development  pro-
cess [41].

Looking forward, the field should adopt a participatory and 
interdisciplinary framework that brings together children with 
ASD,  families,  educators,  clinicians,  designers,  and  re-
searchers. Such collaboration is vital to creating tools that are 
relevant, user-centered, and grounded in real-life experiences. 
Advances in generative AI and hybrid human-AI learning 
models offer exciting possibilities for deepening engagement, 
promoting emotional insight, and crafting personalized narra-
tives that resonate with each child’s developmental  needs. 
Furthermore, the integration of multimodal data - such as fa-
cial expressions, speech, biosignals, and gaze - can pave the 
way for more emotionally responsive and adaptive learning 
environments  [42].  In  parallel,  future  systems must  adopt 
transparent, explainable AI protocols and ensure that person-
alization algorithms do not inadvertently reinforce cognitive 
or socio-economic disparities in access or engagement. To 
fully realize their potential, AI-powered SGs must be embed-
ded in broader clinical frameworks and supported by policies 
that ensure ethical deployment, accessibility, and cross-sector 
integration in health and education systems. 

This work is positioned as a conceptual and narrative syn-
thesis aimed at fostering discussion on the integration of AI 
and Serious Games for autism intervention. As such, it con-
tributes to ongoing dialogue in the interdisciplinary commu-
nity and aligns with the goals of conferences like FedCSIS.
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Abstract—Artificial intelligence has recently led to numer-
ous new applications in various industry sectors. Whenever
artificial intelligence modules are used in a black-box setting,
quality monitoring of such modules remains an open challenge.
This implies that users of such modules cannot predict the
modules’ performance following software updates or retraining.
Specifically for regulated devices, keeping track of an artificial
intelligence module’s behavior and compliance with requirements
is crucial. To this end, existing methods for monitoring the
functional behavior of software are investigated and evaluated
regarding their practical usability in this paper. Based on the
results of the investigation, a proposal for a new adaptive quality
monitoring scheme for artificial intelligence modules is made.

I. INTRODUCTION

ARTIFICIAL intelligence (AI) modules are becoming in-
creasingly common in private and public sectors. [1]

Such applications range from classical machine learning algo-
rithms, e.g. object detection and classification [2], to generative
AI systems such as chatGPT [3] which can be seen as a first
step towards a general-purpose AI. In the European Union
(EU) the AI Act [4] provides terms, definitions and require-
ments for AI models and systems. It also introduces general
transparency requirements to be met by any AI system and
establishes a conformity assessment framework for so-called
"high-risk scenarios" and general-purpose AI systems, aiming
to ensure that all high-risk AI systems and general-purpose
AI systems used within the EU ensure a minimum level of
customer protection. While these high-risk applications are
limited to law enforcement, health etc., the AI Act also stresses
that AI modules within regulated products still need to pass
conformity assessment according to the relevant directives. [4]
One such regulated sector is legal metrology, covering mea-
suring instruments used for commercial transactions or official
measurements. There exist already multiple signs indicating
that the integration of AI modules into regulated measuring
instruments is imminent. In the EU, the Measuring Instruments
Directive (MID) Annex I lays down essential requirements for
regulated measuring instruments which apply to ten different
types of instruments, e.g., length measuring devices, taxime-
ters, across all EU member states. As an example, requirement
8.3 imposes the following, ”[...] Software identification shall

be easily provided by the measuring instrument. Evidence of
an intervention shall be available for a reasonable period of
time.“ WELMEC Guide 7.2 [5] provides harmonized technical
guidance regarding the interpretation of the software-related
essential requirements for all EU members. From essential
requirement 8.3, two deductions can be drawn: Firstly, since an
AI module must be interpreted as software, it shall be possible
to identify a specific version of the AI module for control
purposes. Secondly, any change to the AI module (including
its parameters) shall be traceable to provide evidence of
an intervention. This requirement aims to ensure continued
compliance of the instrument by providing traceability of
modifications. Typically, users of AI modules do not have
access to the actual executable code of the module but either
use it as a remote service or as part of a device with limited
interaction capabilities. Given the potential adaptability of AI
modules, existing static solutions for providing traceability of
modifications, e.g., hashes over executable files [5], will likely
reach their limits quickly, if the frequency of modifications
increases. In particular, any approach should not be dependent
on manual interference or classification of changes. Therefore,
a solution should be able to automatically differentiate between
simple bugfixes that do not affect a module’s intended behavior
and more fundamental modifications such as the addition
of new functionality. To this end, classical and alternative
approaches for identification and traceability of software mod-
ules are investigated in this paper, resulting in a new proposal
which aims to be generally applicable for all types of AI
modules subject to similar requirements. The resulting use
case can be summarized as follows: An AI module is used
for data processing purposes, e.g., within a cyber-physical
system for classification of input data. Any change to the
module shall be traceable, either by providing evidence of an
intervention or through demonstrating continued compliance
with predefined requirements. The remainder of the paper is
structured as follows: Section II provides an overview of dif-
ferent existing methods to identify and monitor modifications
in software modules. In Section III one selected method will
be extended to deal with the potential behavior of AI modules.
The proposal will be practically tested and compared with the
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current state of the art in Section IV. Section V concludes the
paper and provides suggestions for further work.

II. RELATED WORK

Numerous methods exist for identifying software modules
and providing traceability of changes in real-world scenarios.
These range from simple version control systems to automata
learning approaches. While version control can be seen as
a static approach that does not allow automatic distinction
between minor bugfixes and major changes, automata learn-
ing can be used to quantify the scope of modifications for
certain types of automata. Subsection II-A will cover existing
active automata learning methods that require bi-directional
communication with a system under learning (SUL). Methods
that operate passively and are also applicable in black-box
scenarios will be addressed in Subsection II-B. Classical
static approaches of identifying software through hashes over
binaries will be revisited in Subsection II-C. In Subsection
II-D the differences between the approaches are discussed and
a candidate for the described use case is selected.

A. Active automata learning

In the 1987 paper ”Learning Regular Sets from Queries and
Counterexamples“ [6], Angluin outlined the now well-known
L∗ algorithm. The algorithm uses a learner L which sends
consecutive queries to a teacher T to construct and update an
automata representation of the SUL. The teacher acts as an
interface to the SUL and provides necessary abstraction for
the learner. Thus, the approach is only applicable in a white-
box or gray-box scenario. Since the learner paradigm plays a
central role in the developed method in Section III, the main
aspects of the L∗ algorithm will be reiterated here. L∗ was
originally developed for learning the behavior of deterministic
finite automata (DFAs), which are 5-tuples (Q,Σ, δ, q0, F ) [7]:

Q is a finite non-empty set of states.
Σ is a finite input alphabet.
δ : Q× Σ → Q is the transition function. (1)
q0 ∈ Q is the initial state of the DFA.
F ⊂ Q is the set of accepting states of the DFA.

During execution of L∗, the learner L sends membership and
equivalence queries to the teacher T . If the accepted language
of the SUL A is L(A) and Aut(A) is the set of all DFAs with
the same input alphabet Σ, the two queries are defined in the
following manner:

• Membership query QM : Σ∗ → {0, 1} where the learner
asks the teacher to test if a given string x is part of the
language L(A). If x ∈ L(A), the teacher’s response is 1,
0 otherwise.

• Equivalence query QE : Aut (Σ) → Σ∗ ∪ {true} where
the learner asks the teacher to test equivalence between
the SUL A and the current learned automaton represen-
tation A′ ∈ Aut(Σ).

With the aim of constructing an internal observation table
for storing the results of the queries in systematic fashion,

the learner issues membership queries until an initial model
A′ is obtained. The learner then performs an equivalence
query for A′. The teacher subsequently either acknowledges
correspondence between the learned and the true model or
supplies a counterexample c ∈ Σ∗ fulfilling the condition

c ∈ L (A) ∧ c /∈ L (A′) or c /∈ L (A) ∧ c ∈ L (A′) .

Windmüller, Neubauer, Steffen, Howar and Bauer showed in
[8] and [9] that the L∗ algorithm can be adapted to large-scale
software applications with varying degrees of complexity.
However, they also noted that this requires a lot of adaptation
by the developer within the teacher to properly abstract the
behavior of the SUL to the needs of the learner. Furthermore,
while AI modules can be interpreted as deterministic software
modules, their output for arbitrary, unknown input generally
cannot be predicted due to the complexity of implementations
such as Artificial Neural Networks (ANN). [10]

B. Passive automata learning

If white-box access to the SUL is not possible, passive
automata learning algorithms can be used as an alternative
for learning the behavior of a SUL. These algorithms usu-
ally obtain a set of traces S = {S+, S−}, where S+ are
positive traces describing the correct behavior of the SUL
and S− are traces that contain known errors that contradict
the behavior of the SUL [11]. A trace itself is a list of
input symbols and subsequently reached states represented
by the corresponding observed output symbols. The Regular
Positive Negative Inference algorithm (RPNI) [11] can be used
to learn a model of an SUL from such traces. While the
approach can correctly learn the behavior of complex software
systems given sufficient time [12], it lacks the possibility of
mapping the potentially arbitrary response of an AI module for
unknown input to a DFA. A common limitation for typical
automata learning algorithms is the inefficiency of handling
so-called deeply nested states, especially when the SUL is
highly complex. On the other hand, although passive automata
learning algorithms allow efficient learning of an SUL’s be-
havior from a provided set of traces, testing the conformance
of the learned model, e.g., checking the completeness and/or
the consistency, could result in relatively long time because the
tests are usually performed via repeatedly checking different
input combinations [12]. While [12] puts the emphasis on
inferring a complete automaton of a black-box system, this
paper focuses on monitoring a task learned by an AI module
without prior knowledge.

C. Integrity protection through hashes

As mentioned in Section I, [5] provides harmonized tech-
nical guidelines for all EU member states regarding the ap-
plication of securing and protection requirements for software
in regulated measuring instruments. However, the Guide cur-
rently relies on static methods such as cryptographic hashes for
providing evidence of interventions for all types of software
modules. If an AI module contains a learning facility for
adaptation in the field, any change would result in a new
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hash over binary code and necessitate a new conformity
assessment. To remedy this problem, the International Or-
ganization for Legal Metrology (OIML) published a revised
version of the OIML Document D31 [13] in 2023. This
document is, in theory, applicable to all regulated measuring
instruments world-wide and addresses provision of evidence
of intervention in a meaningful manner for AI modules. D31
treats AI modules as software modules with a predefined
structure that are controlled by a (potentially very large) set of
parameters that can be modified by means of a learning facility.
Clause 6.2.3.1 of D31:2023, for instance, provides an example
of a large ANN that uses version control for identification
of the network topology and a cryptographic hash over the
network weights in predefined order for tracing changes to
the ANN’s behavior. To avoid having to re-certify the adapted
ANN, D31 recommends providing fingerprints of the network
weights and storing the actual configuration of the weights
externally. While this method ensures that an AI module within
a regulated measuring instrument can continue to be used even
after a learning cycle, the size of the externally stored weight
configuration will increase linearly over time. It also places the
burden of monitoring compliance with legal requirements on
inspectors and market surveillance authorities. To check a spe-
cific result of the AI module, the authority has to verify if the
ANN together with the stored network weight configuration
is suitable to produce measurement results within the legally
required limits. While the method does not require access to
the development environment of an AI module, it does require
access to the weights of the ANN and thus only works in a
white-box scenario.

D. Admissibility as evidence

It should be noted that the development processes for
’classical’ software and AI modules are very similar. For
classical software, the developer constructs an initial concept
based on known requirements and available data. This concept
is implemented and tested to ensure compliance with require-
ments [14]. Figure 1 provides a visual representation of this
workflow for a measuring instrument. During use, changes
to the software can be made via updates. In the use case
investigated here, any change to the software shall produce
evidence of intervention. Consequently, any software update
must either result in a broken physical seal or a permanent
logbook entry with the same legal consequences.

Fig. 1: Classical workflow for software development: Taking
into account predefined requirements, the developer uses the
available data to create an initial implementation, which is then
validated using independent test data. During use, software
modules can be modified by means of an update.

TABLE I: Overview of the different monitoring approaches
for AI modules and their properties.

approach black-box
support

memory requirements suitable
for AI

active automata
learning

no size of learning table no

passive automata
learning

yes size of learning table +
size of saved traces

no

hash comparison no size of AI model per
update

yes

remote quality
control

yes size of AI monitor
model

yes

Development of an AI module follows a similar pattern [15].
Initially, the developer selects an AI model (such as a decision
tree or a deep ANN) taking into account known requirements.
The model is then trained to learn a certain behavior based on
the available pre-processed training data. Prior to the release
of the model, it is validated using a validation data set which
is disjunct from the data used for training, see Figure 2.
During use of the model, different scenarios for updating it
are possible:

1) Updates can follow a pattern similar to ’classical’ soft-
ware products, where the entire trained model is replaced
by a new one.

2) A modification of the AI module can be realized by
providing it with new training data and initiating another
training procedure during use.

3) A learning algorithm as part of the AI module could
use observed real-world data together with an externally
provided reference for improving its configuration. In
this scenario, all individual serial devices in the field
will demonstrate different behavior.

These three variants will be revisited in Section IV.

Fig. 2: Workflow for development of AI modules: Based on
predefined requirements, the developer selects an initial AI
model, which is then trained using pre-processed training data.
The trained model is validated using independent test data.
During use, the AI module can either be replaced during an
update or re-trained using external or internal reference data.

Development of ’classical’ software and AI modules both
use a two-step approach that first produces an initial im-
plementation which is then validated using an independent
test dataset not included during development of the initial
implementation. Also, changes to the final implementation can
occur during use. While a software update can affect both
types of modules, the source for modifications can also be an

MARKO ESCHE ET AL.: PRACTICAL SECURITY OF EVIDENCE FOR REGULATED ARTIFICIAL INTELLIGENCE MODULES 25



internal learning procedure for an AI module. Regardless of
the fact if such a learning procedure uses a supervised or an
unsupervised training method, the main distinction compared
to ’classical’ software thus becomes the ability to dynamically
change, potentially without an external trigger. It is this
property that makes continuous monitoring of AI modules a
necessity. Table I provides a summary of the aforementioned
different approaches for providing security of evidence for
interventions. As can be seen from rows 1, 2, and 3, only
the hash comparison between different binary images of an
AI module can actually be used for providing evidence of in-
tervention while potentially needing linearly increasing chunks
of memory per modification of the AI module. At the same
time, the passive automata learning approach also supports
black-box scenarios combined with a significantly smaller
memory footprint, but is not originally able to monitor the
underlying massively complex models behind an AI module.
Thus, an extension of the passive automata learning approach
to adaptive AI modules will be investigated in the subsequent
section to derive an optimized solution with smaller memory
usage and black-box applicability.

III. REMOTE QUALITY CONTROL APPROACH

As has been demonstrated in [12], passive automata learning
algorithms can be used to learn the behavior of the software
of complex cyber-physical systems in a quasi black-box sce-
nario given sufficient learning time. To this end, the learning
algorithm generates prefixes from the observed positive and
negative traces S+ and S−. In the case of an SUL containing
an AI model, such as a deep ANN, the notion of traces
(consisting of input symbols and triggered state changes)
has to be replaced by observing pairs of input datasets I
and corresponding output datasets O. The mapping between
the two will be denoted as {I,O}. As such, the approach
developed here shows some similarity with the learner/teacher
approach from the L∗ algorithm, see Section II-A: The central
aim of the approach will be to approximate an SUL’s behavior
by the learner. To this end, a teacher instance is added to
the SUL, transforming its input I and output O into a data
format compatible with the learner. Since a specific model
structure needs to be selected prior to training of the learner, it
shall be initially assumed that an oracle exists that the learner
can use to select a specific model type. The consequences
of this restriction will be examined and discussed in Section
IV-E. It is assumed that a sufficiently complex learner can
properly monitor compliance of a given AI module with pre-
defined requirements, thus providing functional identification
of software as defined in [12]. Once an initial version of the
trained SUL exists, it is used as a teacher for a subsequent
second AI learner model. This second model will be referred
to as the AI monitor in the following text. It will be assumed
that the SUL is not modified during an initial stabilization
period tS . A graphical representation of the dataflow during
the stabilization period is shown in Figure 3. During this
stabilization period, the AI monitor will be trained using
{I,O} observed during tS . For the purpose of the experiments

Fig. 3: Stabilization phase of the proposed quality control
approach: A second AI module is fed input data I and output
data O of the SUL to perform passive learning of the SUL’s
AI module.

described in Section IV, tS was selected so that during initial
training of the AI monitor/learner, the same amount of input
data I was used as for the SUL. It should be noted that this
leads to a configuration, where the groundtruth G reference
data that corresponds to the input data I of the SUL is not
the same as the reference data O used by the AI monitor for
initialization and continuous training. After the stabilization
period, the trained model of the AI monitor will be used to
calculate an individual prediction p ∈ P for each new input
symbol i ∈ I . This will be compared with the corresponding
output symbol o ∈ O of the SUL. i, o and p thus represent
individual symbols observed by the AI monitor during normal
operation. Over a sliding window of length w matches and
mismatches between predictions P and observed output O
are monitored. If the resulting prediction accuracy is above
a threshold amin, the model of the AI monitor will be updated
using i and o. If the threshold is violated, the monitor triggers
a compliance warning to all concerned parties. The intended
workflow of the method is shown in Figure 4. The restriction
regarding the stabilization period is not strictly necessary, but
will avoid triggering a large amount of compliance warnings
at the beginning of the monitoring process. For the purpose
of experimental evaluation, amin was set here to allow a 3%
accuracy decrease relative to the initially trained learner. The
properties of the approach are shown in row 4 of Table I.

The intention behind the proposed remote quality monitor-
ing approach is to ensure continued compliance of the SUL
with requirements while reducing memory consumption and
reducing the need for manual interventions. Compared to the
hash comparison described in OIML D31 [13] the approach
loses some resolution regarding the SUL’s behavior since
inaccurate predictions of the monitor are tolerated to a certain
extent. To check their real-world applicability, both approaches
will be described in more detail in Section IV. The section will
also perform an in-depth analysis using real-world data.

IV. EXPERIMENTAL EVALUATION

For the purpose of this evaluation, SULs will be seen as
compliant as long as they perform an originally acquired
task correctly. Due to the different scenarios of modifying an
AI module, this section is divided as follows: Section IV-A
describes the algorithms used for evaluation as well as the
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Fig. 4: Monitoring phase of the proposed quality control
approach: The second AI module (the AI monitor) continues
to monitor the behavior of the SUL and calculates its own
prediction accuracy over a sliding window w. If the prediction
accuracy drops below a predefined threshold amin, the AI
monitor triggers a warning. Otherwise, the newly observed
pair of i and o is used to update the AI monitor.

datasets used for experiments. Section IV-B describes how
iterative additions of new reference datasets were used to
update the SUL and the reaction of the examined methods.
Section IV-C extends the use case of providing new global
reference datasets to individual reference data for each AI
module in use. A replacement of the SUL is addressed in
Section IV-D. Section IV-E presents a completely different
type of SUL to investigate potential bias in the experiments.
Section IV-F discusses the results.

A. Utilized algorithms and datasets

With the aim of testing the applicability of the proposed
method of providing evidence of intervention for AI modules,
a convolutional neural network (CNN) with six convolutional
layers was selected to perform a typical classification task
in legal metrology, for which CNNs have already proven
their suitability: If speed measurements are performed by law
enforcement personell, the used measuring instruments usually
incorporate a feature for automatic vehicle classification since
different types of vehicles, i.e., cars, trucks, buses, and motor-
cycles may be subject to different speed limits. As such, this
example fits into the EU legislation on measuring instruments
and the applicable requirements. It also includes aspects of
object detection and recognition, applications for which AI
modules have already demonstrated their suitability [2]. This
CNN shall serve as the SUL for the remainder of Section IV,
except for the use case with CNN3, see Table II. The CNN was
implemented using PyTorch and Tensorflow libraries. Training
and validation data were obtained from the publicly available
CIFAR-10 dataset for images of cars and trucks as well as the
CIFAR-100 dataset [16] for images of buses and motorcycles.
CIFAR-10 contains 6000 images for 10 different types of
objects, whereas the CIFAR-100 dataset contains 100 different
classes of objects with 600 images each. The combined dataset
used here, thus contained 12000 images of cars and trucks

and 1200 images of buses and motorcycles, each image being
labeled as belonging to one of the vehicle classes. Exemplary
images from each class are shown in Figure 5. For the purpose

(a) cars

(b) trucks

(c) buses

(d) motorcycles

Fig. 5: Exemplary images from the combined CIFAR-10 and
CIFAR-100 datasets [16] for the classes ”car/automobile“,
”truck“, ”motorcycle“.

of this experimental evaluation, the input data I are thus the
individual training images, whereas the groundtruth G are the
corresponding classification labels assigned to those images.

The remote quality control approach described in Section
III was similarly implemented using Python Tensorflow and
PyTorch libraries. Initially, the internal structure of the AI
monitor’s model was chosen to be a CNN identical to the
one of the SUL. Unless mentioned otherwise, this internal
model was used for all subsequent experiments. The AI
monitor was used to iteratively learn the behavior of the SUL
for all use cases described in Sections IV-B to IV-E using
the available input and output data {I,O} of the SUL only.
Stabilization time tS and lower accuracy bound amin were
configured as described in Section III. The hash comparison
algorithm described in [13] was implemented as a reference
method in the following manner: The network structure given
above was automatically translated to an identifier string
that uses a single character to denote the type of the layer,
e.g. ’c’ for ’convolutional’, ’l’ for ’linear’, followed by the
output shape for each layer, where individual dimensions
are separated by slash symbols. This results in the string
c128/256/64/1c128/256/64/1c128/128/64/1
c128/128/64/1c128/64/64/1l128/4 for the
described CNN. Similarly, SHA256 hashes were calulated
over the exported parameter sets of the CNN for the initial
trained network. Both are given in row 1 of Table II.

B. Iterative provision of new external reference data

For the initial model, 500 training images + 100 validation
images from each of the four classes were used for its first
training. To determine how the two evaluated algorithms react
to a modified more precise SUL, CNN1 was updated after
its initial training. The update was performed iteratively by
adding 1000 images to the training dataset with each new
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TABLE II: Identifiers produced by the hash comparison described in [13] for the various SULs used for experimental evaluation.

no. AI model classes topology ID parameter hash digest
1 original

CNN1
car, truck, bus,
motorcycle

c128/256/64/1c128/256/64/1c128/128/64/1
c128/128/64/1c128/64/64/1c128/64/64/1/l128/4

53899e22277658092a576cb65f29e443
64107c39080c687cbc29e9afe392d69f

2 CNN1
update 1

car, truck, bus,
motorcycle

c128/256/64/1c128/256/64/1c128/128/64/1
c128/128/64/1c128/64/64/1c128/64/64/1/l128/4

9aaba668b4cb6f99d608e54b7fa051de
1cf3465994dc2722888ec2db9df1855d

3 CNN1
update 2

car, truck, bus,
motorcycle

c128/256/64/1c128/256/64/1c128/128/64/1
c128/128/64/1c128/64/64/1c128/64/64/1/l128/4

b8e431a95e7f1b335f1779a61854fd8f
dee9de46e416aa56864de3c045175422

4 CNN1
update 3

car, truck, bus,
motorcycle

c128/256/64/1c128/256/64/1c128/128/64/1
c128/128/64/1c128/64/64/1c128/64/64/1/l128/4

09143768afae4bff1b814de3777a7185
72445e807728b75a1e056362d059eb4f

5 CNN1
update 4

car, truck, bus,
motorcycle

c128/256/64/1c128/256/64/1c128/128/64/1
c128/128/64/1c128/64/64/1c128/64/64/1/l128/4

4c8f57d109b4e4deabf8f53b1be4f730
126fc5f505e43fa67572eb1e4cc7eed7

7 CNN2 car, truck, bus,
motorcycle

c128/512/64/1c128/512/64/1c128/256/64/1
c128/256/64/1c128/128/64/1c128/128/64/1/l128/4

c5e303dcb9d30729cc5e65ef44054283
1650ff6cc9490132ff4ce90744347ca3

8 CNN3 horse, bird, car,
truck

c128/256/64/1c128/256/64/1c128/128/64/1
c128/128/64/1c128/64/64/1c128/64/64/1/l128/4

3cd2c07c569770c7f5bdbae50007bc7f
08f00102f6f0678e56832d7e44790dce

9 ResNet50 car, truck, bus,
motorcycle

c128/256/1/1c128/256/1/1c128/256/1/1
c128/512/1/1c128/512/1/1c128/512/1/1
c128/512/1/1c128/512/1/1c128/1024/1/1...

98318830b1eccd5a51422c5c5cf11c4f
7428e0f664dc0cda43e8a76732980ac1

dataset pair {I∆, G∆} being used to retrain the SUL. The
resulting classification accuracy for each incremental mod-
ification is given in Figure 6. At the same time, the AI
monitor was fed in-between classification output of the SUL
for smaller chunks of added images consisting of 250 images
each, to continually observe the SULs behavior within a
sliding window. Figure 7 illustrates this continuous monitoring
for an excerpt of Figure 6 between the original CNN1 and
its first update. In the excerpt, the AI-monitor’s accuracy
changes slightly with each new batch of images, as these
are unknown to both SUL and monitor. Nevertheless, amin is
not violated within this excerpt. It should be noted that the
accuracy of the SUL is measured between its classification
output O and the groundtruth G. For the AI monitor however,
accuracy is measured between its own prediction P and
the SUL’s classification output O. Thus, the AI monitor’s
accuracy can, theoretically, be higher than that of the SUL.
This would indicate that the AI monitor has learned the SUL’s
behavior correctly, even when the SUL itself performs false
classifications. As can be seen from Figure 6, the AI monitor
continually achieves an accuracy above the threshold amin.
Consequently, the AI monitor’s model is updated to include
new classification output from the SUL for the observed
chunks of images.

C. Iterative provision of individual reference data

From the point of view of both the D31 method [13] and
the remote quality control method, no distinction can be made
between AI modules being updated with new common external
reference data and provision of individual reference data per
AI module. Thus, all results from Section IV-B also apply for
this use case. The main distinction lies in the required memory
capacity needed for storing the configuration of the CNNs
for later manual inspection: If each AI module can change
independently, such traceability data also must be provided for
each module, thus increasing memory requirements linearly
with the number of AI modules used in the field.

Fig. 6: Timeseries of the AI monitor’s classification accuracy
for iterative updates. The AI monitor’s accuracy is measured
relative to the classification output O of the SUL. The SUL’s
accuracy is measured relative to the groundtruth G.

Fig. 7: Timeseries of the AI monitor’s classification accuracy
for chunks of new images between updates of the SUL (CNN1
to CNN1 update 1). The AI monitor’s accuracy is measured
relative to the classification output O of the SUL. The SUL’s
accuracy is measured relative to the groundtruth G.
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Fig. 8: Timeseries of the AI monitor’s accuracy of classifica-
tion results for the replaced SUL. The AI monitor’s accuracy
is measured relative to the classification output O of the SUL.
The SUL’s accuracy is measured against the groundtruth G.

D. Replacement of the CNN

To test the provision of evidence of an intervention by
the two algorithms for a modified SUL, the CNN1 was
replaced by a different CNN2 with six convolutional layers
and one linear layer, where each layer has twice the number
of neurons. CNN2 was trained using the aforementioned
combined vehicle training dataset from CIFAR-10 and CIFAR-
100. Consequently, the topology identification string changed
to c128/512/64/1c128/512/64/1c128/256/64/1
c128/256/64/1c128/128/64/1c128/128/64/1
l128/4, and all weights within the CNN of the SUL were
abruptly changed, too. The new identifications provided
by the D31 method are shown in row 7 of Table II. The
classification accuracy of the AI monitor for CNN1 and
CNN2 is shown in Figure 8. Even though CNN2 uses a
different network topology, the AI monitor still achieves an
accuracy similar to the one for the original SUL CNN1.

In order to compare observations made for the classification
task performed by CNN1 and CNN2 with a common refer-
ence, a third CNN3 was trained to detect birds, horses and cars
from the CIFAR-10 dataset, i.e., with different groundtruth
data. The identifications obtained by the D31 method for this
new SUL CNN3 are shown in row 8 of Table II. Similarly,
the reaction of the AI monitor was tested by providing it input
data and the SUL’s output classification for CNN3 for the
image classification task. The resulting change in classification
accuracy is shown in Figure 8. As anticipated, the accuracy
drops to below 40%, indicating that there is a mismatch
between behavior of SUL and AI monitor. How modifications
of tS can influence the detection rate, will be discussed in
Section IV-F. At the same time, the output of the D31 method
does indicate a modification, but fails to illustrate the impact
of the modifications compliance with requirements.

E. Comparison with a reference classifier

To avoid bias because of the known network structure of
CNN1 during experiments, a generic KERAS ImageClassifier
with the preset ”resnet_50_imagenet“ (afterwards referred to

as ResNet50) was used as an additional reference. It consists
of a total of 49 convolutional layers and one output layer.
The resulting data are shown in row 9 of Table II, where the
topology ID produced by the D31 method had to be truncated
since it is too long to be repeated here. In practice, this
corresponds to a scenario where the internal topology of the
SUL is unknown and the oracle introduced in Section III is no
longer needed. However, the learner still needs to know the
general task performed by the SUL, i.e., the classification of
images into predefined classes. Thus, the oracle from Section
III is reduced to providing a general task description which
can easily be done by a human expert with knowledge of the
data types for I and O. The corresponding prediction accuracy
of the AI monitor after stabilization was 76.95%. As can be
seen from Figure 8, the AI monitor successfully learned the
behavior of ResNet50 despite its unknown internal structure.

F. Analysis

From Table II, it should be clear that due to the avalanche
effect in cryptographic hashes [17], even slight modifications
of the network weights result in a completely different hash
digest. Differentiating between incremental improvements and
the complete replacement of the SUL from the hash digest
alone thus becomes impossible. Even when combined with the
topology ID, the hash digest only provides general information
on whether or not any parameter of the ANN was changed.
The topology identification on the other hand does allow
a human expert to evaluate if the network is still able to
perform a certain classification task after a modification. As
described in Section II-C, OIML Document D31 solves this
issue of differentiating between two identical networks trained
for different tasks by imposing storage requirements on the
parameter set used for each instance of the ANN. In the
particular setup, the CNNs 1 and 3 have 1,153,114 param-
eters due to the number of connections between successive
layers and the ouput layers respectively. CNN2 similarly uses
4,591,642 parameters. For later manual inspection of a specific
instance of the CNNs, CNN1 and CNN3 thus require 92.83
MB storage capacity, whereas CNN2 requires 370.92 MB.
The remote monitoring approach proposed here, however,
does not detect minor gradual changes of an AI module, see
Figure 6. In fact, a complete replacement of the SUL with
another CNN performing an identical task does not result in
any compliance warnings. Only the abrupt modification of
the SUL, in case it is replaced with a CNN that portrays
a different behavior for similar input data, is automatically
detected, see Figure 8. However, if a replacement is done
gradually, without violating amin within tS , the AI monitor
would similarly fail to trigger any warnings. The detection
of compliance violations is influenced significantly by the
allowed stabilization time tS for training an AI monitor and
by the allowed lower accuracy bound amin. While both can be
fine-tuned for a specific task, an inadequate selection of one or
the other can result in either too many or too few compliance.
While the default values chosen in Section IV-A may have
worked for the examined use cases, they are not guaranteed
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to work as well in other settings. In practice, tS could be set to
a default value, such as one day and then decreased iteratively,
if too many changes occur. Similarly, amin could be initialized
with a value of 90% and then be reduced to fit the particular
application. The applicability of the method developed here
does not only depend on the parameter settings, but also on
the size of available observed data. Minimum requirements
for these data for different use cases and AI models still
remain to be formally specified. A full oracle, which can tell
the topology of a SUL, is not always needed, see Section
IV-E. In fact, one could envision a scenario where, in Legal
Metrology in particular, the usage of certain types of ANNs
is prescribed for specific tasks, thus eliminating the need for
an oracle altogether. At the moment, it appears unfeasible to
use a general-purpose AI model and attempt to learn an SUL’s
behavior using an extremely large observation dataset {I,O}.
It does, however appear plausible that the setup and AI monitor
used here, can also be applied to different kinds of image or
more general signal classification tasks. Nevertheless, there
is the potential bias in the findings shown here since image
classification is particularly suitable for the remote monitoring
approach proposed here. Therefore, further work will include
extending the method developed here to audio classification
and other common AI tasks.

V. SUMMARY

As stated in Section IV the D31 method described in [13]
appears to be realizable for providing evidence of intervention
for AI modules in practice if a white-box scenario is given.
However, the method has very high memory consumption if
traceability of individual changes is required. Nevertheless,
this paper can be seen as a first proof of concept of the method
from [13]. In addition, the AI monitor introduced here was
able to correctly identify compliance violations as required, for
example, for regulated measuring instruments in the EU. [18]
As demonstrated in Section IV-F, the AI monitor can be seen
as another form of the functional identification of a software
module introduced in [12]. It would allow inspectors or market
surveillance authorities to remotely monitor the compliance of
AI modules in quasi black-box settings in regulated industry
sectors, such as legal metrology. Moreover, the method could
equally be applied by users of AI services in other industry
sectors to determine if a service quality is reduced without
prior warning. Of course, the monitoring approach requires
resources similar to those for operating the actual SUL.
The obvious advantage of the approach, however, is that the
monitoring does not have to be conducted permanently. The
monitoring can also be carried out at a later point when re-
sources are available as long as observed data can be buffered
for an intermediate timespan. Further work will address the
tradeoff between resources and algorithmic complexity as well
as the impact of tS and amin on monitoring accuracy. It will
also include application of the remote monitoring method to
other use cases and investigations into minimal observable data
requirements for different use cases. Such investigations would
also provide some insight into the applicability of general-

purpose AI modules as AI monitors for a larger range of
tasks. Additionally, benchmark tests comparing actual memory
usage between the remote monitoring system and traditional
techniques will be performed.
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

Abstract—The  participation  of  the  population  in  public 

management results in different solutions from those that can be 

obtained without their involvement, because it is the inhabitants 

who know the local problems and can present details that are not 

usually obtained from other sources.  In order to receive and 

manage denunciations related to public services, focusing on the 

involvement of society, it is necessary to create systems capable 

of  registering,  organizing  and  presenting  this  information 

covering  the  geographic  position  of  each  occurrence.  In  this 

sense,  a  computational  solution  called  SIG  Denúncia  was 

developed,  which  includes  an  Android  application,  a  Web 

Geographic Information System (Web GIS) and a geographic 

database, which together allow the collection, visualization and 

storage  of  the  alphanumeric  and  geographic  data  of  each 

denunciation received regarding public services.

Index  Terms—Web Geographic  Information  System (Web 

GIS);  Geographic  Database;  SIG Denúncia;  Public  Services; 

Public Administration; Popular Participation.

I. INTRODUCTION

UBLIC services are provided directly by a country's gov-

ernment or by affiliated entities with the aim of meeting 

the needs of the population and their habitat. Among the most 

important services are hospital care, police patrols,  educa-

tional activities, public transportation, maintenance of recre-

ational areas, environmental preservation, urban works, and 

others. These services, when delivered with quality, ensure 

the well-being of citizens and the preservation of urban spaces 

and nature. However, when these services are executed irreg-

ularly, they can negatively impact people's daily lives, result-

ing in serious social problems, particularly in Brazil, where 

the majority of individuals have low incomes and rely on 

these services daily [1].

P

The collection of data on complaints related to public ser-

vices in Brazil is generally conducted through phone calls or 

in-person visits. A citizen calls or goes to the public agency 

responsible for overseeing the public activity to report their 

dissatisfaction. This process often leads to data loss and in-

consistency, as the collected information is typically stored on 

paper,  which  can  easily  be  misplaced  or  lost  due  to  its 

The  authors  of  this  article  would  like  to  thank  the  Research  Support 

Foundation of the Federal District (FAP-DF) for your support.

fragility. Consequently, this method does not provide a reli-

able and consistent database. The difficulty faced by the pop-

ulation in participating in public matters fosters public dissat-

isfaction and results in low data collection, which could be 

crucial for improving the services provided by each Brazilian 

municipality [2].

Public participation in the management of public services 

is mandated by Brazilian law to improve the quality of public 

administration [3]. The residents of each city are the ones who 

truly understand the local realities and issues and are able to 

provide details that are often not found in other sources [4].

With the digital transformation that has occurred in Brazil 

in recent years, citizens in many cities have gained a new 

means of reporting issues related to public services through 

the web systems of public agency ombudsman offices. While 

this innovation partially addresses the previously mentioned 

database issues and offers greater convenience and satisfac-

tion to the population, challenges remain. For each area or 

type of complaint, citizens must access a specific system of a 

specific agency to file their report; there is no unified system 

for submitting all types of complaints. After a complaint is 

made, only the individual who submitted it receives feedback 

and has access to the status of the complaint. Other citizens 

are unaware of the complaints that have already been filed, re-

sulting in a lack of transparency. Additionally, these ombuds-

man systems do not utilize georeferencing, making it difficult 

to pinpoint locations and have an overarching view of the is-

sues presented in the complaints [5].

Despite  the  widespread  availability  of  mobile  and  web 

technology in Brazil, public administration in several Brazil-

ian cities still lacks the digitization of many of its work pro-

cesses, including the collection and management of informa-

tion on the quality of public services, particularly those in-

volving public participation [6]. 

To address this issue, a computational system was devel-

oped, consisting of a mobile application, a Web Geographic 

Information System (Web GIS), and a geographic database. 

With the mobile application, citizens can register their com-
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plaints in text format and include a photo to verify the exis-
tence of the reported problem.

The Web GIS will provide visualization and management
of the occurrences received by the system, ensuring that city
administrators can respond to complaints received through
the application, and allowing the population to view a map
containing the data of each reported issue, thereby ensuring
transparency of information for society. 

The geographic database will be used by both the mobile
and web applications to store and query the alphanumeric
and geographic data of complaints related to health, safety,
education,  transportation,  recreation,  the environment,  and
urban development projects. This database can be extended
to persist data from various other areas of public services.

The system was developed using modern software devel-
opment technologies that allow for the maintenance of up-
to-date information. It highlights the issues present in each
environment within the municipal, state, and federal spheres,
as well as the expectations of its users.

II.POPULAR PARTICIPATION IN PUBLIC ADMINISTRATION

The concept of public administration has two meanings.
One is objective, encompassing the idea of action, activity,
and task, encapsulating the very function of administering.
The other is subjective, as it refers to the universe of admin-
istrative sectors and the people who perform management
work collectively, sharing the same function [1]. 

Popular participation refers to the involvement of citizens
or their representatives from social groups in public manage-
ment with the aim of seeking improvements within the ad-
ministration of the State, implemented to favor the collective
interest [7]. This term is used when a citizen or their social
representative seeks the common good without pursuing per-
sonal  interest.  It  conceptualizes  the  exercise  of  society's
power over Brazilian politics and expresses the democracy
mandated by law in the contemporary era [8] [9].

In Brazil, societal participation gained greater emphasis
following the 1988 Brazilian Constitution, which granted a
series of rights and duties to Brazilians, including the right
to human dignity and citizenship [1]. Article 1 of the Consti-
tution emphasizes that all power emanates from the people,
who exercise it  directly or  through democratically elected
representatives.  Article 37 of  the Constitution outlines the
right of Brazilian citizens to participate directly or indirectly
in public governance [10].

In recent decades, there has been enhancement in dis-
cussions  and  legislation  addressing  the  participation  of
Brazilian society. However, the achieved outcome is not yet
considered fully democratic due to low popular engagement,
as the government has not managed to include the majority
of the urban population, attributed to three main factors de-
scribed below [7][9]:

1) Political apathy: occurs when the population lacks
information about their rights and responsibilities,
receives no  feedback through public communica-
tion channels with government officials,  does not

receive responses to their inquiries, or experiences
excessive delays in response times, leading to low
levels of popular participation;

2) Political abolition: becomes evident when citizens
choose not to engage in public management due to
their  disbelief  in  being  heard  by  the  government
and having their requests addressed;

3) Political acracy: is the issue that arises when citi-
zens' level of education is low and the participation
tools provided by the government address complex
terms and data, which hinders the involvement of
individuals who lack sufficient education to engage
in public management affairs.

According to [4], the Brazilian government still requires
effective tools to ensure the rights established by laws for
citizens, aiming to enhance the quality of popular participa-
tion. There remains a challenge in the daily lives of public
service users to efficiently engage in matters related to their
areas of life.

III. THE SIG DENÚNCIA

A. Architecture

The architecture of the SIG Denúncia solution shown in
Figure 1 was designed following the thick client model.

Fig 1. Architecture of the SIG Denúncia

The SIG Denúncia is a computational solution (system)
that  consists  of  two  applications  sharing  the  same  geo-
graphic database:

 Mobile Application: The mobile application is re-
sponsible  for  collecting  and  submitting  citizens'
complaints to the server. The framework Xamarin
was used for the development of this system. The
communication  between  the  application  and  the
server is conducted using RESTful, with data trans-
mitted in JSON format;

 Web  GIS:  It  was  built  using  HTML5,  CSS3,
JavaScript,  Bootstrap,  and  Leaflet  technologies.
The web system is divided into two parts:
◦ Map: This is the homepage of the web system,

responsible for displaying georeferenced com-
plaints from citizens. In this layer of the sys-
tem, Leaflet was utilized as the primary com-
ponent of the Web GIS. Leaflet is responsible
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for  generating and managing the map within
the client's browser.  Data communication be-
tween the server and Leaflet is performed us-
ing RESTful,  with information transmitted in
GeoJSON format;

◦ Administrative:  The administrative area man-
ages the system's forms, utilizing the Bootstrap
framework  to  ensure  a  responsive  interface.
This allows the interface to adapt seamlessly to
the client's browser screen size.

In the Server layer, technologies such as ASP.NET MVC,
RESTful, GeoJSON, and Entity Framework were employed.
ASP.NET  manages  the  operations  of  the  system's  forms,
while the RESTful communication layer returns responses
in JSON and GeoJSON formats.  ASP.NET utilizes Entity
Framework for mapping, controlling, and accessing persis-
tence.

The Persistence layer is responsible for storing registra-
tion  information.  The  PostgreSQL  database  management
system with the PostGIS geographic extension was used to
store geographic information.

B. Technologies Used

The  following  are  the  technologies  used  in  the  SIG
Denúncia:

 ASP.NET MVC: Part of the .NET framework, AS-
P.NET MVC was designed for  creating websites.
Websites built with ASP.NET run on Internet In-
formation Services (IIS) and can be developed us-
ing  C#,  F#,  and  VB.NET  languages.  ASP.NET
MVC  implements  the  Model-View-Controller
(MVC) pattern, a software architecture pattern cre-
ated to abstract the complexity of information sys-
tems by separating development into layers [11];

 C#: It  is an interpreted, multi-paradigm program-
ming language rooted in C and easily assimilated
by developers familiar with C, C++, and Java [12].
C#  is  compiled  and  interpreted  within  the  .NET
framework;

 GeoJSON: It is a data interchange format for vari-
ous geographical data structures based on the JSON
format. GeoJSON supports geometric types such as
Point,  LineString,  Polygon,  MultiPoint,  Multi-
LineString, MultiPolygon, and GeometryCollection
[13];

 Leaflet: It is a robust open-source library developed
in JavaScript with a simple design. It operates on
all major browsers and mobile platforms, support-
ing  CSS3 and HTML5 [14].  Developers  need  to
connect Leaflet to a map server, which can be pub-
lic  like  OpenStreetMap [15],  private,  or  personal
using  a  geographic  database  management  system
(GIS) such as PostgreSQL together with PostGIS.
Georeferenced  objects  are  added  to  the  map
through  the  GeoJSON  layer.  Thus,  Leaflet  can
manage interactive layers;

 PostgreSQL: It is an open-source data storage sys-
tem. PostgreSQL is a powerful framework for data
management and processing, as it allows the use of
multiple languages to  execute functions and trig-
gers, making it flexible. It features dynamic loading
of user-defined functions, eliminating the need for
recompiling  the  database,  and  includes automatic
actions to update changed data in the database. The
system is available for  MacOS,  Linux,  and Win-
dows operating systems [16];

 PostGIS: It is an open-source spatial extension for
the  PostgreSQL  database  management  system
(DBMS).  This  extension  enables  PostgreSQL  to
support  spatial  types  such  as  Point,  LineString,
Polygon,  Multipoint,  MultiLineString,  MultiPoly-
gon,  and  GeometryCollection.  PostGIS  provides
numerous  functions  for  spatial  queries,  allowing
geographic queries to be performed using SQL;

 Xamarin Community 2015: It is a framework used
for developing cross-platform mobile applications.
It allows developers to create native apps for iOS,
Android,  and Windows Phone using a single lan-
guage, C#. This means a team of C# developers can
produce an application for three different platforms
without needing to learn a new language [17].

IV. SYSTEMS INTERFACE

The SIG Denúncia consists of a mobile application and a
Web GIS. This section presents the interfaces of these sys-
tems.

A. Mobile App

This section demonstrates the interface of the mobile ap-
plication and its functionalities. To make a complaint, users
need to log into the system. Therefore, users must enter their
email address and password. If they have not registered yet,
they can click on "Register" on the home screen of the sys-
tem.

The application has two main tabs: "Report" and "Com-
plaint History". The "Report" tab consists of four sub-tabs
(as shown in Figures 2 and 3), which represent the steps re-
quired to make a complaint, described as follows:

 Area: The citizen must choose the area where they
will make the complaint;

 Type: After selecting the area, the user must choose
the type of  complaint.  Each type of  complaint  is
listed under categories; Figure 2 displays the cate-
gories within the "Infrastructure and Urbanization"
area and the types of complaints that can be made
under the "Lighting and Energy" category;

 Additional Information: The citizen must attach an
image  to  their  complaint  by  clicking  "Attach  a
photo to your Complaint" and enter a comment in
the field below;

 Submit:  On this  screen,  all  complaint  details  are
displayed for  the user  to confirm.  The user  must
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have the GPS location active on their Android de-
vice; if it is disabled, the app will request the user
to activate it. The "Submit" button is only enabled
after the device's location is determined. After sub-
mitting the complaint, the app returns to the "Area"
tab.

Fig 2. Screens of the "Report" tab - Part 1

Fig 3. Screens of the "Report" tab - Part 2

The "Complaint History" tab displays the complaints sub-
mitted  by  the  user  regarding  public  services  and  the  re-
sponses provided by public agencies, as shown in Figure 4.

Fig 4. Screens of the "Complaint History" tab

B. SIG Web

The Web GIS has two main areas: the map area (georefer-
enced) and the administrative area. In the map area, all com-
plaints are displayed at their respective locations. Figure 5
depicts the initial screen of the Web GIS.

Fig 5. Screens of the Web GIS - Part 1

Clicking on a complaint icon displays a tooltip containing
information about the complaint, such as the citizen's name
who  submitted  the  complaint,  type,  category,  city  name,
comment, date, latitude, longitude, and the image uploaded
by the citizen, as shown in Figure 6.
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Fig 6. Screens of the Web GIS - Part 2

In  the  administrative  area,  the  administrator  user  has
functionalities to respond to complaints, as well as to add,
edit, and delete areas and users. Figures 7 and 8 depict some
screens from the administrative area.

Fig 7. Screens of the administrative area of the Web GIS - Part 1

Fig 8. Screens of the administrative area of the Web GIS - Part 2

V. RELATED WORK

Similar works to the SIG Denúncia solution also encom-
pass the issue of public participation in public services.

A. Colab.re

Colab.re is  a digital  platform that  provides government
services to citizens through a web interface and a free mo-
bile application available for Android and iOS devices. Its
primary objective is to improve Brazilian cities by fostering
collaboration between the population and public authorities.
The platform enables users to report  urban issues,  submit
evaluations,  and  suggest  solutions,  with  complaints  being
forwarded to the appropriate government agencies. While it
offers functionalities such as photo submission, idea sharing,
and public discussion, Colab.re does not incorporate georef-
erencing features to locate reports, which limits the spatial
accuracy of the submitted information [18].

B. SP156

SP156 is a public service platform developed by the São
Paulo City Hall to encourage citizen participation in munici-
pal  management.  Similar  to Colab.re,  its primary focus is
the provision of public services to citizens through a web
portal, a mobile application, and a telephone service center
(accessible via 156). Although the systematic collection of
complaints is not its core objective, the system allows users
to register and track requests related to urban issues, such as
waste management or street lighting. However, SP156 does
not  utilize  georeferencing  to  locate  reported  occurrences,
which limits the spatial accuracy of the information and re-
duces its potential for territorial analysis [19].

C. The Differentiator of SIG Denúncia

SIG Denúncia stands out from other similar platforms by
being  specifically  designed  for  the  management  of  urban
complaints, with a strong emphasis on the spatialization and
georeferenced  monitoring  of  reported  occurrences.  While
many existing  solutions prioritize  the  provision  of  public
services  or  the  simple  forwarding  of  individual  requests,
SIG Denúncia distinguishes itself  by integrating georefer-
encing capabilities, which add substantial value to the deci-
sion-making processes of public administration.

The use of spatially referenced data enables precise visu-
alization of the territorial distribution of citizen demands, fa-
cilitating the identification of patterns, critical areas, and re-
curring problems. This approach supports more efficient ur-
ban planning, strategic resource allocation, and the develop-
ment of public policies grounded in territorial evidence. Fur-
thermore,  it  allows municipal  authorities to  adopt  a  more
proactive  and  coordinated  approach,  guided  by  the  geo-
graphic context of reported issues.

Additionally, the system is characterized by its configura-
tional  flexibility,  enabling  administrators  to  easily  define
new categories of reports and designate specific geographic
areas of interest.  This versatility ensures that the platform
can be adapted to the particular needs of diverse urban set-
tings, ranging from large metropolitan centers to small mu-
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nicipalities. In this way, SIG Denúncia establishes itself as a 

robust, scalable, and effective tool for strengthening partici-

patory governance and integrated territorial management in 

cities.

VI. CONCLUSION AND FUTURE WORK

Currently, in several cities across Brazil, for a citizen to 

file a complaint or express dissatisfaction to the government, 

they must physically visit the responsible public agency or 

make a phone call. However, even after going through this 

process, their reports may get lost because they are stored on 

paper,  which  is  prone to  misplacement  or  loss  due  to  its 

fragility. Therefore, it is evident that individuals face difficul-

ties in presenting local issues to public administration and 

tracking their submitted requests.

To address this issue and improve public participation in 

governance matters, the development of a computational so-

lution called "SIG Denúncia" has been proposed. This solu-

tion comprises a mobile application, a Web GIS (Geographic 

Information System), and a geographic database. Together, 

these components enable better  interaction between public 

service users and city administrators for tracking incidents 

and potential resolutions.

Unlike other similar systems, which often focus primarily 

on the provision of public services and are developed for spe-

cific contexts, SIG Denúncia was designed with an emphasis 

on the structured management of urban complaints, enabling 

the registration, consultation, and systematic monitoring of 

reported occurrences. One of the main distinguishing features 

of the solution is the integration of georeferencing capabili-

ties, which allow for the spatial mapping of complaints and 

significantly enhance the system’s potential to support deci-

sion-making processes within public administration. The spa-

tial analysis of data facilitates the identification of critical ar-

eas, the detection of recurring patterns, and the strategic prior-

itization of interventions based on evidence. Moreover, SIG 

Denúncia offers a high degree of configurability, allowing for 

customization across different categories of complaints and 

geographic areas, making it suitable for a wide range of urban 

contexts—from large metropolitan centers to small munici-

palities.

The mobile and web applications were developed in strict 

accordance  with  the  proposed  architecture,  fully  fulfilling 

their intended role as integral components of a Web Geo-

graphic Information System (Web GIS) designed to promote 

Popular Participation. Although the system has not yet been 

deployed in an operational environment, its design and imple-

mentation demonstrate substantial potential to significantly 

enhance the interaction between citizens and public adminis-

tration. By fostering greater transparency, facilitating more 

efficient responses from public agencies, and encouraging ac-

tive  citizen  engagement,  these  functionalities  contribute 

meaningfully to the strengthening of participatory urban gov-

ernance.

As part of future work, several enhancements are planned, 

including the addition of features such as audio and video 

messaging, data caching to enable offline functionality, and 

mechanisms for information synchronization when an inter-

net  connection  becomes available.  The system is  also  in-

tended to be deployed in a Brazilian city, with a subsequent 

evaluation of the outcomes to complete and validate the re-

search. Additionally, tools and dashboards may be developed 

to provide strategic insights to public administrators, follow-

ing the principles of Business Intelligence (BI).

ACKNOWLEDGMENT

The authors of this article would like to thank everyone 

who contributed to this work, as well as the Federal Institute 

of Education, Science and Technology of Goiás (IFG), the 

Federal Institute of Education, Science and Technology of 

Brasília (IFB), and the Research Support Foundation of the 

Federal District (FAP-DF) for their support.

REFERENCES

[1] Filho, J. d. S. C.: Manual of Administrative Law. Atlas, (2015).

[2] Guide  for  Complaints  about  Public  Services  –  MPGO, 

https://www.mpgo.mp.br/portal/arquivos/2013/06/10/09_56_26_826_c

ao_consumidor.pdf, last accessed 2023/11/09.

[3] Costa, W. L.: Participatory Management in Public Administration in the 

Current  Scenario, 

https://wesley18.jusbrasil.com.br/artigos/226084652/gestao-

participativa-na-administracao-publica-no-cenario-atual,  last  accessed 

2023/08/20.

[4] Bugs, G., Reis, A. T.: Popular Participation in Urban Planning: Interac-

tive Maps and GIS Tools on the Internet and Cognitive Aspects. Pro-

ceedings: National Meetings of ANPUR, v. 14, in press, (2013).

[5] Transformação  Digital, 

https://www.gov.br/governodigital/pt-br/estrategias-e-governanca-

digital/sisp/guia-do-gestor/ptd, last accessed 2024/04/12.

[6] Branco, W. G., Holanda, M. T.: Comune — An android application for 

applying  surveys  to  and  collecting  reports  from  public  service 

users.12th Iberian Conference on Information Systems and Technolo-

gies – CISTI, Lisbon, Portugal (2017).

[7] Modesto, P.: Popular Participation in Public Administration: Opera-

tional Mechanisms. Jus Navigandi, Teresina, v. 6, (1999).

[8] Silva, I. V. S.: Social Control in Public Administration and the Principle 

of  Popular  Participation, 

https://openrit.grupotiradentes.com/xmlui/bitstream/handle/set/1533/

monografia%20biblioteca.pdf?sequence=1&isAllowed=y,  last  ac-

cessed 2023/10/11.

[9] Gavronski, A. A.: Popular participation. Dictionary of Human Rights, 

http://www.esmpu.gov.br/dicionario, last accessed 2023/10/05.

[10] Constitution  of  the  Federative  Republic  of  Brazil, 

http://www.planalto.gov.br/ccivil_03/Constituicao/Constituicao.htm, 

last accessed 2023/09/23.

[11] Galloway, J., Haack, P., Wilson, B., Allen, K. S.: Professional ASP. 

NET MVC 4. John Wiley & Sons, (2012).

[12] Hejlsberg, A., Wiltamuthi, S., Golde, P.: The C# programming lan-

guage. Adobe Press, (2006).

[13] BUTLER, H.,  DALY,  M.,  et.  al.:  GeoJSON Format Specification, 

https://datatracker.ietf.org/doc/html/rfc7946, last accessed 2023/10/13.

[14] Leaflet, http://leaflet.org/, last accessed 2023/10/10.

[15] OpenStreetMap,  https://www.openstreetmap.org,  last  accessed 

2023/12/17.

[16] Krosing, H., Mlodgenski, J.: PostgreSQL server programming. Packt 

Publishing Ltd, (2013).

[17] Hermes, D.: Developing Mobile Applications with Xamarin. Apress, 

(2015).

[18] Colab.re,  https://pages.colab.re/governodigitalsolucoes,  last  accessed 

2023/11/10.

[19] Sp156, https://sp156.prefeitura.sp.gov.br/portal/servicos, last accessed 

2023/08/28.

36 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025





Abstract—In this paper we present a genetic programming 

based constructive algorithm with penalty function for a con-

current  real-time  optimization  in  embedded  system  design 

process. Proposed approach uses genetic programming mecha-

nism to optimize detecting and assignment of unexpected tasks 

process in embedded system design. Unlike others methodolo-

gies the approach described in this paper uses a penalty in ob-

jective function in optimization process. As a result during the 

evolution generations of individuals can also contain solutions 

which  violate  time  constraints.  Thus  the  approach  is  more 

proof to stop in local minima of optimizing parameters. There-

fore the final result could be better adapted to the environment 

and the optimization process can be cheaper and more effec-

tive.

Index Terms—Genetic Programming, Concurrent Real-Time 

Optimization, Embedded Systems, Artificial Intelligence.

I. INTRODUCTION

MBEDDED  system design process [1] can be split on 

four  phases[2]:  modeling,  implementation,  validation 

and assignment of unexpected tasks. Unexpected tasks [2][3] 

can appear when the architecture of embedded system is pro-

duced, all known tasks are assignment to available resources 

and the system works in a target environment. In [4] authors 

proposed a methodology for assignment of unexpected tasks 

for a group of embedded systems. Unexpected tasks that ap-

peared were the result of cooperation of the systems in bigger 

environment. The first methodologies [2][5] proposed for as-

signment of unexpected tasks have  one major weakness – un-

expected tasks needed to be detected externally. All values of 

time and cost of execution needed to be given for every task. 

In [6] the authors proposed an algorithm which was able to 

detect unexpected tasks and assign them to appropriate Pro-

E
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cessing Element (PE). The authors indicated that some of un-

expected situations can be solved as a result of connection of 

some number of subtasks of known tasks. However not only 

one connection of subtask leads to solve unexpected situation. 

On the other side not every connection give the solution. Con-

nection of a subtasks that gives an appropriate solution needs 

to be assignment on one of available resources. The problem 

is to find which connection of subtasks is better. Such a prob-

lem was called picking an apple problem. Generally the opti-

mization process can be split into two phases. Each phase im-

pacts another in a real-time. That is why this type of optimiza-

tion was named concurrent real-time optimization. Further in-

formation about the problem and are given in next section. In 

[7] the authors proposed the solution of such a problem in IoT 

design. In [6] genetic algorithm was proposed to solve the 

problem in embedded system design. Genetic programming 

methodology [8] was also presented for such a problem. The 

biggest disadvantage of the methodology was a constructive 

nature of the algorithm. Such group of methodologies [9] [10] 

have low complexity but are prone to stop in local minima of 

optimizing parameters. It is caused because such methodolo-

gies construct the system by making decisions step by step for 

every task separately. Iterative improvement algorithms [11]

[12] start from suboptimal solutions, usually the fastest, and 

by local changes try to improve the system quality. Such algo-

rithms can escape local minima however the results are still 

suboptimal. In [13] the authors provided the genetic program-

ming based iterative improvement method for the problem. 

However the biggest disadvantages of the methodology was 

that only valid individuals could be investigated in the evolu-

tion process. Therefore some of the solutions could be unob-

tainable. Concurrent real-time optimization occurs not only in 

hardware design. The solution for such kind of optimization 

was also proposed in game theory [14]. Proposed methodol-

ogy  belonged  to  metaheuristics  group.  The  authors
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proposed a grey wolf optimizer to find an automatic solution 

of computer games. 

In this paper we propose a genetic algorithm based meth-

odology [6][16] with penalty function for concurrent real-

time optimization in embedded system design process. Unlike 

other approaches we investigate in evolution process not only 

valid solutions. Therefore the algorithm is more able to escape 

local minima of optimizing parameters.  

The paper is organized as follows: next section are prelim-

inaries, then the algorithm is described. The fourth section 

contains experimental results. At the and the conclusions and 

directions of future work are presented. 

II. PRELIMINARIES 

A. Embedded systems 

Embedded systems are computer systems mostly micro-

processor or microcontroller based. They were created to ex-

ecute some special group of tasks. most of modern systems 

are solved as distributed once. Such kind of systems are con-

sisted of two kinds of resources: processing elements (PEs), 

responsible for executing the tasks, and communication links 

(CLs) responsible for providing communication between PEs. 

There are two basic kinds of PEs: programmable processors 

(PPs) and hardware cores (HCs). PPs are universal resources 

able to execute more than one task. HCs are specialized re-

sources dedicated to execute only one task. Therefore unex-

pected tasks can be executed only by PPs. The behaviour of 

the system is specified by an acyclic directed graph called 

an extended task graph G = (V, E). Each node vi є V in the 

graph is a task, each edge eij є E describes the amount of data 

transferred between two connected tasks. The transmission 

time tij is equal to:  

 𝑡௜௝ = ௘೔ೕ௕  (1) 

where b is a bandwidth of a communication link. Fig. 1 

below presents the example of a task graph. 

 

 

 

The graph contains eight tasks. The nodes with yellow 

color (T1, T3, T5, T5, T7) marks the tasks that can be split on 

subtasks. The overall cost of a system Co is described by the 

following formula:  

௢ܥ  = ௔ܥ + ∑ ௜ܥ +௡௜=1  ݇ ∗ (𝑡 − 𝑡௠௔௫) (2) 

where n is a number of tasks in an extended task graph, tmax 

is a time constrain, k is a parameter given by the designer 

which decides about the penalty function and therefore how 

is the weight of violation of time constraints. The unit of k is 

[c/t] where c is a unit of cost and t is a unit of time. The goal 

of the optimization is to find the solution with the lowest value 

of Co. 

B. Concurrent real-time optimization – picking an apple 

problem 

It is possible to pick up an apple on many ways. Each of 

them demands different parameters to optimize and different 

tasks to execute. The question is how to find out which way 

is better without picking up the apple. The problem can be 

split into two phases. The first phase is responsible for the 

choice of optimizing parameters. The second phase makes the 

optimization and verifies the choice made in the first phase. 

During the process it can be found out that some of the ways 

of solving the problem do not lead to success. It is not always 

known at the beginning. In such a case after executing some 

of the tasks and starting optimization process the tasks to ex-

ecute and optimization parameters are changed. Therefore 

each of the phases can impact another in real time. The change 

of one phase changes another. Some unexpected situations 

can also happen which demands to execute some unexpected 

tasks. The most important issue is how to compare the results 

if every can demand different parameters to optimize or opti-

mizing parameters can change during the process. Every so-

lution can be characterized by global common parameters 

which can be used to compare the results. Such parameters 

can be for example cost of the solution or time of execution 

of all the tasks. 

Such a problem occurs in embedded system design. If sys-

tem meets unexpected situation it can be solved on many 

ways. Each way demands different tasks to execute. The prob-

lem is to find the optimal way to execute unexpected tasks 

and to find the appropriate hardware components to execute 

them. The solutions can be compared using two global param-

eters: time and cost of execution of all the tasks. As it can be 

easily observed, if the time is getting lower the cost is rising. 

Such relation is not proportional. Therefore, designing of em-

bedded systems belongs to pareto group of problems [15]. 

III. THE ALGORITHM 

Unexpected tasks can appear in every moment of system 

life, after every task. After appearing of such a task it needs 

to be inserted on extended task graph as a separate task. Then 

all the tasks need to be split on possible number of subtasks. 

The algorithm starts with generating the initial population. 

The number of individuals in population is dependent on 

 

Fig 1. Example of an extended task graph 

38 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



 

 

 

a number of programmable processors p and a number of 

tasks n in the extended task graph. It is equal to:  

ߎ  = ߙ ∗ ݌ ∗ ݊ (3) 

where α is given by a designer. It controls the size of the 

population. In each of the individuals unexpected tasks are 

solved as a random connection of randomly chosen number 

of subtasks. Not every connection gives the solution of unex-

pected situation. Such solutions are not passed over. Next 

generations of individuals are created using standard genetic 

operators: crossover, mutation, cloning and selection. In this 

paper we decided to choose rank selection. After generating 

each population the genotypes are ranked by cost. All of the 

individuals on a rank list have probability of being chosen 

during the evolution process. The probability P depends on 

a position r of an individual in a rank list. It is described by 

the following equation:  

 ܲ = ௽−௥௽  (4) 

Crossover selects Ψ individuals and randomly connects 
them in pairs. Then for each genotype in each pair randomly 

a cutting point is chosen. The genes of two parents are 

swapped. The number of individuals created by crossover is 

presented on equation 4 below:  

ߖ  = ߛ ∗  (5) ߎ

where γ is a parameter given by the designer, γ є (0,1). 
Mutation selects Ω genotypes. Then randomly a gene is 

chosen. The number of a PE in the gene is substituted by an-

other. The mutation can also change the connection of sub-

tasks solving unexpected situation. The number of individuals 

created using mutation operator is equal to:  

 Ω = ߚ ∗  (6) ߎ

where β є (0,1) and is given by a designer. 
Cloning copies Φ individuals to a new population without 

any changes. Φ is equal to:  

ߔ  = ߜ ∗  (7) ߎ

where δ є (0,1). It is given by a designer. 
To have the same number of individuals in all of the popu-

lations the sum of the parameters β, γ and δ needs to be equal 
to 1:  

ߚ  + ߛ + ߜ = 1 (8) 

The algorithm finishes its execution after ε generations 

without a better result. 

IV. EXPERIMENTAL RESULTS 

In this section the results of the experiments are presented. 

The results were compared with genetic programming meth-

odology [13] proposed by Górski and Ogorzałek (GP 2025). 

Table 1 contains the results. The results were made for bench-

marks with 10, 20 and 30 nodes. The parameters were set as 

follows for both of algorithms: α = 100, γ = 0,7, β = 0,2, δ = 

0,1 and ε = 5. The first results seem promising. However it is 

needed to underline that presented results are first obtained 

and the algorithm needs further investigation with different 

parameters, time constrains and bigger graphs.  

Algorithm presented in this paper (GA 2025) was able to 

provide better results for every benchmarks. For the graph 

with ten nodes the difference between the best results ob-

tained by GP 2025 and GA 2025 was the lowest – it was equal 

only 15 units of cost. The cost of the best solutions generated 

by both algorithms was the same and equal to 100. That could 

be an effect of a small size of the graph. For a such a graph 

the search space is smaller and maybe it could be reasonable 

to decrease the value of α parameter. The difference between 

obtained values of cost for a graph with 20 nodes was the 

greatest – more than 700 cost units (1643 for GA 2025 and 

2358 for GP 2025). Such a difference is surprising however 

we cannot forgot about probabilistic nature of the algorithms. 

As a consequence of such a type of algorithms one or a few 

results can be very different from the majority. For a graph 

with 30 nodes there was not such a big difference of costs – it 

was appropriately 1643 for GA 2025 and 2358 for GP 2025. 

It is worth to mention that even that GP 2025 produced the 

results which were more expansive the time of the solutions 

was faster in most of cases than the time of results generated 

by GA 2025. Such a situation was expected because, as it was 

mentioned before, investigated problem in hardware design 

belongs to pareto group of problems. It also can be observed 

that GA 2025 generated less populations than GP 2025 – 17, 

14 and 18 for graphs with 10, 20 and 30 nodes meanwhile GP 

2025 produced appropriately 22, 15 and 23 generations.  

graph. 

 

TABLE I. 

EXPERIMENTAL RESULTS 

Graph 
GA 2025 GP 2025 

cost time generation cost time generation 

10 197 100 17 212 100 22 

20 1643 2497 14 2358 2394 15 

30 1997 2956 18 2244 2873 23 
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Fig 2. Comparison of obtained results

In fig. 2 the graphical comparison of the results were pre-

sented.  It  contains  best  obtained  results  for  every  used 

benchmark.  Algorithm  GP  2025  was  compared  with  GP 

2024 [8] and was more efficient.

V. CONCLUSIONS

In this paper a constructive genetic algorithm for a con-

current real-time optimization in embedded systems design 

process was proposed. Solving the problem in hardware de-

sign can make the design faster and cheaper. It can also help 

with adapting embedded systems to a changing environment 

and thus making the systems more universal.

In the paper only first results were presented. Therefore 

the  algorithm  needs  more  examination.  The  experiments 

should be  made using bigger  graphs,  different  parameters 

and time constrains. 

In the future we plan to deliver more algorithms to solve 

the problem investigated in hardware design. It seems that 

good direction is to develop genetic programming solutions. 

We also plan to propose new solutions to concurrent real-

time optimization problem in other  areas  too,  not  only in 

embedded system design. Therefore the future work will be 

divided into two directions. The first direction will include 

improvement of proposed algorithms for hardware design. 

The second direction will  be concentrated on investigated 

problem – its constrains, areas of appearance and searching 

its different solutions.
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Abstract—We propose a novel U-net architecture, RAG4-Unet,
based on residual attention gated for brain tumor segmentation,
Swin transformer for classification task, and Yolo11 for tumor
detection. For the experiments, the Figshare dataset is employed
and the proposed architecture achieved 91.37% Dice for tu-
mor segmentation task, and Swin transformer achieved 91.74%
classification accuracy. The Yolo11 gained 89.6% of detection
precision. Comparative evaluation with the SOTA techniques
reveals that the proposed architecture outperformed the existing
methods and Yolo11. The proposed architecture improved the
tumor boundary detection, making it a promising solution for
brain tumor recognition and segmentation.

Index Terms—Tumor Segmentation, Residual Attention Gated,
Unet, Yolo11, Attention Maps.

I. INTRODUCTION

BRAIN tumors are a major health challenge, characterized
by abnormal cell growth in the brain, which can affect

its vital functions [1]. These tumors, from benign to malig-
nant, are often associated with persistent headaches, seizures,
cognitive impairments, and neurological diseases and have a
negative impact on the quality of life of patients [2]. Manual
diagnostic methods such as visual inspection of histological
slides and radiological imaging have traditionally been used,
but they take time, are subjective, and can cause human
error [3]. Radiologists are imaging modalities more frequently
because they tend to be more accurate and put patients at far
lower risk. Medical imaging data can be recorded using a vari-
ety of techniques, such as tomography [4], magnetic resonance
imaging (MRI) [5], radiography [6], and echocardiography [7].

The introduction of artificial intelligence (AI) has trans-
formed the detection of brain tumors through automation
and improved diagnostic accuracy [8]. Machine Learning
ML) approaches depend on methods for gathering features,
selecting features, and classification [9]. Deep Learning (DL)
models learn by extracting features from images. Particularly,
Convolutional Neural Networks (CNNs) are widely used in
medical imaging analysis and show vital achievements in
the identification of brain tumors, enabling advances in clas-
sification and segmentation. Several studies have proposed
innovative methods for the segmentation and classification of
brain tumors from MRI images. Zhang et al. [10] introduced
a modified U-net method with an attention mechanism for

improving segmentation accuracy. Their approach focused on
addressing limitations of traditional U-net models, such as
difficulties in handling small tumor regions and blurry tumor
boundaries. By incorporating multi-scale feature fusion and
attention mechanisms, their method demonstrated enhanced
efficiency and achieved Dice coefficients of 0.876, 0.868, and
0.814 for tumor subregions.

Ahsan et al. [11] compared object detection algorithms
(YOLOv5, Faster R-CNN, SSD) for brain tumor. They used
Figshare dataset and paired YOLOv5 with 2D U-Net for
segmentation. Yolov5 gained the highest mAP of 89.5%, and
Yolov5+2D U-Net achieved 88.1% DSC. However, the dual-
model framework increased learning complexity.

Arumaiththurai et al. [12] proposed two methods for clas-
sifying brain tumors using ML and DL algorithms. The first
method used decision trees and SVM, while the second used
pre-trained VGG19 and ResNet152 models. Figshare brain
tumor dataset assessed the effectiveness of these approaches.
The CNN-based method performed better in classification and
attained an accuracy rate of 94.67%.

Alyami et al. [13] employed AlexNet and VGG19 models
for feature extraction and the slap swarm algorithm for feature
selection. They used Kaggle brain tumor dataset and achieved
an accuracy of 99.1% with a cubic SVM using 4111 best
selected features out of 8192.

Asiri et al. [14] introduced a customized CNN model for
classification brain tumor, focusing on hyperparameter tuning
of kernel size, strides, activation, and learning rates. The model
was evaluated on two MRI datasets: a four-class dataset with
7,023 images and a binary dataset with 253 images. This
method achieved 88% accuracy.

These studies demonstrate the growing use of deep learning
models, particularly U-net, transfer learning, and attention
mechanisms, to enhance the accuracy and efficiency of brain
tumor segmentation and classification. The incorporation of
explainable AI such as LIME, attention maps, also adds a
layer of transparency, which is crucial for the deployment of
these models in clinical settings.

However, challenges such as variability in growth patterns,
textures, and irregularity in tumors across patients, and dif-
ferent tumors have overlapping visual features and irregular
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boundaries, especially when the tumors are in early stages.
Addressing these challenges remains a critical focus of ongo-
ing research on brain tumor analysis.

To address these challenges, we introduce an innovative
architecture, RAG4-Unet, for the segmentation process, and
this framework incorporates Swin transformer and Yolo11 for
precision detection of the tumor region. The key contributions
of this work is summarized as follows:

• We introduce a novel Residual Attention Gated (RAG)
module to focus on significant spatial and contextual
features to enhance detection of brain tumor boundaries.

• We employ a Swin Transformer to leverage shifting
window sizes, utilizing its attention mechanism to learn
features hierarchically.

• We integrate YOLO11 for detection of growth regions in
brain tumors, enhancing accuracy of tumor detection.

II. METHODOLOGY

A. Data Collection and Augmentation
The FigShare Brain tumor dataset is utilized for experi-

ments. The dataset is available at https://Figshare.com/articles/
dataset/brain tumor dataset/1512427. This dataset includes
233 patients with three types of tumors: glioma, meningioma,
and pituitary tumor. The glioma category contains 1426 slices,
meningioma has 708 slices, and the pituitary tumor has 930
slices. Each image has a dimension of 512 × 512 with a
depth resolution of 96 dpi. The dataset is imbalanced and
that there were not enough samples for the efficient learning
of the deep learning model. Therefore, we performed an
augmentation process to increase the diversity in the dataset.
For the augmentation process, four basic transformations are
utilized: horizontal flip, rotation by 10°, vertical flip, and
solarization. After augmentation process, the samples in each
class are 4120. The augmentation process is visually presented
in Fig. 1.

Fig. 1. Sample of augmentation operation on brain tumor dataset.

B. Overview of Swin Transformer
Swin Transformer is an enhanced version of the transformer

that boosts computational effectiveness and capacity for high-
resolution images. Similar to conventional CNNs, the Swin

Transformer gradually reduces the image size by introducing
a hierarchical structure that reflects images at various sizes.
It limits attention to small windows and shifts these windows
at every level. The input RGB image is separated into non-
overlapping patches using a patch-splitting module like ViT.
Each patch is handled as a ”token” and its feature is configured
as a concatenation of raw pixel RGB values. After that, many
Swin Transformer blocks are applied to these patch tokens.

a) Swin Transformer Stages:
The Swin Transformer block, known as ”Stage 1,” maintains

a token count of ϕh

4 × ϕw

4 when used with linear embedding.
Hierarchical representation is achieved by reducing the number
of tokens using a patch merging technique as the depth of
the neural network grows. The initial patch merging layer
concatenates the features of neighboring 2 × 2 patches and
then applies a linear layer to the 4C-dimensional features
produced. This procedure reduces the token count by a factor
of 2 × 2 = 4, while changing the output dimension to 2C.
Swin Transformer blocks are added to transform features while
keeping a resolution of ϕh

8 × ϕw

8 . Stage 2 begins with patch
merging and feature transition. The procedure is performed
twice, resulting in ”Stage 3” and ”Stage 4”, with output
resolutions of ϕh

16 ×
ϕw

16 and ϕh

32 ×
ϕw

32 correspondingly. The four
stages work together to provide a hierarchical representation
with feature map resolutions equivalent to those of typical
CNNs. Swin Transformer replaces multi-head self-attention
(MSA) module in a transformer block with a module based on
the shifted window, while the other layers remain unchanged.
The Swin Transformer block consists of a shifted window-
based MSA module, a 2-layer MLP with GELU activation in
between. The layer normalization is placed before each MSA
and MLP module, followed by a residual connection.

b) Hierarchical Feature Learning:
The self-attention within localized windows enables effec-

tive modeling. The windows are positioned such that they do
not overlap and divide the image equally. The computational
complexity of a global MSA module and a window-based one,
based on an image of ϕh×ϕw patches, assuming each window
has k × k patches:

Ω(MSA) = 4ϕhϕwC
2 + 2(ϕhϕw)

2C (1)

Ω(MSA)w = 4ϕhϕwC
2 + 2k2ϕhϕwC (2)

The computation of the Swin Transformer has linear complex-
ity when fixed, but the computational cost of traditional ViT
increases quadratically with the number of patches. Although
the W-MSA of the Swin Transformer decreases the compu-
tational cost from quadratic to linear, its modeling capability
may be limited by the absence of links and communication
between many windows. To overcome this restriction, the Swin
Transformer adds a shifted window divider that makes it easier
for nearby non-overlapping windows to share information.
In two successive Swin Transformer blocks, this method
alternates between using W-MSA and a modified SW-MSA.
By connecting adjacent non-overlapping windows, the shifted
window partitioning greatly expands the receptive field. After

42 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



employing the shifted window divider, the computation within
two consecutive Swin Transformers is followed as:

Φ̂b = (MSA)w(LN(Φb−1)) + Φb−1 (3)

Φb = MLP(LN(Φ̂b)) + Φ̂b (4)

Φ̂b+1 = (MSA)sw(LN(Φb)) + Φb (5)

Φb+1 = MLP(LN(Φ̂b+1)) + Φ̂b+1 (6)

Where (MSA)w and (MSA)sw represent window-based
multi-head self-attention and shifted window divider, respec-
tively. Φ̂b and Φb denote resultant features of the (MSA)sw
and MLP module for block b.

Swin Transformer introduces the relative position biases
for every head during the similarity calculation, which is
formulated as:

Att(Q,K, V ) = Soft
(
QKT

√
d

+ ψb

)
V (7)

Where Q,K, V are the query, key, and value vectors, and d
denotes the dimension of Q,K, V , and ψb is the bias vector.

The motivation behind choosing the Swin Transformer for
brain tumor analysis is its ability to process high-resolution
images and its window-based attention mechanism, which can
learn fine-grained details about the tumor region, such as tiny
tumor boundaries and growth patterns in the local context.

C. Proposed RAG4-Unet Architecture

U-Net is a deep learning architecture proposed for image
segmentation. It consists of three steps: encoder, bridge, and
decoder. In this work, we proposed a Residual Attention-Gated
U-Net (RAG4-Unet) for the segmentation of tumors from brain
MRI scans. RAG4-Unet consists of four residual encoders, one
bridge, and four residual decoders. All the residual encoders
are connected to the attention gate to generate the attention
maps, and the attention gates are concatenated with the de-
coders. The RAG4-Unet accepts the input of size 256×256×3.

a) Encoder Phase:
The first encoder consists of one residual block, max-

pooling with stride 2, and one dropout layer. The dropout
factor is 0.1. The residual block contains two convolutional
layers with a 3× 3 filter size, 64 filters, and a stride of 1. The
residual encoder is desribed as follows:

∂1 = ∅1(I) (8)

∂ψ1 = ψ1(∂1) (9)

∂2 = ∅2(∂ψ1 ) (10)

∂ψ2 = ψ2(∂2) (11)

∂3 = ∅3(∂ψ2 ) (12)

∂ψ3 = ψ3(∂3) (13)

∂skip = ∂ψ3 + ∂ψ2 (14)

∂ReLU = λ(∂skip) (15)

∂⊞ = ⊞Mpool(∂ReLU, s = 2) (16)

∂⊟ = ⊟drop(∂⊞, f = 0.1) (17)

Where the ∅c represents the convolutional operation, ψ is the
batch normalization, λ represents the ReLU activation, ⊞Mpool
is max pooling, and ∂⊟ represents the dropout layer. The
second and third encoders also consist of one residual block,
max-pooling with stride 2, and one dropout layer with a 0.1
dropout factor. In the second residual block, the convolutional
layer is configured with a 3×3 filter size, 128 filters, and a
stride 1. In the third residual block, the convolutional operation
is performed by employing a 3×3 kernel size, 256 filters, and
a stride 1. In the last encoder, dropout factor is 0.2, and
convolutional inside the fourth residual block is configured
with a 1×1 kernel size, 512 filters, and a stride 1.

b) Bridge Phase:
The bridge between the encoder and decoder is the deepest

point in the network. The bridge is configured by employing
a residual block with 1024 depth and one dropout layer with
a 0.3 drop factor.

c) Decoder Phase:
After the Bridge, the first decoder consists of one transpose

convolutional layer configured with a 2×2 filter size, 512
depth, and 2×2 stride, one attention gate that is applied on the
fourth encoder and transpose layer. The resultant feature map
of attention-gated and transpose layers is further combined
using the concatenation layer. After that, one residual block
and dropout layer with a 0.2 drop factor is employed. The
mathematical representation is:

∂Tconv = ∅T (β, k = 2, s = 2, ch = 512) (18)

∂AG = AttGate(∂end4, ∂Tconv) (19)

∂Con =
⊎

(∂AG, ∂Tconv) (20)

∂d1 = ∅(∂Con) (21)

∂ψd1 = ψd1(∂d1) (22)

∂d2 = ∅d2(∂ψd1) (23)

∂ψd2 = ψd2(∂d2) (24)

∂d3 = ∅d3(∂ψd2) (25)

∂ψd3 = ψd3(∂d3) (26)

∂dskip = ∂ψd3 + ∂ψd2 (27)

∂dλ = λ(∂dskip) (28)

∂d⊟ = ⊟drop(∂dλ, f = 2) (29)

Where
⊎

is the concatenation layer, AttGate is the attention
mechanism, and ∅T represents the transpose convolutional
operation. In the second decoder, the transpose convolutional
has a 2×2 filter size, 256 depth, and 2×2 stride, and the
remaining mechanisms are the same. The implementation
phenomena of the third and fourth decoders are the same.
However, the configurations of transpose convolutional and
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Fig. 2. Architecture of Swin Transformer for the classification of brain tumor

dropout layers are updated. The updated configurations are a
2×2 filter size, 128, 64 depth, and 2×2 stride, and the dropout
factor is 0.1, respectively. The architecture of the proposed
RAG4-Unet is presented in Fig. 3.

The proposed model is developed using the TensorFlow
framework and The proposed model has 99.45M parameters
bringing the model size to around 379.37 MB of memory.
33.14M are trainable and 17.66K non-trainable parameters
kept by the optimizer in memory 252.87 MB while training.
The model inference complexity is evaluated with GFLOPS.
The overall computation cost of a single forward pass is
approximately 106.25 GFLOPs.

D. Novelty: Proposed RAG Module

In this work, We designed a novel hybrid feature en-
hancement module based on Residual and Attention gated
mechanism. This module synergistically combines the residual
learning to stabilizes the gradient flow, with attention gating,
which focused on salient regions of the interest within the
brain MRI image.The tumor regions often confused with
healthy tissues. the RAG module addresses this problem by
filtering irrelevant and low importance features while enhanc-
ing the high relevance activations related to tumor boundaries
and cores. It enhances the boundary detail and localization of
tumor objects, because the attention gated mechanism reduces
irrelevant activations that strengthen the task of boundary de-
tail and out-of-distribution activations that strengthens spatial
detail of the tumor region when propagating features and
helping to ensure gradient stability.

The sequence of RAG module begins with a series of convo-
lutions to extract features from the input tensor, with the output
then entering more convolutions and subsequently Attention
Gated module, when performing spatial attention analysis,
attention maps are created using extracted features and a gating
signal is produced from a feature map. The attention maps
are resampled, and modify the original feature map, it allows
the network to learn where to increase and where to decrease
specific spatial regions and a residual connection allows the
network to skip non-linearity,if needed, thus minimizing the
possibility of vanishing gradients strengthening the source of
information and allowing for richer contextual experience for
the network over numerous forward passes. The output of this
module contains local enriched features and global semantic
guiding features useful for precise identification of the tumor
edges. the proposed RAG module is presented in Figure 4

III. RESULTS

A. Experimental Setup

The dataset is divided into training, testing, and validation.
70% data is employed for training, 10% data is employed
for the validation during the training process, and the 20%
data is utilized for the testing process. The hyperparameters
selected for Swin Transformer are batch size, number of
workers, selected optimizer ADAM, learning rate, momentum,
and epochs having values are 8, 4, 0.0004, 0.9, and 250. For
RAG4-Unet the utilized hyperparameters are learning rate is
0.0001, epochs is 100, optimizer is ADAM, batch size is 8,
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Fig. 3. Architecture of proposed RAG4-Unet for brain tumor segmentation

Fig. 4. Architecture of Residual Attention Gated mechanism (RAG) module

and early stopping is employed with learning decay is 0.2,
patience is 5, min lr is 0.00001. The evaluation metrics are
accuracy, recall, precision, f1-score, Dice, Jaccard loss, and
IoU for the segmentation and classification.

The experiments are conducted on MSI GL75 Leopard
model configured with Core–i7 10 generation 2.59GHz pro-
cessor, 16 GB of RAM, 512GB of SSD storage, and GTX
GeForce 1660ti 6GB graphics card.

B. Results of Swin Transformer

The classification results of Swin Transformer on Figshare
dataset has been presented in Table I. The model achieved
91.74% accuracy, 91.64% precision, 91.73% recall, 91.52%
f1-score, 98.33% AUC, and 86.91% kappa index. The perfor-
mance across the individual classes such as pituitary tumor

gained the highest accuracy of 97.85%, precision of 95.13%,
recall of 97.85%, and f1-score of 96.48% with 2.87 (sec)
inference time. The confusion matrix gives more comprehen-
sive details about the class’s performance, as shown in Fig.
5. Glioma and pituitary tumor have the highest accuracy of
95.79%, and 97.85% respectively, because 205 samples of
glioma and 137 samples of pituitary tumor class are correctly
classified and 9 samples from the glioma and only 3 samples
from the pituitary tumor are misclassified. The meningioma
class has 75.47% of accuracy, 88.88% precision, 75.47%
recall, and 81.63% f1-score. Meningioma tumor suffers from
the considerable misclassification, the 5 samples are incorrect
classified as pituitary tumor and 21 samples are misclassified
as glioma. The overall misclassification rate of the menin-
gioma class is higher than the other two classes. The overall
confidence index of model is quite better which is 97.22%.

TABLE I
RESULTS OF SWIN TRANSFORMER ON FIGSHARE DATASET

Class-wise Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

Glioma 95.794 90.707 95.794 93.181
Meningioma 75.471 88.888 75.471 81.632
Pituitary Tumor 97.857 95.138 97.857 96.478

Overall Performance
Accuracy (%) Precision

(%)
Recall
(%)

F1-score
(%)

AUC (%)

91.74 91.64 91.73 91.52 98.33
Kappa (%) CI Inference Time (sec)
86.91 97.22 2.306

C. Results of proposed RAG4-Unet

The segmentation is implemented using the proposed
RAG4-Unet model. The images and their masks are provided
as input to the proposed model. After training the RAG4-
Unet model, the model is evaluated on the test data. The
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Fig. 5. Confusion matrix of Swin Transformer on Figshare dataset

overall performance and sample-wise results of the proposed
RAG4-Unet are presented in Table II. The proposed model
achieved 91.37% Dice, 94.74% precision, 96.23% sensitivity,
and 98.46% specificity. Some of the testing sample results
are presented in Table II. Most test samples have a high
Dice of 0.90, with consistent IoU and low Jaccard loss.
The model could segment the tumor regions accurately and
clearly distinguish the tumor portion from the surrounding
information, such as samples 1, 2, 3, 4, 7, 8, 9, and 12 have
more than 90% Dice score, 87-94% IoU, due to the clear and
uniform morphology of the tumor region and a few samples,
like 10, 11, 13, and 14, have quite better Dice scores and
IoU with the small size of the tumor. However, the model is
struggling with samples that do not clear the tumor boundary
because the results are leading to under or over-segmentation,
like in samples 5 and 6.

TABLE II
SEGMENTATION RESULTS OF PROPOSED RAG4-UNET BASED ON

FIGSHARE DATASET

Sr. Dice Jaccard
Loss

IoU Sr. Dice Jaccard
Loss

IoU

1 0.906 0.171 0.828 2 0.931 0.127 0.872
3 0.943 0.106 0.893 4 0.948 0.097 0.902
5 0.649 0.519 0.481 6 0.782 0.357 0.642
7 0.971 0.055 0.944 8 0.945 0.10 0.896
9 0.950 0.094 0.905 10 0.957 0.081 0.918
11 0.960 0.076 0.923 12 0.971 0.054 0.945
13 0.929 0.131 0.868 14 0.970 0.056 0.943

Overall Performance
Dice Dice

Loss
Preci-
sion

Sensi-
tivity

Specificity

0.9137 0.0863 0.9474 0.9623 0.9846

Fig. 6 presents a visual comparison of the original ground
truth and predicted ground truth with the overlap maps for
further investigation of the above samples. In overlapping
maps, the green region indicates the original mask, the red
region demonstrates the predicted mask, and the yellow region
indicates the perfect match between the predicted and original
masks. In addition, in the last column of Fig. 6, the attention

maps are generated by the proposed model to further evaluate
the transparency. The generated attention maps highlighted
the focus of the RAG4-Unet during the segmentation process.
These maps show the areas of the segmentation process where
the model concentrates. The tumor locations are prominently
highlighted in the attention maps, signifying that the model ef-
fectively suppresses background noise and prioritizes relevant
areas. For samples 5 and 6, as shown in Fig. 6, the model
generated a weaker or scattered focus, which indicated low
performance. For the overall performance, generating attention
maps are a suitable instrument for interpreting the decision-
making process of the model.

D. Results of Yolo11 model

In this section, the Yolo11 model is implemented for the
detection of tumor region from the brain MRI and the metrics
are presented in Table III. The Yolo11 model achieved 89.6%
boundary box precision, demonstrates that the model has high
rate of correct detections with the less false positive. While,
the recall box is 87.4% indicates that the model has quite
number of missed detections and the mAP50 and mAP50-
95 are 86.4% and 81.76% respectively. The inference time is
also measure for the Yolo11 which is 1.3 (sec), reveals that the
model is fast and responsive. The fitness score which is 0.7443
exposes the balance among the accuracy and computational
cost. The overall pre and post processing of Yolo11 is 9.5
and 18.6265 (sec) respectively, reflecting the computation
strength to arranged the brain MRI for detection. Table III
also presents the speed, preprocessing, inference time, and
confidence of the few individual cases. The each individual
case the preprocessing time is lies between the 7.8 to 11.3
(sec) and the 1.3 (sec) is need for all the most cases. Few
of samples such as 1,4,5, and 14 have high confidence scores
which is 0.88, 0.96, 0.91, and 0.90, respectively, highlighting
the effective predictions with tumor localization while the
sample 3 achieved the confidence score of 0.00 which indicates
the complete failure of detection of tumor region. Similarly, the
samples that have overlapping visual features tend to results
in low confidence score.

Fig. 6 shows visual comparison results between the Yolo11
detection and proposed RAG4-Unet model. In this figure,
Yolo11 model fails to align with the tumor boundaries, ev-
idently, clearly visual in samples such as 5,6,and 9 and in
some samples the boundary boxes has missed of the tumor
and include non-tumor regions, indicating that the model faces
the challenges when tumor has complex and irregular shape. In
contrast, the proposed RAG4-Unet segmentation maps indicat-
ing the higher boundary alignment. The segmented region by
the RAG4-Unet model are more closely to the original ground
truth. In addition, the proposed model provides a detailed
representation of tumor boundaries that Yolo11 boundary
boxes cannot match and the Yolo11 is unable in detecting and
localizing the tumor regions with the high precision such as
in sample 3 and 10, the Yolo11 model missed and incorrectly
detect the tumor region.
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Fig. 6. Segmentation visualizations of predicted mask, overlapping maps, attention maps, and yolo 11 detection for analyzing the RAG4-Unet

TABLE III
DETECTION RESULTS OF YOLO11 MODEL ON FIGSHARE DATASET

Sr. Speed (ms) Preprocess
(ms)

Inference
(ms)

Confidence
(%)

1 2.4 7.8 1.2 0.88
2 2.5 8.7 1.3 0.47
3 2.7 10.4 0.6 0.00
4 2.5 9.8 1.5 0.96
5 2.9 10.6 1.3 0.91
6 2.6 8.9 1.4 0.42
7 2.6 9.8 1.3 0.64
8 2.7 8.2 1.2 0.60
9 2.7 9.5 1.3 0.30
10 2.6 10.0 1.4 0.41
11 2.7 10.7 1.3 0.80
12 2.7 9.5 1.3 0.78
13 2.6 11.3 1.3 0.77
14 2.5 9.3 1.4 0.90

Overall Performance
Precision(B) Recall(B) mAP50(B) mAP50-95(B)

0.896 0.876 0.864 0.8176
Preprocessing Inference Fitness Post process

0.494 4.260 0.7443 18.6265

E. Comparison with SOTA

The comprehensive comparison has been conducted be-
tween the proposed and state-of-the-art methods, as shown
in Table IV. Authors in [11] employed U-net architecture
for the segmentation and conducted experiments on Figshare
dataset. They achieved 88.1% of accuracy. In [14], the authors
proposed customized CNN for the classification of tumor types

using the Figshare dataset and they achieved 88% accuracy.
Authors in [15] implemented ResNet50 model using deep
transfer learning method on private dataset and they gained
90% of accuracy. In [16], the authors employed semi deep
learning framework based on customized Unet and histogram
features. The performed experiments on BITE dataset and they
achieved 91%. However, our proposed methods achieved the
highest accuracy of 91.74% using the swin transformer and
91.37% Dice score using proposed RAG4-Unet in segmenta-
tion task.

TABLE IV
COMPREHENSIVE COMPARISON BETWEEN THE PROPOSED FRAMEWORK

AND STATE-OF-THE-ART METHOD

Ref Year Dataset Methodology Accuracy
Ahsan et al. [11] 2024 Figshare Unet architecture 88.1%
Asiri et al. [14] 2024 Figshare Customized CNN 88%
Rajput et al. [15] 2024 Private ResNet50 90%
Shiny et al. [16] 2024 BITE Semi Deep learning 91%
Proposed Work Figshare Swin Transformer 91.74%

Figshare RAG4-Unet 91.37%

IV. STATISTICAL ASSESSMENT

In order to fully assess the consistency and reliability of
the proposed RAG4-Unet model, we utilized Z-score method
of the Dice similarity produced from the 14 test samples.
the z-score for the each dice score is calculated using the
equation 38.

∂z =
di − µ

σ
(30)
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where di represents the Dice score of each sample, µ
denotes the mean across all samples, and σ is the standard
deviation. The value of the standard deviation is 0.0853 and
the mean is 0.9216.

All samples (12 out of 14) showed Z-scores that fell within
-1.0 and +1.0 which means that the most of the Dice values
are close to the mean and demonstrate consistent segmentation
performance across the samples in the test data. Sample 5 with
a Dice score of 0.649 produced a Z-score of -3.20 indicating
it was a significant outlier case, as shown in Figure 7. This
Z-score indicated a material drop in performance relatively
speaking for that one case, which could have been due to noise,
complicated tumor morphology. Sample 6 had a moderately
low Z-score of -1.635 which indicates that it did perform
below the mean relative to the remaining samples. Sample
7, Sample 12 and Sample 14 had Z-scores that were above
+0.5, indicating those samples performed above and beyond
the average segmentation performance.

Fig. 7. Z-score Analysis of Dice Coefficients

V. CONCLUSION

In this work, we proposed a novel RAG4-Unet architecture
for the segmentation task integrated with swin transformer and
Yolo11 for the classification and detection task. The proposed
RAG4-Unet architecture addresses the challenges of irregular
shapes of boundaries and intersecting visual features of tumors
by employing the residual attention gated mechanism. The
proposed model achieved 91.73% of Dice coefficient, 94.74%
of precision, 96.23% of sensitivity, and 98.46% specificity
and swin transformer achieves 91.74% of accuracy, 91.64% of
precision, 91.73% of recall, 91.52% of f1-score, 98.33 AUC,
86.91 kappa index, and 97.22% of confidence index with 2.306
(sec) inference time. The Yolo11 model achieves a boundary
precision o 86.6%. The limitation of the proposed work is the
proposed model goes under segmentation and low Dice when
tumor size are small and Yolo11 lead to inaccurate boundary
boxes when the tumor are complex.

In future work, we will focus on addressing these limitations
using more diverse datasets and we will further explore and

refine the attention mechanism to improve the tumor boundary
delineation.
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Abstract—Depression, anxiety, and stress are commonly stud-
ied in the elderly, often manifesting as a loss of interest in
previously enjoyed activities, disrupted sleep patterns, and other
emotional or behavioral changes. However, with rapid technolog-
ical advancements, young adults particularly those between the
ages of 20 and 40 are emerging as a highly vulnerable group.
This demographic faces a unique psychological burden, as they
attempt to navigate the cultural and generational gap between
two vastly different worlds: an older generation that often resists
or struggles to adapt to revolutionary technologies, and a younger
generation having a grip on modern technology. This generational
divide can create a sense of isolation and pressure for young
adults especially those people living in developing countries where
open conversations about mental health still remain stigmatized
and difficult to initiate.

This research aims to develop a mental health app that
can evaluate depression, and stress among young adults using
the DASS-21 self-assessment test and suggest a personalized
intervention keeping in view the level and severity of depression
and stress. For personalized interventions, upper confidence
bound algorithm is used to maintain a balance between explo-
ration and exploitation. Agent’s performance and effectiveness
of intervention is evaluated by a post-test.

Index Terms—depression, stress, personalized intervention,
dass-21, reinforcement learning, UCB

I. INTRODUCTION

ARTIFICIAL Intelligence (AI) is an umbrella term use
to describe technological advancements. Everyone is

familiar with AI, especially those who are familiar with self-
adaptive, self-learning systems. Reinforcement learning (rl),
a type of machine learning, comes under the umbrella of
AI. RL is the soul of self-adaptive and self-learning systems,
where the system learns patterns and adjusts itself according to
requirements. Implications of AI in the field of health care are
remarkable [1]. These implications not only involve diagnos-
ing a disease but also recommend treatment plans. Moreover,

technological advancements of AI have been reported for
personalized medication adherence for elderly people [2], for
the analysis of the living cell mechanism [3], for therapeutic
treatment interventions of Alzheimer’s Disease [1], Multiple
Sclerosis [4], Autism Spectrum Disorder (ASD) [5], and other
mental disorders.

Mental health is a fundamental concept and is closely
related to the overall well-being of mankind [6]. Sartorius
has defined mental health in three different manners: i) as the
absence of any illness or disease; ii) a state of an organism
helps to perform all functions at their best; and iii) a balanced
state of an organism to maintain a healthy relationship with
others and with its surroundings [7]. All these definitions
are directly dependent on the fundamental needs of an in-
dividual. The degree to which these fundamental needs are
met determines the mental health condition. The fundamental
needs of any individual include food, shelter, family support,
social circle, unnecessary stress, survival, security, freedom
from pain, and environmental hazards [8]. Reflecting on these
aspects highlights the complexity involved in determining
which definition applies in varying contexts.
Mental health, like mental illness, is also affected by biolog-
ical, social, psychological and environmental factors. Mental
health, similar to mental illness, is shaped by a combination
of biological, psychological, social, and environmental influ-
ences. The ability of a person to function is deeply influenced
by their family, close friends, colleagues, and peers and, in
the broader context, influenced by society and culture [9] [10].
Social relationships, in both contexts, play a significant role in
psychological well-being. Positive social interactions can help
reduce symptoms of depression and stress, while isolation or
negative social conditions can increase vulnerability to mental
health issues.
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Depression is a complex, multifaceted disorder. It comes under
the category of mood disorders and is considered one of the
primary contributors to disability across the world [11]. A
depressed person feels tired most of the time, struggles with
sleep, irritability, sadness, and headaches. Depression should
be taken seriously before it turns into a clinical depression or
major depressive disorder (MDD) [13]. Major depressive dis-
order can lead to neurological disorders i.e., multiple sclerosis
(MS) or Alzheimer’s disease (AD).
Stress is another state of mind that every human being faces
most of the time. Stress is a mental pressure that arises as a
response to some external stimuli (tough situation, threat, chal-
lenge etc). Positive stress is helpful and plays an important role
in handling different situations. Almost everyone experiences
stress at some point, but what makes it worse is the way every
human handles it. The stress response is different for different
people and plays a crucial role in maintaining our overall
health and well-being. Stress affects all body systems includ-
ing the musculoskeletal, respiratory, cardiovascular, endocrine,
gastrointestinal, nervous, and reproductive systems [12].
A lot of pharmacological and non-pharmacological treatments
are available for depression and stress. This research aims to
address the level of depression and stress among young adults
living in a developing country like Pakistan and its treatment
using technology-based personalized interventions. The level
of depression and stress has been measured using dass-21
self assessment test. Dass-21 self assessment test measures
depression, anxiety and stress into normal, mild, moderate
and severe level. After the severity of results the user will be
assigned an intervention through the RL agent, the correctness
of choice of intervention depends on post-test results.
The rest of the paper is organised in the following manner:
Section II contains literature review, section III is the research
background , Section IV Proposed methodology, section V is
Results and Discussion and section VI conclusions and future
work.

A. Research Objectives

A lot of work has been done about mental health of
older adults and adolescents. Very few worked in mental
health evaluation among young adults. In the ongoing socio-
economic environment and lifestyle, almost every individual
is facing mental health problems. Keeping these factors in
mind, proposed research aims to provide a mental health app
to measure and manage depression and stress among young
adults. The objectives of this research include:

• Construction of mental health app for people aged 20-40.
• Use of DASS-21 test to measure level of three main

mental problems: Depression, Anxiety, Stress.
• Use of RL agent to suggest an intervention that best suits

the needs and demands of a person.
• Evaluation of intervention decision by an agent through

post-test.

II. LITERATURE REVIEW

A. DASS-21

To understand the effectiveness of the 21-item Depression
Anxiety Stress Scales (DASS-21) for individuals with mild
traumatic brain injury (mTBI), the study in [14] performed
a psychometric evaluation. Through Rasch analysis, the re-
searchers examined the scale’s underlying structure, consis-
tency, ability to differentiate among individuals, and item
fairness. Findings suggest that the DASS-21 is a psycho-
metrically robust instrument for gauging distress and stress
in adults receiving care for mTBI. For specific depression
assessment, the study advises using a shortened six item
subscale for depression. [15] investigated the practical util-
ity of the DASS-21 in elderly populations across various
nations, examining sample demographics, application goals,
and recruitment sites. Researchers screened 855 studies from
EMBASE, PubMed, and SciELO, ultimately analyzing 22
involving 14,339 participants (predominantly women aged 60-
91) from 13 countries. The review concluded that the DASS-21
is a valuable instrument for tracking depression, anxiety, and
stress in diverse elderly groups globally.
This study [16] evaluates the DASS-42 and DASS-21 for
assessing depression, anxiety, and stress in hematologic cancer
patients. Analyzing data from 452 patients, the research shows
both scales have strong psychometric properties, with the
bifactor model fitting better. The results support using these
scales for reliable assessment in Turkish hematologic cancer
patients, aiding clinical evaluations and interventions. Evalu-
ating the DASS-21’s psychometrics in Spanish and Chinese
primary school teachers, [17] underscores the significance of
educators’ psychological health. The study revealed cross-
cultural measurement invariance issues, with the DASS-21 best
fitting a one-factor model for Chinese teachers and a three-
factor model for Spanish teachers. Notably, it demonstrated
concurrent validity with emotional exhaustion in both samples.

B. Personalized Interventions

The systematic review [18] investigates the cutting-edge
developments in Next-Generation Cognitive Behavioral Ther-
apy (NG-CBT) for depression, with a particular emphasis on
how digital tools, teletherapy, and individualized treatment
approaches are being integrated. The findings indicate that
NG-CBT interventions significantly enhance treatment ac-
cessibility and patient engagement. Specifically, personalized
digital tools contribute to improved treatment adherence and
can be cost-effective alternatives to traditional therapy.
The article [19] thoroughly examines current tools and tech-
nologies leveraging artificial intelligence (AI) in the manage-
ment of anxiety and depression. It highlights the growing
integration of AI applications, such as chatbots, mobile health
applications, wearables, virtual reality, and large language
models (LLMs), into mental health. These tools facilitate
accessible, personalized, and immediate support for individu-
als experiencing anxiety and depression. Researchers suggest
that AI interventions are good for underserved populations,
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Fig. 1: Working of an RL agent presenting agent-environment
interaction. at = action performed for state St, St = current
state after performing an action at, Rt=reward received after
at, S(t+ 1) = next state, r(t+ 1)= reward received at a state
S(t+ 1) [24].

but should not replace human professionals. [20] reviews the
rise of anxiety among college students, by the COVID-19
pandemic, identifying risk factors across societal, institutional,
familial, and individual levels. While traditional therapies
are useful, they face accessibility and stigma issues. The
review highlights digital interventions (apps, chatbots, VR)
as scalable, cost-effective, and less stigmatizing solutions,
particularly for tech-savvy students. Successful implementa-
tion requires collaborative efforts from governments, colleges,
families, and students.

III. RESEARCH BACKGROUND

A. Reinforcement Learning

Reinforcement learning (RL), a branch of machine learn-
ing, is goal-directed learning from interaction. Reinforcement
learning involves improving performance through trial-and-
error experience [21]. A method with a software agent that
interacts with an unknown environment, selects actions dy-
namically and discovers which action yields more reward
[22]. Reinforcement learning focuses on teaching algorithms to
make choices by providing positive feedback for preferred ac-
tions and negative feedback for unwanted ones [23]. Similarly
to how behavior is influenced by rewards and consequences in
psychology, this method allows systems to gradually develop
the best strategies through a process of trial and error [24]
as shown in Fig 1. The reward system is crucial for guiding
the agent’s actions toward achieving the final goal. It serves
as a feedback mechanism, clearly indicating whether a chosen
action has led to a positive or negative outcome. By under-
standing this, the agent can adjust its strategies effectively,
ensuring progress and success in reaching its objectives.

1) Upper Confidence Bound (UCB): Upper Confidence
Bounds (UCB) are statistical techniques applied in decision-
making under uncertainty, especially when there is a need
to balance exploration of new choices with exploitation of
known favorable ones. This method is commonly used in
multi-armed bandit problems, where it aids in selecting

actions by considering both their estimated rewards and the
uncertainty around those estimates.
The UCB method works by computing an upper confidence
limit for the expected reward of each option. This involves
combining the estimated reward with an additional term that
captures the level of uncertainty or variability in that estimate.
The option with the highest resulting upper bound is chosen
for the next decision step [25].
Exploration: Exploration enables the agent to gather more
information about the available actions, by exploring all
possible states in a given environment.
Exploitation: Exploitation allows the agent to select the
action it currently believes will yield the highest reward,
aiming to maximize short-term gains based on existing
knowledge.

2) UCB Action Selection: UCB is favorable for
uncertain conditions to balance exploration and exploitation.
Mathematically, a UCB agent selects an action using the
following equation:

At = argmaxa(Qt(a) + c(
√
ln(t)/Nt(a))

Here t presents timesteps, Qt is expected reward
(Exploitation) at time t and last term is exploration reward.

The main objective of using the UCB here is to maximize
the cumulative reward across multiple trials. UCB algorithms
seek to minimize regret (the difference between the actual
rewards earned and the estimated rewards. Unlike other RL
algorithms, it does not require extensive training data to learn.
It’s exploration-exploitation property helps in minimizing re-
gret by choosing optimal intervention available.

B. Personalized Interventions

Personalized interventions are care strategies that adapt to
the specific circumstances of each individual, especially in
mental health settings. Rather than relying on broad, general-
ized solutions, personalized interventions emphasize tailored
strategies that align with the unique needs, contexts, and
characteristics of an individual, a group, or a system. By
aligning the intervention closely with the individual’s needs,
the aim is to improve the effectiveness and engagement of
the treatment process, ultimately leading to better therapeutic
outcomes [1].
When implementing personalized interventions, it is essential
to choose them carefully, guided by the individual’s spe-
cific needs and preferences. This strategy encourages shared
decision-making between the individual and the healthcare
provider. Research suggests that personalized interventions
are especially beneficial for complex mental health conditions
such as depression and anxiety, as these disorders often present
differently in different individuals [26].
The emergence of AI and digital technology has revolutionized
the field of healthcare especially mental health by offering
tailored treatment regimes. Machine learning made significant
advancements in this field, but reinforcement learning helped
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to turn traditional treatment methods into personalized and
adaptive treatment interventions [1].

C. Self Assessment Test

Different self-assessment tools are available online to mea-
sure depression and anxiety. Patient Health Questionnaire
(PHQ-9) consists of 9 self-reporting items, one of the free
online available tests used to measure depression [27]. Back
Depression Inventory (BDI), Back Anxiety Inventory (BAI)
consists of 21 self-reporting items, each with 4 options. BDI
is used for depression and BAI is used for anxiety [28].
Depression, Anxiety, Stress Scales (DASS) is most commonly
used self-assessment test for three different but interrelated
variables [29]. DASS comes in two versions, DASS-42 is
long item scale and DASS-21 is short item scale with 21
reporting items, each having 4 options. The DASS-21 is widely
recognized for its brevity and reliability. It is available in
more than 40 languages, making it a popular choice in both
research and clinical contexts worldwide [30]. DASS-21 has
three subscales and contains seven items for each subscale (i.e.
depression, anxiety and stress). Each item has four options,
and each option shows level of severity from 0-3. Level 0
shows do not apply to me at all, 1 shows sometimes applied
to me, 2 shows applied a good part of the time and 3 shows
strongly applied to me.

IV. PROPOSED METHODOLOGY

This research aims to measure level of depression, anxiety
and stress in young adults. The main steps involved in the
proposed research are mentioned in Fig 2. This research aims
to develop a web app to evaluate and manage depression and
stress among young adults. The system has been made using
Python Flask and consists of three main steps:

• Pre-Test
• RL Agent for Treatment Intervention
• Post-Test

DASS-21 appears as a pre-test as the user logged in using
few demographics (name, age, gender, occupation). To track
the outcomes user data is stored. The interface of pre-test
can be seen in Fig 3a. Dass-42 covers every minor and major
detail in a behavior over a specific period like a week or two.
So, the selection of items for dass-21 was critical. We made
sure to include those items in dass-21 that a user (a young
adult) can associate himself/herself with.
The interface of a pre-test contains a few guidelines for the.
Selection of an option for each item is mandatory. Pre-test
will not be submitted until all the items are responded by
selecting the severity option. In case of missing item, alert
message will appear on the screen reminding the user to
respond to each item. After submitting the pre-test as shown
in Fig 3b, results will appear on the screen. Results contains
both scores and severity of each subscale (depression, anxiety,
stress). Results of a random user can be seen in Fig 4. (Note:
The user in Fig 4 selected options on purpose to obtain mild
to moderate results for each subscale). It is to be mentioned
here that the primary focus is to manage depression and stress,

keeping anxiety apart. The reason is that managing depression
and stress simultaneously with a single intervention is quiet
challenging. Once the agent is trained to manage these two
subscales, it will be easy to manage the interventions for the
third one.
Keeping anxiety apart does not mean that anxiety is not worth

cured or managed. Anxiety is as important as depression
and stress. The reason behind selection of DASS-21 in
this research is to provide a single platform to manage all
three subscales of DASS. As discussed in section III-C each
subscale contains four levels of severity ranges from 0-3.
These levels represent normal, mild, moderate and severe
levels of each subscale. The range for each level is different
for different subscales and is quite challenging to treat at the
same time.

A. Interventions Selection

After completion of the first step (pre-test), the next step is
the management of depression and stress. The management or
intervention selection is done through RL agent. Interventions
are assigned as actions of the agent, and reward is collected
through post-test results. If post-test results are better than pre-
test results, then the action performed by the agent is correct.
The agent receives a positive reward. If the post-test results
are equal to the pre-test, then there is a capacity to evaluate
another action or to try another intervention. And, in the third
case, if post-test results are less than the pre-test results, the
agent gets a negative reward. Hence, the user was unable to
manage the problem with the selected intervention. The agent
will select another intervention to obtain better results.

Selected interventions to manage depression include:
• Mindfulness meditation
• Behavioral activation
• Cognitive restructuring
• Benson relaxation technique
• Empty chair technique
Interventions used to manage stress include:
• Box breathing exercise
• Time management techniques
• Physical exercise
• Guided imagery
• Improving sleep cycle
To overcome the unavailability of training data, threshold

values are fixed to help agent maintain a balance between
exploration and exploitation. These threshold values play an
important role in selecting intervention. Agent selects an
intervention that could treat both depression and stress of user
at the same time. The decision made by an agent depends on
subscale with high severity. This decision is then evaluated
with a post-test at the end of the session as discussed before.

V. DISCUSSION

This section presents the results, advantage and limitation
of the work and possible directions for future work.
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Fig. 2: Workflow diagram

(a) Interface of pre-Test with guidelines.

(b) Submission of DASS-21 test.

Fig. 3: Some visuals of DASS-21 items with levels of severity
ranges from 0-3.

A. Results

Use of reinforcement learning to generate adaptivity in AI-
based digitial interventons is not new. Reinforcement learning
has the potenial to do a lot for personalized interventions
related to mental health problems. Use of DASS-21 to measure
level of depression, anxiety and stress among young adults
and suggest intervention according to their needs is promising.
University students show a lot of interest in the proposed web
app based digital intervention. The UCB algorithm used in this
case does not have any prior data to train upon. But it main-
tained a good balance to train itself on the threshold values.

Fig. 4: Level and severity for each subgroup evaluated by
selecting options given with each item.

Few university students volunteered for the proposed web app.
Initially, the results of post-test remained same after practicing
the suggested intervention for a week. The performance of
the agent gets better after obtaining the same results and
suggesting another intervention. To obtain satisfactory results,
UCB requires more data for training. Another Problem faced
by users is the understanding of reporting items. Few items
are hard to interpret, and takes time to understand the context
of the query being asked.

B. Conclusions and Future Work

The idea of a personalized interventions to treat depression
and stress among young adults looks promising. It is
important for the cultures where discussing one’s mental
health is difficult. The model used here requires a lot of
prior knowledge to perform better. The proposed research
focuses on management of depression and stress. But there is
a need to manage anxiety along with depression and stress.
Our future work includes intervention for all three subscales
depression, anxiety and stress along with an additional feature
of DASS-21 version in the native language.
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transizione verde e digitale 2021/2027 destinate all’intervento
del FCS “Scoperta imprenditoriale” - Azione 1.1.4 “Ricerca
collaborativa” - with the project SIAMO (Servizi Inno-
vativi per l’Assistenza Medica a bOrdo) project number
F/360124/01-02/X75.

REFERENCES

[1] Khalid U, Naeem M, Stasolla F, Syed MH, Abbas M, Coronato A.
Impact of AI-Powered Solutions in Rehabilitation Process: Recent
Improvements and Future Trends. Int J Gen Med. 2024;17:943-969.
https://doi.org/10.2147/IJGM.S453903.

[2] Ismail, A., Naeem, M., Syed, M.H., Abbas, M. and Coronato, A., 2024.
Advancing Patient Care with an Intelligent and Personalized Medication
Engagement System. Information, 15(10), p.609.

[3] Naeem, Muddasar. Fiorino, Mario. Addabbo, Pia. Coronato, Antonio.
2024. Integrating Artificial Intelligence Techniques in Cell Mechan-
ics. Communication Papers of the 19th Conference on Computer
Science and Intelligence Systems (FedCSIS). 2024. 111–116. DOI:
http://dx.doi.org/10.15439/2024F4351.

[4] Floriano Zini, Fabio Le Piane, and Mauro Gaspari. 2022.
Adaptive Cognitive Training with Reinforcement Learning. ACM
Trans. Interact. Intell. Syst. 12, 1, (February 2022), 29 pages.
https://doi.org/10.1145/3476777.

[5] Stasolla, Fabrizio. Curcio, Enza. Zullo, Antonio. Passaro, Anna. Gioia,
Maricarla. Integrating Artificial Intelligence-based programs into Autism
Therapy: Innovations for Personalized Rehabilitation. Communication
Papers of the 19th Conference on Computer Science and Intelligence
Systems (FedCSIS). 2024. 169-176. 10.15439/2024F6229.

[6] Cinque, M., Coronato, A. and Testa, A. 2012. Dependable ser-
vices for mobile health monitoring systems. International Journal of
Ambient Computing and Intelligence (IJACI), 4(1), pp.1-15. DOI:
10.4018/jaci.2012010101.

[7] Sartorius, Norman. Fighting for mental health: a personal view. Cam-
bridge University Press, 2002.

[8] Maslow, Abraham H. Toward a psychology of being. Simon and
Schuster, 2013.

[9] SHRUTHI S. A Critical Study On Socializing And Its Benefits On
Mental Health. ScienceOpen Preprints. 2022. DOI: 10.14293/S2199-
1006.1.SOR-.PPJQN0I.v1.

[10] Bhugra D, Till A, Sartorius N. What is mental health?.
International Journal of Social Psychiatry. 2013;59(1):3-4.
doi:10.1177/0020764012463315.

[11] Sampogna, Gaia; Toni, Claudia; Catapano, Pierluigi; Rocca, Bianca
Della; Di Vincenzo, Matteo; Luciano, Mario; Fiorillo, Andrea.
New trends in personalized treatment of depression. Current
Opinion in Psychiatry 37(1):p 3-8, January 2024. — DOI:
10.1097/YCO.0000000000000903.

[12] American Psychological Association. Stress effects on the body. (2023,
March 8). https://www.apa.org/topics/stress/body.

[13] Medical News Today. Situational vs clinical depression:
Differences and diagnoses. (2017). Medical News Today.
https://www.medicalnewstoday.com/articles/314698.

[14] Faulkner, J. W., Snell, D. L., Siegert, R. J. (2024). Rasch anal-
ysis of the depression anxiety stress scales-21 (DASS-21) in a
mild traumatic brain injury sample. Brain Injury, 39(2), 136–144.
https://doi.org/10.1080/02699052.2024.2411297.

[15] Morero, Juceli., Esteves, Rafael., Verderoce Vieira, Mariana., Park,
Tanya., Hegadoren, Kathleen., Cardoso, Lucilene. (2024). Systematic
Review of the use of Depression Anxiety Stress scale 21 (Dass-21) in
the elderly: Practical applicability across countries. Research Society
and Development. 10.33448/rsd-v13i2.45107.
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Abstract—Nanoparticle dispersion in heterogeneous catalysts
plays a critical role in catalytic performance. We propose a
robust and generalizable graph neural network (GNN) approach
that combines the edge convolutional operator (EdgeConv) with
a graph attention (GAT) layer to classify dispersion patterns
in palladium on carbon (Pd/C) catalysts. Our method leverages
GNNs to operate directly on particle location data extracted from
scanning electron microscopy (SEM) images, thereby avoiding
reliance on image features that may introduce bias. The pro-
posed method offers an advantage over traditional image-based
approaches, which risk overfitting to visual characteristics of
the image that are unrelated to the spatial distribution of the
nanoparticles. We validate the performance of our GNN archi-
tecture on multiple Pd/C samples with distinct carbon support
types, achieving an accuracy of 89.84%, and demonstrate that
our approach can reliably identify dispersion defects. The results
highlight the potential of GNNs as a promising alternative for
structure-based analysis and quality assessment of nanomaterial-
based catalysts.

Index Terms—Heterogeneous Catalysts, Graph Neural Net-
works, Deep Learning, Scanning Electron Microscopy

I. INTRODUCTION

NANOMATERIAL-BASED catalysts are a major class
of heterogeneous catalysts, widely used in chemistry,

industry and medicine [1], [2]. They primarily consist of metal
nanoparticles dispersed on a solid support, forming active sites
that facilitate organic chemical reactions. Differentiated by the
type of metal or metal alloy nanoparticle, as well as by the
nature of the support material (ranging from carbon to various
oxides such as silica), they exhibit tunable catalytic properties
that can be optimized and tailored for specific reactions.

Here, we focus on palladium metal on carbon support
(Pd/C) catalysts, which are primarily used in carbon-carbon
coupling reactions (C-C coupling) and hydrogenation pro-
cesses to efficiently synthesize a wide range of organic com-
pounds [3], [4]. There exists a great variability among Pd/C
catalysts, depending on both the metal and the characteristics
of activated charcoal support used. Such factors as palladium
oxidation, dispersion of the nanoparticles, water content and
the support structure play a great role in the reactivity of
the catalyst [5]. Optimization of these parameters can lead to
improved reaction efficiency, greater selectivity, and enhanced
catalyst stability across a great range of synthetic applications.

The dispersion of nanoparticles on the carbon support can
be analyzed using scanning electron microscopy (SEM) [6].
The Pd/C morphology may range from a mostly uniform
distribution of palladium nanoparticles to the formation of
ordered structures arising from imperfections in the support
[7]. In such cases, nanoparticles can, for example, nucleate
along grain boundaries or pore edges, leading to non-uniform
distributions of active sites. These structural irregularities can
negatively impact the catalytic efficiency and consistency.

This work proposes a generalizable and robust deep learning
approach for detecting nanoparticle dispersion defects in Pd/C
catalysts based on a novel graph neural network with edge
convolutional operator (EdgeConv) [8] and a graph attention
(GAT) layer [9]. We address limitations of existing techniques
by leveraging graph neural networks to classify catalysts based
on nanoparticle spatial arrangements and geometrical patterns.
By working solely with particle location data, we aim to
eliminate potential biases introduced during image acquisition
or sample preparation. Additionally, we evaluate our model
on Pd/C samples with an alternative carbon support type to
demonstrate its effectiveness under real-world variations in
material composition.

This paper is structured as follows. Section II reviews
related research involving deep neural networks. Section III
introduces the dataset and data preparation process, followed
by a description of the graph neural network (GNN) architec-
tures and the training scheme. In Section IV, we outline the
evaluation metrics, present model performance, and compare
our approach with alternative methods. Section V concludes
our paper and provides a brief discussion.

II. RELATED WORK

A. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have been success-
fully applied to problems with an underlying grid-like (i.e.,
Euclidean) data structure, particularly in image processing,
speech recognition, classification, and image segmentation
[10]. Recent applications of CNNs include bone age evalu-
ation from X-ray images to support diagnosis and treatment
planning for various disorders [11]; olive disease classification
using an adaptive ensemble of two EfficientNet-B0 models,
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which improves state-of-the-art accuracy on a publicly avail-
able dataset [12]; and semantic segmentation of complex urban
street scenes for autonomous driving, where models such as
MobileNet and ResNet50 are used as encoders in the U-Net
architecture [13].

In the field of heterogeneous catalysis, CNNs have been ap-
plied to nanoparticle segmentation and tracking under reactive
conditions [14]. CNN architectures such as U-Net [15], which
consists of two paths (a contracting path and an expansive
path) and employs a training strategy that heavily relies on
data augmentation, have been shown to make more efficient
use of limited annotated samples. U-Net has been used to
analyze transmission electron microscopy (TEM) images and
videos, along with other architectures [16], [17]. Additionally
CNNs have been used for automated analysis to identify the
number of defects and to define anchoring and segmentation
in the study of high-entropy metal nanoparticles [16]. More
recent state-of-the-art models, such as Segment Anything
Model (SAM) [18], have also been employed to aid in the
quantification and analysis of nanoparticles [19].

CNNs have been further used to analyze SEM images of
Pd/C catalysts for the purpose of classification of nanoparticle
dispersion defects, distinguishing between defective and non-
defective morphology [20]. While high classification accuracy
(≥ 90%) was reported, the dataset was limited in size, and
the models were not evaluated on independent samples. As a
result, the models were shown to differentiate between spe-
cific sample identities rather than between dispersion patterns
themselves. In this work, we aim to overcome these limitations
by developing a more generalizable method.

B. Graph Neural Networks

For problems involving data that does not exhibit a regular
grid-like structure, such as point clouds or molecular struc-
tures, the data can instead be modeled as graphs [21]. Graph
Neural Networks (GNNs) represent each data point as a vertex
in a graph and construct edges based on neighborhood relation-
ships. Spatial GNNs define message-passing and aggregation
operations directly over a node’s neighborhood in the input or
feature space.

In the message-passing mechanism, each node updates its
representation by receiving and aggregating information (or
"messages") from its neighboring nodes, often using learnable
functions such as multilayer perceptrons (MLPs). This process
allows nodes to iteratively encode both local geometric struc-
ture and other features from their spatial context. Pooling is
often used to coarsen the graph or summarize neighborhood
information, followed by task-specific layers - such as fully
connected layers for classification or regression tasks [22].

Simonovsky and Komodakis [21] generalized the convolu-
tion operation from traditional CNNs on regular grids to arbi-
trary graphs. Their approach constructs deep neural networks
for graph classification by treating each point as a vertex and
connecting it to its neighbors via directed edges.

Building on this idea, Wang et al. [8] proposed the Dy-
namic Graph CNN (DGCNN) architecture, where the graph

Fig. 1. Image A (on the left) shows an example of a disordered nanoparticle
distribution, while Image B (on the right) illustrates nanoparticles forming
ordered patterns.

is constructed in the feature space and dynamically updated
at each network layer. At its core, DGCNN uses the edge
convolutional operator (EdgeConv), which applies an MLP
as a feature learning function over edges, followed by an
aggregation function that combines information from each
point’s neighbors.

While GNNs are primarily used for analyzing point clouds
[22], they have also found broader application in fields such
as molecular modeling and physical system prediction [23].
GNNs have recently been applied to heterogeneous catalysis,
including reaction modeling [24] and catalyst screening via
binding energy prediction [25]. GNNs have also been applied
to graph classification tasks, particularly for predicting the
overall toxicity of molecular structures. To improve gener-
alization with limited labeled data, Few-Shot Learning tech-
niques have been incorporated alongside models such as Graph
Isomorphism Networks (GINs) and multi-headed attention
mechanisms [26].

III. MATERIALS AND METHODS

This section describes and analyzes the dataset, and intro-
duces the proposed graph neural network (GNN) architecture
used in this work.

A. Dataset

The dataset used in this study [7] consists of 1000 scan-
ning electron microscopy (SEM) images collected from five
different Pd/C catalyst samples. Despite its limited sample
size, the dataset encompasses a range of support materials,
imaging magnifications, and spatial sampling regions, aiming
to provide representative variability across Pd/C catalysts.
The dataset includes three types of carbon supports: graphite
powder, nanoglobular carbon, and pressed graphite bars. Each
image was labeled as either containing ordered or disordered
nanoparticle distributions. An example of both distributions is
presented on Figure 1. A summary of the images per sample
in the dataset is shown in Table I.

TABLE I
OVERVIEW OF THE PD/C SAMPLES IN THE DATASET [7].

Sample Images Ordered Support Subset
S1 687 Yes Graphite powder Train. / Val.
S2 63 Yes Graphite powder Testing
S3 185 No Nanoglobular C Train. / Val.
S4 50 No Graphite bars Testing
S5 15 No Graphite bars Testing
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Fig. 2. T-SNE visualization of features extracted by ViT-L from the images in
the dataset. Samples marked with dots contain spatially ordered nanoparticles,
while samples marked with diamonds are disordered. While most samples are
relatively similar visually, S3 is a clear outlier.

To explore visual similarities within the dataset, we extract
image features using a deep learning model pretrained on a
large-scale image dataset. These features are then projected
into a lower-dimensional space using t-distributed stochas-
tic neighbor embedding (t-SNE), a non-linear dimensionality
reduction technique commonly used for visualizing high-
dimensional data [27]. For this purpose, we use a Vision
Transformer (ViT) [28] pretrained using the self-supervised
DINOv2 method on LVD-142M [29]. DINOv2 trains vision
models without the need for labeled data by encouraging
consistency between different augmented views of the same
image, enabling the model to learn embeddings that capture
semantic and structural information in its latent feature space.
This approach is particularly suitable for our task, as it enables
meaningful feature extraction without requiring task-specific
fine-tuning.

The resulting t-SNE visualization of the dataset is shown in
Figure 2. The images are clustered primarily based on their
visual characteristics, rather than the spatial arrangement of
the nanoparticles. These visual characteristics are primarily
determined by the type of sample support (background). At
this scale, graphite powder (samples S1 and S2) appears
visually similar to graphite bars (samples S4 and S5), while
nanoglobular carbon (sample S3) looks distinctly different and
forms a separate cluster. This highlights how deep learning
models trained on the dataset can be influenced by the vi-
sual features introduced by the support material, rather than
focusing solely on the spatial distribution of nanoparticles.

B. GNN Architecture

Since our data consists of two-dimensional projections of
nanoparticle positions extracted from SEM images, we base
our GNN models on architectures commonly used for point
cloud analysis. Although the actual particle arrangements are
three-dimensional, their projections still encode meaningful
spatial structure.

The first step in such models is the construction of a
directed graph G = (V, E) from the given positions. Here
V = {1, . . . , n} denotes the n nodes and E ⊆ V × V denotes
the set of edges. We construct a k-nearest neighbors (k-NN)
graph to accomplish this task, setting k = 6 to balance graph
complexity with computational efficiency.

Our base model employs the edge convolutional operator
(EdgeConv) [8], which computes edge features for each node
xi by aggregating information from its neighborhood N (i):

x′
i =

∑

j∈N (i)

hΘ(xi ∥xj − xi), (1)

Here the x variables are the 2D spatial coordinates of
particles and hΘ is a learnable function implemented as a
multilayer perceptron (MLP). Max pooling is used to aggre-
gate information across neighbors. Following the Dynamic
Graph CNN (DGCNN) architecture [8], multiple EdgeConv
layers can be stacked to learn hierarchical features. However,
to avoid problems caused by excessive Laplacian smoothing
[30], we use a shallow model with only two EdgeConv layers.
As more layers are added, the features of neighboring nodes
become increasingly similar, and the representation across the
entire graph converges to a single value. This erases important
local differences, harming performance. After the EdgeConv
layers, the outputs are concatenated and pooled globally before
passing through a final MLP for binary classification.

To mitigate the effects of Laplacian smoothing in deeper
graph architectures, we also propose a hybrid model architec-
ture where the deeper EdgeConv layer is replaced by a graph
attention (GAT) layer [9]:

x′
i =

∑

j∈N (i)∪{i}
αi,jΘtxj , (2)

In this operator, the transformed features Θtxj of neigh-
boring nodes are weighted by attention coefficients αi,j ,
which are learned via an additive attention mechanism. In our
architecture, the first EdgeConv layer captures local geometric
relationships by operating on an initial k-NN graph. A new k-
NN graph is then reconstructed based on the learned features.
The subsequent GAT layer models higher-order dependencies
on this updated graph by assigning learnable, context-aware
weights to neighboring nodes. This dynamic attention mecha-
nism reduces over-smoothing and improves the model’s ability
to focus on the most informative neighbors. The features are
then concatenated and pooled as before. An overview of both
models is provided in Table II.

IV. EXPERIMENTAL EVALUATION

A. Data Preprocessing

While both the image resolution (1280×890) and overall
dataset size were sufficient for training, validation, and testing
of deep learning models, the number of distinct samples was
relatively limited. To ensure that the models learn to recognize
nanoparticle ordering (rather than relying on sample-specific
characteristics or substrate structure) we partitioned the data by
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TABLE II
PROPOSED GNN ARCHITECTURES, WITH LAYER SHAPE DESCRIBING THE NUMBER OF NEURONS PER LAYER.

DGCNN Model EdgeConv + GAT Model
Layer Type Layer Shape Layer Type Layer Shape
EdgeConv 4, 64, 64, 128 EdgeConv 4, 64, 128, 256
EdgeConv 256, 128, 128, 256 GAT 256, 64 (4 heads)

Concat. + Pooling - Concat. + Pooling -
Global MLP 384, 256, 128 Global MLP 512, 256, 128
Dense (MLP) 128, 64, 2 Dense (MLP) 128, 64, 2

Fig. 3. Example SEM image (left) from sample S1 along with the detected
particle locations (right). The nanoparticles form ordered structures.

sample. Samples S1 and S3, which contain the most images,
were used for training and validation in an 80/20 split, while
the remaining samples (S2, S4, and S5) were reserved for
testing. This ensures a more robust assessment of model, and
prevents classification based on the sample features alone.

To prepare our data for GNNs, we extracted nanoparticle
coordinates from each image. While CNN-based methods
have previously been used for nanoparticle segmentation [14],
[16], [17], [19], classical methods have been shown to pro-
duce acceptable results in nanoparticle detection [31]. We
opted for a more computationally efficient classical approach
based on the Simple Blob Detection algorithm [32]. This
method uses intensity thresholding and contour filtering to
identify particles. Contours were filtered by size and brightness
to isolate small, bright features corresponding to individual
nanoparticles. An example SEM image and the corresponding
extracted particle locations are shown in Figure 3.

B. Model Training

The models were trained using the cross-entropy loss func-
tion, optimized via the Adam algorithm [33]. A learning
rate of 1 × 10−5 was chosen to ensure stable convergence.
To prevent overfitting, we employed early stopping, halting
training if no improvement was observed in the validation
loss for 10 consecutive epochs. Training was performed with
a batch size of 64, where each input sample consisted of
512 particle locations, randomly selected from the full set
of detected particles in a given image. Batch normalization
and dropout were applied throughout the network to improve
generalization.

As previously noted, samples S1 and S3 were used for
training and validation. The remaining samples were held out
to evaluate the model on previously unseen data, ensuring
robustness to variations in material and avoiding bias. Nev-
ertheless, the training dataset introduced challenges related to
both class imbalance and structural bias. Firstly, the dataset

contained significantly more ordered distributions (687) than
disordered ones (185), making it imbalanced. Additionally,
sample S3 had a unique, globular structure, not present in
the other samples. This raised the risk that the model might
learn to associate specific support characteristics with disorder,
rather than focusing on the actual nanoparticle arrangement. To
address these problems, we applied several data augmentation
techniques:

• Disordered data generation - additional disordered par-
ticle distributions were synthetically generated, to address
the class imbalance. Particle positions were initialized on
a regular grid and then perturbed by adding noise drawn
from a uniform distribution.

• Geometric transformations - particle coordinates were
flipped horizontally and vertically, rotated.

• Jittering - small random perturbations were added to
particle positions with a fixed probability.

These augmentation strategies aimed to diversify the train-
ing data and reduce overfitting to specific samples or support
types, improving the model’s ability to generalize to new Pd/C
samples.

C. Evaluation Metrics

To assess the performance of our models, we have used
typical binary classification metrics such as accuracy, recall,
precision and F1 Score (harmonic mean of recall and pre-
cision). These metrics can offer complimentary insights into
the performance of the model. In our experiments, ordered
distributions were treated as the positive class, and disordered
distributions as the negative class. In our context, both false
positives and false negatives can be problematic, therefore
special attention is given to the balance between precision
and recall. The results can also be summarized on a confusion
matrix.

D. Model Performance

Following training, both architectures described in Table II
were evaluated on the held-out test samples: S2, S4, and S5.
The results presented in Table III show that both models
perform well on new samples and support types, achieving
strong performance in classifying both ordered and disordered
distributions. The DGCNN model, utilizing only EdgeConv
layers, reached an accuracy of 85.16%. Our proposed hybrid
model, which combines EdgeConv and GAT layers, outper-
formed DGCNN with an accuracy of 89.84%. The correspond-
ing confusion matrices are shown in Figure 4, highlighting the
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TABLE III
GNN RESULTS ON THE TEST SET.

DGCNN EdgeConv + GAT
Accuracy 85.16% 89.84%
Precision 84.38% 90.32%

Recall 85.71% 88.89%
F1 Score 85.04% 89.60%
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Fig. 4. Confusion matrices for the GNN results on the test set. The
performance for both classes is very similar in both models. Out proposed
architecture outperforms DGCNN.

models’ balanced performance across both classes, as well as
the improvement achieved by our hybrid model.

E. Comparison With CNNs

Recent studies have shown that CNNs can achieve high
accuracy when applied to the classification of SEM images
of Pd/C catalysts [20]. However, we have raised concerns
that CNNs might learn visual sample and support structure
characteristics, rather than nanoparticle ordering. To test this
claim we have trained two CNN architectures on the dataset:
ResNet34 [34] and ConvNeXt [35]. Both models were trained
using a similar scheme as described for GNNs, however with
starting weights pretrained on the ImageNet [36] dataset with
a 224x224 input size.

The results on the training, validation and testing sets are
presented in Table IV. Although both CNNs achieved excellent
performance on the training and validation data, they failed
to generalize to new samples and carbon support types, with
test accuracy dropping to 49.22%. As such, their use in real-
world scenarios may be limited. CNNs classified all testing
images as containing ordered nanoparticle patters, which can
be explained as being due to the visual characteristics of the
carbon support in the testing images. Samples S4 and S5 use
graphite bars as the support, which in SEM images is more
visually similar to graphite powder (ordered samples S1, S2)
than to nanoglobular carbon present in the sample S3. This
conclusion is based on our previous t-SNE visualization of
the dataset, presented on Figure 2.

V. CONCLUSION

In this paper, we propose a novel geometric deep learning
approach for classifying dispersion patterns in palladium on
carbon (Pd/C) catalysts. Our method is based on graph neural
networks (GNNs) and operates directly on particle location

TABLE IV
CNN ACCURACY ON THE TRAINING, VALIDATION AND TESTING IMAGES.

ResNet34 ConvNeXt
Train. 90.15% 94.22%
Val. 94.53% 98.44%
Test. 49.22% 49.22%

data extracted from scanning electron microscopy (SEM) im-
ages. This approach enables classification of catalysts based on
the spatial arrangement and geometrical patterns of nanopar-
ticles. As a result, it offers significant advantages over tradi-
tional image-based methods, which are prone to overfitting
due to irrelevant visual features unrelated to nanoparticle
distribution.

First, we present a Dynamic Graph CNN (DGCNN) archi-
tecture [8] applied to the classification of dispersion patterns
in Pd/C catalysts. Second, in order to mitigate the effects
of Laplacian smoothing in deeper graph architectures, we
introduce a hybrid deep learning model that incorporates a
Graph Attention (GAT) layer stacked on top of a EdgeConv
layer. These architectures are compared with standard convo-
lutional neural networks (CNNs), specifically ResNet34 [34]
and ConvNeXt [35].

The dataset we used in our study consists of 1000 scanned
electron microscopy (SEM) images collected from five differnt
Pd/C catalyst samples [7]. We tested our methods on multiple
Pd/C samples with distinct carbon support types to the ones
used in training, demonstrating that our proposed methods can
reliably detect dispersion defects under real-world variations
in material composition..

To assess the performance of the proposed deep learning
architectures (DGCNN [8], EdgeConv + GAT, ResNet34 [34],
and ConvNeXt [35]), we used standard binary classification
metrics, including accuracy, recall, precision, and F1 score.
Our results show that the hybrid model combining EdgeConv
and GAT layers outperforms the DGCNN, achieving an accu-
racy of 89.84% compared to 85.16% (see Figure 4 for details).
In contrast, the image-based CNNs, ResNet34 and ConvNeXt,
both achieved significantly lower accuracy scores of 49.22%
(see Table IV) on testing data.

These results demonstrate that both the DGCNN and our
proposed EdgeConv + GAT model outperform traditional CNN
architectures, with the hybrid model achieving the highest
accuracy among all tested methods. Overall, our findings
highlight the potential of graph neural networks as a powerful
alternative to image-based methods for structure-aware analy-
sis and quality assessment of nanomaterial-based catalysts.

In future work, our GNN architecture could be trained and
evaluated on a more diverse set of catalyst types. Depending on
the characteristics of the SEM images, this may also require
incorporating deep learning–based nanoparticle detection or
segmentation methods. Additionally, further research could
explore strategies for deepening the GNN architecture while
maintaining training stability and enhancing performance.
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Abstract—Assessing the conformity of software in measure-
ment instruments is a laborious process and a major bottle-
neck in the process of developing new devices. Large Language
Models have been shown to effectively handle complex tasks and
have the ability to surpass humans with regard to speed and
accuracy. However, integrating them into the technology stack
can bring major security and privacy risks. This position paper
performs a threat modeling in this context. By addressing the
discovered confidentiality risks the paper draws a way for safely
implementing Large Language Models as an essential tool in the
process of conformity assessment.

I. INTRODUCTION

IN the European Union, measurement instruments such
as electricity meters, taximeters or automatic weighing

instruments are regulated regarding their specific metrological
properties. In order to be sold on the European market,
these instruments need to pass a conformity assessment that
verifies whether the instrument complies to regulatory re-
quirements. Most modern measurement instruments have a
software component that handles, among other things, the
storage and transmission of measurement data. Thus, this
software is also subject to regulation and therefore requires
a conformity assessment. The assessment involves searching
for relevant information in software documentation provided
by the manufacturer and the decision whether it conforms with
the requirements defined for the measurement instrument. This
process depends on manual labor and is very time consuming.

Large Language Models (LLMs) have been applied to
nearly any field in natural language processing (NLP)—from
text classification, question answering or information retrieval
to named entity recognition. Those models are trained on
enormous data sets with trillions of tokens [1], consisting of
newspaper articles, websites, books, and social media entries.
However, the training data mainly holds publicly available
text [1]. The Physikalisch-Technische Bundesanstalt (PTB)1,
Germany’s national metrology institute, envisions to leverage
its vast amount of textual data to augment existing models with
metrological expertise. Especially, highly contextualized tasks

1https://www.ptb.de/cms/en.html

such as conformity assessment of software documentation can
benefit from models that are adjusted for the metrological
domain.

In this position paper, we outline a path forward to stream-
line conformity assessment by integrating LLMs into the
assessment pipeline. Through threat modeling, we identify po-
tential risks associated with deploying LLMs in risk-sensitive
environments. Our analysis highlights confidentiality and in-
tegrity as the main security objectives in this context. To better
understand the current state of research, we review relevant
literature on information leakage in LLMs and discuss how it
may help to protect LLM-assisted conformity assessment.

The following section provides an overview of the con-
formity assessment process and the use of NLP methods.
Section III performs threat modeling following the established
PASTA method [2], while Section IV discusses related re-
search. Section V outlines directions for future work, and
Section VI concludes the paper.

II. CONFORMITY ASSESSMENT

Measurement instruments that are used in commercial or
administrative contexts need to deliver reliable, deterministic
measurements. Most users of measurement devices or persons
affected by them are not always able to verify these mea-
surements and therefore rely on trusting that the instruments
function as intended and output correct measurements. Legal
metrology ensures this trust by formulating regulations for
measurement instruments in those contexts. These regulation
not only dictate the hardware but also the software side of
these devices. The EU Directive 2014/32/EU [3], better known
as Measurement Instruments Directive (MID), harmonizes the
national regulations and enables manufactures of measurement
instruments to produce for the entire market of the European
Union. In order to receive a MID approval, manufacturers need
to prove that their product conforms with the requirement
of the MID. In practice, this is achieved by providing a
Notified Body with the product and the appropriate hardware
and software documentation. In Germany, the PTB functions
as such a Notified Body and assesses the hardware’s and
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software’s conformity with the requirements defined in the
MID, whereas for most devices an assessment is only carried
out on document basis.

The software is typically assessed along the lines of the
WELMEC Guide Software “7.2” [4]. The WELMEC Guide
differentiates between different classes of instruments which
determine the specific requirements for the software. Those are
defined in blocks for separation and download of software as
well as for the transmission and storage of measurement data.
Furthermore, each class of measurement instrument has its
own specific requirement, e.g., electricity meters or automatic
weighing instruments. Assessing the software requires a search
for the relevant information in the provided documentation
and the comparison with the requirements in the WELMEC
Guide. The difficulty of searching in the documentation lies
in the diversity of those documents. Each manufacturer uses
their own terminology, document structure, and composition
of different documents. Thus, the assessors need to adapt their
search queries to the manufacturer’s unique language. Due to
its manual nature, this processing step has become a major
bottle-neck in conformity assessment and hinders a fast time
to market.

A. LLMs for conformity assessment

To process the vast amount of documents that are gener-
ated throughout a conformity assessment, PTB developed a
software, which allows to search the provided documentation
in regard to the requirements defined in the WELMEC Guide.
However, it fails to extract most of the information needed
for assessing the software. Therefore, a lot of manual labor
remains. Nevertheless, the approach showed major advantages
to a purely manual procedure and stresses the need for a more
automated approach to conformity assessment.

The task of conformity assessment involves two major fields
of NLP, namely classification and Information Retrieval (IR).
Traditional methods such as tf-idf [5], while being strong base-
lines for classification and IR, they fail when being exposed
to out-of-distribution data. LLMs on the other hand are able
to abstract from their training data since they embed words
or tokens in a semantically clustered vector space. LLMs use
these embeddings and efficiently model word semantics up
to sentences, paragraphs and entire documents. Especially the
transformer architecture [6] has been shown to deliver state-
of-the-art results in various language understanding tasks [7].
Transformers can be trained in parallel on large data sets and
thus have been scaled up in recent years to large language
models with billions of parameters, trained on trillions of
tokens [1], [8]. Due to the huge computational resources
needed to create such models, training a large language model
from scratch for a specific use case or domain is impracticable.
Therefore, the main application of language models shifted
to the paradigm of adjusting pre-trained language models to
a specific task or domain, better known as fine-tuning. This
paradigm gave rise of so-called foundation models that are
trained without a specific task and are later further adjusted.
While some models (e.g., [9], [10]) hide their models behind

free or paid APIs, other models are published for local use
(e.g., [8]). These models are also known as open weight
models since their weights are freely available for researchers,
developers, and the end user.

The approach of adjusting pre-trained models to down-
stream NLP-tasks has shown impressive results on various
benchmark test sets2 and is therefore suitable for the task of
conformity assessment. For the practical usage, we propose a
system that make use of an embedding model that has been
fine-tuned for retrieval of relevant text chunks for a given
query. This is done by fine-tuning the model for document
embeddings, mapping the input text to an n-dimensional
vector. By embedding the document chunks and queries into
this vector space, relevant chunks can be retrieved by a
neighborhood search. The retrieved chunks are then used as
additional context of a generative model, that has been adapted
for the task of conformity assessment. This would enable the
user to query the model with respect to certain documents
asking whether it is in line with the requirements defined
in the WELMEC guide. This method is referred as retrieval-
augmented generation (RAG) [11]. While it is possible to set
up this RAG-pipeline exclusively with pre-trained models, we
assume that those models can benefit from the rich training
data for conformity assessment inside PTB. Not only could the
envisioned system assist the assessors of software, furthermore
it could help manufacturers of measurement instruments com-
piling the documentation and thus reduce the administrative
process even more. Due to the entailed security issues of this
concept, we see the need for a thorough threat analysis even
in this early stage of development.

III. THREAT MODELING

The documentation provided by the manufactures is of
sensitive nature. Not only does it consist of publicly available
documentation such as user manuals, it is rather a full docu-
mentation of the internal function of the measurement device.
From the overall software architecture to fine details such as
start parameter for algorithms — the documentation holds
enough information to rebuild the measurement instrument
and its software from scratch. Due to that sensitive nature
of the documents, confidentiality is of hightest concern when
designing software to assist in conformity assessment.

Threat modeling is a systematic approach to identifying
potential threats, assessing associated risks, and developing
appropriate mitigation strategies. While widely used in soft-
ware development, it applies more broadly to understand-
ing the security and privacy implications of complex sys-
tems. Common threat modeling methods include PASTA [2],
STRIDE [12], and LINDDUN [13], which have different
focuses and follow different approaches. PASTA (Process for
Attack Simulation and Threat Analysis) takes a risk-centric
view, aligning business objectives with technical requirements
to derive risks from threats and known vulnerabilities. STRIDE
identifies threats based on a data flow diagram (DFD) and

2https://paperswithcode.com/area/natural-language-processing
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Fig. 1. Data flow diagram of the proposed system. Rectangles reference entities, ellipses symbol process, and cylinders represent data bases. The arrow
indicates a flow of data, whereas the direction is indicated by the head. Arrows with heads on either end stand for a bidirectional data flow. The dashed line,
here in blue and red, indicates a trust boundary.

categorizes them as spoofing, tampering, repudiation, informa-
tion disclosure, denial of service, and elevation of privilege.
LINDDUN, in turn, defines privacy-focused threat categories
such as linkability, identifiability, and non-compliance. Risk
assessment methods have also been tailored to measurement
instruments [14], however we will hold on to methods known
by a broader audience. While a threat-centric approach such
as STRIDE might seem suitable for conformity assessment, a
risk-driven method like PASTA is more appropriate due to its
independence from predefined threat categories. LINDDUN
may be well-suited for systems with high privacy require-
ments; however, practical experience shows that it can become
overly detailed. In early design stages, systems often lack the
specificity needed for such granular analysis and benefit more
from broader, flexible approaches like PASTA.

In the following, we adopt PASTA, which involves seven
stages: Stage 1 defines the context, including business objec-
tives. Stage 2 outlines the technology stack and system scope.
Stage 3 decomposes the application and identifies its actors.
Stage 4 focuses on threat identification, which is linked to
known vulnerabilities in Stage 5. Stage 6 simulates potential
attacks, and Stage 7 maps the findings back to the original
business objectives defined in the initial stage.

Context (Stage 1): The main purpose of the proposed
application is to assist the software tester, while assessing
the documentation provided by the manufacturer. Secondly,
it should help the manufacturer of measurement instruments
with compiling the appropriate software documentation needed
for the conformity assessment. These documents can hold
sensible information such as start parameters, technological
innovations or novel solutions to known problems. They might
also include typically public information such as User Manuals
but since the conformity assessment is done prior to the market
launch manufacturer have the interest to keep this information
confidential from their competitors. Thus, the documentation
documentation can not be made accessible to any 3rd-Party.
Furthermore, the regulatory environment of conformity assess-

ment makes it necessary to store these documents up two
10 years. Since the software testers should benefit from the
assistant system during their everyday work, the system needs
to be designed for high availability.

Technology Stack (Stage 2): The main component of
the system is a GPU-Cluster running a free and open-source
operating system. Due to the current dependence of the CUDA
library3 while developing LLMs the cluster is equipped with
NVIDIA GPUs and thus runs proprietary drivers. The LLMs
are pre-trained by 3rd parties such as Meta (Llama), Google
(Gemma) or Mistral (Mistral). Usually these bigger models
are published as "open-weight"-models, meaning the training
algorithm and data is kept secret. Smaller models might
be published as "open-source". Most of the models (big or
small) are obtained via Huggingface4 – a platform to publish
machine learning models. It also develops a python library for
developing and running models that will most likely be used
for fine-tuning the models. Two commonly known libraries
to work with language models are Ollama5 and LangChain6,
whereas the former focuses on efficiently running the models,
the latter offers an abstraction layer to build applications
around language models. Ollama can be run in a docker
container or manually installed whereas LangChain can be
drawn into the project via the python package manager pip.

Application decomposition (Stage 3): The data flow di-
agram in Fig. 1 shows an abstracted model of the proposed
system. The manufacturer provides the documentation to the
conformity assessment either via E-Mail, with a link for
download or uploads it to a file-sharing system (1). Those
documents are usually in the PDF file format but can also
consist of text files holding html or in the doc(x) file format.
Those documents are stored (2) in a network drive where the
software testers can access it. The data can also be accessed

3https://docs.nvidia.com/cuda/
4https://huggingface.co/
5https://ollama.com/
6https://www.langchain.com/
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(3) by the process that creates the training data for the model.
Creating the training data involves transforming the PDF and
docx files into a machine-readable format such as Markdown.
This can be done by using python libraries such as Nougat7,
Marker8 or even using a LLM for layout detection. Most
importantly the overall structure of the documents need to be
kept since the software tester tend to reference the sections
in their reports. Hence, the valuable information lies in the
connection of assessment report (3a) and documentation (3b).
The creation of the training data (4) and its storage are
happening on the GPU-cluster (red dashed line), since some
pre-processing needs access to the GPUs. The training data is
then used to fine-tune existing LLMs for the task of conformity
assessment (5). The trained model will be deployed on the
same cluster for production (6). The assistant system can then
query the model for document embeddings and search or for
question-answering. A worker module ingest those queries
(7) and feeds them into the model (8) in order to efficiently
schedule the tasks. Manufactures or other Notified Bodies have
also the possibility to access the model through a dedicated
application (9) where they can check their documentation (10)
or query the model (11). That way manufacturers are able
to compile their documentation prior to handing it in for
conformity assessment. Note that the entities Manufacturer
and Notified Body are outside of the PTB trust zone (blue
dashed line), whereas the testing persons of the conformity
assessment work inside that trust zone.

Threat analysis (Stage 4): There are multiple threats
that could affect the application or even the whole service
of conformity assessment. Those can be found in Table I.
First, there is the danger of data loss. Either the documentation
provided by the manufactures or the work done by the software
testers could be irretrievably lost (1). That would be costly
in financial and reputational terms but would not threat the
whole existing application. The same should hold for the
data connected to the application used by the manufacturers.
The training data (2) itself could also be lost, but since their
creation is an automatic process it could be restored by running
the process again. There are two major threats: corrupted
integrity of data (3), meaning an undetected change of data,
intended or unintended. This could affect the correctness of the
result of the conformity assessment and is a major threat to
the whole service. Connected in some way is the threat that
the model itself outputs wrong results (4). This would lead
to lower accuracy and effectiveness in the assistant system as
well as in the manufacturer facing application. The other threat
is violating the confidentiality of the data provided by the
manufacturer (5), e.g., sharing the data with an unauthorized
third party, as this information could be used to copy products
from a competing manufacturer.

Vulnerability analysis (Stage 5): Identifying and ad-
dressing system vulnerabilities is essential to gain a clear
understanding of the risks. In order to gather helpful insights

7https://github.com/facebookresearch/nougat
8https://github.com/VikParuchuri/marker

TABLE I
THREAT OVERVIEW

Threat Description

1 Data loss Deletion of data needed for conformity
assessment

2 Training data loss Deletion of data used for training the
LLM

3 Corrupted data integrity Undetected change of data needed for
conformity assessment and training

4 Wrong model output Factually incorrect output of the LLM
that can lead to wrong decisions in
conformity assessment

5 Information leakage Leakage of information from confor-
mity assessment to an unauthorized
third party

from the vulnerability analysis, we restrict it to those that
directly map to the threats identified in the previous stage.
Since the software libraries used in the system are mainly from
open-source providers, the system itself is vulnerable to coding
and configuration flaws introduces by these libraries. Further-
more, the processes in the system could gain privilege on the
server due to wrong configuration or coding imperfections.
Additionally, authentication for the manufacturers could be
imperfect, such that it would allow a manufacturer to inspect
data that does not belong to its account.

However, the usage of LLMs introduces vulnerabilities to
the system that are inherent to machine learning models.
When used to generate text, LLMs are known to suffer from
sometimes misleading or even factual incorrect answers, also
known as hallucination [15]. They might be queried in such a
way that their response is delivering unintended results. This
vulnerability is called prompt injection. But most importantly
to the current use case, multiple research has shown, that
machine learning models are prone to reveal information about
their training data (e.g., [16], [17], [18]).

Attack Modeling (Stage 6): In the scenario of conformity
assessment, the vulnerabilities identified in the previous stage
open up an attack surface for an adversary that intends to
withdraw stored information. This adversary could be a man-
ufacturer that wants to gain information about its competitors
upcoming product. Since this information might be valuable
to the malicious manufacturer, it might allocate appropriate
resources for such an attack or even hire a contractor. The
attacker can use the manufacturer-facing application as an
entry point to run an extraction attack against the model. For
the application, it would seem like queries to the model and
therefore would be undetected. Furthermore, the adversary
can use a so called Membership Inference Attack (MIA)
either to strengthen the extraction attack or to verify that a
certain manufacturer where handing in their documentation
for conformity assessment. In a different attack scenario, a
manufacturer exploit the usage of an LLM to cheat its way
through the conformity assessment. It could hide instructions
for the model asking it to only output positive responses. This
could be achieved by using text in white color against a white
background in the documentation such that a human reviewer

64 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



is unable to see it by only reading the document. Thus, the
malicious instructions would be passed further to the model.

Risk and Impact Analysis (Stage 7): Using a prompt
injection attack in order to pass the conformity assessment
might be viable to some malicious manufacturers but also
leave traces in the system. Note that due to the regulatory
context the documentation used for the conformity assessment
is stored for at least 10 years. Therefore, the risk of being
exposed of cheating might be to high. On the other hand,
attacking the model to gain information about its training data
seems to be a reasonable approach by a manufacturer. The
risk of being exposed is relatively low since the attack itself
leaves no obvious traces. It might also not trivial to prove
that querying the model was an attempt to gain information
about the training data. Nevertheless, every prompt to the
model and its response should be saved in order to monitor
its usage as well as tracking its behavior over time. Therefore,
the threat that confidential data is revealed to a third party is
an existing risk that should be dealt with when using LLMs
in a high risk environment such as in conformity assessment.
Maintaining the integrity of the data is a common practice in
the conformity assessment in PTB. For every file provided by
the manufacture a checksum is calculated and stored. That way
even the smallest changes in files can be detected. Therefore,
we restrict the further examination of threats to confidentiality
of training data in LLMs.

IV. ASSESSING LLM INFORMATION LEAKAGE

While confidentiality and privacy are distinct concepts,
they share common principles. Privacy refers to the rights
of individuals or groups to control access to personal data.
Confidentiality refers to restricting access to and disclosure
of information, including proprietary and personal data—thus
overlapping with privacy goals. As such, research on privacy in
LLMs offers valuable insights into their behavior when trained
on sensitive data, as in the case of conformity assessment.

While it is desired that language models memorize certain
training data such as Wikipedia articles in order to return
factually correct text, this is not the case for other training data.
For example, models trained on clinical notes might reveal
sensitive data about the patients health condition violating the
patients’ privacy ([19], [20]). In addition, research on Google’s
auto-complete system ‘Smart compose’ [21] trained on user
e-mails showed that such a model memorizes long random
numbers, e.g., social security numbers, that can be extracted
by prompting the model [17]. This is not a theoretical threat
as [18] were able to extract Personal Identifiable Information
(PII) such as names, phone numbers and e-mail addresses from
the language model GPT-2 [22].

A. Attack Scenarios

The fact that a machine learning model memorizes parts
of its training data can be exploited by two major attacks.
The most prominent attack is the Membership Inference
Attack (MIA), where an adversary tries to infer whether
some data point was a member of the training data, hence

was used to train the model under attack [16]. While most
of the proposed attacks assume access to the output vector
of the model (grey-box scenario) [19], some attacks also
work on output labels (black-box scenario) [23]. The intuition
behind MIA is, that a model is expected to be more “certain”
predicting the label or token for data it has seen during training
than for unknown data. An adversary can use this information
to train a model that predicts the membership status of a given
data point. To test and train this model the adversary needs
a dataset for which they can be sure that it was part of the
training dataset. For proprietary models, the training dataset is
usually not available, but as [16] have shown a dataset from a
similar distribution is sufficient. Recalling the attack scenario
in the previous section a manufacturer that has access to the
model would know if its data were used, since their approval
is needed when using their data. Furthermore, their dataset
is from a similar distribution if they previously handed in
documentation for the conformity assessment.

The authors of [16] trained so-called shadow models on
that data and then queried with unknown data and data it has
seen while training. This results in a dataset for classification
where a data point consists of the output vector of the shadow
models with a binary label indicating whether that data point
was part of the training dataset. After being trained on this
dataset the attack model is able to predict the membership for a
given data point by using the output of the model under attack.
This reference based approach has been applied to LLMs by
[18] but remains computationally expensive for large models.
Other approaches calculate the model’s loss over the target
sample [24] and extending approaches such as calibrating with
zlib entropy [18], and a neighborhood comparison approach
[25].

Generative models such as GPT have been shown to be
particular vulnerable to attacks that aim to gain PIIs ([18],
[26]). For example, PII reconstruction aims to reconstruct PII
for a given data point. In the case of language models the
adversary queries the model with an incomplete sentence or
masked item for the to be reconstructed PII, for example “John
Doe lives in [MASK], England”. The missing item can be
filled by a masked language model and the resulting sentence
acts as a query to the target model. The perplexity of the
target model is then used to infer whether the sentence has
been seen during training. Perplexity is the measure for a
generative model on how “surprised” by a token the model
is. A variant of PII reconstruction is PII inference where the
adversary wants to infer which item in a set of candidates
was part in the training. As for PII reconstruction, the PII
candidate is inferred by the lowest perplexity. In the scenario
of conformity assessment a adversarial manufacturer could
prompt the model for parameters of a known product from
a competitor. Both of these attacks assume that the adversary
has background knowledge on what PII to extract from the
model. However, [26] showed that it is also possible to extract
PII by simply generating text. The intuition behind this attack
is that the model tends to generate text it has seen during
training. The authors generated thousands of sentences and
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used a named entity recognition algorithm such as flair9 or
spaCy10 to find text with PIIs. By cross-checking with the
developers of GPT at OpenAI they found that their method
was able to extract 23% of PII with a precision of 30%.

B. Quantifying LLM Confidentiality

The leakage of sensitive information through language
models is closely tied with memorization of training data
([17], [27], [28]). The intuition behind this observation is
that the model first generalizes over data through the first
epochs of training and then starts to memorize the data in
later epochs. This is due to the fact that it encounters the
same text multiple times and adjusts its weights accordingly.
In its extreme case, memorization leads to overfitting, where
the weights of the model shifted towards the training dataset
unable to generalize from it any more. Overfitting is indicated
by a bigger difference between the evaluation metric for the
training and validation set. While overfitting is seen as a
natural marker for memorization and thus information leakage,
it has been shown that training data does get memorized
without any overfitting of the model ([28], [27]).

Memorization in a model and thus the likelihood to leak its
training data is usually measured by the performance of an
MIA. While it might be tempting to use accuracy as a metric
of performance, it lacks expressiveness when it is applied in
the context of confidentiality. While some data might not be
extracted and thus the false negative rate rises, false positives
directly influence the usability of the attack model by diluting
its positive results [29]. Area Under ROC Curve is a slightly
more informative measure as it takes different classification
thresholds into account. Still, it is an aggregate measure that
fails to give a good sense on whether an attack delivers
successful results with a low false positive rate. The authors
of [29] therefore suggest reporting the true positive rate at
extremely low false positive rates, e.g., at 0.1 %.

Another way of evaluating memorization in a model is
to measure exposure or extractability. In [17], canary text
is inserted into the training data holding a “secret” random
number. To measure how much a specific canary is memorized
by the model they calculate an exposure metric using the
log-perplexity of the sequence. The authors of [17] report a
positive correlation for the number of insertions of a canary
and exposure, hence the degree of memorization. They tested,
how exposure influences the probability of the canary sequence
to be extracted and found that when exposure exceeds a certain
threshold, in their case 30, the probability of extraction quickly
shifts from near 0 to near 1. This hints that the more a sequence
is memorized by a model, the more likely it is to be extracted,
by accident or by a malicious actor.

For [18], a string is extractable from an language model
(LM) if there exist a prefix or context for which the LM
outputs the string. From that they give a definition of mem-
orization where a string is “k-eidetic memorized” if it is

9https://huggingface.co/flair/ner-english-ontonotes-large
10https://spacy.io

extractable from the LM and occurs in k examples of the
training data. Hence, if a string is only present in a few
documents and can be extracted, it is much worse that if
a string occurs all over the training data [18]. Measuring
k-eidetic memorization is thus a good method to determine
whether a model is vulnerable to disclose parts of its training
data.

In [27], a slightly different notion of memorization is used
to study the effects of memorization. It defines a string as
memorized if there exist a string s and a prompt p such that
the output of the LM is equal to s when prompted with p.
The authors of [27] found an effect of model size on the
speed of memorization. Smaller models need to encounter
a training example more often that larger models to fully
memorize it. Thus, when training larger models the danger of
memorizing sensitive data increases. In [30] also the length
of the prompt is taken into account. It reports that larger
models generally memorize more of its training data. Not
only in overall quantity but also for the particular string.
Smaller models tend to output only fractions of a training
example or only thematically similar text. In accordance with
[18], it found that repetition of examples in the training data
increases memorization. Furthermore, if a prompt to a model
is longer, then more memorization of the model is discovered.
Interestingly, [30] found that some tokens require more context
to be extracted from the model.

Furthermore, recent work [31] has tried to predict memo-
rization from smaller models to larger ones in order to give
developers a hint, if the model shows unwanted behavior. Even
though it was found that small models might not act as a
forecast for bigger models, this direction of research is still
a challenging path to follow, as different forecasting methods
are still left untouched.

C. Mitigations against Privacy Leaks

Information leaks of language models can be mitigated
at different levels in the development and deployment of
these models. With regard to memorization of PII equivalent
material, sanitation of the training data is practical method.
This can be done by blacklisting sensitive strings and removing
them from the training data. However, [17] notes that this
approach, while being best practice, is far from being perfect
and can still miss sensitive strings. Moreover, [26] show that
while PII scrubbing reduces the extraction rate, it does not
protect against membership inference attacks.

As [30] and [17] have discussed, the number of occurrences
of a specific training examples increase their chance to be
memorized. This observation is in accordance with [26] and
[32]. Intuitively, removal of duplicate training examples seems
as a promising starting point to reduce memorization in a
language model. In [32], the authors showed that by dedu-
plicating the training data, they were able to lower the chance
of a membership inference attack. Furthermore, deduplication
also benefits the model performance itself, when duplicates
are removed between the training and the test set [33].
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In addition to methods that apply in the pre-training stage of
the language model, which should reduce the overall memo-
rization of the model, privacy preserving training methods such
as differentially private stochastic gradient decent (DP-SGD)
[34] can be used. In [17], it is shown that by using DP-SGD,
the exposure of their inserted canaries dropped significantly.
The learning algorithm bases on Differential Privacy (DP) [35]
that gives a strong privacy guarantee to individual training
examples. While in differential private databases the privacy
guarantee is given to individual rows, the situation in huge text
corpora is different. It might make sense to apply differential
privacy on per document level, yet private and sensitive text
might occur across multiple documents. Moreover in the
domain of conformity assessment, a manufacturer might use
the same components across multiple instruments and thus
sensitive information about that component are distributed
over multiple documents. Thus, a carefully defined usage of
differential private learning algorithms is necessary to protect
training data from being leaked. Despite DP-SGD presents
itself as an optimal mitigation against MIAs and extraction
attacks, it is far from being perfect, since it comes with a
utility cost manifesting in increased compute and decrease
performance of the model.

Sensitive information can also be protected in a post-
training stage. Simply filtering out sensitive information during
inference is a naive approach that cannot hold to its promises.
The authors [36] reported that a filter-approach can prevent
generating verbatim text from the training data. However, the
model is still able to produce text holding sensitive information
by avoiding verbatim repetition and generating alternative texts
with synonyms. Applying DP to inference of the model is
another approach of preserving privacy of the training data.
In [37], multiple LMs were fine-tuned with disjoint private
data. During inference all models are queried and if all models
come to a consensus about the predicted token, the generated
token is seen as not holding private data. On the other hand, if
the models disagree the prediction of a public model is mixed
in. While this approach achieves comparable privacy to DP-
SGD, storage and computation increase.

As has been shown above, data curation methods such
as deduplication can significantly reduce memorization of
training data but do not fully prevent a model from leaking
private data. Differential Private Learning on the other hand
can give such a privacy guarantee, but suffers from increased
compute and is prone to ill-defined privacy scopes. It also
comes with a utility cost. Filtering a models output only
prevent certain text from being generated by do not apply for
non-verbatim extraction.

V. OPPORTUNITIES FOR FURTHER RESEARCH

In the following, we outline directions for future research
aimed at assessing and mitigating information leakage risks in
LLMs within the context of conformity assessment.

Building on the attacks outlined in Section IV-A, further
research should focus on evaluating their impact on the
proposed system, particularly for embedding or classification

models, as these are most relevant. In order to evaluate these
attacks, a notion of sensitive strings need to be developed.
Analogously to PII for the privacy domain, extraction attacks
are to be evaluated with regard to how many sensitive strings
can be extracted. Furthermore, gradually weighting informa-
tion leakage can help to grade the severity of a violation of
confidentiality. Additionally, broader forms of extraction need
to be examined. While parts of the training data may contain
secret sequences, it remains unclear whether entire concepts,
such as novel solutions developed by the manufacturer, can be
extracted. In such cases, no suitable evaluation method exists
to quantify the information leakage, as current approaches rely
primarily on string comparison. Semantic string comparison
may offer a promising starting point for assessing whether
entire concepts can be extracted from a model.

Mitigation strategies against information leakage would
benefit from this research, as improved semantic string com-
parison and a notion of sensitive strings could enable effective
data sanitation similar to PII scrubbing and support dedupli-
cation. In the long term, manufacturers, notified bodies, and
conformity assessment could collaboratively define a training
dataset that is safe for model training, with minimal risk of
memorization. While such a data set would be a desirable
solution, its development and coordination are likely to be
time-consuming. In the meantime, creating synthetic data sets
might be a suitable interim solution.

VI. CONCLUSION

In this paper, we have shown that LLMs can be utilized in
conformity assessment of software in measurement devices.
We sketched a system that can benefit software testers, No-
tified Bodies as well as manufacturers. Due to the sensitive
nature of the documents involved in conformity assessment,
we conducted a threat modeling using the established PASTA
framework. The threat modeling yielded a possible threat of
violating confidentiality. A literature review on information
leakage by LLMs showed that LLMs tend to memorize parts of
their training data, which can be extracted via multiple attack
methods. Fortunately, mitigation such as data sanitation and
differential privacy in training exist but come with a certain
utility cost. Nevertheless, the overall advantages of utilizing
LLMs for conformity assessment persist and the path of
integrating them into an assistant system for software testers,
manufacturers, and other notified bodies should be consistently
followed in order to streamline conformity assessment.
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Abstract—The integration of deep learning models with UAV
captured images for plant disease detection has been explored in
many papers and has the potential to revolutionize commercial
precision agriculture, by allowing for early and efficient detection
and classification of crop disease stages. In order to address the
limitations posed by low-resolution aerial imaging, this paper
proposes the additional integration of an Enhanced Super Reso-
lution Generative Adversarial Network (ESRGAN) with a Convo-
lutional Neural Network model for field monitoring through UAV
captured imagery. UAVs are a cost effective method of monitoring
large swaths of agricultural land; however, it is difficult to capture
images of a high enough quality and clarity to be adequately
analyzed by a CNN. The images typically lack the necessary
resolution for accurate classification, especially for diseases with
smaller, less noticable symptoms. The Real-ESRGAN model is
employed to generate a dataset of high-resolution images, from
low-resolution inputs, allowing the disease detection CNN to more
accurately and effectively identify and classify disease stages in
Armillaria afflicted cherry trees. This solution offers a solution
to the problem posed by traditional UAV based approaches
that enhances classification accuracy even in suboptimal con-
ditions. Through this integrated approach, the model was able
to reach an increased validation accuracy, as well as significantly
decreased loss values due to the ESRGAN enhanced imagery
allowing for clearer detection of early stage Armillaria symptoms.
This integrated system provides a practical scalable solution
for commercial agriculture, allowing for more comprehensive
and efficient crop disease monitoring. Future research can be
explored to optimize the architecture of this model and expand
its applicability to other crops and environmental conditions,
allowing more efficient precision agriculture and paving the way
for more sustainable farming practices.

Index Terms—Crop Monitoring, Enhanced Super Resolution
GAN, Deep Learning, UAV imagery, Precision Agriculture

I. INTRODUCTION

THE advancement of deep learning has impacted com-
mercial agriculture significantly, particularly in the clas-

sification and recognition of plant diseases. Traditional crop
inspection methods are prone to human errors such as psy-
chological and cognitive biases [1]. Furthermore, the vastness
of agricultural land and the scarcity of trained plant patholo-
gists make manual monitoring impractical [2]. Deep learning,
specifically Convolutional Neural Networks (CNNs), offers
a promising alternative by automating disease detection and
classification tasks with high accuracy [3]. In order to be
properly analyzed by a CNN, UAV captured images must have
a high enough resolution and clarity so that the symptoms of

a plant disease can be seen. This problem is amplified when
said plant disease has very small symptoms, or when the farm
area is very large. The proposed solution to this limitation is
targeted sampling of a field, where images are acquired from a
small section of the field’s area. While this is a solution would
provide farmers more information than the traditional methods
of scouting for diseases, the difficulties faced by a model
when analyzing UAV images image still stand. The Enhanced
Super-Resolution Generative Adversarial Network (ESRGAN)
model detailed in the section below presents a method for crop
disease classification on low resolution images. The model is
used to generate high resolution images from low resolution
crop images. This is called Image Super Resolution (SR).
Though there are SR methods besides ESRGAN, the paper
shows that the ERAGAN model, and its successor the Real-
ESRGAN model, generate higher visual quality images than
other methods used [4][5].

II. LITERATURE REVIEW

A. Literature Review

In commercial agriculture, identifying disease severity is
crucial for making timely and effective decisions to reduce
financial losses and fight plant infections[6]. Machine Learning
models that classify different stages of a plant disease, are
therefore, most helpful. For example, the regression model
proposed in Detection and Characterization of Stressed Sweet
Cherry Tissues Using Machine Learning identifies different
stages of Amarilma, a devastating cherry tree disease that
causes annually 8 million dollars in losses in the United States
alone[7]. Commercial farmers use aerial and satellite imagery
to monitor their crop fields. According to The application
of small unmanned aerial systems for precision agriculture:
a review, UAV captured aerial imagery is a cost effective
solution that can be used for crop disease detection, reducing
the need for in person monitoring [8][9]. The use of UAVs
paired with detection technologies, is a transformative prac-
tice that will greatly facilitate the practicality of precision
agriculture[9]. These technologies enhance crop monitoring,
optimize resource use, and minimize the environmental foot-
print of farming by reducing the application of fertilizers
and pesticides. However, despite their success, these tech-
niques face challenges when applied in real-world agricultural
conditions. In order to be properly analyzed by a model,
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UAV captured images must have a high enough resolution
and clarity so that the symptoms of a plant disease can be
seen. An image of this quality is hard to capture with a
UAV which is subject to wind, lighting conditions, and other
environmental challenges [9][11]. As detailed in Millimeter-
Level Plant Disease Detection From Aerial Photographs via
Deep Learning and Crowdsourced Data, this problem is am-
plified when said plant disease has very small symptoms,
or when the farm area is very large [12]. To address low-
resolution imagery, several approaches can be considered. One
example is hyperspectral imagery, which captures information
across dozens or hundreds of narrow spectral bands. This
can reveal subtle physiological and biochemical changes in
plants that are not visible in standard RGB images, improving
disease detection even at lower spatial resolutions. However,
specialized hyperspectral cameras are expensive, and the data
they produce is extremely large and complex, requiring ex-
tensive preprocessing, calibration, and storage [13]. These
requirements make hyperspectral imaging difficult to imple-
ment efficiently for routine agricultural applications. Another
alternative is SRCNN (Super-Resolution Convolutional Neural
Network). SRCNN is of the earliest deep learning based super
resolution models that employs a three-layer CNN architecture
to upscale images. However, although this architecture is
straightforward and computationally efficient, it has limited
capacity to capture complex textures or fine details, which
are critical for early detection of diseases with small and
difficult to see symptoms [14]. Another proposed solution for
this problem is to use GAN models for data augmentation
[2][15][16]. In contrast, GAN-based super-resolution methods
offer a highly practical alternative. GANs can be used to
enhance the resolution of standard RGB images captured
by UAVs, allowing models to detect fine disease symptoms
without the need for specialized sensors, requiring no extra
hardware beyond a conventional camera. Generated images
and lesions are used for data augmentation, where the model
is trained on an expanded dataset. GAN-based models are
capable of reconstructing realistic textures and subtle visual
cues. Therefore augmenting data with GAN super resolution
models can greatly improve the effectiveness of plant disease
classification models[15][16][17] The best GAN model for
this purpose seems to be the Enhanced Super-Resolution
Generative Adversarial Network (ESRGAN) model. Super-
resolution models are designed to reconstruct high-resolution
(HR) images based on low-resolution (LR) inputs. When given
a low-resolution image X ∈ Rh′×w′×c, the model generates
a corresponding high-resolution image Y ∈ Rh×w×c, where
h > h′ and w > w′[18]. The ESRGAN model improves upon
the earlier SRGAN framework by emphasizing perceptual
realism. Its generator network employs deep Residual-in-
Residual Dense Blocks (RRDBs) to extract important features
and recreate fine details in the images. The model also uses
a Relativistic average GAN (RaGAN) discriminator, which
compares the generated images to real images. A crop disease
detection and classification model integrated with ESRGAN
has been shown to be better at detecting crop disease than

the models that use other Super Resolution methods, with
a higher classification accuracy due to greater visual quality
[4][19]. The REAL-ESRGAN model further expands upon the
ESRGAN model, generating images of an even greater visual
quality. The generator network of this model is trained using
a combination of content, perceptual, and adversarial losses
[5]. Content loss measures pixel-wise similarity between real-
world and generated images:

Lcontent =
1

N

N∑

i=1

∥G(Xi)− Yi∥22

Perceptual loss encourages high-level similarity using fea-
ture maps from a pre-trained network, measuring how real the
images appear in terms of patterns, textures, and shapes:

Lperceptual =
1

N

N∑

i=1

∥ϕj(G(Xi))− ϕj(Yi)∥1

Adversarial loss guides the generator to produce images that
are difficult for the discriminator to distinguish from real HR
images:

LGAN(G,D) = EY

[
log(D(Y )− EX [D(G(X))])

]

+ EX

[
log(1− (D(G(X))− EY [D(Y )]))

]

The overall generator loss is a weighted combination of
these components:

LG = Lcontent + λ · Lperceptual + η · LGAN

where λ and η balance the contributions of perceptual and
adversarial losses.

The discriminator outputs a probability map indicating
the likelihood that each pixel belongs to a real image. The
discriminator loss is calculated using a weighted sum over all
pixels. Spectral normalization is added in Real-ESRGAN to
regularize the discriminator weights:

Ŵ =
W

σ(W )

Through these enhancements, the model is better able to
handle real-world image degradation, making it more reli-
able for practical image restoration applications and an ef-
fective approach for improving the quality of aerial images
[5][19][20][21].

III. METHODOLOGY

The dataset used in this study is the Cherry Tree Disease
Detection dataset from the article above, Detection and Char-
acterization of Stressed Sweet Cherry Tissues Using Machine
Learning, which contains both hyperspectral and standard
JPG images of cherry trees at different stages of Armillaria
infection. The stages represented are healthy, stage 1, and
stage 2. To prepare the dataset for analysis, the images that
were originally organized by the day of data collection were
consolidated into broader categories corresponding to each
disease stage. This reorganization facilitated the removal of

70 POSITION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



Fig. 1. Methodology

irrelevant or redundant images and ensured that the dataset
was structured consistently for model training and evaluation.

The first stage of the project employed a Convolutional
Neural Network (CNN) in TensorFlow to classify images of
cherry trees into the three categories described above. Data
augmentation techniques, such as resizing and rescaling, were
applied to increase the size and diversity of the training
dataset, therefore increasing the model’s robustness. After
data cleaning and augmentation, the images were divided into
training and validation sets, which were subsequently used for
model development and evaluation.

The model architecture consisted of 64 convolutional layers,
including pooling and fully connected layers. The structure
used allowed the model to learn the features and patterns in
the images associated with each different stage of the disease.

In the second stage of the project, the Enhanced Super-
Resolution Generative Adversarial Network (ESRGAN) was
integrated and used to generate a new higher resolution version
of the original cherry tree dataset. The ESRGAN model was
fine-tuned on a super resolution dataset composed of paired
high-resolution and low-resolution images, thereby enhancing
image resolution and clarity.

Fig. 2. Graph of various losses over epochs

The fine-tuning process began with downloading the pub-

licly available Real-ESRGAN model from its GitHub repos-
itory. The options file was then modified so that the training
and validation sections used the custom dataset of paired high-
resolution and low-resolution images. Once the training script
was executed, the dataset was iteratively adjusted to improve
super resolution performance. After several refinements, this
process yielded an optimized balance between image clarity
and model runtime.

Fig. 3. Image up-scaling

By running the finetuned ESRGAN model on the original
Cherry Tree Dataset, high-resolution versions of images from
the dataset were generated. The generated images were used
as input for classification, allowing for a direct comparison of
performance and accuracy between the baseline CNN and the
ESRGAN augmented CNN.

A. Results

Fig. 4. Baseline model

The integrated system achieved a 94 percent validation
accuracy in classifying cherry tree disease stages, compared to
83 percent for the original CNN model. Images enhanced by
ESRGAN consistently produced higher accuracy and greater
confidence values during classification. Additionally, loss val-
ues decreased significantly when compared directly with the
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Fig. 5. New model

original CNN trained on the standard dataset. This is due
to the fact that the enhanced model could detect subtle
symptoms of Armillaria that were difficult to discern in lower-
resolution images. Therefore, the combined use of the two
models allowed the system to classify plant disease stages
more effectively, even from lower-quality images, compared
to using the original CNN alone.

B. Discussion and Applications

The increased validation accuracy achieved by integrating
the two models demonstrates its effectiveness in discerning
between healthy cherry trees and those in various stages
of Armillaria. These results show the importance of high
resolution imaging in plant disease detection, validating the
performance of the integrated system.

This accuracy level shows that the ESRGAN enhanced
images provide greater visual clarity for the CNN to make
proper classifications, compared to the original images. The
results show that the CNN will be able to make reliable
classifications, even when the original UAV captured images
lack resolution,because of the integration of the ESRGAN
Model, suggesting that the system has successfully mitigated
the challenges posed by the difficulty of getting high resolution
crop images from UAVs.

The results reflect that the upscaled images provided by
ESRGAN significantly improve the model’s ability to detect
Armillaria symptoms, which is crucial for timely intervention
in commercial cherry tree farming. The high accuracy and
confidence levels reflected by this system means that commer-
cial farms could rely on this to detect and classify Armillaria
disease stages with few errors, increasing the efficiency of
crop inspection, and allowing for better monitoring of plant
disease. This in turn allows for early stage detection, allowing
for better disease management, minimizing yield loss.

This method solves the problems from previous papers that
struggled with the limits posed by the resolution of UAV

captured images. By introducing a super resolution model,
however, these become much less challenging. Unlike previous
models that required time consuming targeted sampling to be
practical for commercial farming, this system allows for more
efficient analysis of broader areas, with a stable accuracy.

So, the results prove that the system is both effective and
practical for commercial farming in the real world. By enhanc-
ing image clarity, ESRGAN allows the CNN to easily identify
lesions that would be too hard for models that take in lower
resolution images, proving that super resolution techniques can
help improve ML models in agriculture.

C. Conclusion

The research presents a large advancement in crop disease
detection through the integration of ESRGAN model and
CNN model to classify UAV captured images. By successful
enhancement and accurate classification, the model shows near
perfect accuracy in identifying the stages of Armillaria in
cherry trees. The integrated hybrid approach addresses the
challenge posed by low quality images captured by UAVs,
providing a proper solution for real world applications in
commercial agriculture.

Areas for future research would include expanding the
dataset to include a wider range of diseases. Additionally,
working on detection for other, more widely grown crop
types would both increase the model’s robustness, but also its
real world applicability. Exploration of different enhancement
techniques along with ESRGAN could cause improvements
in classification accuracy. It would be prudent to investigate
the model’s performance in various environmental conditions,
like harsh weather, or unclear lighting, to see if it would still
perform as well, providing insights into practicality.

Another avenue for future research includes optimization
of the model architecture. Exploring different configurations
and techniques, like using larger pretrained models that would
have to be finetuned (YOLO) could enhance the system’s
performance [22]. This model would not only classify different
images, but also identify the specific locations of each indi-
vidual lesion. This would help the practicality of the system
proposed in this paper immensely, because it would allow
images to be taken over a broader region, and would allow
for more precise disease identification. This was not used in
this paper due to lack of available data.

Using UAV data for predictive modeling has strong ap-
plications in the future as well. In conclusion, the research
establishes a foundation for leveraging Super Resolution image
augmentation techniques for Agricultural disease classifica-
tion, paving the way for solutions that enhance productivity
and sustainability in farming.
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Abstract—Remaining Useful Life (RUL) estimation of complex
machinery is critical for optimizing maintenance schedules and
preventing unexpected failures in safety-critical systems. While
Transformer architecture has recently achieved state-of-the-art
performance on RUL benchmarks, their design often relies on
expert tuning or costly Neural Architecture Search (NAS), and
their predictions remain opaque to end users. In this work, we
integrate a Transformer whose hyperparameters were discov-
ered via evolutionary NAS with a gradient-based explainability
method to deliver both high accuracy and transparent, per-
prediction insights. Specifically, we adapt the Gradient Explainer
algorithm to produce global and local importance scores for each
sensor in the C-MAPSS FD001 turbofan dataset. Our analysis
shows that the sensors identified as most influential, such as key
temperature and pressure measurements, match domain-expert
expectations. By illuminating the internal decision process of
a complex, NAS-derived model, this study paves the way for
trustworthy adoption of advanced deep-learning prognostics in
industrial settings.

Index Terms—Remaining Useful Life (RUL), Transformers,
Neural Architecture Search (NAS), Explainable AI (XAI), Gra-
dient Explainer, C-MAPSS, Interpretability.

I. INTRODUCTION

PROGNOSTICS and Health Management (PHM) plays a
critical role in modern industrial systems, enabling in-

creased reliability, optimized maintenance, and the prevention
of catastrophic failures in high-value assets such as aircraft
engines and manufacturing equipment [1]. A core component
of PHM is the accurate estimation of Remaining Useful Life
(RUL), the time before a component or system can no longer
perform its intended function.

The rise of deep learning has significantly advanced RUL
prediction. Recurrent Neural Networks (RNNs) [2], and more

recently Transformer-based architectures [3], have demon-
strated strong performance due to their ability to model
complex temporal dependencies in multivariate sensor data.

Building on these advances, Mo Hyunho et al. [4] pro-
posed a Neural Architecture Search (NAS) framework us-
ing evolutionary algorithms to automatically discover optimal
Transformer architectures for RUL prediction. Applied to
the well-established C-MAPSS (Commercial Modular Aero-
Propulsion System Simulation) dataset [6], their NAS-derived
Transformers outperformed manually designed alternatives,
setting a new performance benchmark [4].

Despite these gains, deep-learning complex models often
operate as "black boxes" [7]. Their complex, high-dimensional
structures obscure the reasoning behind predictions.

In safety-critical settings, this lack of interpretability is a
major barrier to adoption, where understanding why a model
predicted a specific RUL is essential for trust, verification, and
regulatory acceptance.

Explainable AI (XAI) seeks to address this issue by pro-
viding human-understandable insights into model behavior.
However, most existing XAI studies focus on standard or
simpler architectures, leaving the interpretability of NAS-
derived Transformers underexplored, especially within the
PHM domain [7], [8].

To our knowledge, no prior work has applied advanced
gradient-based XAI techniques to these automatically discov-
ered architectures in the context of RUL estimation.

This paper addresses that gap by adapting SHAP’s Gradient
Explainer ; a theoretically grounded and computationally ef-
ficient method ; for use with the NAS-optimized Transformer
developed by Mo Hyunho et al. Our goal is to enhance the
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transparency of this state-of-the-art model by generating global
and local feature attributions for RUL predictions on the C-
MAPSS FD001 subset.

Our contributions are threefold:
1) Gradient-based Explanation for NAS-Transformer:

We adapt and apply the Gradient Explainer algorithm to
a NAS-optimized Transformer architecture specifically
designed for RUL prediction.

2) Global and Local Attribution Analysis: We perform
comprehensive explanation analysis, including both
global sensor rankings and per-instance local saliency
maps, on the FD001 subset of C-MAPSS.

3) Actionable Insights for PHM: We extract interpretable,
domain-relevant insights into which sensors and time
points most influence the model’s predictions, enhanc-
ing trust, transparency, and deployability in industrial
contexts.

The rest of this paper is organized as follows:
Section II reviews related work on RUL prediction and

explainable AI. Section III describes the dataset, model
architecture, and the adaptation of the Gradient Explainer.
Section IV presents experimental results, including global and
local explanations. Section V concludes with future research
directions.

II. RELATED WORK

This section reviews literature pertinent to our research,
covering Remaining Useful Life (RUL) prediction with deep
learning, the role of Neural Architecture Search (NAS) in
Prognostics and Health Management (PHM), existing Explain-
able AI (XAI) techniques for complex models, and the specific
challenges and advancements in explaining Transformer and
NAS-optimized architectures.

A. RUL Prediction in PHM

Remaining Useful Life (RUL) refers to the time remaining
before a system fails, expressed as RUL = T − t, where
T is the failure time and t is the current time [1]. RUL
estimation methods are broadly categorized into model-based
and data-driven approaches. Model-based methods rely on
prior physical knowledge, which can be hard to generalize in
practice and may struggle with the complexities of real-world
degradation processes. In contrast, data-driven approaches,
particularly those leveraging deep learning (DL), have gained
prominence due to their ability to learn complex patterns
directly from sensor data and enabling end-to-end modeling,
eliminating the need for manual feature engineering [2].

Early DL applications in RUL prediction included Multi-
Layer Perceptrons (MLPs) and Convolutional Neural Net-
works (CNNs), which showed promise in feature extraction
from time-series data. Recurrent Neural Networks (RNNs),
especially Long Short-Term Memory (LSTM) and Gated
Recurrent Unit (GRU) variants, became popular for their
inherent ability to model temporal dependencies in sequential
sensor readings. However, RNNs can face challenges with

long range dependencies and computational efficiency for long
sequences [9], [10].

B. Transformer-Based Models for Time Series

Transformer architecture, originally introduced for natural
language processing in the famous paper of Vaswani et al.
[3], has emerged as a powerful self-attention mechanism
that allows it to capture global dependencies between input
sequence elements effectively, overcoming some limitations
of RNNs. Consequently, Transformers have been increasingly
adapted for various time-series forecasting tasks, including
RUL prediction, often demonstrating superior performance.

C. Neural Architecture Search (NAS) in Deep Learning

While DL models, including Transformers, offer significant
potential, their performance is highly dependent on their
architecture. Designing optimal architecture manually is a
time-consuming, iterative, and expertise-driven process [4].
Neural Architecture Search (NAS) has emerged as a field that
automates this design process, algorithmically searching for
the best-performing neural network architecture for a given
task and dataset [4].

D. Explainable AI (XAI) for Complex Models

The increasing complexity and performance of DL mod-
els, especially transformer-based models with their attention
characteristics, often come at the cost of interpretability,
leading to their characterization as "black boxes". In safety-
critical applications like PHM, this lack of transparency is
a major concern, as understanding why a model makes a
certain prediction is crucial for trust, debugging, and regulatory
compliance. Explainable AI (XAI) encompasses a range of
techniques aimed at making the decisions of AI systems more
understandable to humans [11].

Common XAI methods can be broadly categorized.
Perturbation-based methods, like LIME (Local Interpretable
Model-agnostic Explanations), explain individual predictions
by learning a simpler, interpretable model on local perturba-
tions of the input [11].

Surrogate models aim to approximate the complex model
with a more transparent one. Gradient-based methods, such
as Integrated Gradients and SmoothGrad, utilize model gradi-
ents to attribute importance to input features. SHAP (SHap-
ley Additive exPlanations), grounded in co-operative game
theory, provides a unified framework for feature attribution
by calculating Shapley values, which represent the marginal
contribution of each feature to the prediction [12].

III. MATERIAL AND METHODS

In this section, we present our methodological frame-work.
We first describe the C-MAPSS FD001 dataset and its pre-
processing pipeline. Next, we introduce the NAS-optimized
Transformer architecture used for RUL predic-tion. Finally,
we detail our adaptation of the SHAP Gradient Explainer for
feature-attribution analysis applied to this model.
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Fig. 1. Methodological Frame-Work

A. Data and Preprocessing

We base our experiments on NASA’s widely used C-
MAPSS (Commercial Modular Aero-Propulsion System Sim-
ulation) dataset, which simulates turbofan engine degradation
under different operating conditions and fault modes. C-
MAPSS comprises four subsets (FD001–FD004), each con-
taining multivariate time-series from 21 sensors and 3 operat-
ing settings.

In this work, we focus on FD001, which models a single
fault mode under one operating condition [5].

Fig. 2. Diagram of the turbofan Engine

Data preprocessing steps were aligned with those typically
employed for this dataset and consistent with the foundational
work [4]:

• Sensor Selection: From the original 21 sensor channels,
we computed the 21×21 inter-sensor Pearson correlation
matrix to identify constant or redundant signals. Any
sensor with zero variance (constant readings) or entirely
null values was removed, leaving 14 informative sensors.

• Normalization: All sensor and aggregate features were
scaled to [0, 1] using min–max normalization, with scal-
ing parameters fitted exclusively on the FD001 training
set to avoid data leakage.

• Windowing: We applied a sliding window of 40 raw
timesteps and appended 2 aggregate rows (slope and
mean), resulting in 42-timestep sequences. The target

Fig. 3. Pearson’s correlation matrix heat map of the Commercial Modular
Aero-Propulsion System

RUL is defined as the number of cycles remaining at
the final point in each window.

B. Foundational NAS-Optimized Transformer Architecture

Our work builds upon the Transformer architecture devel-
oped by Mo Hyunho et al. [4], who applied Neural Archi-
tecture Search (NAS) to design high-performing models for
RUL prediction. Rather than re-running their computationally
intensive search process, we adopt the optimal architecture
they identified as the basis for our explainability study.

This architecture was discovered using an evolutionary
algorithm that explored an 11-dimensional genotype defining
various hyperparameters of the Transformer, including em-
bedding dimensions, number of attention heads, feed-forward
layer dimensions, and the number of encoder/decoder layers.

The core structure of this NAS-optimized Transformer ar-
chitecture, as described by Mo Hyunho et al. [4], features
several key components tailored for time-series RUL predic-
tion:

• Input Representation: Each input is a multivariate time-
series window with 42 timesteps and 14 sensor channels,
resulting in an input matrix of shape (42, 14). The 42
timesteps include 40 raw cycles and 2 aggregate features
(slope and mean), as described in Section III-A.

• Embedding and Positional Encoding: Raw sensor
readings at each timestep are first passed through an
input embedding layer to project them into a higher-
dimensional space ( d_model) . To retain temporal
information, sinusoidal positional encodings are added to
these embeddings.

• Dual-Encoder Mechanism: A key feature of the archi-
tecture is its use of two parallel encoders:

– A Sensor Encoder: that applies multi-head self-
attention across the sensor dimension to assess inter-
sensor dependencies.
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– A Timestep Encoder: that uses self-attention across
the time dimension to capture temporal patterns.
Each encoder is composed of N_enc layers, each
containing multi-head attention and position-wise
feed-forward sublayers, combined with residual con-
nections and layer normalization.

• Feature Fusion:
Outputs from the sensor and timestep encoders—denoted
Fs and Ft are concatenated and passed through a fusion
layer:

Fusion(Fs, Ft) = Concat(Fs, Ft) ·WF (1)

This operation merges sensor-wise and temporal features
into a unified representation.

• Decoder: The fused features are input to a decoder com-
posed of Ndec layers, again using multi-head attention and
feed-forward sublayers. The decoder processes only the
final α timesteps of the encoder output typicallyα = 4,
focusing on recent history for prediction. Its final output
is a scalar representing the estimated RUL.

We configured our model using the specific optimal geno-
type parameters reported by Mo Hyunho et al. [13], ensuring
consistency with the NAS-discovered Transformer architecture
used in their original work.

C. Gradient Explainer Algorithm

To interpret the predictions of the NAS-optimized Trans-
former, we adopted SHAP’s Gradient Explainer [12], a
member of the gradient-based attribution family introduced in
Section II. Gradient Explainer estimates feature contributions
by computing expected gradients relative to a background
distribution, enabling both local explanations (per Engine) and
global insights (across the dataset).

This method was chosen for its compatibility with non-
standard architecture Transformers and structured multivariate
time series, as encountered in our 42×14 input windows. While
other techniques such as LIME and Integrated Gradients are
valuable in broader explainability contexts [14], [15], SHAP
Gradient Explainer offers theoretical consistency, computa-
tional efficiency, and additive attribution, aligning well with
the goals of transparency in RUL forecasting.

1) Background Selection: : SHAP requires a background
dataset to serve as a reference for calculating expected gradi-
ents. We use all 100 training windows as the background set,
ensuring full coverage of operating conditions and RUL states.
This choice balances computational efficiency with stability in
the resulting attributions.

2) Batched SHAP Computation.: Due to memory con-
straints, SHAP values are computed in batches of size 10. Each
test sample (of shape 42×14) is passed to the explainer, which
returns a tensor of SHAP values with the same shape. These
represent the contribution of each sensor at each timestep (in-
cluding slope and mean rows) to the model’s RUL prediction.

IV. RESULTS AND DISCUSSION

This section presents the results of our explainability
pipeline to evaluate the NAS-optimized. We report results
on global feature importance, local attribution for specific
predictions, and validate the reliability of the explanations
through coherence checks.

1) Global Attribution.: To understand which features were
most influential across all test samples, we applied SHAP’s
Gradient Explainer using 100 stratified background windows.
The resulting SHAP values were aggregated across all test
inputs, and the top features were visualized using a bar
summary plot (Figure 4) and the beeswarm summary plot
(Figure 5).

The most impactful feature was BPR_t41, the mean value
of the Bypass Ratio sensor, which positively influenced RUL
predictions. Other highly influential features included the
slopes of phi, P30, and the mean or trend of sensors like
T24 and W32. These results confirm that both recent degrada-
tion trends (slope features) and operating-level signals (mean
features) contribute meaningfully to the model’s decisions.

The top-ranked sensors correspond to known degradation-
related physical components, supporting the model’s alignment
with domain expectations. Less informative features were
grouped into an “Other” category, highlighting the concentra-
tion of decision impact among a small subset of sensor-time
features.

Fig. 4. Global Sensor Ranking barplot
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Fig. 5. Global SHAP Summary (Beeswarm) Plot

2) Local Feature Attribution: : To explore how the model
forms individual predictions, we examined SHAP waterfall
plots for representative test samples. Figure 6 shows a case
where the predicted Remaining Useful Life (RUL) was sig-
nificantly lower than average (0.072 vs. 0.709). Negative
contributions came from slope features such as phi_t40,
NRf_t40, and P30_t40, which indicate rapid degradation
in pressure and rotational speed. A single feature, BPR_t41,
contributed positively, but only marginally.

Notably, the largest reduction in prediction came from the
aggregate contribution of 579 other features, which collec-
tively pulled the estimate downward by −0.25. This highlights
the model’s ability to synthesize both prominent and subtle
signals across the input sequence. The explanation aligns with
real-world intuition: sharp declines in critical sensors indicate
worsening engine health, justifying a lower RUL forecast.

Fig. 6. Local SHAP Waterfall Plot Engine 41

A. Coherence Checks

To assess the trustworthiness of the model’s explanations,
we conducted a qualitative analysis of the SHAP outputs.
Specifically, we reviewed whether the top-ranked features
identified by the Gradient Explainer aligned with known
degradation indicators in the turbofan engine domain.

Our global attribution analysis revealed that the most in-
fluential features included trends and mean values from key
sensors such as Bypass Ratio (BPR), high-pressure compressor
pressure (P30), rotational speeds (Nf, NRf), and temperatures
(T24, T30). These are consistent with established knowledge

about engine wear and failure modes. Similarly, local explana-
tions for individual predictions showed that decreasing trends
in these features often led to lower RUL estimates, reinforcing
their interpretability.

Although we did not formally quantify explanation ro-
bustness (e.g., using Spearman correlation), the consistent
emergence of domain-relevant features in both global and local
attributions suggests that the model has learned meaningful
and physically plausible relationships. This coherence is a
promising indicator for the model’s transparency and practical
applicability in industrial settings.

V. CONCLUSION

This paper presents an explainability study of a NAS-
optimized Transformer model for Remaining Useful Life
(RUL) prediction on the C-MAPSS FD001 benchmark. We
integrate SHAP’s Gradient Explainer into the model pipeline
to generate both global sensor importance rankings and local
per-sample attribution maps. Our results show that the model’s
most influential features, particularly sensor trends and means
in airflow, pressure, and temperature, are consistent with
known degradation indicators in jet engines.

By illuminating how the model forms each prediction, our
approach enhances transparency and supports trust in deep
learning-based prognostics. While this study focuses on a
single dataset and architecture, the method is generalizable
and can be extended to other PHM tasks or architectures.

Future work will incorporate formal stability tests, expert
validation, and broader dataset coverage.
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Abstract—Diachronic text style transfer aims to transform text
from one historical period into the style of another while preserv-
ing its meaning. However, the scarcity of parallel corpora across
time periods makes supervised approaches impractical. In this
work, we propose to adapt the CycleGAN architecture, originally
developed for unpaired image-to-image translation, to model
linguistic change over time. Our method employs a generator and
discriminator, both conditioned on temporal information, and
trained using a combination of adversarial and cycle-consistency
losses. We propose a time-conditioned generative framework that
supports both discrete and continuous temporal representations,
enabling the model to interpolate between historical language
styles. The model is trained on unaligned historical texts and can
transform language from any period to another. This approach
offers a data-efficient solution for diachronic language modeling
and opens new research directions in historical linguistics, digital
humanities, and unsupervised style transfer.

I. INTRODUCTION

ONE of the main challenges in working with diachronic
textual data lies in the limited availability of directly

aligned texts from different historical periods. Unlike mod-
ern translation datasets, where sentence-level or even word-
level correspondences are often available, historical corpora
typically lack such parallel structures. For instance, there is
rarely a source with one-to-one correspondence between a
text written in Middle English and its equivalent in Modern
English. This absence of parallel data complicates efforts to
apply conventional supervised methods to historical language
normalization, translation, or style transfer tasks. As a result,
there is a growing need for methods capable of learning map-
pings between historical and modern language forms without
relying on direct supervision or aligned corpora.

In this paper, we propose adapting the CycleGAN ar-
chitecture, originally developed for unpaired image-to-image
translation [1], to the domain of unpaired diachronic text
style transfer. Our goal is to demonstrate that the CycleGAN
framework, with appropriate modifications for textual data, can
serve as a viable approach to style transformation across time
periods.

II. BACKGROUND AND RELATED WORK

CycleGAN is a type of Generative Adversarial Network
(GAN) [2] designed for unpaired data translation, originally

A B

G

F

DA DB

Fig. 1. CycleGan architecture, based on [1]. G and F are generators, A and
B are two domains and DA and DB are discriminators working in these
domains.

proposed for image-to-image translation tasks (Zhu et al.,
2017) [1]. The model consists of two generators and two
discriminators. Each generator learns to map data from one
domain to another (e.g., from domain A to B, and from B to
A), while each discriminator evaluates whether the generated
output appears realistic within its respective domain (Fig. 1).

A core innovation of CycleGAN is the cycle consistency
loss, which ensures that if an input sample is translated to the
target domain and then back to the original domain, the result
should closely resemble the initial input. This regularization
term helps the model retain the core content of the source
while adjusting its style to match the target domain.

In formal terms, given two domains X and Y , and two
generators G : X → Y and F : Y → X , the cycle consistency
loss is defined as:

Lcyc(G,F ) = Ex∼pdata(x) [∥F (G(x))− x∥1]
+ Ey∼pdata(y) [∥G(F (y))− y∥1]

This encourages F (G(x)) ≈ x and G(F (y)) ≈ y, thereby
enforcing that the content of the input is retained after a round-
trip translation.

A good example of this process involves translating images
of horses to zebras and back again. Even without paired
examples (i.e., no exact horse-zebra image pairs), the network

Position Papers of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 81–86

DOI: 10.15439/2025F4661
ISSN 2300-5963 ACSIS, Vol. 44

©2025, PTI 81 Thematic Session: Challenges for Natural
Language Processing



Fig. 2. Example of image to image translation using CycleGan presented in
original paper [1].

learns meaningful transformations through adversarial learning
combined with the cycle consistency constraint (Fig. 2).

While CycleGAN enables unpaired translation between two
domains, it does not scale efficiently to scenarios involving
multiple domains. Each pair of domains would require separate
generator and discriminator pairs, which would make the
model increasingly complex and computationally expensive.
In contrast, StarGAN [3] extends the CycleGAN framework to
support multi-domain translation within a single unified archi-
tecture. StarGAN achieves this by conditioning the generator
and discriminator on domain labels, enabling style transfer
across many categories using a shared set of parameters. The
generator G(x, c′) takes an input sample x and a target domain
label c′, and produces an output in the desired style. The
discriminator not only distinguishes real from fake samples
but also predicts their domain label (Fig. 3).

In this work, although our primary architecture is inspired
by CycleGAN, we also leverage the principles of StarGAN to
investigate possible multi-era style transformation tasks. This
enables flexible style transfer across multiple historical stages,
effectively allowing the model to map between linguistic
variants from different centuries using a unified, conditional
architecture - without the need to train separate models for
each specific pair of eras.

A. Adaptations of CycleGAN for Unsupervised Text Style
Transfer

Although CycleGAN was originally proposed for unpaired
image-to-image translation, its underlying principles have in-
spired a number of adaptations in the field of natural language
processing and also in tasks involving unsupervised text style
transfer. The goal of these adaptations is to utilize CycleGAN’s
ability to learn mappings between two domains without the
need for aligned or parallel training data, a feature especially
relevant when working with diachronic corpora or stylistically
divergent text.

One of the contributions in this direction is the work by
Huang et al. [4], where they proposed a Cycle-Consistent

Adversarial Autoencoder model designed specifically for un-
supervised text style transfer. Their method combines an
autoencoder with cycle consistency loss and adversarial train-
ing, allowing the model to keep the semantic content while
changing the writing style.

Lorandi et al. [5] proposed a more direct application of
the CycleGAN architecture to text style transfer, where they
focused on sentiment transformation between positive and
negative expressions. Their model, called TextCycleGAN,
works without paired data and uses cycle-consistent adversar-
ial training to learn bidirectional mappings between different
texts. Although they use a fairly basic LSTM design for both
generators and discriminators, their results on the Yelp dataset
achieve strong sentiment accuracy and fluency, proving that
CycleGAN can work effectively with text data.

Similarly, Wang et al. [6] used CycleGAN for a more struc-
tured task: converting abstracts into conclusions in scientific
papers. By considering abstracts and conclusions as different
stylistic domains, they demonstrated that CycleGAN can learn
style transformation patterns within specialized types of text,
using only unpaired data.

These studies show the growing potential of CycleGAN-
inspired architectures for text style transfer tasks. By demon-
strating that effective stylistic transformations can be achieved
in an unsupervised manner, without the need for aligned
or parallel corpora, they lay the groundwork for extending
such approaches to more complex linguistic domains. They
provide a strong basis for exploring how CycleGAN-based
models might perform in the context of diachronic language
data, where the scarcity of parallel examples across historical
periods makes supervised approaches very hard to implement.

This motivates our own research idea, in which we adapt
the CycleGAN framework to perform style transfer between
different variants of the language over the centuries.

III. PROPOSED METHOD

A. Task Formulation

The goal of this work is to perform unpaired diachronic
text style transfer. That is, given a piece of text written in
the linguistic style of a certain historical period, e.g., the 15th
century, we aim to generate a version of that text that retains
its original meaning but is expressed in the linguistic style of
a different period, such as the 21st century.

Crucially, we assume there are no parallel corpora linking
these periods. That means we do not have direct sentence-level
alignments between time periods. This makes the task a fully
unsupervised sequence transformation problem.

B. Formal Setting

Formally, let T denote the temporal domain associated with
linguistic style. We consider two possible representations of
time:

1) Discrete time domain:

Tdisc = {t1, t2, . . . , tn}
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Fig. 3. Overview of StarGAN, consisting of two modules, a discriminator D and a generator G, based on [3].

where each ti corresponds to a fixed historical period (e.g.,
15th century, 16th century, etc.), or to broader linguistic eras
(e.g., Old English, Middle English, Modern English).

2) Continuous time domain:

Tcont ⊂ R

where time is modeled as a real-valued scalar, such as the
year or century of origin. This formulation allows the model
to reason about intermediate or underrepresented styles and
enables smooth interpolation across time.

In this work, we emphasize the continuous representation
due to its potential for fine-grained modeling of historical
language change. However, the proposed framework remains
compatible with discrete labels, which may be more practical
in cases where time annotations are coarse or categorical.

Let x ∈ Xt denote a text sample originating from time
period t ∈ T. Our objective is to learn a generative function:

G(x, t′)→ x̂t′

where t′ is the target time period and x̂t′ is a text that preserves
the meaning of x but adopts the linguistic characteristics of
period t′.

To ensure that the model preserves the semantic content of
the input, we adopt a cycle-consistency mechanism inspired
by StarGAN, where a single shared generator G is used for
both forward and reverse transformations. Specifically, given
a source text x from time period t, we first translate it to the
target style t′, and then we use the same generator to map x̂t′

back to the original style t:

G(G(x, t′), t) ≈ x

This should allow us to enforce that the transformation is ap-
proximately invertible, encouraging the generator to preserve
content while altering only the stylistic features associated
with time.

C. Model Losses

Our model is suppose to be trained using a combination of
adversarial and cycle-consistency objectives, adapted for the
temporal style transfer task.

1) Adversarial Loss: Rather than using separate discrimi-
nators for each time domain (as in CycleGAN), we employ a
single shared discriminator D that is conditioned on the target
time period t′. Its objective is to perform real/fake classi-
fication–that is, to determine whether a given sentence is a
genuine example from time t′ or a synthetic sample generated
by the model. By conditioning on t′, the discriminator learns
to judge the temporal authenticity of the input relative to the
specified style period.

The generator G(x, t′) attempts to transform a text sample
x from its original time period t into the style of target time
t′. The discriminator then assesses whether the result is:

1) Authentic, and
2) Temporally consistent with t′

To train this system adversarially, we define the adversarial
loss as follows:

Ladv = Ex′∼pdata(x′|t′)[logD(x′, t′)]
︸ ︷︷ ︸

real samples from target time t′

+ Ex∼pdata(x|t), t ̸=t′ [log(1−D(G(x, t′), t′))]
︸ ︷︷ ︸

generated samples styled for t′

This formulation encourages the discriminator to correctly
distinguish real samples from generated ones. Specifically, it
rewards the discriminator for identifying genuine examples
from time t′, and penalizes it when it fails to detect synthetic
ones. The generator, conversely, is optimized to fool the
discriminator into classifying its outputs as authentic. So it
ensures that G learns to generate text indistinguishable from
true samples belonging to the target time period t′.

2) Cycle-Consistency Loss: To ensure that the semantic
content of the text is preserved during style transfer across dif-
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ferent time periods, we impose a cycle-consistency constraint
using the same generator G. Formally, this loss is defined as:

Lcyc = Ex,t,t′ [∥G(G(x, t′), t)− x∥1]

This term encourages the model to reconstruct the original
input text x after sequentially transforming it to a different
temporal style t′ and then back to its original style t. By
minimizing this reconstruction error, the model is guided to
produce style-transferred outputs that maintain the original
meaning and content, rather than simply generating stylis-
tically plausible but semantically unrelated text. In essence,
cycle-consistency enforces that the transformations are invert-
ible and that the core semantic information remains stable
across diachronic style mappings.

3) Full Objective: The overall training objective combines
the adversarial loss and cycle-consistency loss to jointly opti-
mize generator G and discriminator D. Formally, the full loss
function is given by:

L = Ladv + λcycLcyc

where λcyc is a hyperparameter that balances the importance
of cycle-consistency relative to the adversarial loss.

The generator G aims to minimize this combined loss,
learning to produce temporally consistent and semantically
faithful style transfers, while the discriminator D is trained
to maximize the adversarial loss, improving its ability to
distinguish real from generated samples conditioned on the
target time period.

Thus, the model should achieve effective unpaired di-
achronic text style transfer by encouraging realistic temporal
style generation and content preservation simultaneously.

D. Proposed Model

Our proposed model adopts a transformer-based archi-
tecture, drawing inspiration from CycleGAN and StarGAN,
specifically designed for diachronic text style transfer. The
model consists of two main components:

• Generator G(x, t′)
• Discriminator D(x, t′)

The generator will probably be a conditional transformer
encoder-decoder model [7] that transforms a given input text
x from its original time period t into the style of a target time
t′. The temporal condition t′ will be injected into the model
in the decoder part.

The discriminator will most likely be a decoder-only trans-
former that evaluates whether the input x is a real sample
drawn from the target time period t′ or a generated one. It
receives the time condition t′ as additional input and is trained
to perform binary classification (real/fake) with respect to this
condition.

Fig. 4 illustrates the overall model architecture, including
the generator and discriminator modules, temporal condition-
ing flow, and the cycle path used during training.

Algorithm 1 Training Procedure
Require: Training corpus D = {(xi, ti)} with time labels

1: for each minibatch {(xi, ti)}Ni=1 sampled from D do
2: for each xi in minibatch do
3: Select a target time t′i ∈ T\{ti} uniformly at random
4: Generate transformed sentence: x̂t′i

← G(xi, t
′
i)

5: Reconstruct original: x̂ti ← G(x̂t′i
, ti)

6: end for
7: Compute adversarial loss Ladv

8: Compute cycle-consistency loss Lcyc

9: Update discriminator D to maximize Ladv

10: Update generator G to minimize Ladv + λcycLcyc

11: end for

E. Training and Evaluation

The proposed model is trained end-to-end using a combina-
tion of adversarial and cycle-consistency losses. As shown in
algorithm 1, training proceeds by iterating over mini-batches
of text samples drawn from the training corpus D = {(xi, ti)},
where each sample is annotated with its corresponding time
period ti.

For each input sentence xi in a mini-batch, a target time
t′i is randomly sampled from the set of available time labels,
excluding the original time ti. The generator G then transforms
the sentence into the style of the target time, producing
x̂t′ = G(x, t′). To enforce semantic preservation, this gen-
erated sample is passed again through the generator, that is
now conditioned on the original time period to reconstruct the
source sentence: x̂t = G(x̂t′ , t), where x̂t ≈ x.

After all forward and backward transformations are com-
pleted for the mini-batch, two loss functions are computed:

• The adversarial loss Ladv encourages the discriminator D
to distinguish real samples from generated ones, while
guiding the generator to produce temporally consistent
and realistic outputs.

• The cycle-consistency loss Lcyc enforces that the content
of the original sentence is preserved across the round-trip
transformation between time styles.

The discriminator is updated to maximize the adversarial
loss, while the generator is updated to minimize a weighted
combination of both losses: Ladv + λcycLcyc.

Due to the lack of parallel diachronic corpora, automatic
evaluation is challenging. We propose the following evaluation
strategies:

• Temporal Classification Accuracy: A pretrained time
classifier can be used to assess whether generated samples
are stylistically consistent with the target time period.

• Cycle Reconstruction Error: Content preservation can
be approximated, for example, by measuring the L1

distance between the input sentence and its reconstruction
after a cycle pass.

• Human Evaluation: Expert evaluations by historians
or linguists can offer valuable insights into the fluency,
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Fig. 4. Proposed model architecture

semantic accuracy, and historical authenticity of the gen-
erated text.

This training strategy should help the model learn a smooth,
time-aware text style transformation function that can gener-
alize across different historical periods, even without parallel
supervision. By conditioning both the generator and discrimi-
nator on a continuous temporal index, the model may learn to
recognize subtle patterns in the evolution of linguistic features
over time. Instead of memorizing fixed mappings between
specific time periods, the generator will learn to interpolate
and extrapolate stylistic attributes across the temporal space.
This should allow flexible text generation at arbitrary points
in the historical timeline, including periods for which little or
no direct training data exists.

IV. EXPECTED CONTRIBUTION

This paper introduces a new framework for diachronic text
style transfer, allowing sentences written in the style of one
historical era to be transformed into stylistically consistent ver-
sions from another period. Unlike conventional style transfer
approaches that often depend on aligned or parallel corpora,
our method operates in a fully unsupervised manner, enabling
training on naturally occurring, unaligned historical texts. This
marks a substantial advancement in tackling the issues of the
scarcity of alligned data in diachronic text corpora.

A core innovation of our model lies in its use of continuous
time representations to condition both the generator and the
discriminator. Rather than assigning fixed domain labels (e.g.,
“15th century” or “modern English”), time is treated as an
input variable, allowing the model to learn smooth, temporally-
aware transitions between language styles. This enables more
granular control over the generated outputs and allows the
model to capture linguistic change over time as a continuous
process based on continuous data, rather than relying on
discrete class divisions. Moreover, by viewing time as a con-
tinuous factor, the model could potentially predict extrapolate

how language might evolve and even create believable future
versions of it.

We adapt adversarial and cycle-consistency learning tech-
niques, originally developed for images (CycleGAN, Star-
GAN), to the domain of natural language. Our proposed
architecture uses a single shared generator trained with a
combination of adversarial and cycle-consistency objectives,
ensuring that generated sentences not only match the target
time’s style but also preserve the original semantic content.
This allows the model to strike a balance between stylistic
transformation and content fidelity, which is critical for mean-
ingful diachronic translation.

This work advances the field of diachronic NLP by intro-
ducing a general, data-efficient method for modeling language
over time. It creates new opportunities for research in historical
language translation and computational philology. By com-
bining ideas from image style transfer and natural language
processing, this study provides a foundation for future models
that better understand, generate, and adapt text across various
historical periods.

Potential applications of our approach include the mod-
ernization of historical documents, stylistic harmonization of
corpora for linguistic research and speculative modeling of
future language evolutions.

V. POSSIBLE LIMITATIONS AND FUTURE WORK

Although the proposed model is looking very promising,
it can also have several possible limitations. One of the big
issues is the lack of large, high-quality diachronic corpora
that cover long historical periods. This can limit the variety
and reliability of the transformations the proposed model can
learn. In addition, the current architecture may not be able to
completely capture the complexity of language changes, such
as shifts in grammar, meaning, or vocabulary. As a result,
the model may focus on surface-level characteristics while
overlooking some deeper linguistic structures.
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Another limitation occurs when the training data only covers
distant time periods, for example, the 15th and 21st centuries.
In such cases, the model may produce intermediate linguistic
forms that did not exist in the past. The challenge of learning
smooth transformations across large temporal gaps becomes
evident in this interpolation task. To overcome this issue,
temporal conditioning must be carefully designed, potentially
incorporating constraints informed by historical linguistic
knowledge.

Future research could focus on utilizing outside linguis-
tic knowledge, such as syntactic parsers or etymological
databases, to improve semantic preservation and style accu-
racy. The model could also be adjusted for finer temporal res-
olutions, like working with decades instead of entire centuries,
or expanded to manage multilingual historical corpora.
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Abstract—Labor shortages and usability challenges limit the
adoption of robotics in agriculture. This work explores how
Large Language Models (LLMs) and Vision-Language Models
(VLMs) can bridge this gap by enabling non-expert users to
command robots using natural language. A modular system was
developed to interpret instructions, execute tasks, and generate
visual field reports. Evaluations in a simulated field showed that
hybrid prompting strategies yielded reliable plans, while VLMs
supported effective object detection and contextual reporting.
This approach reduces entry barriers to robotics and promotes
accessible, intelligent agricultural automation.
Keywords: Large Language Models, AI, HRI, NLP, Precision
farming, digital agriculture

I. INTRODUCTION

A. Motivation and Background

ROBOTICS is a rapidly evolving field with the potential
to address pressing global challenges, particularly in

sectors like agriculture [7]. However, deploying robotic
systems in practice often demands high technical expertise,
limiting accessibility for non-experts.

Norwegian agriculture, for example, faces critical challenges
such as labor shortages, food waste, and reduced productivity
[6], [4], [2]. Robotic solutions could address these issues by
automating labor-intensive tasks. However, the complexity of
current systems often discourages adoption, especially among
farmers unfamiliar with robotics or programming [5].

Recent advances in artificial intelligence, particularly large
language models (LLMs), present an opportunity to close
this usability gap. LLMs can interpret and respond to natural
language instructions, enabling intuitive, conversational
interfaces. This could significantly lower barriers to adoption,
allowing farmers to operate advanced robotic systems through
simple, everyday language [8].

B. Problem Statement and Objectives

Despite the potential of robotics to transform agriculture,
usability remains a core barrier. Most current systems are
not designed for non-technical users, limiting their impact on
productivity and sustainability [6].

This work addresses that challenge by exploring how LLMs
and vision-language models (VLMs) can make human-robot

interaction (HRI) more natural and accessible. Specifically,
the system interprets written instructions, plans and executes
robotic actions, and processes visual data to generate human-
readable field reports.

The main objectives of this study are to:
• Develop a multimodal LLM/VLM system that trans-

lates natural language and visual input into ROS2-
compatible robot actions.

• Evaluate the accuracy and reliability of LLM-
generated action plans, including the impact of robotic
hardware limitations.

• Analyze how different prompt engineering strategies
affect command quality and consistency.

• Assess VLM capabilities for object detection and
spatial reasoning in agricultural environments.

• Demonstrate VLM-based visual reporting, including
structured outputs that enhance transparency and over-
sight.

C. Research Questions

To evaluate the proposed approach, this research is guided by
the following questions:

• How accurately can an LLM generate executable ROS2
action plans from natural language instructions, and how
do hardware limitations affect execution?

• How do different prompt engineering strategies influence
output quality and consistency?

• How effectively can a VLM identify and localize agri-
cultural objects, and what are its spatial limitations?

• Can VLMs produce interpretable, natural-language field
reports from visual input that support human-robot col-
laboration?

II. BACKGROUND AND RELATED WORK

Recent advances in LLMs and VLMs have enabled more
intuitive human-robot interaction, particularly in contexts
requiring high-level reasoning and accessibility for non-
experts. LLMs such as GPT-4 exhibit strong generalization
capabilities across tasks like planning, summarization, and
code generation without retraining. Their ability to interpret
natural language and produce structured outputs makes them
a compelling option for high-level robotic control [8].
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Prompt engineering has emerged as a key factor in improving
the consistency and accuracy of LLM outputs. Direct
prompting involves single-shot commands but often lacks
reliability. Chain-of-thought (CoT) prompting helps by
introducing intermediate reasoning steps, while few-shot
prompting provides examples to anchor the model’s behavior.
Hybrid strategies, combining CoT and few-shot, can further
enhance both interpretability and execution success in
planning tasks [1].

VLMs extend this capability by jointly processing image and
text inputs. Trained on large-scale image-caption datasets,
models like CLIP and BLIP can identify and describe visual
content, perform spatial reasoning, and generate contextual
reports. This is particularly valuable in agriculture, where
visual cues, such as detecting obstacles or crop conditions,
play a vital role in robot operation [3].

Integrating LLMs and VLMs in robotic applications
introduces a multimodal reasoning layer, enabling systems
to move beyond hard-coded control toward flexible, adaptive
interaction. Although prior work has demonstrated the
potential of these models in lab settings, their deployment
in field robotics, especially under agricultural constraints,
remains underexplored. This research addresses that gap
by combining LLM and VLM modules in a ROS2-based
system that translates natural language commands and visual
input into executable robot actions and structured field reports.

III. METHODOLOGY

A. System Architecture

The system follows a modular architecture combining
language and vision models for robotic control. As shown in
Figure 1, it processes natural language commands through
an LLM to generate ROS2-compatible action plans. If visual
input is required, a VLM interprets camera images to support
perception and reporting. The robot then receives executable
commands and a spoken summary of intent for transparent
interaction.

The natural language command is processed through a
Langchain pipeline using a FewShotPromptTemplate,
which embeds dynamic user input and curated examples to
shape the model’s interpretation. The prompt structure includes
a task description, spatial constraints, and example command
formats. The LLM response contains a natural-language sum-
mary and a structured plan expressed in pseudo-code or action-
like instructions. These are then parsed and verified using a
YAML schema to ensure semantic and syntactic validity.
An example output may resemble:
Plan:

- drive(2)
- turn(90)
- drive(2)

Receive text
command

Parse command
and create plan

(LLM)

Send action
sequence to robot

Execute
command (robot)

Generate voice
explanation

Capture image
and create plan

(VLM)

YesNo Is vision
needed?

Fig. 1. High-Level Architecture for LLM-Based Robotic System

This intermediate representation allows modular validation and
easier debugging. Internally, each action string is mapped
to a corresponding ROS2-compatible function. For instance,
drive(2) translates to a call to the navigation stack or a
custom publisher on the /cmd_vel topic with linear velocity
commands for a specified duration. Angle commands like
turn(90) trigger a PID-regulated angular velocity loop with
quaternion goals defined in radians. All interpreted commands
are time-stamped and executed via a ROS2 executor, ensuring
synchronization and feedback integration. For planning errors
or misinterpretation, fallback handlers can re-query the LLM
using augmented prompts that include failure context.

B. Simulation Environment

Development and validation were conducted in Gazebo Classic
using the Peik robot, modeled in URDF/Xacro to replicate
real-world geometry and sensor layout (Figure 2). ROS2
middleware facilitated communication across components.
Peik’s simulated sensors include a front-mounted RGB-D
camera and an IMU. The robot was simulated in a maize
field using Gazebo, with onboard RGB-D sensing and
inertial measurement to support planning, perception, and
trajectory tracking. A modular ROS2 architecture handled
action execution and data flow between the LLM, VLM, and
navigation stack.
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The robot base is configured with a ‘base_link‘ and
‘camera_link‘ transform, aligned using static TF
publishers. The URDF includes a ZED-like camera plugin
with near-true RGB-D behavior. Odometry is simulated using
differential drive parameters in Gazebo, allowing accurate
benchmarking of LLM trajectory plans versus actual ground
truth paths. The robot’s rotational behavior is tuned with
angular velocity limits of ±1.5 rad/s and a max forward
speed of 0.5 m/s, constrained for safety in narrow-field crop
paths.

Fig. 2. Peik operating in a simulated maize field

C. LLM-Based Command Interpretation

User instructions are sent via a ROS2 topic and processed by
an OpenAI-powered LLM using the Langchain framework.
Prompts are dynamically constructed to include reasoning
and explicit robot actions. Responses are parsed into a
human-readable explanation (spoken aloud) and a command
list (e.g., drive(2), turn(90)), which is executed by the
robot. The system triggers visual processing if the response
contains the keyword [CAMERA_REQUIRED].

D. VLM Integration for Perception

For visual reasoning, the system captures a JPEG image from
the robot’s camera, encodes it in base64, and sends it with
a text prompt (e.g., "What’s in this image?") to a
GPT-4-based VLM. The model returns a natural-language
description of the scene, including obstacle presence or
task-relevant objects. This output is both published and
spoken by the robot for transparency.

IV. RESULTS

A. Trajectory Execution

The system was evaluated using a square-pattern navigation
task, where the LLM generated a plan from the command:
"Move in a square pattern, each side one meter long.". The
robot successfully executed the plan with minor trajectory
drift. A PID controller improved tracking accuracy compared
to open-loop control. Figure 3 shows the odometry trace
before and after adjustment.

Fig. 3. Robot trajectory: Open-loop vs PID control

B. Prompting Strategy Comparison

Four prompting strategies were compared: Direct, Chain-of-
Thought (CoT), Few-Shot, and Hybrid. Each strategy was
tested using the same navigation task in the simulation.
Figure 4, 5, 6 and 7 shows one example of each run.

Fig. 4. Example of prompt strategy (CoT) run

LAVANYAN RATHY ET AL.: TOWARDS HUMAN-ROBOT INTERACTION IN AGRICULTURE USING LARGE LANGUAGE MODELS 89



Fig. 5. Example of prompt strategy (Direct) run

Fig. 6. Example of prompt strategy (Few-Shot) run

A quantitative comparison assessed each strategy’s perfor-
mance over five repetitions of a trajectory planning task.
Table I summarizes the average task success rate and angular
deviation across strategies.

TABLE I
PROMPT STRATEGY EVALUATION

Strategy Success Rate
Direct Prompt 5/5
Chain-of-Thought 5/5
Few-Shot 1/5
Hybrid (CoT + FS) 3/5

C. Object Detection via VLM

The robot captured field images and passed them to GPT-4
with prompts like "Describe what’s in this image". The VLM
consistently identified crops, tools, and obstacles like bottles

Fig. 7. Example of prompt strategy (Hybrid) run

or weeds.

D. Visual Field Reporting

In extended prompts (e.g., "Generate a report of what you see
in this field"), the VLM produced coherent natural-language
summaries highlighting plant health, potential obstructions,
and environmental conditions. These reports were structured
and human-readable, supporting autonomous decisions and
remote operator review.

Fig. 8. Example of robot pov for GPT-4-generated field report

V. DISCUSSION

A. LLMs as Planners, Not Controllers

The findings validate the role of LLMs as high-level planners
capable of translating abstract natural language instructions
into executable robot behaviors. However, while LLMs can
produce coherent and logically sound plans, their real-time
execution fidelity is limited by hardware-level dynamics
and environmental variance. As shown in the square-pattern
task, deviations from expected paths were frequent in
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open-loop mode, highlighting the importance of integrating
traditional low-level control mechanisms like PID regulators.
This reinforces the necessity of hybrid architectures, where
symbolic reasoning from LLMs is grounded by deterministic
feedback control.

B. Prompt Engineering Trade-offs

The prompt design significantly influenced output quality, with
hybrid prompting (Few-shot + CoT) achieving the best balance
of reliability and generalization. Direct prompts were quick to
generate but tended to fail under ambiguity or complex task
structures. Chain-of-thought prompting improved transparency
by encouraging intermediate reasoning, sometimes resulting
in verbose or over-engineered plans. Few-shot prompting
offered stability by anchoring the model’s output style with
curated examples, but in practice, it did not generalize well
to tasks requiring geometric adaptation. Hybrid prompting
combined examples with reasoning, improving robustness
in some cases but introducing inconsistency in others. This
aligns with observations from the thesis, which showed
that prompt selection directly affects the syntactic structure,
interpretability, and trajectory adherence, especially in angle-
sensitive instructions like turning 120° versus 90°.

The results of the triangle movement experiment further
highlight the impact of system prompt design on LLM-driven
control. Despite using the same user prompt ("Move in a
triangle pattern"), the system’s output and robot behavior
varied significantly across prompting strategies.

1) Direct Prompting: Direct prompting achieved excellent
performance, with 5 out of 5 successful runs and high
consistency. This approach benefited from a system prompt
instructing the LLM to generate concise, minimal step-by-step
outputs without explicit reasoning. However, direct prompting
is highly dependent on a well-phrased initial instruction.
If user input is vague or lacks geometric precision, the
model lacks mechanisms to infer missing context, potentially
reducing robustness.

2) Chain-of-Thought (CoT) Prompting: CoT prompting also
yielded strong performance, matching direct prompting with
5 out of 5 successful runs. In this case, the model was guided
to reason that a triangle requires three sides of equal length
and external angles of 120°. This explicit explanation helped
the LLM generalize to the correct geometry.

3) Few-shot Prompting: Few-shot prompting demonstrated
poor generalization, with only 1 out of 5 successful
executions. Although the model was provided with examples
(e.g., moving in a square), it frequently overfitted to these
patterns and failed to extrapolate to triangles. Common
errors included using 90° turns instead of 120° or stopping
prematurely after one or two sides.

4) Hybrid Prompting (Few-shot + CoT): Hybrid prompting,
which combines examples with structured reasoning, achieved
3 out of 5 successful runs. This method produced promising
results when the examples and reasoning segments were
well-aligned. While hybrid prompting offers strong potential,
its effectiveness depends on carefully crafted prompt design
to avoid interference between modes.

5) Overall Observations: Direct and chain-of-thought
prompting emerged as the most reliable methods for producing
executable, ROS2-compatible plans in geometric movement
tasks. Few-shot prompting alone lacked adaptability, and
hybrid prompting, while promising, introduced occasional
inconsistencies. These findings underscore that prompting
strategy plays a central role in shaping language output and
real-world robot behavior.

For robotics applications, prompt clarity, structure, and internal
logic are critical to minimize ambiguity and execution failure.
Future research should explore combining prompt-based
control with parameterized templates, explicit reasoning
paths, or constrained decoding to improve interpretability and
task repeatability.

C. VLM-Based Perception and Reporting

The VLM component effectively grounded visual input into
human-readable outputs, such as object labels and structured
reports. Agricultural scenes were typically parsed with high
accuracy, though occlusions and low-contrast conditions
introduced occasional misclassifications, especially in
cluttered environments. This confirms the thesis’s insight that
VLMs can enhance field awareness but are sensitive to camera
placement, field layout, and scene quality. Additionally, the
ability to produce spoken reports supports explainability,
which is crucial for human trust in robot decision-making.

The object detection experiments revealed that GPT-4-based
VLMs consistently identified foreign objects such as bottles,
soda cans, and weeds, and provided type-correct descriptions.
Crucially, when no objects were present, the model did not
hallucinate, correctly reporting empty scenes. This ability to
maintain grounded, reality-consistent outputs suggests strong
baseline reliability under normal field conditions. However,
spatial localization, particularly left/right/center descriptions,
showed inconsistencies, with subjective or frame-dependent
language used to describe object position. More structured
prompting (e.g., referencing rows or distance bands) could
improve spatial clarity.

Contextual understanding was also demonstrated: the model
inferred partial occlusion when overlapping objects were
present and improved classification when similar items
appeared at varying distances. For example, in one run, a
far object was generically labeled as “debris,” while a closer
object in a similar class was correctly described as a “glass
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bottle.” This reflects a degree of contextual refinement, where
object interpretation improves with better visual cues.

Field reporting experiments further validated the model’s
ability to assess environmental risks and suggest mitigation
strategies. Detected objects were categorized by potential
hazard (e.g., “the bottle might shatter and harm equipment”),
with risk ratings inferred from visible features like size and
material. In empty field scenarios, the VLM demonstrated
conservative behavior, noting small rocks as minor concerns
rather than hallucinating threats, showing an ability to scale
its judgment based on visual evidence. However, it sometimes
underestimated cumulative risks (e.g., multiple soda cans
described without reference to quantity), highlighting a
limitation in quantitative reasoning.

Finally, the model showed early signs of predictive reasoning:
in occluded scenes, it inferred the likely presence of
a second object based on partial shape overlap. Such
capabilities could be valuable for hazard anticipation and
proactive avoidance. Nonetheless, challenges remain in depth
estimation, localization precision, and interpretability across
varying field conditions. Structured prompts, confidence
scoring, and hybrid visual reasoning modules could help
mitigate these issues for real-world deployments.

D. Human-Robot Interaction Implications

The system enables a shift in human-robot interaction (HRI)
toward natural-language-based collaboration. This reduces
the cognitive and technical burden on end users, making
robotics more accessible for domains like agriculture, where
operators are often domain experts but not programmers. This
positions conversational robotics as a tool for automation and
augmenting field intelligence.

E. Limitations and Future Directions

While the results obtained in the simulation were promising,
several limitations remain that must be addressed to enable
real-world deployment:

• Latency: API-based model queries, especially those
involving VLMs, introduced non-deterministic delays,
which hinder real-time performance.

• Robustness: LLM behavior became less predictable dur-
ing long or complex task sequences. Inconsistent internet
connectivity in field environments further reduces system
reliability.

• Scalability: The current modular architecture supports
isolated tasks but lacks mechanisms for multi-step work-
flows, memory across sessions, and coordination between
multiple agents.

To address these limitations, future work should explore
deploying LLM and VLM inference directly on edge
devices to reduce latency and improve autonomy. Visual
capabilities could also include crop growth monitoring,

disease detection, and environmental stress assessment.
Additionally, integrating adaptive feedback loops, where the
robot asks for clarification when uncertain, could significantly
enhance task reliability and user trust in ambiguous situations.

VI. CONCLUSION

This work demonstrates a modular system integrating LLMs
and VLMs to enable intuitive, explainable robot control for
agricultural tasks. By translating natural language instructions
into executable ROS2 actions and combining this with visual
perception and reporting, the system allows non-expert users
to interact with robots in accessible ways. Experimental
results show that LLMs can generate high-level plans reliably
when supported by classical control and that VLMs can
effectively interpret agricultural scenes to produce structured
field reports. This approach reduces the barrier to robotics
adoption in farming and opens new opportunities for human-
robot collaboration in semi-structured environments.

Future work will improve real-time robustness, deploy
models locally for field use, and extend visual understanding
to support crop-specific tasks such as growth analysis and
anomaly detection.
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Abstract—The assessment of the six-pack toxicity, the crucial 

six systems and organ toxicities, is vital for ensuring the safe 

use of chemicals. Computational models capable of providing 

reliable predictions are acceptable for regulatory use to replace 

animal testing. However, data scarcity issues hindered the de-

velopment of prediction models. This study proposed the first 

application of multitask learning to the six-pack toxicity for ad-

dressing  data  scarcity  issues.  Five  algorithms  were  imple-

mented and compared. Results showed that the distinct chemi-

cal space of tasks impedes the learning of shared representation 

of conventional algorithms, with performance worse than base-

line models. In contrast, the MTForestNet algorithm built on a 

biological readacross concept performed best, with 3.1% and 

3.3% improvement on AUC and accuracy, respectively. These 

findings  demonstrate  that  biologically  informed  multitask 

learning can  effectively  overcome data  scarcity  and enhance 

toxicity prediction.

Index Terms—multitask learning, biological readacross, six-

pack toxicity, distinct chemical space, MTForestNet.

I. INTRODUCTION

OXICITY prediction plays a pivotal role in the early 

stages  of  drug discovery and  chemical  safety  assess-

ment.  Among  the  large  number  of  toxicity  endpoints  for 

testing, there is a suite of six key toxicity endpoints, com-

monly  known as  the  ‘six-pack’:  acute  oral  toxicity,  acute 

dermal toxicity, acute inhalation toxicity, skin irritation, eye 

irritation,  and  skin  sensitization.  These  endpoints  provide 

important information about the system and organ toxicity 

of testing chemicals and are crucial for regulatory decision-

making and risk assessment of industrial chemicals, pharma-

ceuticals, and consumer products.

T

The  assessment  of  the  six-pack  toxicity  is  traditionally 

based  on  animal  testing.  However,  the  traditional  experi-

mental  approaches to  assess  these toxicities  are  time-con-

suming and costly, and ethical concerns are raised due to ex-

tensive animal testing. In recent years, computational meth-

ods, particularly machine learning, have emerged as power-

ful alternatives for toxicity prediction. Several studies have 

developed machine learning models for predicting the six-

pack toxicity [1], [2], [3]. 

Despite  the  efforts  made  by  the  scientific  community, 

dataset size poses a major limitation on advancing the pre-

diction  performance of  six-pack  toxicity.  It  is  unlikely  to 

have a huge increase in the testing data due to the high cost  

and labor-intensive experiments. Compared to the conven-

tional  single-task  models  developed  by  previous  studies, 

multitask  learning  algorithms  capable  of  leveraging  the 

shared  knowledge  among  relevant  learning  tasks  can  be 

promising solutions to the prediction of six-pack toxicity.

Several multitask learning algorithms have been proposed 

and implemented with success for toxicity prediction.  For 

example, three deep learning-based multitask learning algo-

rithms, including conventional, bypass, and progressive mul-

titask learning algorithms, were shown to outperform single-

task models for several drug development-relevant datasets 

[4].  The  three  algorithms  were  implemented  as  an  open-

sourced  library,  DeepChem  [4].  In  addition,  AutoGluon-

Tabular [5], a powerful automated machine learning algo-

rithm, implemented a multilabel learning algorithm that can 

be potentially useful for multitask learning. By leveraging 

shared knowledge,  multitask learning can improve predic-

tion accuracy, especially when training data for individual 

tasks is limited or imbalanced.

While the abovementioned algorithms performed well 

on the benchmark datasets, each dataset contains a large 

portion  of  shared  training  samples  among  tasks  in  the 

dataset  [6],  [7],  [8],  [9],  [10],  and therefore  ensures  the 

successful transfer of knowledge among tasks. However, 

the majority of learning tasks of toxicity datasets are with 

distinct  chemical  spaces  containing  little  or  no  shared 

samples, which hinders the application of the DeepChem-

based  methods.  To  solve  the  issue  of  distinct  chemical 

space,  MTForestNet  was  proposed  with  a  progressive 

multitask  learning  strategy  concatenating  chemical  fea-

tures  and outputs  of  individual  classifiers  of  tasks  from
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the previous layer for accuracy improvement [11]. The algo-

rithm showed superior performance compared to other algo-

rithms on the zebrafish toxicity dataset, consisting of 48 tasks, 

and is expected to be useful for other toxicity datasets with 

distinct chemical space. 

This study explores the application of multitask learning 

models to predict all six toxicity endpoints concurrently. A 

total of five algorithms were implemented and compared for 

their application to the prediction of six-pack toxicity. Results 

showed that the model based on MTForestNet performed best 

on predicting the independent test dataset with the highest av-

erage area under the receiver operating characteristic curve 

(AUC) value of 0.825, showing a 3.1% improvement over 

single-task models. The other models showed no improve-

ment or much worse performance. The low percentage of 

shared samples among the six tasks further supports the use-

fulness of MTForestNet on predicting chemical toxicity. 

II. MATERIALS AND METHODS 

A. Dataset 

The six-pack toxicity dataset was obtained from a previous 

study [3] collecting the largest dataset of toxicity data from 

the U.S. National Toxicology Program and OECD eCHem-

Portal. The dataset was randomly divided into 70% training, 

10% validation, and 20% test sets for model training, tuning, 

and independent test, respectively. A summary of the dataset 

is shown in Table I. In this study, the widely used extended 

connectivity fingerprint (ECFP) with a diameter of 6 was uti-

lized to encode the chemical feature vector. Specifically, a 

1024-dimensional vector representing the binary occurrence 

of specific substructures was utilized for machine learning. 

B. Single-task learning algorithm   

In this study, random forest [12] was utilized as the base-

line algorithm for evaluating the performance improvement 

based on multitask learning algorithms. Random forest was 

extensively used and proved to have robust and high perfor-

mance in a large number of cheminformatics tasks [13], [14], 

[15], [16], [17]. The parameters utilized to implement random 

forest classifiers were set as follows: mtry=log2(total feature 

number) and n_estimators=500. With the parameters, a sin-

gle-task random forest classifier with 500 trees and log2(total 

feature number) features sampled from all features was devel-

oped for each task.  

C. Multitask learning algorithms 

Five algorithms were implemented and compared in this 

study. Accuracy was utilized as the objective function to tune 

or select models based on the validation sets for all algo-

rithms. DeepChem package [4] was utilized to implement 

three multitask learning algorithms of multitask network 

(DC_MTN), progressive network (DC_Progressive), and by-

pass network (DC_Bypass). DC_MTN incorporates shared 

layers for learning a joint representation of all tasks with six 

separate output layers, each corresponding to a specific task. 

DC_Progressive prevents catastrophic forgetting by adding a 

new column for each task and using lateral connections to 

transfer knowledge from previously learned tasks. DC_By-

pass combines the learnable shared representation and a col-

umn of weights that bypass the shared representation for each 

task. The hyperparameters of the three networks were set as 

follows: learning_rate=0.001; dropouts=[0.20, 0.10, 0.05]; 

layer_sizes=[400, 200, 100]; penalty=0.001; weight_de-

cay_penalty_type='l2'.  

The multilabel learning algorithm of AutoGluon-Tabular 

trained an individual model for each label, with the inclusion 

of previous labels as features. In this way, the dependence of 

labels can be modeled. The default setting of AutoGluon-Tab-

ular was applied in this study with eight classifiers, including 

two neural networks based on Torch and FastAI, LightGBM 

boosted trees, CatBoost boosted trees, XGBoost, random for-

est, extremely randomized trees, and k-nearest neighbors 

were automatically trained and stacked to achieve the highest 

performance on the validation set. The parameter of 

auto_stack was set to true for automatic model stacking in the 

model development. Medium (AG_Medium) and best 

(AG_Best) quality models were built for performance com-

parison using the quality parameter.  

MTForestNet was proposed to deal with the distinct chem-

ical space of tasks with little or no shared samples. The idea 

is based on the biological data-based read-across, where the 

label (target endpoint) of chemicals tends to be similar if the 

bioactivity profile of chemicals is similar [18], [19], [20]. 

MTForestNet utilized random forest as a base learner for 

building models, each for a task. The predicted outputs of sin-

gle-task models were then fed into the next layer, where the 

feature vector was refined to concatenate both the chemical 

TABLE I. 

OVERVIEW OF DATASET SAMPLE SIZES 

Task Toxic/Nontoxic Training Validation Test 

Acute Dermal Toxicity 870/939 1266 181 362 

Acute Inhalation Toxicity 436/428 604 87 173 

Acute Oral Toxicity 6391/4723 7779 1112 2223 

Eye Irritation 1824/1841 2565 367 733 

Skin Irritation 1315/1311 1837 263 526 

Skin Sensitization 1510/1256 1935 277 554 
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fingerprint and the six outputs from the models of the previ-

ous layer. The validation set was utilized to determine the size 

of the model giving the highest validation performance.  

D. Hardware 

The experiments were conducted in a computer equipped 

with two Intel® Xeon® Gold 6330, one NVIDIA RTX 

A6000, and 2 TiB RAM. The operating system is Ubuntu 

22.04.  

III. RESULTS 

A. Tasks with low percentages of shared chemicals  

The percentages of shared chemicals among tasks were 

first analyzed to give an overview of the similarity of the six 

tasks. As shown in Fig.1, overall medium to low percentages 

of shared chemicals among tasks indicated that the six da-

tasets lack sufficient information for learning a shared repre-

sentation. The two skin-relevant tasks of skin sensitization 

and skin irritation shared the highest percentages of samples, 

where 94.94% of chemicals have both labels. The task of 

acute oral is associated with the lowest percentage of shared 

chemicals of 7.77% and 16.28% for acute inhalation and acute 

dermal, respectively. Among the 15 pairs of tasks, 5 pairs of 

tasks are associated with a percentage of shared samples less 

than or equal to 30%. Only 3 pairs of tasks are associated with 

a percentage of shared chemicals greater than or equal to 70%. 

The average percentage of samples shared in all pairs of tasks 

is 44.45%. In summary, the low percentages of shared chem-

icals may hinder the learning of shared representation for con-

ventional multitask algorithms. 

 

B. Validation performance 

The application of multitask learning algorithms for pre-

dicting six-pack toxicity includes three steps of model train-

ing based on the training sets, model tuning/validation based 

on the validation set, and model testing using the test sets.  

This section provides the validation results of the imple-

mented models. The detailed performance comparison is 

shown in Table II. The baseline models based on random for-

est provide reasonably good performance for all tasks, with 

an average AUC and accuracy of 0.777 and 0.711, respec-

tively. 

The validation performance of the three DeepChem-based 

models is much worse than that of the baseline models, with 

at least a 10% decrease in the average AUC. The average 

AUC and accuracy values are 0.673 and 0.545 for DC_MTN, 

0.659 and 0.556 for DC_Bypass, and 0.600 and 0.395 for 

DC_Progressive, respectively. As the chemical spaces are 

distinct for each task, the low performance of DeepChem-

based models is expected. 

The AutoML models based on AutoGluon-Tabular provide 

slightly worse performance compared to the random forest. 

Fig. 1 The percentage of shared chemicals for each pair of tasks 

TABLE II. 

VALIDATION PERFORMANCE 

Model Acute Dermal  

Toxicity 

Acute Inhalation  

Toxicity 

Acute Oral  

Toxicity 

Eye  

Irritation 

Skin  

Irritation 

Skin  

Sensitization 

Random forest 0.773/0.680 0.794/0.770 0.840/0.761 0.729/0.665 0.803/0.730 0.724/0.657 

MTForestNet 0.813/0.713 0.833/0.770 0.829/0.772 0.758/0.689 0.847/0.768 0.746/0.679 

AG_Medium 0.773/0.707 0.723/0.690 0.841/0.763 0.708/0.649 0.804/0.722 0.724/0.671 

AG_Best 0.791/0.718 0.777/0.701 0.842/0.761 0.738/0.678 0.728/0.668 0.728/0.668 

DC_MTN 0.676/0.595 0.713/0.464 0.742/0.621 0.609/0.515 0.714/0.617 0.586/0.455 

DC_Bypass 0.687/0.565 0.689/0.582 0.734/0.592 0.603/0.531 0.684/0.581 0.556/0.487 

DC_Progressive 0.702/0.585 0.500/0.019 0.500/0.279 0.622/0.521 0.698/0.560 0.577/0.407 

Performance is expressed as AUC/Accuracy. Bold numbers show the best performance in the specific task. 

 

Fig. 2 The validation performance of MTForestNet 
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The average AUC and accuracy values of AG_Medium are 

0.762 and 0.700, respectively. AG_Best delivers a slightly 

better AUC of 0.767 and slightly worse accuracy of 0.699. 

The MTForestNet, designed for dealing with the distinct 

chemical space of tasks, performed best. Fig. 2 shows the 

training process with accuracy and AUC performance for 

each layer. The optimal number of layers of MTForestNet 

was determined to be six according to the accuracy of the val-

idation set.  Its average AUC is 0.804, which is 3.3% better 

than the baseline models. With an average accuracy of 0.732, 

MTForestNet provides 2.1% performance improvement over 

the baseline models. 

Table II showed that MTForestNet performed best in 5 out 

of the 6 tasks in terms of AUC and accuracy. AG_Best is the 

best model for acute dermal toxicity and acute oral toxicity in 

terms of accuracy and AUC, respectively. However, AG_Best 

is worse than the baseline models for the other tasks, resulting 

in a worse average AUC and accuracy compared to the base-

line model.  

C. Independent test 

The independent test showed similar results that MTForest-

Net is the only algorithm providing a superior performance 

over the baseline model, with an average AUC and accuracy 

of 0.825 and 0.747, respectively. A 3.1% and 3.3% improve-

ment on the average AUC and accuracy was achieved com-

pared to the random forest models. The average AUC and ac-

curacy of random forest models are 0.794 and 0.714, respec-

tively.  

Table III showed that MTForestNet performed best in 5 

and 4 tasks in terms of AUC and accuracy, respectively.  

While with a slightly worse mean AUC of 0.779, AG_Best 

models provide good accuracy of 0.743, which is close to 

MTForestNet models and better than the baseline models. 

AG_Best is the best model in 1 and 2 tasks in terms of AUC 

and accuracy, respectively, as shown in Table III. As for the 

DeepChem-based models, their performance is the worst 

among the evaluated algorithms and is much worse than the 

baseline models. The average AUC and accuracy are 0.667 

and 0.557 for DC_MTN, 0.667 and 0.568 for DC_Bypass, 

and 0.603 and 0.403 for DC_Progressive, respectively. 

D. Comparison to existing methods 

There are three recently published methods aiming to pre-

dict six-pack toxicity [1], [2], [3]. However, a careful evalua-

tion found that the three studies divide the whole dataset into 

training and validation sets without an independent test. All 

three studies applied multiple machine learning algorithms 

and picked the best results from validation results. In this 

case, the prediction performance may be overestimated. Nev-

ertheless, a comparison to existing methods can still provide 

some information on the current status of prediction models 

for six-pack toxicity.  

We first compare our results with the study [3] using the 

same dataset. Only accuracies rounded to two decimal places 

were fully disclosed in their paper, with an average value of 

0.75 based on the validation set. Their average accuracy value 

is the same as that of the developed MTForestNet model 

based on the test set, indicating that MTForestNet performed 

very well without the need to exhaustively train and select 

models.  

The other two studies used a smaller dataset [1], [2] for 

model development. There is no accuracy information re-

ported by StopTox [1]. Instead, a balanced accuracy repre-

senting a mean of sensitivity and specificity was given based 

on their validation set with an average value of 0.735. Please 

note that the results were based on a selection of chemicals 

suitable for the StopTox models. There are 5.4% deemed to 

be not suitable for the StopTox models. Without a selection 

of chemicals, the MTForestNet model with an average value 

of balanced accuracy of 0.7445 based on the test set provides 

better performance. The latest study [2] exhaustively trained 

all models by using the combination of three algorithms and 

four representations of chemicals. The selection of the best 

models based on their validation set yields average AUC val-

ues of 0.832 and 0.802 for models based on fingerprint and 

descriptor, and physicochemical properties, respectively. 

MTForestNet with an average AUC of 0.825 based on the test 

set is better than the models based on physicochemical prop-

erties and comparable to the models based on fingerprint and 

descriptor. While they proposed to combine the best-perform-

ing models to vote for the final prediction with a higher AUC 

TABLE III. 

INDEPENDENT TEST 

Model Acute Dermal 

 Toxicity 

Acute Inhalation 

 Toxicity 

Acute Oral  

Toxicity 

Eye  

Irritation 

Skin  

Irritation 

Skin  

Sensitization 

Random forest 0.836/0.732 0.758/0.676 0.832/0.745 0.767/0.703 0.822/0.751 0.751/0.679 

MTForestNet 0.865/0.765 0.842/0.740 0.819/0.752 0.795/0.719 0.851/0.795 0.779/0.708 

AG_Medium 0.826/0.729 0.765/0.711 0.838/0.757 0.746/0.689 0.804/0.743 0.749/0.671 

AG_Best 0.729/0.826 0.760/0.728 0.838/0.760 0.771/0.700 0.815/0.743 0.762/0.702 

DC_MTN 0.747/0.622 0.654/0.483 0.730/0.628 0.596/0.521 0.683/0.615 0.589/0.473 

DC_Bypass 0.748/0.569 0.642/0.591 0.745/0.624 0.600/0.546 0.672/0.592 0.593/0.487 

DC_Progressive 0.729/0.602 0.500/0.019 0.500/0.280 0.617/0.530 0.687/0.558 0.584/0.429 

Performance is expressed as AUC/Accuracy. Bold numbers show the best performance in the specific task. 
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of 0.838 based on their validation set,  the iterative use of 

samples from the validation set is prone to overfit the valida-

tion set without generalization ability to unseen samples.

Overall, MTForestNet provides an easy-to-use and robust 

method for predicting six-pack toxicity. The models devel-

oped in this study were rigorously validated and indepen-

dently tested, and performed better than existing methods.

E. Comparison of training times

While good performance was achieved by the MTForest-

Net, it would be interesting to know the efficiency of the al-

gorithms.  We  therefore  compare  the  training  time  of  the 

models. The baseline model requires 58 seconds for training 

six models. The DeepChem algorithms with early stop en-

abled  are  efficient,  although  with  the  worst  performance. 

The training times are 40 seconds, 1 minute and 46 seconds, 

and 7 minutes and 19 seconds for DC_MTN, DC_Bypass, 

and DC_Progressive. The AG_Medium and AG_Best took 

the longest training time of 8 minutes and 28 seconds and 5 

hours, 48 minutes and 34 seconds, respectively. MTForest-

Net  maintains  a  well-balanced training time of  7  minutes 

and 26 seconds and the best prediction performance. Please 

note that only DeepChem-based models were trained using a 

GPU. CPU-based training was conducted for the other algo-

rithms, and the model training may be further accelerated by 

using a GPU. 

IV. CONCLUSION

Distinct chemical space is a unique attribute of biochemi-

cal  datasets  with  little  or  no  common  chemicals  shared 

among the tasks. Conventional multitask learning algorithms 

relying on  learning a  shared representation  obtained from 

the common chemicals may not provide beneficial effects on 

the  prediction  performance.  This  study  implemented  and 

compared  three  types  of  multitask  learning  algorithms. 

Based  on  the  validation  and  independent  test  results,  we 

found  that  the  biological  readacross-based  MTForestNet 

performed best.  Overall,  this work represents a significant 

step  toward  a  biologically  grounded  and  performance-en-

hancing solution suitable for computational toxicology tasks. 
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Abstract—Cell aggregation, where cells stick together, is a key
process in many biological events like how embryos form, how
tissues heal, and how microbes create communities. Studying
this involves looking at different types of data, from detailed
molecular information to images and patient data. With new
technologies, we have access to large amounts of this data
in public databases. Analyzing and combining this complex
information requires advanced computer methods. While there
are challenges in handling and integrating these diverse datasets,
exploring them helps us understand basic biology, develop models
for diseases, find new drugs, and advance regenerative medicine.
This report reviews these data types, sources, and analysis
methods to guide research in this important field.

Index Terms—Reinforcement Learning, MARL, Cell Mechan-
ics, Cell aggregation

I. INTRODUCTION

CELL aggregation [3], the process by which individual
cells adhere to one another to form multicellular struc-

tures [4], represents a fundamental biological phenomenon
observed across the tree of life. This self-assembly is not
merely a passive physical process but is frequently governed
by intricate molecular mechanisms and dynamic cellular be-
haviors. Aggregation plays critical roles in diverse contexts,
ranging from the formation of complex organisms during em-
bryonic development to the establishment of resilient microbial
communities known as biofilms [14]. It is also central to
physiological processes such as hemostasis, where platelets
aggregate to form blood clots, and immune responses, involv-
ing the clustering of lymphocytes and other immune cells
at sites of infection or within specialized lymphoid tissues.
Furthermore, in vitro cell aggregation is the foundational
principle behind the generation of three-dimensional (3D)
cell culture models, including spheroids and organoids [24],
which serve as powerful tools for studying tissue development,
disease modeling, and drug screening.

Understanding the intricacies of cell aggregation across
these varied biological systems requires the collection and

analysis of diverse types of data. Modern high-throughput
technologies, such as next-generation sequencing, advanced
microscopy, and automated functional assays, are generating
vast amounts of quantitative data related to cellular compo-
sition, molecular profiles, spatial organization, and dynamic
behaviors within aggregating cell populations. Navigating and
leveraging these extensive datasets, often stored in public
repositories, presents both opportunities and challenges for
researchers.

Artificial Intelligence (AI) and Machine Learning (ML)
has significant uses in many areas including healthcare [9],
vehicular communication [10], e-learning [2], rehabilitation
[12] and risk management [7]. Reinforcement Learning (RL)
is one the most promising type of ML [17] that has brought
revolution in different areas and cell mechanics can also be
benefited with this technology. Multi Agent RL (MARL) is
the extension of RL where multiple agents are being used for
multiple task within a bigger task.
This paper explores the landscape of data relevant to cell
aggregation by examining key biological scenarios where it
plays a critical role. The types of data generated by various
experimental techniques are categorized, and prominent public
data repositories where these data are stored and can be
accessed are identified. The aim is to provide a structured
overview for researchers seeking to utilize existing datasets to
study cell aggregation phenomena.

II. BACKGROUND

Cell aggregation [18] is a fundamental process that under-
pins the formation, function, and maintenance of biological
structures at multiple scales. Its significance spans numerous
fields of biological and medical research [19].

In embryonic development, cell aggregation is a primary
mechanism driving morphogenesis from the zygote. Following
initial cell divisions [5], blastomeres aggregate to form the
morula, a compact ball of cells. This compaction is critical
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for establishing cell polarity and initiating the first lineage
segregation, leading to the formation of the blastocyst with
its distinct inner cell mass and trophectoderm. Subsequent
aggregation and rearrangement of cells within the developing
embryo give rise to the three germ layers—ectoderm, meso-
derm, and endoderm—which then differentiate and organize
into the precursors of all tissues and organs. The precise timing
and spatial control of these aggregation and differentiation
events are governed by complex genetic programs and cell-
cell communication mediated by signaling pathways.

Organoid formation in the laboratory directly leverages the
inherent ability of cells, particularly stem cells, to aggregate
and self-organize into 3D structures resembling native tissues.
By providing specific biochemical cues, such as growth factors
and signaling molecules, and appropriate physical environ-
ments, researchers can guide the aggregation and differenti-
ation of pluripotent or adult stem cells to generate organoids
mimicking various organs like the brain, intestine, kidney,
or liver. These 3D models offer significant advantages over
traditional two-dimensional cell cultures by better recapitulat-
ing the complex cell-cell interactions, tissue architecture, and
physiological functions of their in vivo counterparts.

In the microbial world, biofilm formation is a widespread
lifestyle characterized by the aggregation of bacteria and
other microorganisms on surfaces, encased within a self-
produced extracellular matrix (ECM). This aggregated lifestyle
provides significant advantages, including enhanced resistance
to environmental stresses, disinfectants, and antibiotics, as
well as protection from host immune responses. Biofilms
are implicated in numerous industrial issues and persistent
infections, making the study of their formation and dispersal
critical for developing effective control strategies.

Blood clotting, or platelet aggregation [20], plays a critical
role in hemostasis [13], the body’s natural process for stopping
bleeding after a blood vessel is injured. Platelets quickly
gather and stick together at the injury site, forming a plug
that’s strengthened by fibrin to seal the damaged vessel. While
essential for survival, if platelet aggregation becomes uncon-
trolled, it can lead to dangerous thrombosis—the formation of
clots within healthy blood vessels. This can result in serious
conditions like deep vein thrombosis, pulmonary embolism,
stroke, and heart attack. Understanding the mechanisms of
platelet aggregation is therefore vital for diagnosing bleeding
disorders and developing treatments to prevent clots.

Immune cell aggregation is a critical aspect of the adaptive
immune response. Following recognition of foreign antigens,
lymphocytes and other immune cells proliferate and aggre-
gate in secondary lymphoid organs, forming structures like
germinal centers within B cell follicles. These aggregates
provide specialized microenvironments for processes such as
B cell affinity maturation and the generation of memory cells
and antibody-secreting plasma cells, which are essential for
long-lived immunity and effective vaccination. Immune cell
aggregation also occurs at sites of infection or inflammation,
facilitating coordinated cellular interactions to clear pathogens
or resolve tissue damage.

Fig. 1. Types of Cell Aggregation

In the context of tissue regeneration [15] and engineering,
cell aggregation techniques are employed to create multicellu-
lar building blocks, such as spheroids or organoids, which can
be used to repair or replace damaged tissues. Understanding
how cells aggregate, maintain viability, and differentiate within
these 3D structures is vital for developing effective regenera-
tive therapies [23]. Mechanical forces and cell-cell interactions
within these aggregates play a significant role in directing cell
fate and tissue organization.

Finally, neuronal aggregation [21] is a key stage in the de-
velopment of the nervous system. As newly generated neurons
migrate to their final destinations in the brain, they aggregate
with similar cell types to form distinct brain regions and layers.
This process is guided by cell-cell recognition and adhesion
molecules and is crucial for establishing the complex circuitry
of the brain. Dysregulation [11] of neuronal aggregation and
migration is implicated in various neurological disorders.

The study of these diverse cell aggregation phenomena is
fundamentally important for unraveling basic biological prin-
ciples, creating accurate models of human health and disease,
and developing innovative therapeutic and biotechnological
applications. Multi-Agent Reinforcement Learning (MARL)
emerges as a particularly promising computational paradigm.
MARL, a specialized subfield of artificial intelligence, is de-
signed to model complex systems where multiple autonomous
agents interact and learn in a shared environment. This report
explores the application of MARL to the intricate domain
of cell mechanics, aiming to address the inherent limitations
of traditional computational approaches in fully capturing the
multi-agent nature and emergent properties of cellular systems.
The subsequent sections detail the necessary revisions to
enhance the paper’s technical depth and highlight the unique
contributions of MARL to this vital field.
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III. DATA TYPES RELEVANT TO CELL AGGREGATION
STUDIES

Investigating the multifaceted nature of cell aggregation
necessitates the acquisition and analysis of data across various
scales, from the molecular interactions governing cell adhesion
to the macroscopic morphology and dynamics of the resulting
aggregates.

Molecular Data [16] provides insights into the genetic
programs, protein machinery, and signaling networks that
regulate cell aggregation and the subsequent behavior of ag-
gregated cells. Transcriptomics, encompassing techniques like
bulk RNA sequencing, single-cell RNA sequencing (scRNA-
seq), and spatial transcriptomics, provides insight into gene
expression patterns. These patterns, in turn, determine a cell’s
identity, its stage of differentiation, and how it responds to
its surroundings within cellular groupings. Genomics data [1],
including DNA sequence variations, copy number changes,
and epigenetic modifications, provide the foundational genetic
and regulatory landscape influencing aggregation potential and
associated disease states. Proteomics data [8] identify the
proteins present, their abundance, and post-translational mod-
ifications, detailing the molecular machinery of cell adhesion,
ECM production, and signal transduction within aggregates.
Data on signaling pathways, including the activity of receptors,
kinases, and transcription factors, illuminate how cells perceive
and respond to their environment and coordinate collective
behaviors like aggregation, differentiation, and migration.

Cellular Data captures the physical characteristics and activ-
ities of individual cells and cell populations within aggregates.
Imaging data, acquired through various microscopy techniques
(light, confocal, electron, time-lapse, spatial), provides visual
information on cell morphology, spatial arrangement, and the
dynamic process of aggregation and structural development.
Functional assay data quantifies cellular activities such as elec-
trophysiological signaling in neuronal aggregates or organoids,
transport function in epithelial structures, or responses to exter-
nal stimuli like drugs or pathogens. Flow cytometry provides
high-throughput, single-cell analysis of protein expression, en-
abling the identification and quantification of distinct cell types
and their activation states within heterogeneous populations,
particularly relevant for immune cells and platelets.

Clinical Data [6] provides essential context for studying cell
aggregation in disease. This includes patient demographics,
medical history, lifestyle factors, treatment regimens, disease
severity, and clinical outcomes. Such data are critical for cor-
relating in vitro findings with in vivo conditions and assessing
the translational relevance of research, particularly in areas
like thrombosis and immune disorders.

IV. EXPLORING CELL AGGREGATION DATA ACROSS
BIOLOGICAL CONTEXTS

The application of these diverse data types varies depending
on the specific biological context of cell aggregation bein
studied. Each scenario presents unique challenges and oppor-
tunities for data exploration .

In the study of organoid formation, a key aspect is under-
standing how these in vitro aggregates recapitulate the com-
plexity of native organs. Single-cell RNA sequencing (scRNA-
seq) is indispensable for dissecting the cellular heterogeneity
within organoids, identifying the different cell types that
emerge during differentiation, mapping their developmental
trajectories, and comparing their molecular profiles to those of
cells in primary tissues. Dedicated databases like OrganoidDB
serve as valuable resources for exploring organoid transcrip-
tomes, including extensive collections of scRNA-seq data. The
inherent variability observed between individual organoids,
even within the same culture, underscores the need for high-
throughput quantitative data collection and analysis. This vari-
ability can be assessed through large-scale scRNA-seq studies
of many organoids or through automated imaging analysis.
Imaging data, particularly from brightfield, phase contrast,
and confocal microscopy, provides crucial information on
organoid morphology, size, growth kinetics, and the formation
of complex structures like lumens. The large volume of images
generated in high-throughput organoid screens necessitates
automated image analysis tools, often employing machine
learning, to segment, quantify, and track individual organoids.
Datasets like MultiOrg specifically provide microscopy images
of organoids with annotations for training such tools. Beyond
structural and compositional analysis, functional assay data
are critical for validating whether organoids truly mimic the
physiological activities of their corresponding organs. This
includes assessing barrier function, transport activity (e.g.,
in kidney or intestinal organoids), or electrophysiological
signaling (e.g., in brain organoids). The combination of multi-
omics (genomics, transcriptomics, proteomics, metabolomics)
and functional data is essential for a thorough assessment
of organoid authenticity, stability, and translational potential,
particularly for applications in disease modeling and drug
screening.

Investigating embryonic development requires unraveling
precisely controlled spatiotemporal events, including cell ag-
gregation, migration, and differentiation. Gene expression
data, from bulk and single-cell transcriptomics, provides a
molecular narrative of these processes, revealing which genes
are active at different developmental stages and in different
cell lineages. However, understanding development requires
knowing where genes are expressed within the developing
tissue. Spatial transcriptomics addresses this need by mapping
gene expression profiles while preserving spatial information,
providing molecular maps of embryonic structures and cel-
lular organization. The four-dimensional nature of develop-
ment (3D space over time) makes the integration of spatial
and temporal data particularly crucial for linking molecular
events to dynamic cellular behaviors and structural changes.
Time-lapse microscopy captures the dynamic morphological
aspects of embryonic development, including cell division
timings, migration patterns, and the process of aggregation
and morphogenesis in living embryos over extended periods.
This generates massive datasets, particularly in applications
like IVF, which necessitate advanced computational meth-
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ods, such as machine learning, to automate analysis, extract
morphokinetic parameters, and identify predictive patterns for
embryo viability. Public repositories like GEO , TEDD ,
and the Allen Brain Atlas (Developing Mouse/Human) and
BrainSpan provide access to vast amounts of gene expression
and anatomical data from developing organisms.

The study of microbial biofilm formation relies heavily
on understanding the transition from planktonic single cells
to aggregated communities and the molecular mechanisms
underlying this process. Genomic and transcriptomic data
reveal the genes involved in surface attachment, cell-cell
adhesion, ECM production, quorum sensing, and stress re-
sponses that are upregulated or downregulated during biofilm
development. Multi-omics approaches, integrating genomics,
transcriptomics, and proteomics, provide a more comprehen-
sive view of the molecular changes and functional pathways
involved in biofilm formation and resistance. Imaging data,
particularly from confocal laser scanning microscopy (CLSM),
is essential for visualizing the 3D structure of biofilms, in-
cluding microcolonies, water channels, and the distribution
of cells and ECM components. Time-lapse imaging allows
tracking the dynamics of biofilm growth and dispersal. Public
repositories like GEO and specialized biofilm databases (e.g.,
aBiofilm, BiofOmics, Biofilms Structural Database, BRaID)
serve as sources for genomic, transcriptomic, and sometimes
image data related to biofilms. Understanding the molecular
mechanisms driving phenotypic shifts during biofilm forma-
tion is significantly enhanced by integrating multi-omics data,
while imaging captures the essential 3D structure and dynamic
processes of aggregation.

Research on platelet aggregation and thrombus formation
involves characterizing the rapid cellular and molecular events
occurring at sites of vascular injury.Data from aggregom-
etry, especially light transmission aggregometry (LTA) and
impedance aggregometry, quantifies how platelets clump to-
gether and the degree to which they do so when exposed to
different agonists. These assays provide quantitative param-
eters such as maximum aggregation, slope, and lag phase.
Microscopy images, especially time-lapse fluorescence and
DIC microscopy of thrombus formation under flow conditions,
visualize the process of platelet adhesion, shape change, ag-
gregation, and the incorporation of fibrin and other blood cells
into the growing thrombus. These images allow for quantitative
analysis of thrombus size, morphology, and dynamics. Flow
cytometry is used to analyze platelet activation markers and
identify distinct platelet subpopulations within blood samples.
Clinical data from patients with thrombotic disorders [22] or
bleeding tendencies are essential for identifying risk factors,
correlating laboratory findings with clinical outcomes, and
evaluating the effectiveness of antiplatelet and anticoagulant
therapies. Public resources like clinical trial databases (e.g.,
ClinicalTrials.gov), disease-specific registries (e.g., ISTH reg-
istries), and genomic databases (e.g., NIH GTR) provide
access to relevant clinical and genetic data.

The study of immune cell aggregation, such as in ger-
minal centers or at infection sites, involves characterizing

the cellular composition, spatial organization, and functional
interactions of immune cells. Flow cytometry, including high-
dimensional techniques like CyTOF, is widely used to identify
and quantify different immune cell subsets based on surface
protein expression and analyze their activation states within
heterogeneous populations . Repositories like ImmPort house
extensive flow cytometry data from immunology studies and
clinical trials . Imaging data, such as intravital microscopy,
allows visualization and tracking of immune cell migration
and interactions in real-time within tissues, providing spatial
and dynamic context to flow cytometry findings. Databases
like IDR and those linked through the Human Cell Atlas ini-
tiatives may contain relevant imaging data. Data on cytokines
and chemokines are critical for understanding the molecular
signals that mediate immune cell recruitment, activation, and
communication within aggregates. Databases like ImmPort
and specialized cytokine/chemokine resources (e.g., CYTO-
CON DB, Cell Interaction Knowledgebase) provide access to
these data .

For tissue regeneration and engineering, data focuses on the
behavior of cells within aggregates used as building blocks.
Cellular data, including viability, proliferation, differentiation
status (often assessed via markers), and the impact of mechan-
ical forces or environmental cues, are critical. Imaging data
captures the formation, growth, and structural organization
of these cellular aggregates, as well as the integration of
different cell types in co-cultures. Data on the composition
and properties of the extracellular matrix within aggregates or
surrounding them (e.g., hydrogels) is also important, as the
ECM provides structural support and signaling cues influenc-
ing cell behavior.

Understanding neuronal aggregation during brain develop-
ment involves characterizing the types of neurons, their migra-
tory paths, and how they organize into specific brain structures.
Imaging data, including light microscopy, electron microscopy,
and various brain imaging modalities (MRI, fMRI), provides
visual information on neuronal morphology, connectivity, and
the large-scale structure of the brain formed by aggregated
neurons . Specific data types include neuronal morphology
reconstructions (neuronal tracing data) , electrophysiological
recordings of neuronal activity , and gene expression profiles
(transcriptomics) related to neuronal development and cell type
specification. Large public databases like NeuroMorpho.Org
and the Allen Brain Atlas suite provide access to extensive
datasets on neuronal morphology, gene expression, and con-
nectivity.

V. PUBLIC DATA SOURCES

Access to publicly available data is crucial for advancing re-
search in cell aggregation. Numerous repositories host relevant
datasets, often specialized by data type or biological domain.

The Gene Expression Omnibus (GEO) serves as a prominent
international public repository for a wide range of high-
throughput functional genomics data, including genomic, tran-
scriptomic, and epigenomic datasets, including microarray
and next-generation sequencing data. GEO supports various
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organisms and experimental conditions, making it a valuable
resource for studying gene expression changes during ag-
gregation processes in diverse contexts, including embryonic
development, organoid formation, and biofilm development.
Data can be searched and downloaded via the GEO DataSets
and GEO Profiles interfaces, FTP, or programmatic access.

For organoid-specific transcriptomic data, OrganoidDB pro-
vides a comprehensive resource for bulk and single-cell RNA-
seq profiles of human and mouse organoids, integrating data
from GEO and ArrayExpress. It allows searching and brows-
ing based on organoid type, source, protocol, and developmen-
tal stage.

For neuronal morphology and related data, NeuroMor-
pho.Org is a centrally curated inventory of digitally recon-
structed neurons from various species, providing 3D mor-
phological data and associated metadata. The Allen Brain
Atlas suite provides extensive resources for neuronal data,
including gene expression atlases for adult and developing
mouse and human brains, connectivity maps, and single-
cell characterization data (morphological, electrophysiological,
transcriptomic). Data can be accessed via web portals, APIs,
and SDKs . The BRAIN Initiative Cell Census Network
(BICCN) also provides access to multimodal brain cell atlas
data through various archives like NeMO, BIL, and DANDI.

For immune cell and cytokine/chemokine data, the Im-
munology Database and Analysis Portal (ImmPort) is a major
repository for immunology research data, including clinical
trial data, flow cytometry, and multiplex cytokine/chemokine
data. ImmPort provides tools for searching, downloading, and
analyzing shared data.

The Image Data Resource (IDR) serves as a public repos-
itory for imaging data, specifically microscopy images of
cells and tissues. This resource archives image datasets from
published scientific research, accommodating diverse imaging
techniques and organisms. Users can search for and access
high-quality biological image data through this platform.

Several resources are available for clinical data concerning
thrombotic disorders. These include established clinical trial
databases (such as ClinicalTrials.gov), registries specific to
diseases (for example, those maintained by the ISTH for
rare bleeding disorders or VTE), and certain extensive claims
or electronic health record databases, though access to the
latter might be limited. Additionally, the NIH Genetic Testing
Registry (GTR) offers details on genetic tests relevant to
thrombotic conditions.

For histological images, resources like the GTEx Tissue
Image Library and specialized datasets like TissueNet or those
linked through initiatives like TCGA or Human Protein Atlas
provide access to tissue histology images, sometimes with
annotations .

For biofilm genomic and transcriptomic data, in addition
to GEO, specialized databases like BBSdb and the Biofilms
Structural Database (BSD) exist, though access methods vary.
Some data may also be available in generalist repositories like
Dryad or institutional repositories.

VI. MULTI AGENT REINFORCEMENT LEARNING AND
MACHINE LEARNING TO CELL AGGREGATION

A. Cancer: Histopathology and scRNA-seq Data Analysis

1) Image Analysis (Histopathology): Deep learning models
(e.g., Convolutional Neural Networks - CNNs) can be trained
on histopathology images to identify cancerous aggregation
patterns, tumor boundaries, and predict malignancy. Multi-
RL can then be used to optimize image segmentation and
classification by learning from different expert annotations or
even guiding the sampling of new image regions for analysis.

2) scRNA-seq for cell state and interaction: ML algorithms
such as clustering (e.g., t-SNE, UMAP, K-means) can iden-
tify distinct cell populations and their aggregation tendencies
from scRNA-seq data. Multi-RL can be employed to model
the dynamic interactions between different cell types (e.g.,
cancer cells, immune cells, stromal cells) within the tumor
microenvironment. Each cell type could be considered an
agent, learning optimal strategies for proliferation, migration,
or interaction based on the transcriptional states of neighboring
cells, allowing for prediction of tumor growth or response to
therapy.

B. Wound Healing: Microscopy and scRNA-seq Data Analysis

1) Time Lapse Microscopy for Cell Dynamics: ML algo-
rithms can track individual cell movements and aggregation
dynamics from time-lapse microscopy images. Multi-RL can
model the collective behavior of cells (e.g. fibroblasts, immune
cells, keratinocytes) during wound closure. Each cell or a
group of cells can act as an agent, learning policies for
migration, proliferation, and extracellular matrix remodeling to
optimize healing efficiency, potentially identifying bottlenecks
or aberrant healing processes.

2) Spatial Transcriptomics for Cellular Coordination:
Integrating scRNA-seq with spatial information allows us to
understand how different cell types spatially interact during
wound healing. ML can identify spatial gene expression
patterns that indicate successful healing. Multi-RL can then
simulate the ”decision-making” of cells based on their local
environment and gene expression, learning how to coordinate
their actions (e.g., secreting growth factors, migrating towards
specific cues) to achieve optimal tissue regeneration.

C. Embryogenesis: Live Imaging and Spatial RNA-seq Data
Analysis

1) Modeling Morphogenesis: Live imaging data provides
dynamic information on cell shape changes and movements.
ML models can be trained to predict developmental outcomes
based on initial cell configurations. Multi-RL is highly suitable
for modeling complex, self-organizing processes of embryo-
genesis. Each cell or group of cells can be an agent, learning
from its neighbors and environmental cues to make ”decisions”
regarding division, differentiation, migration, and adhesion,
ultimately forming complex tissues and organs. The ”reward”
signal could be the successful formation of a specific tissue
structure or stage of development.
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2) Spatial Transcriptomics for Developmental Programs:
Spatial RNA-seq data reveals gene expression patterns across
developing tissues. ML can identify gene regulatory networks
driving cell aggregation and differentiation. Multi-RL agents,
representing different cell lineages, can learn optimal strate-
gies for gene expression changes and physical interactions
to achieve proper tissue patterning and organogenesis. This
could involve simulating how cells interpret and respond to
morphogen gradients and mechanical forces to reach their
correct positions and fates.

D. Immune Swarming: Immune Imaging and scRNA-seq Data
Analysis

1) Tracking Immune Cell Dynamics: Immune imaging data
allows for tracking the movement and interactions of immune
cells. ML can identify different immune cell subsets and their
migration paths. Multi-RL can simulate immune swarming by
treating individual immune cells or groups as agents. These
agents can learn to chemotax (move along chemical gradients),
interact with pathogens, and coordinate with other immune
cells to effectively clear infections or respond to inflamma-
tion. The ”reward” could be the successful containment of a
pathogen or resolution of inflammation.

2) Predicting Immune Response Outcomes: scRNA-seq
provides insights into the transcriptional states of immune
cells during aggregation. ML can correlate these states with
disease outcomes. Multi-RL can be used to model the adaptive
strategies of immune cells in response to evolving threats,
optimizing their aggregation and effector functions. For exam-
ple, agents could learn to upregulate specific receptors, secrete
cytokines, or initiate cell-to-cell contact based on the presence
of pathogens or signals from other immune cells, leading to a
more efficient and coordinated immune response.

E. Neural Aggregation: Brain Organoids and scRNA-seq Data
Analysis

1) Predicting Neuronal Migration and Circuit Formation:
ML models can analyze time-lapse imaging, gene expression
data, and spatial transcriptomics data from brain organoids to
predict the trajectories of migrating neurons and the formation
of neural circuits. Multi-RL can simulate the intricate dance
of neuronal migration and circuit assembly. Individual neurons
or neuronal clusters can be agents that learn to navigate com-
plex environments, form connections with appropriate partners
(synaptogenesis), and integrate into functional networks. The
”reward” signal could be the successful formation of a mature
neural circuit with specific functional properties, as assessed
by electrophysiological recordings or imaging data.

2) Modeling Neuroplasticity and Disease Progression:
Multi-RL can be used to model neuroplasticity, where neu-
rons learn to adapt their connections and firing patterns in
response to stimuli. In the context of neurodevelopmental
or neurodegenerative diseases, Multi-RL could simulate how
aberrant aggregation or connectivity leads to dysfunction.
Agents (neurons) could learn to compensate for damage or
disease-related changes, or conversely, models could identify

tipping points where the system transitions to a diseased state.
This could inform strategies for intervention or rehabilitation.

F. Cardiac Cell Repair: Heart Tissue Imaging Data Analysis

1) Modeling Myocardial: Regeneration Multi-RL can sim-
ulate the complex interplay of various cell types involved
in cardiac repair, including cardiomyocytes, fibroblasts, and
immune cells. Each cell type could be an agent, learning
to respond to signals from the damaged microenvironment
(e.g., inflammatory cues, growth factors) to contribute to tissue
regeneration. This could involve learning optimal strategies
for proliferation, differentiation, and secretion of extracellular
matrix components to promote functional tissue repair and
prevent maladaptive remodeling. This type of modeling could
lead to the identification of novel therapeutic targets to enhance
cardiac repair.

2) Optimizing Cell Delivery and Engraftment: ML al-
gorithms can analyze heart tissue imaging (e.g., histology,
gene expression profiles) to assess the survival, integration,
and functional impact of transplanted cells (e.g., stem cells,
cardiomyocytes) in damaged heart tissue. Multi-RL can then
be employed to optimize cell delivery strategies. Agents (e.g.,
individual transplanted cells or surrounding host cells) could
learn to interact optimally to promote engraftment, vascular-
ization, and functional integration into the host myocardium.
The ”reward” could be measured by improvements in cardiac
function, reduced scar tissue formation, or successful electrical
coupling.

VII. FORMULATING A CELL MECHANICS PROBLEM INTO
MARL

The process of formulating a cell mechanics problem into
a Multi-Agent Reinforcement Learning (MARL) framework
requires translating biological phenomena into computational
elements while preserving the complex, emergent nature of
multicellular systems.

In this formulation:

A. Agents

Agents correspond to autonomous biological cells (e.g.,
blastomeres, epithelial cells, immune responders), each acting
based on local perceptions and internal states.

B. States

States encapsulate multidimensional cell features such as
spatial coordinates, polarity vectors, cell cycle phase, gene
expression profiles, mechanical tension, and adhesion strength.
These may be derived from real-time imaging, transcriptomics,
and biomechanical simulations.

C. Actions

Actions include discrete and continuous choices like mi-
gration, division, differentiation, polarity realignment, ECM
remodeling, and intercellular signaling.
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D. Reward Functions

Reward Functions are formulated to capture biologically
meaningful objectives—such as optimizing tissue cohesion,
minimizing energy expenditure, achieving correct positional
fate, or synchronizing morphogenetic movements. These may
include sparse or dense feedback and require multi-objective
optimization.

E. Environment

Environment refers to the spatial-temporal tissue context,
characterized by dynamic morphogen gradients, extracellular
matrix properties, boundary conditions, and interactions with
neighboring agents.

VIII. DISCUSSION

A. Advantages of MARL Over Single-Agent RL in Cell
Mechanics

1) Decentralized Coordination: Biological cells function as
autonomous entities, responding to local signals and engaging
in self-organized behavior. MARL mirrors this natural decen-
tralization, enabling accurate modeling of emergent develop-
mental processes.

2) Modeling Emergent Properties: Complex multicellular
phenomena such as morphogenesis and spatial patterning arise
from local interactions. MARL is inherently suited to discover
and simulate these emergent properties through distributed
policy learning.

3) Robustness to Perturbations : In fluctuating and noisy
biological environments, MARL provides resilience by allow-
ing agents to adapt locally. This makes the system robust
against disruptions, mimicking biological fault tolerance.

B. Challenges and Future Directions

Despite its transformative potential, applying Multi-Agent
Reinforcement Learning (MARL) to cell mechanics is
constrained by three core challenges. First, the vast spatial,
temporal, and molecular complexity of multicellular systems
creates high-dimensional environments that challenge MARL
scalability. Second, designing biologically valid and multi-
objective reward functions is non-trivial, requiring precise
alignment with physiological outcomes. Third, integrating
diverse data types like imaging, transcriptomics, and spatial
omics into unified agent frameworks demands advanced
modeling strategies. Addressing these challenges will require
interdisciplinary advances in AI, systems biology, and data
integration to fully leverage MARL for biological discovery.

Future research in MARL for cell mechanics should
prioritize the development of biologically constrained multi-
agent architectures, capable of encoding known intercellular
signaling networks and mechanotransduction rules. Hybrid
learning models that integrate reinforcement learning with
supervised or self-supervised modules will be essential
to leverage annotated biological datasets. Simultaneously,
scalable data assimilation frameworks must be established
to incorporate real-time spatial transcriptomics, live-cell

imaging, and dynamic tissue properties. Integrating these
MARL systems with in vitro experimental platforms via
co-simulation or closed-loop control could enable predictive
modeling of morphogenesis and regeneration. Collectively,
these efforts will transform MARL into a practical and
predictive toolset for mechanobiology, synthetic development,
and regenerative engineering.

IX. CONCLUSIONS

Cell aggregation is a fundamental biological process occur-
ring across diverse scales and contexts, from the formation of
multicellular organisms to the organization of microbial com-
munities and the coordination of cellular responses in health
and disease. Studying these phenomena requires integrating
data from a wide array of experimental technologies, including
genomics, transcriptomics, proteomics, advanced microscopy,
functional assays, flow cytometry, and clinical data [12].

The exploration of cell aggregation data is significantly
enhanced by the availability of public repositories. Databases
like GEO, OrganoidDB, NeuroMorpho.Org, the Allen Brain
Atlas suite, ImmPort, IDR, and specialized biofilm and clinical
databases provide access to vast amounts of data, enabling
researchers to investigate molecular mechanisms, cellular be-
haviors, and clinical correlations related to aggregation.

The inherent complexity and often high-throughput nature
of data generated in cell aggregation studies, such as the large
volumes of images from time-lapse microscopy of develop-
ing embryos or the high-dimensional data from single-cell
transcriptomics and flow cytometry of organoids or immune
cells, necessitate the use of advanced computational analysis
methods, including machine learning and sophisticated visu-
alization tools.

Future efforts in cell aggregation data exploration should
focus on improving data integration across different modalities
and repositories, developing standardized metadata and data
formats to facilitate data sharing and reuse, and creating
user-friendly computational tools that enable researchers from
diverse backgrounds to effectively analyze and interpret these
complex datasets. By leveraging the wealth of available data
and developing innovative analytical approaches, the scientific
community can gain deeper insights into the fundamental
principles of cell aggregation and translate this knowledge into
advancements in regenerative medicine, disease understanding,
and therapeutic development.
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Abstract—In this position note, core issues involved in cre-

ation of zero emission data centers are summarized.

Index Terms—data center, zero emission, HPC.

IGITAL transformation projects combined with rebal-

ancing workloads between public and private clouds 

for reasons of sovereignty have given rise to an increase in 

demand for  compute  capacity  globally.  Conventional  sys-

tems and data center designs have been able to accommo-

date the projected growth. However, the rise of AI and more 

demanding  HPC  environments  using  large  numbers  of 

GPU’s and associated networking, high bandwidth memory 

and storage systems have radically changed systems design 

and energy requirements.  In recent years power consump-

tion has grown by at factor of 3 up to 500W for CPU’s and 

1000W+ for GPU’s. This has resulted rack power consump-

tion increasing from about 15KW to100KW+.

D

In  essence HPC and AI environments  consume signifi-

cantly more energy which can result in increased CO2 emis-

sions and water usage at the data center level. The Interna-

tional  Energy Agency (IEA) Energy and AI report  (April 

2025) projects global Data Centre (DC) electricity consump-

tion to double to 945TWh globally by 2030. A Mckinsey ar-

ticle on “The Cost of Compute – a $7 trillion race to scale 

data centers” (April 2025) put the “global demand for data 

center capacity could almost triple by 2030, with about 70 

percent of that demand coming from AI workloads”.

Conventional data centres and systems are struggling to 

cope with the demands being placed on them and place lim-

its on the capabilities of HPC and AI unless these issues are 

addressed. With traditional air-cooled systems as much as 

40% of the energy provided for compute can be lost by the 

cooling systems. 

Lenovo is a leader in providing HPC and AI factory solu-

tions globally, experience in designing energy efficient sys-

tems.  From SW to gather  data from the underlying infra-

structure to optimise for performance or energy usage to a 

range of  HW solutions  branded as  Lenovo Neptune offer 

both  air-  and  water-cooled  solutions  to  ensure  energy  is 

utilised as efficiently as possible. 

As data centers take several forms and are specific to the 

workloads  that  are  designed to  run on the systems inside 

them. Classic air-cooled systems offer the most flexibility 

and in Hot / Cold Aisle configuration can achieve a PUE of 

1.5 to 1.6. Air cooled systems combined with rear door heat 

exchangers  using  chilled  water  can  improve  the  PUE  to 

about  1.2.  Direct  warm water-cooled system can improve 

the PUE to 1.1 to 1.06 range.

Moving from air to direct warm water-cooled systems can 

result in several significant benefits:

    • Density more compute power in a compact footprint

    • Optimal performance by keeping components within 

thermal design power envelope

    • Possibility of reducing the carbon footprint of the in-

stallation 

    • Possibility of re-using waste heat in other campus lo-

cation

    • Higher performance per watt

In  the  recent  past  the use of  water-cooled technologies 

was in the realm of HPC and AI installations. As HPC and 

AI workloads are being deployed within enterprise comput-

ing environments a hybrid approach is sometimes taken with 

less  demanding  computational  workloads  running  on  air-

cooled systems and the more demanding running on direct 

water-cooled systems.

To realise the full potential of HPC and AI in a cost-effec-

tive sustainable manner efficient use of energy is essential. 

Tried and tested technologies like Lenovo Neptune™ direct 

warm water cooling not only offers compute efficiencies but 

capturing the waste energy in water offers the possibility of 

heat  re-use  but  heating  campus  buildings  making  carbon 

neutral computing a possibility.

Paths to Zero Emission Computing—Reducing Energy 

Consumption, and carbon emissions in HPC and AI environments
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Abstract—This paper introduces DBRow, a density-based al-
gorithm designed to improve autonomous navigation within
crop rows, addressing the growing need for efficient agricul-
tural robotics to boost productivity and tackle labour short-
ages. DBRow integrates Simultaneous Localisation and Mapping
(SLAM) with Density-Based Spatial Clustering of Applications
with Noise (DBSCAN), overcoming the limitations of previous
navigation systems that relied solely on LIDAR data for NMBU’s
FRE participation. Experiments conducted in simulated and
controlled indoor environments evaluated DBRow using A* path
planning algorithm. The results show some weaknesses in the sim-
ulated environment, but it performs well in the controlled indoor
environment. The paper calls for further testing for statistically
significant results and suggests future enhancements, including
LIDAR preprocessing improvements and machine learning inte-
gration, to optimise navigation accuracy and automate tasks like
pesticide application.

Keywords: Robotics, Navigation, Agriculture, Farming,
crop, autonomous

I. INTRODUCTION

AAGRICULTURAL robotics is a broad field that involves
various robots performing tasks in agricultural environ-

ments, replacing or aiding humans. Such robots are often
divided into self-propelled mobile robots and robotic sensors
or actuators carried by a vehicle [24]. This paper focuses on
the first one, self-propelled mobile robots.

Navigating crop environments seems like a straightforward
task for humans: go in the middle of the row and do not
destroy any plants. Enabling navigation for a mobile robot
requires more work. First, the robot needs to have some
representation of its environment so that it can plan when and
where it should go. The representation of the environment in
this paper is a map created by a SLAM algorithm. To navigate
its environment, the robot needs a planner and a controller
to move the robot; the Robot Operating System 2 (ROS2)
Navigation stack solved this. To autonomously navigate, an
algorithm was needed to set goal points. Here, Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) was
used to extract rows and goal positions were extracted from
these rows.

II. METHODOLOGY

A. DBSCAN

DBSCAN is a clustering algorithm that can extract clusters
of varying sizes, assuming they have roughly the same density.
This algorithm was first proposed in [7]. As the name implies,

DBSCAN uses the densities of points to assign cluster labels.
Density in DBSCAN is defined as the number of points
within a specified radius eps. In the literature, this radius is
also denoted by ϵ. Compared to other clustering algorithms,
one advantage of this algorithm is that it does not require
a number of clusters to find as input. Two other advantages
are that it does not make assumptions about spherical clusters
as k-means clustering does, and it does not partition the
dataset into hierarchies that require some manual cut-off. The
DBSCAN algorithm uses three-point labels: core, border, and
noise points. These points are defined in this way:

• Core points have a minimum number of points (MinPts)
within the radius eps.

• Border points fall within the eps of another core point
but do not satisfy the MinPts within the radius eps.

• Noise points neither satisfy the condition for border nor
core points.

eps

Core points

Border points

Noise

Fig. 1. Shows the different points and the eps variable used in the DBSCAN
algorithm. All the purple points are noise, all the green points are core points,
and all the blue points are border points.

Figure 1 shows how DBSCAN can label these points. The
MinPts in this example is three, and the circle shows the
radius around the green points. One can see that the green
points are labelled as core points since they contain three or
more points within eps. The blue points are labelled border
points since they fall within the radius of the core points. The
purple points are labelled noise since they do not satisfy the
conditions for core or border points. The algorithm can be
simplified to:

1) Label all points into the three different point labels.
2) Create separate clusters for all core points or groups of

core points. Two core points are considered to be in the
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same cluster if they fall within the radius eps of each
other.

3) Assign all border points to their respective core points.
Using these simple steps, DBSCAN can detect clusters of any
shape or form as long as they are separated and have similar
densities [19].

B. RANSAC

Random Sample Consensus (RANSAC) is an algorithm for
fitting models to experimental data. Fisher and Bolles proposed
the algorithm in 1981 [8]. The RANSAC algorithm can be
seen as a trial-and-error approach to fitting data to a model
where the dataset is contaminated with noise. RANSAC can
be explained in four easy steps:

1) Sample the number of data points needed to fit the
model.

2) Calculate the model parameters from the collected data
points.

3) Score the model by the number of inlines with a
predefined threshold.

4) Repeat the above steps until the best possible model is
found.

Using these simple steps, RANSAC is able to fit models to
the given data [5].

C. A*

The A* search algorithm was first introduced in 1968 in
[10]. A* is a widely used pathfinding and graph traversal
technique that utilised the strengths of both Dijkstra’s algo-
rithm and Greedy Best-first search. It is designed to efficiently
compute the shortest path from a starting point to a goal
node in a graph, making it particularly useful in robotics
and game development. The algorithm is graph-based, and the
conversion described in the path planning section is necessary
for this algorithm. A* integrates the methodical search of the
Dijkstra algorithm with the heuristic-driven guidance of the
Greedy Best-First search. This guidance is implemented as
two metrics:

• g(n): The exact cost from the start node to the current
node n.

• h(n): The heuristic estimate of the cost from node n to
the goal node.

A* evaluates paths by minimising this function:

f(n) = g(n) + h(n) (1)

This function ensures a balance between the actual cost from
the start and the estimated cost to reach the goal; this leads to
efficient and optimal path planning [17]. The algorithm, when
stripped down to its basics, is quite simple; it uses two sets:
Open and Closed. The Open contains nodes that are candidates
to explore. Initially, the Open set contains only the starting
position. The Closed set contains nodes that have already been
examined and begin empty. Each node contains a pointer to its
parent to help create the optimal path at the end. The algorithm
runs through a main loop that repeatedly selects the best node

n from the Open set, which is the node with the lowest f(n)
score, and examines it. If n is the goal, the process ends;
otherwise, n is moved from the Open set to the Closed set.
Then, the neighbours of n that are already in the closed set are
ignored, and the neighbours in the open set are scheduled to
be examined. If a neighbour is not in the Open or the Closed
set, it is added to the Open set with parent n [16].

D. Hardware

The robot platform used in the simulation is Peik, which
Bård Tollef Pedersen and I built. In Figure 2(a), one can see
an image of Peik without any sensors mounted. The specs of
this robot platform are:

• Weight: 19.56 kg
• Onboard computer: Nvidia Jetson Nano ORIN
• Operating system: Jetpack 6.0
• Steering type: Skid-steer
• Driven motors: 4 x 350W motors, two on each side
• Battery: 36v 4.4Ah
• Footprint (L x W x H): 42 cm x 32 cm x 25 cm
• Max speed: 5.55 m/s
• LIDAR: Ouster OS1-64 (in the simulation)

For testing at the robotics lab, A Turtlebot3 Burger[22] was
used. In Figure 2(b), one can see the Turtlebot3 Burger. The
Turtlebot3 Burger has the following specs:

• Weight: 1 kg
• Onboard computer: Raspberry Pi 4
• Operating system: Ubuntu Server 22.04.5 LTS (64-bit)
• Steering type: Differential drive
• Driven motors: 2 x
• Battery: 11.1v 1800 mAh
• Footprint (L x W x H): 13.8 cm x 17.8 cm x 19.2 cm
• Max speed: 0.22 m/s
• LIDAR: LDS-02
• IMU: Gyroscope 3 Axis, Accelerometer 3 Axis

The simulations of Peik were run on a computer with a
dedicated GPU. The PC used for these simulations had these
specs:

• Processor (CPU): Intel Core I7-8700 6-Core 12-Thread
3.2/4.6 GHz

• Graphics Processing Unit (GPU): Nvidia GeForce GTX
1080

• Memory: 16 GB DDR4 2666 MHz
• Storage: 1000 GB M.2 SSD
• Operating System: Ubuntu 22.04 Jammy Jellyfish

Since the Turtlebot3 only has a Raspberry Pi 4, the code was
run on a PC connected to the Turtlebot3. The computer had
these specs:

• Processor (CPU): Intel Core Ultra 5 125H 14 Core 18
Thread 1.2/4.5 GHz

• Memory: 16 GB LPDDR5X
• Storage: 1000 GB M.2 SSD
• Operating System: Ubuntu 22.04 Jammy Jellyfish
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(a) Peik

(b) Turtlebot3 Burger

Fig. 2. Shows the robots used in this paper, Peik (a) without any sensors
mounted and the Turtlebot3 Burger (b) with the LDS-02 LIDAR.

E. Setting up the simulation environment

Setting up the simulation environment in Gazebo consists of
a few steps: creating a world for the robot to move in, creating
a robot model, and adding a control system and sensors to
the robot. The world used for simulation in this project is
generated with code from this GitHub repository [3]. This code
has several options that change how the created field looks;
these options can change how straight the rows are if there
are holes in the crop rows and the size of the plants. These
values can be specified in a YAML file. This paper uses three
different simulated worlds with the main difference being the
roughness of the terrain.

The robot used in this paper is a simulated version of Peik.
Peik is the robot created for NMBU’s participation in the
Field Robot Event (FRE). A simulated version of this robot
was created using Unified Robot Description Format (URDF)
and Gazebo plugins for sensors and controlling the robot. The
simulated robot was simplified to a box with four wheels.
Utilising Xacro, the URDF files were further simplified with
macros for values used several times, such as the wheel’s

mass or the offset of the different wheels. The base of the
robot was created as a box with tags for the visual, collision
and inertial. The wheels of the robot were connected using
continuous joints, and the wheels also had tags for visual
collision and inertia. Controlling the robot in Gazebo was
done with this plugin libgazebo_ros_diff_drive.so [9]. This
plugin leverages the wheel joints, wheel size, and wheel
separation to facilitate robot control via the /cmd_vel topic.
Additionally, it publishes odometry data to track the robot’s
movement. Simulating the Ouster OS1-64 was done by using
the libgazebo_ros_velodyne_laser.so plugin [23] and changing
the values for horizontal and vertical scans and ranges to match
those of the Ouster OS1-64 [15]. This plugin simulates the
LIDAR in Gazebo and publishes the point cloud to a topic.
In Figure 3, one can see the simulated version of Peik in the
virtual maize environment.

Fig. 3. Shows the robot with a LIDAR sensor in the simulated maize field
environment. Here visualized in Gazebo.

F. LIDAR preprocessing

This part is only used for the simulated robot since the
Turtlebot3 had a 2D lidar and navigated in an indoor envi-
ronment. The simulated lidar is a 3D sensor, and since Nav2
is mainly used for 2D data, this point cloud was projected
into two dimensions. Before it was projected, some points
had been removed. Firstly, the points that fell on the robot’s
chassis needed to be removed. This was accomplished by using
a pcl::CropBox filter from the Point Cloud Library (PCL)
[18]. This was a straightforward process of creating a box
representing the robot, and the filter removed all points inside
the box. The unprocessed point cloud can be seen in Figure
4(a), and the point cloud with the points from the robot filtered
away can be seen in Figure 4(b).

Additionally, the ground plane needed to be filtered out
since it was not used for navigation. The ground plane was
filtered from the point cloud using RANSAC to fit the point
cloud to a plane model, utilising the RANSAC filter from
PCL. In this filter, restrictions were put such that the plane’s
normal must be within an angle threshold of the z-axis. This
filter also had a maximum number of iterations to make sure
that it did not run forever. Removing points was done using
a threshold, and all points that fell within a threshold of the
fitted plane were removed. Trial and error were used to find
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(a) Point cloud

(b) Filtered point cloud

Fig. 4. (a) shows the point cloud from the simulated ouster and (b) shows
the point cloud with the robot footprint filtered.

the best parameters for this algorithm. The point cloud with
the ground removed can be seen in Figure 5(a).

Finally, projecting the 3D point cloud into a laser scan was
done utilising the pointcloud_to_laserscan package [20]. This
package has several options for converting the point cloud
to a laser scan; among these are min_height and max_height,
which are the minimum and maximum heights to sample from
the point cloud. These two parameters were tuned such that
the points that remained in the laser scan mainly consisted of
plant stem points. This laserscan can be seen in Figure 5(b).

1) Cartographer: Cartographer is a project developed by
Google that provides a real-time solution for indoor 2D map-
ping using a sensor-equipped backpack [11]. The algorithm is
also integrated with ROS with the cartographer ROS project.
This implementation also offers real-time SLAM for 2D and
3D environments [4]. The SLAM algorithm used by Cartog-
raphers combines local and global optimisation strategies to
maintain accurate mapping. Both of these approaches aim
to optimise the pose of LIDAR scans [11]. The two differ-
ent optimisation strategies are implemented as two related
subsystems: the local and the global SLAM. Local SLAM
constructs submaps that are locally consistent, accepting that
they may drift over time. It handles immediate data from
sensors to build submaps that are small enough to ensure
local accuracy but large enough to be distinct for effective
loop closure. Global SLAM runs in the background, focusing
on loop closure by scan-matching scans against submaps and

(a) Ground removed point cloud

(b) Laser scan

Fig. 5. (a) shows the point cloud where RANSAC has removed the ground,
and (b) shows the projected laser scan.

incorporating additional sensor data for the most consistent
global map.

2) Nav2: Nav2 is a toolbox for ROS2 that allows au-
tonomous navigation of mobile and surface robots. It is a suc-
cessor to the ROS Navigation Stack and provides packages for
perception, planning, control, localisation, and visualisation.
Nav2 uses behaviour trees to enable autonomous navigation,
which is achieved using several independent modular servers.
A server can be used to localise the robot on the map or plan
a path from point A to point B. These servers communicate
with the behaviour tree using the different ROS2 interfaces:
services, actions and topics [13]. The core of the navigation
problem can be seen as planning and controlling a robot. Four
of the servers in the Nav2 stack provide a robust solution
for planning and control: Planner, Controller, Smoother and
recovery servers [14].

G. Configuring Cartographer and Nav2

Configuring Cartographer is done by creating a *.lua file
with all the parameters needed to launch the Cartographer
package. This file was created by consulting the tuning guide
[2], and the Lua configuration reference documentation [12].

Configuring Nav2 can be quite demanding due to its multi-
ple components that require careful configuration and tuning.
For the initial setup of the planners and controllers, the guide
referenced in [21] was utilised, which outlines when to use
different planners and controllers, as well as their suitability
for various types of robots.
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H. Navigation algorithm

The navigation algorithm can be divided into the in-row
and switch-row algorithms. This subsection explains the two
algorithms and the implementation of them. Both of these
navigation algorithms use the information from the global
costmap to set navigation goals. The data from the laser scan
mainly contains plant stem values, which means that the data
in the global costmap also contains plant stems. The in-row
navigation is best described in some simple steps:

1) Get the robot’s position and costmap data.
2) Cluster the costmap data using DBSCAN.
3) Find the two closest clusters to the robot, then for each

of these clusters, find the furthest points from each other
within its cluster.

4) From these four points, find the two closest pairs.
5) For these two pairs, calculate the mean, which should

be two points in the middle of the crop rows, one in
front of the robot and one behind the robot.

6) Transform the coordinates of these points into the coor-
dinate system of the robot to easily calculate which goal
is behind the robot.

7) Check if one of these goals is in front of the robot.
8) If one of the goals is in front of the robot, navigate to

this goal. If not, the robot is at the end of the row.
9) When the goal is reached, repeat from step 1.

To obtain the map’s position and the robot’s pose, subscribers
were created to track the global cost map from the global cost
map topic and the robot’s pose from the tracked pose topic.
Extracting clusters from the cost map data involved several
steps. First, lethal obstacles, defined as all values greater than
100, were extracted from the cost map. These values were then
converted into a NumPy array.

Using this array, the DBSCAN function from scikit-learn
[6] was applied to cluster the data into crop rows. Next, the
two closest clusters were identified by iterating through all
clusters and calculating the distances between them, retaining
only the two with the smallest distances. Simultaneously, the
two furthest points within each cluster were determined by
employing a nested loop to calculate the maximum distances.
The two points that were furthest apart were saved, along with
the corresponding distance for each cluster.

The goal was defined using the four points that represented
the furthest distances from each other within the two closest
clusters, visualised by the blue points in Figure 6(a). The four
distances between these points were then compared to identify
the two pairs closest to each other. From these pairs, two
potential goal positions were calculated by finding the mean
of the two closest pairs, represented by the green points in
Figure 6(b).

Since the goals were referenced in the map’s coordinate
frame, they were transformed into the robot’s coordinate
system to determine which goals were in front of the robot. In
this transformed frame, the goals behind the robot had negative
values, while those in front had positive values. The goal with
the largest x value was selected. If this goal was too close to

the robot, it was also considered behind the robot. If both goals
were determined to be behind the robot, the process would
terminate, indicating that the robot had reached the end of the
row. To navigate to these goals, Nav2’s simple commander
was used. The algorithm for switching between the rows has

(a) Four furthest points

(b) Two possible goals

Fig. 6. Shows the clustered points, the red points represent the robot’s
position, the blue points represent the further four points in the two closest
clusters, and the green points show the two possible goals. The transparent
points show the different clusters. (a) shows the points used to calculate the
goals, and (b) shows the two possible goals.

the same first two steps as the navigate row algorithm: getting
the robot’s position, map data, and clustering the rows. This
algorithm can be described in these steps:

1) Get the robot’s position and costmap data.
2) Cluster the costmap data using DBSCAN.
3) Find the minimum distance and the closest point in each

of the clusters.
4) Transform the coordinates of these clusters into the

robot’s coordinate frame.
5) If turning left, keep all closest cluster points with a

positive y value; if turning right, keep all closest cluster
points with negative y values.

6) Select the two closest points from these clusters and find
the mean of them, this mean is then the goal point.

7) Navigate to this goal.
The first two steps of the switch row algorithm are the same
as the navigate row algorithm. Therefore, they will not be
explained further. This algorithm was implemented as an
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action server in ROS2 Humble, and it also had a custom action.
The third step of the algorithm was completed by looping

through all the clusters and calculating the closest distance
from each cluster to the robot. The closest point was then
saved together with the distance for each cluster. These points
were then transformed into the coordinate frame of the robot.
This transformation was done to easily separate the clusters to
the left and right of the robot using the y-axis of the robot’s
coordinate frame. The cluster points with positive y values are
to the left of the robot, and all cluster points with negative y
values are to the right of the robot. Depending on the turning
direction, a list of interesting clusters was created, containing
only the cluster points and distances to the left or the right.
From this list, the two closest clusters were selected, and the
goal position was calculated as the mean of the closest points
in these two clusters. These two points can be seen by the
blue points in Figure 7(a), and the goal can be seen in Figure
7(b) by the green point. The heading of this goal was set
to the inverted heading the robot had when standing at the
end of the row, which was inverted by adding 180 degrees to
it. The goal was then sent to the Nav2’s simple commander.
This implementation returned true if it was able to calculate
and navigate to the goal; otherwise, it returned false. These

(a) Closest clusters points

(b) Goal in next row

Fig. 7. Shows the clustered points, the red points represent the robot’s
position, the two closest clusters closest points, and the green points show
the goal position. The transparent points show the different clusters. Figure
(a) shows the two closest, and Figure (b) shows the goal.

two action servers were used to navigate the entire field using

two action clients implemented in one ROS2 node. For this
to work, the number of rows to navigate and the first turning
direction need to be specified. This node starts by initiating
the action clients and the required variables for tracking the
navigation, like row number and initial turning direction. Then,
a goal is sent to the navigation row server. This node then
waits for the node to finish while receiving and printing the
feedback. When the navigate row server finishes, the switch
row server is called. The robot then switches to the next row
and the direction of the switch alternates between switching
to the left and right. The node waited for the execution of this
action server while receiving and monitoring the feedback.
This node alternated between calling the navigate row action
and calling the switch row action until the specified number
of rows were navigated or the navigation failed, and the node
shut down.

I. Experiment setup

The experiments conducted in this paper can be divided into
two types: those conducted in the simulator with virtual maize
plants and those conducted in the robotics lab with Turtlebot3
and thuja plants. Here, five runs in each were completed,
following the design from here [1]. The simulated environment
was created with five plant rows, with approximately 70
centimetres between them. In Figure 8, one can see the layout
of the field used in the simulated run.

Fig. 8. Shows the layout for the simulated maize field.

In Figure 9, one can see the terrain from the simulated
environment.

Fig. 9. Shows the terrain for the simulated maize environment
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The testing environment in the robotics lab at NMBU was
created using thuja plants. These plants were used because
they were the only available plants in the robot lab. This
environment was similar to the even simulated environment
in the sense that they both have a very even ground. In the
testing with the Turtlebot3, the LIDAR preprocessing steps
were skipped since this robot has a 2D LIDAR. Four rows of
plants were created, which meant three rows for the Turtlebot3
to navigate. These rows were approximately 3 meters long and
had 0.7 meters between each row. In Figure 10, a square at the
start of the row is visible. This square was used as a starting
position for the robot to ensure similar conditions for all the
runs.

Fig. 10. Shows the testing environment in the robotics lab at NMBU.

Measuring the performance of the algorithm was done using
parameters similar to those used in the FRE competition.
The performance was measured by the time used to navigate,
the distance travelled, and how many plants were damaged.
Calculating the distance and time was done by creating a node
that subscribed to the position of the robot. This node was
started by using a topic to publish, starting and stopping from
the navigate field node. This node then used the positions over
time to calculate the distance traversed by the robot. Due to
an uncertainty in the position of the robot, a threshold was
used to eliminate noise in the position data. A plant that the
robot touched was not considered damaged; for a plant to be
considered damaged, it had to be lying on the ground or visibly
damaged. Detecting damaged plants was done by observing
the simulation and the Turtlebot3 in the robotics lab.

III. RESULTS AND DISCUSSION

A. Simulated environment

In this subsection, the results from the simulation terrain
runs are presented. In Table I, the results are presented. Here,
the average number of completed rows was 3.0, and the
average number of damaged plants was 2.0. All of the plant
damage occurred in run three. The average distance the robot
managed to travel was 24.08 meters, and the average time was
234.0 seconds.

In Figure 11, the paths taken by the robot using A* are
shown in the red line, and the green points show the plant’s

TABLE I
SHOWS THE RESULTS USING A* IN THE SIMULATED ENVIRONMENT

Run Number Plants damaged Distance [m] Time [s]
1 0.0 30.64 215.0
2 0.0 11.80 216.0
3 10.0 36.30 466.0
4 0.0 30.53 199.0
5 0.0 11.11 74.0

Average 2.0 24.08 234.0

ground truth positions. In run three, ten plants were damaged,
and where the plants were damaged can be seen by the overlap
between the red line and the green plants. Runs two and five
did not complete the field. Runs three and four had some
assistance at the last row. The overlap of the red path and
the green points in Figure 11. In runs two and five, one can
see where the robot failed in the middle of row two. The robots
in these runs were able to navigate 24.08 meters on average,
which is good since the entire field is about 30 meters. This
is promising for using DBSCAN to navigate crop rows. In
the third run, one can see that the robot struggled a lot; this
could be due to the rough terrain, causing the RANSAC not
to be able to fit the plane and remove the ground points. This
would add noise to the input data of the algorithm and could
be the cause of the plant damage in this field, And also, what
caused the robot to fail in the second and fifth runs. The robot
damaged plants can be seen by the overlap of the red line and
the green points in Figure 11. Another possible explanation
for the poor performance in runs two, three and five could be
that the rough terrain makes the point cloud laser scan pick
up leaf points in the middle of the rows due to the robot being
tilted.

B. Turtlebot3

This subsection presents the results from the testing in
the robotics lab using the Turtlebot3 Burger. Table II shows
the results for the A* planner with the Turtlebot3. Here, the
Turtlebot3 managed to complete the three rows in all runs
without damaging any plants. The average distance used was
9.29 meters with an average time of 99.2 seconds.

TABLE II
SHOWS THE RESULTS FOR THE RUNS WITH THE TURTLEBOT

Run Number Plants damaged Distance [m] Time [s]
1 0.0 9.23 95.0
2 0.0 8.72 96.0
3 0.0 9.17 94.0
4 0.0 9.51 95.0
5 0.0 9.82 116.0

Average 0.0 9.29 99.2

In Figure 12, the paths taken by the Turtlebot3 can be seen
for the five runs using A*. The path in red is plotted here on
the map generated by cartographer slam. Here, one can see
that the robot mainly navigated to the middle of the rows and
kept a distance when switching between the rows using A*.
The first row here is the lowest row of plants in Figure 12, and
the last row is the top row. At the beginning of the second row
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Fig. 11. Shows the five runs conducted in the rough terrain with A*. The
green points visualise the ground truth position of the plants, and the red line
visualises the path taken by the robot.

in run two, one can see that the robot navigated a bit closer
to the plants.

The runs with the Turtlebot3 show good promise for this
algorithm. One explanation of this performance could be that
this environment is much simpler than the simulated one. The
Turtlebot3 also did not need the preprocessing steps used in
the simulated environment to remove the ground and extract
stem points, since it used a 2D LIDAR and the ground in this
environment was flat.

For both the Simulated and runs, one could not draw any
definite conclusions since only five runs were conducted.

These runs can only give an indication of the algorithm’s
performance.

Fig. 12. Shows the five runs conducted with the Turtlebot. Here, the path is
plotted in red on the map created by cartographer.

IV. CONCLUSION

To conclude, this paper introduces the DBRow navigation
algorithm for autonomous navigation within crop rows. This
algorithm addresses the limitation of the algorithm used in
NMBU’s last participation in FRE, which relied solely on
LIDAR data. Through experiments conducted across different
terrains and setups, this algorithm shows potential for being
a more robust solution. This algorithm struggled a bit in
the simulated terrain, but performed well in the robotics lab.
A key weakness of these results is the limited number of
experiments that restrict definitive conclusions. This limited
number of experiments highlights the need for more expensive
testing to achieve statistically significant results. The focus of
further work should be on improving the lidar preprocessing
and adding some object detection models for stem detection
could also enhance the navigation algorithm. Conducting
more extensive testing is crucial to validate the preliminary
findings and refine the algorithm for practical deployment in
actual agricultural environments. Additionally, adapting the
navigation task to automate the manual task could enhance
the algorithms’ use case for agricultural operations.
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Abstract—This paper explores the use of YOLOv11 and BoT-
SORT for detecting and tracking Rumex obtusifolius and Rumex
crispus in grasslands. Two models were developed: Model A
trained on the RumexWeeds dataset, and Model B, trained
using transfer learning with additional datasets. While Model
A performed well on its training data, it struggled in unseen en-
vironments. Model B showed improved generalisation, achieving
higher performance across diverse conditions and successfully
detecting Rumex longifolius in Norwegian grasslands.

Both models were integrated with BoT-SORT and achieved
high tracking metrics, supporting GPS-based mapping. Real-time
field testing confirmed feasibility, although detection was affected
by shadows, terrain, and camera placement.

The results highlight the importance of diverse training data
for robust weed detection. Future work should focus on expand-
ing datasets, tuning hyperparameters, and improving hardware
for reliable real-world deployment.

Keywords: Weed detection, AI, YOLO, Precision farming,
digital agriculture

I. INTRODUCTION

THE NEED for sustainable agricultural practices has be-
come increasingly urgent due to environmental chal-

lenges, rising input costs, and labour shortages. Traditional
weed control methods, especially herbicide use, pose sig-
nificant ecological risks such as biodiversity loss and water
contamination [1], [2], and reducing chemical input is a central
objective in EU-wide sustainability strategies [3].

Two very problematic weeds in European grasslands are
Rumex obtusifolius and Rumex crispus, which degrade pasture
quality and can negatively affect livestock health [4]. In
Norway and other Northern regions, Rumex longifolius is also
widespread, but remains understudied and absent from open-
access datasets [5].

The introduction of deep learning has significantly advanced
the field of automated weed detection in agriculture [6].
Several studies have demonstrated promising results using
CNNs and YOLO-based models, with applications ranging
from UAV mapping to close-range robotic systems [7], [8],
[9], [10], [11]. However, these systems often face challenges in
generalising across environments, due to variation in lighting,
scale, background conditions, and the high cost of collecting
annotated training data [6]. Despite these limitations, UAVs
and ground robots are becoming increasingly relevant for
precision weed control, with successful demonstrations of real-
time detection, herbicide application, and object tracking in
field settings [12], [13], [14].

Machine learning has enabled progress in automatic dock
detection using UAVs and ground robots. For example, Anken
et al. [15] used CNNs to detect 90% of R. obtusifolius, while
Valente et al. [16] achieved reliable UAV-based detection.
Güldenring et al. [17] demonstrated successful detection of R.
obtusifolius and R. crispus using YOLOvX. However, models
trained on limited datasets often fail to generalise across
varying environments, lighting, and species [15], [17].

This paper, part of the SUSDOCK project [18], addresses
the lack of data from Northern environments and aims to
improve species-specific weed control. The work focuses
on detecting dock weeds using deep learning and evaluates
generalisation to R. longifolius and unseen field conditions.

Main contributions

• Developed a convolutional neural network to detect R.
obtusifolius and R. crispus using open-access datasets.

• Assessed model generalisation to R. longifolius and new
environments, with and without additional labelled data.

• Explored the use of object tracking and GPS-based map-
ping to localise dock occurrences.

• Tested the model on a robotic platform to demonstrate
feasibility for real-time weed detection.

II. METHODOLOGY

This paper follows a structured workflow to ensure a sys-
tematic and reproducible approach from data acquisition to
analysis. This section outlines the key stages of the process.

The project began by randomly splitting the dataset into
training, validation, and test sets. The YOLOv11 object detec-
tion model was trained on the training set and validated on the
validation set. After training, the model was evaluated on the
test set using standard object detection metrics. This model is
referred to as Model A throughout the remainder of this paper.

To assess generalisation, Model A was also tested on three
previously unseen datasets, two of which were annotated.
These two labelled datasets were then merged with the original
training data and used to retrain the model using the best1

weights from the initial training. This model will be referred
to as Model B. This step aimed to explore whether performance
could be improved with additional diverse data.

The next stage of the workflow involved tracking and
spatial analysis using BoT-SORT, which was applied to dataset

1The best weights defined by the Ultralytics implementation during model
training.
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sequences. This enabled the counting of dock species and
mapping of their GPS locations. The tracking performance
was then evaluated using established metrics for multi-object
tracking. Lastly, Model B was tested on a real-time robotic
platform.

A. Software and Hardware

The primary software used in this paper was Python (version
3.9.21) [19], with all scripts written in standard .py files.

Due to the computational demands of object detection,
local hardware was deemed insufficient. Instead, remote access
to the High-Performance Computing (HPC) cluster Orion,
provided by NMBU, was used. Orion consists of 1,680 pro-
cessor cores, 12 terabytes of RAM, and 1 petabyte of storage,
accessible via a 10Gbit/s network. The operating system
is CentOS Linux 7.9. Jobs on Orion were submitted using
SLURM (Simple Linux Utility for Resource Management)
by creating batch scripts with the sbatch command. These
scripts define the resource allocation for each job.

B. The Datasets

The primary dataset used to train Model A was the
RumexWeeds dataset. Three additional external datasets were
used to evaluate the model’s ability to generalise to unseen
environments. Two of these, the Open Plant Phenotyping
Database and the UAV High-Resolution images, were also
used for training Model B, to assess if this improved gen-
eralisation to new data. An overview of the datasets and their
usage is shown in Table I.

RumexWeeds Dataset: The RumexWeeds dataset [17] con-
tains images of Rumex obtusifolius and Rumex crispus. It
consists of 5,510 RGB images with 15,519 manually annotated
bounding boxes — 81% for R. obtusifolius and 19% for R.
crispus. Data was collected at three locations in Denmark, with
two of them undergoing two recording sessions, resulting in
five distinct sessions under varying environmental conditions.
The recording sessions took place during August, September,
and October. Notably, this dataset does not contain Rumex
longifolius, Norway’s most common dock species.

Images were captured using a robotic platform equipped
with an RGB camera mounted 1m above the ground at a 75◦

angle. Each image has a resolution of 1920 × 1200 pixels.
The robot also carried GNSS, IMU, and odometry sensors,
enabling accurate georeferencing and motion tracking.

Open Plant Phenotyping Database: The Open Plant Phe-
notyping Database [20] was used to evaluate Model A and
for training and evaluation of Model B. This public dataset
includes 7,590 RGB images representing 47 plant species,
all recorded in Denmark during September and October. Of
these, 140 images contain Rumex crispus, with 6,672 bounding
boxes. The plants were grown in containers designed to
mimic natural growth conditions. The Rumex samples were
photographed 1–3 times daily from seedling emergence to full
leaf stage. The camera was positioned directly above the boxes
at a height of 1.7m.

UAV High-Resolution Images: The Unmanned Aerial Vehi-
cle (UAV) High-Resolution Images dataset [16] consists of
three images captured in Germany in April using a drone
at altitudes of 10m, 15m, and 30m. The image captured at
30m was excluded due to insufficient resolution for reliably
detecting weeds. The images taken at 10m and 15m were
divided into tiles with a resolution of 640 × 640 pixels.
This process resulted in 316 images, with 610 annotated
bounding boxes containing R. Obtusifolius. As the Open Plant
Phenotyping Dataset, this dataset was used to evaluate Model
A and to train and evaluate Model B.

Rumex in Norwegian Grasslands: The last dataset consists
of 217 unannotated images captured in Norway’s various
environments, lighting conditions, and camera angles. This
is not an open-access dataset, but is provided for this paper
through the SUSDOCK project [18]. The images contain
mostly Rumex longifolius, the most common dock species
in Norway. Although the model was trained on other Rumex
species, R. longifolius shares similar characteristics in natural
grassland settings. This dataset was used to visually assess
whether the model could detect docks in Norwegian environ-
ments. Four images will be focused on that both contain R.
longifolius.

1) Data Preprocessing: YOLOv11 requires input data
in the YOLO format, thus the original formats of the
RumexWeeds, Open Plant Phenotyping, and UAV High-
Resolution datasets were converted accordingly. A .yaml
configuration file is also required, defining the paths to the
images, label files, and a dictionary of class names.

YOLOv11 expects one label file corresponding to each im-
age in the dataset, containing information about the bounding
boxes. One bounding box is represented with the class ID, x-
and y-coordinates for the centre of the box, and the width
and height. There can be several bounding boxes in each
annotation file.

The RumexWeeds dataset was randomly split into training,
validation, and testing subsets, with 70%, 10%, and 20%
allocated to each, respectively. The class distribution was
stratified to ensure it was balanced across all splits. For training
Model B with new datasets, the training and validation were
combined with 80% of the Open Plant Phenotyping data and
80% of the UAV High-Resolution Images into the training set,
and the rest of the RumexWeeds dataset was combined for the
test set. This resulted in 80% training data and 20% test data.
The reason for this change is the limited data on the Phenotype
and UAV datasets.

For Multi-Object Tracking, randomly selected images are
not suitable; instead, continuous video sequences are required.
Therefore, all the sequences from one recording session of
the RumexWeeds dataset were turned into one video for
each sequence. The videos were annotated with tracking IDs
necessary for the MOT metrics, in MOT16 format [21]. Due
to the task’s time-consuming nature and limited available time,
only one recording session was annotated. A total of 580
annotated images were chronologically sorted, with bounding
boxes visually matched to their corresponding objects and
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TABLE I: Overview of datasets used, with the number of images, bounding boxes, and their intended usage.

Dataset Images Bounding Boxes Annotated Usage
RumexWeeds [17] 5,510 15,519 Yes Train Model A and

Model B
Open Plant Phenotyping

Database [20]
140 6,672 Yes Validate Model A,

train Model B
UAV High-Resolution

Images [16]
323 610 Yes Validate Model A,

train Model B
Rumex in Norwegian

Grasslands
217 0 No Validate Model A

and Model B

TABLE II: Modified hyperparameters for YOLOv11 training.

Hyperparameter Default Modified
Value

Reason

epochs 100 150 Allows the model more
time to converge and po-
tentially improve perfor-
mance

batch 16 8 Smaller batch size can en-
hance generalisation and
reduce overfitting, espe-
cially with limited data

dfl 1.5 2 Increases the impact of Fo-
cal Loss to better address
class imbalance

manually assigned tracking IDs.

C. YOLOv11

For object detection, the YOLOv11 was selected. This
YOLO version comes in sizes nano, small, medium, large
and x large. Small was chosen for this paper due to its
balance between speed and accuracy. The model was utilised
through the Ultralytics implementation, which offers a high-
level Python API for training, validation, and inference [22].

By default, the Ultralytics implementation uses pre-trained
weights from the COCO (Common Objects in Context)
dataset, which contains 80 object classes. These weights help
improve training efficiency and accuracy when working with
custom data. Another default setting is data augmentation.
In addition to regular data augmentation, YOLO implements
mosaic augmentation.

The default hyperparameters provided by Ultralytics include
preprocessing steps such as image resizing and pixel value
scaling. Given that hyperparameter tuning is time-consuming
and the YOLOv11 creators have already invested significant
effort in optimising the defaults, this paper primarily relied on
those standard settings. However, some key parameters were
adjusted to better align with the dataset’s characteristics, as
shown in Table II.

Ultralytics also simplifies evaluation by providing built-in
support for standard object detection metrics. For this project,
the evaluation metrics were inference speed, precision, recall,
mAP50, and mAP50-95.

D. BoT-SORT

BoT-SORT was used for object tracking, as it is the default
multi-object tracker in the Ultralytics pipeline. BoT-SORT,

Fig. 1: Extraction from the tracking video, showing a frame
with three detected Rumex obtusifolius plants, annotated with
tracking IDs 47, 49, and 52. The boxes also display class
names and detection confidence scores.

with the trained YOLOv11 model as the detection algorithm,
was applied to the videos, one for each sequence in the record-
ing session. The output included bounding boxes with unique
tracking IDs across frames, forming annotations in MOT16
format and a video visualising the tracked detections. A frame
from the tracking video is shown in Figure 1, highlighting how
detected objects are assigned consistent tracking IDs.

Tracking IDs were used to associate detected objects with
their corresponding GPS coordinates from the RumexWeeds
dataset. These locations were visualised using matplotlib for
static plots and folium for interactive maps. The ground truth
distribution in the interactive map is shown in Figure 2. When
pressing the points in the interactive map, information about
what Rumex type it is will appear: red points for R. crispus and
green points for R. obtusifolius. In addition, the total number
of tracked instances was used to estimate the number of R.
obtusifolius and R. crispus plants.

BoT-SORT was applied to shorter annotated video se-
quences to evaluate the tracking performance. The output
detections in the MOT16 format were compared to the ground
truth using the py-motmetrics library [23]. A challenge in
evaluating tracking is that the tracker may assign different
object IDs than those in the ground truth. The evaluation
addresses this challenge by mapping the tracking IDs based
on Intersection over Union (IoU), requiring a threshold of
0.5 or higher. This ID alignment ensures that metrics such
as IDF1 and MOTA accurately reflect tracking performance,
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Fig. 2: Ground truth GPS coordinates of dock plants in the
RumexWeeds dataset. Each green point represents R. obtusi-
folius and each red point represents R. crispus.

Fig. 3: A picture of the robot whilst driving in the field.

rather than being skewed by identity mismatches. The tracking
performance was assessed using the three key metrics MOTA,
MOTP and IDF1.

E. Real-Time Robotic Platform – A Proof of Concept

To test the feasibility of applying the model in a robotic
setting, Model B was selected for deployment. The test was
conducted in a field located in Askim, Norway, which contains
a high density of R. longifolius plants.

The robot was equipped with a Logitech C920s Pro HD
webcam, positioned approximately 30 cm above the ground at
an angle of 30◦. The camera has a resolution of 1920× 1080
pixels and was connected to a MacBook for simplicity and
mobility. A picture of the robot while driving in the field is
shown in Figure 3.

The output from the test consisted of a video showing
the predicted bounding boxes, along with their confidence
scores and assigned tracking IDs. An example of a frame from
the video, without any bounding boxes, is shown in Figure
4. Additionally, a text file was generated containing frame-
by-frame information, including tracking IDs, bounding box
coordinates, and confidence values.

Limitations: Due to limited time and resources, several con-
straints affected the proof-of-concept test. First, the webcam
used was not optimal for field robotics applications, but was
selected for its immediate compatibility with the MacBook.
Second, the real-time detection code was not fully optimised

Fig. 4: An example frame from the robot during recording.

for the camera settings, leading to performance limitations.
Furthermore, the vision system was not physically integrated
into the robot’s control system, as full hardware integration
would have required more development time than the project
timeframe allowed. Finally, no GPS module was connected
to either the MacBook or the robot, meaning that no spatial
localisation data was recorded during the test.

The terrain in the field was bumpy, resulting in the robot’s
inconsistent driving speed. Due to the camera’s mounting po-
sition, large portions of the surrounding landscape, including
the sky and nearby objects, were captured in many frames.
Furthermore, shadows from the robot, the operators, and the
low sun position affected the image quality.

However, this is only a proof-of-concept, which means
the conditions does not need to be ideal. In spite of these
limitations, the tests will still be able to tell the feasibility of
the model in a robotic setting.

III. RESULTS AND DISCUSSION

A. Object Detection Performance: Model A

Table III shows the evaluation metrics for Model A, trained
solely on the RumexWeeds dataset. The model performed well
on the training domain, with a high precision of 0.922, a recall
of 0.887, and mAP values of 0.949 for mAP50 and 0.703 for
mAP50-95. The lower mAP50-95 reflects the model’s reduced
localisation precision across varying IoU thresholds. On the
external Phenotype and UAV datasets, performance declined
substantially. While precision remained relatively moderate
on the Phenotype data with a value of 0.714, recall dropped
significantly to 0.001. The UAV dataset showed poor perfor-
mance across all metrics. This demonstrates a considerable
drop in performance when external data is evaluated. The
inference speed is consistent for all three datasets, ranging
from 2.761ms for the RumexWeeds dataset, 3.450ms for the
Phenotype dataset and 5.025ms for the UAV dataset. The
inference was measured on an HPC, which is significantly
faster than typical robotic platforms. The Phenotype and UAV
datasets showed slower speeds, likely due to more complex
images or larger input sizes. These differences should be
considered when deploying the model on resource-constrained
platforms.
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TABLE III: Detection performance of Model A on the validation sets. Results are reported for three datasets: RumexWeeds,
Phenotype, and UAV. Metrics include inference speed (ms per image), precision, recall, and mAP50 and mAP50-95.

Dataset Inference Speed (ms) Precision Recall mAP50 mAP50-95
RumexWeeds 2.761 0.922 0.887 0.949 0.703

Phenotype 3.450 0.714 0.001 0.359 0.198
UAV 5.025 0.015 0.051 0.015 0.009

Fig. 5: Training curves for Model A. The plots show the
progression of precision, recall, mAP50, and mAP50-95 over
150 epochs on the RumexWeeds dataset. The model converged
steadily across all metrics.

Figure 5 presents the training curves for Model A over
150 epochs. The plots illustrate the progression of precision,
recall, mAP50, and mAP50-95 throughout training on the
RumexWeeds dataset. All four metrics showed a rapid increase
during the initial epochs, particularly up to around epoch
50, followed by a more gradual improvement and eventual
stabilisation near epoch 100. The curves began at moderate
values, with precision, recall, and mAP50 starting between 0.2
and 0.4 suggesting that COCO pretraining provided a strong
foundation, while mAP50-95 starts lower, around 0.1. Some
fluctuations are observed, likely due to the small batch size,
but overall, the trends indicate convergence.

Figure 6a and Figure 6b present the precision– and re-
call–confidence curves for Model A. The model demonstrated
consistently high precision across a broad range of confidence
thresholds for both classes, though slightly higher for R.
crispus. In contrast, recall values were initially high but
declined more sharply as confidence increased. This matches
the observation of a lower mAp50-95 score, meaning the
model prioritised accurate predictions over broader detection
coverage, leading to missed detections or less precise bounding
boxes at stricter thresholds. Fine-tuning the confidence thresh-
old could improve the balance between recall and precision.
The curves followed similar trends for both R. obtusifolius and
R. crispus, with slightly lower recall observed for R. crispus,
unlike precision.

(a) Precision-confidence curves
for Model A.

(b) Recall-confidence curves for
Model A.

Fig. 6: Precision and recall confidence curves for Model
A, showing performance for R. obtusifolius, R. crispus, and
combined class scores.

Fig. 7: Precision–recall curve for Model A. The model
achieved a high average precision for both R. obtusifolius
(0.957) and R. crispus (0.941), with a combined mAP50 of
0.949.

The corresponding precision–recall curve is shown in Figure
7. The model achieved a combined mAP50 of 0.949 across
both target classes. The curve demonstrates that precision re-
mains high as recall increases, particularly for R. obtusifolius,
which achieved a slightly higher average precision than R.
crispus, at 0.957 and 0.941 respectively. The curves for both
classes followed a similar shape, with minimal divergence
across most recall values. The different performances on R.
obtusifolius and R. crispus, is likely due to dataset imbalance,
where 81% of annotations were R. obtusifolius vs. 19% R.
crispus. Although focal loss was used to mitigate this, it did
not fully offset the imbalance. To improve this, more R. crispus
images should be annotated, and targeted data augmentation
may also help.

While performance on RumexWeeds was strong, Model
A’s performance dropped significantly on the Phenotype and
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UAV datasets. This is likely due to visual domain differences:
RumexWeeds images were collected under consistent, ground-
based conditions, whereas the external datasets varied in angle,
scale, lighting, background, and plant stage. These unfamiliar
conditions reduced generalisation. The limited number of
R. crispus examples further hindered generalisation to new
conditions. These results reflect a common deep learning
issue: strong performance on training data does not guarantee
robustness in new settings. Fine-tuning the model with images
better matching target deployment conditions could improve
generalisation.

B. Object Detection Performance: Model B

Table IV presents the detection performance of Model B,
which was trained using transfer learning on a combination
of three datasets. On the combined validation set, the model
achieved an inference speed of 2.335 ms, a precision of 0.932,
a recall of 0.873, an mAP50 of 0.930, and an mAP50-95
of 0.688. Performance on the RumexWeeds dataset remained
strong, with precision, recall, and mAP values comparable
to those of Model A. Notably, Model B showed substantial
improvements on the external datasets. For example, the
Phenotype dataset reached a precision of 0.934, a marked
increase compared to Model A. However, when compared
to the RumexWeeds dataset, the two new datasets exhibited
slightly lower values for recall, mAP50, and mAP50-95, and
a higher inference speed.

Model B achieved slightly better mAP50 and mAP50–95
on RumexWeeds than Model A, suggesting that base perfor-
mance was maintained or improved, partly due to extended
training. Still, mAP50–95 scores lagged behind mAP50 across
all datasets, indicating that precise localisation remains a
challenge.

The inference speed of the combined dataset were similar
to the RumexWeeds, likely due to the large proportion of
RumexWeeds images. The Phenotype and UAV datasets ran
slower at 4.444ms and 3.500ms, respectively. As with Model
A, slower speeds may be due to increased image complexity
or resolution. Interestingly, UAV was faster than Phenotype in
Model B, reversing the pattern from Model A, possibly due
to retraining effects or dataset changes.

Figure 8 shows the training curves for Model B over 150
epochs. As with Model A, the plots display the progression
of precision, recall, mAP50, and mAP50-95. The values
increased rapidly during the early stages of training and
stabilised after approximately 50 epochs. The curves started
at relatively high values, with precision, recall, and mAP50
beginning between 0.75 and 0.9, while mAP50-95 starts lower,
around 0.6. This is typical in transfer learning, where early
CNN layers retain useful low-level features. The consistent
structure of dock weeds across datasets helped the model learn
new features efficiently.

Figures 9a and 9b show the confidence-based precision and
recall curves for Model B. In the precision curve, precision
remained consistently high across the entire confidence range
for both R. obtusifolius and R. crispus. The recall curve

Fig. 8: Training curves for Model B, which was trained using
transfer learning on a combined dataset (RumexWeeds, Phe-
notype, and UAV). The plots show the evolution of precision,
recall, mAP50, and mAP50-95 over 150 epochs.

(a) Precision-confidence curves
for Model B.

(b) Recall-confidence curves for
Model B.

Fig. 9: Precision and recall confidence curves for Model
B, showing performance for R. obtusifolius, R. crispus, and
combined class scores.

showed that recall is highest at lower confidence thresholds
and decreases steadily as the confidence increases. Recall for
R. crispus drops more rapidly than for R. obtusifolius.

The precision–recall curve in Figure 10 shows that Model
B achieves an mAP50 of 0.930. Average precision for R.
obtusifolius is 0.953, while R. crispus reaches 0.907. The
class-wise curves follow a similar shape, with high precision
across most recall levels. These patterns closely mirror those
observed for Model A.

Model B was trained using transfer learning from Model
A, with additional labelled data from the Phenotype and
UAV datasets. It showed strong detection performance on the
combined dataset and improved results on the external datasets
compared to Model A. As shown in Table IV, precision,
recall, and mAP scores increased significantly on both external
datasets, reflecting greater robustness to varied image condi-
tions. This improvement stems from the added data diversity
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TABLE IV: Detection performance of Model B on the validation sets. Model B was trained using transfer learning with
data from RumexWeeds, Phenotype, and UAV datasets. Metrics include inference speed (ms per image), precision, recall, and
mAP50 and mAP50-95.

Dataset Inference Speed (ms) Precision Recall mAP50 mAP50-95
Combined Data 2.335 0.932 0.873 0.930 0.688
RumexWeeds 2.259 0.946 0.888 0.959 0.733

Phenotype 4.444 0.934 0.765 0.836 0.607
UAV 3.500 0.879 0.775 0.836 0.560

Fig. 10: Precision–recall curve for Model B, trained using
transfer learning. The model achieved strong performance on
R. obtusifolius (0.953) and slightly lower average precision on
R. crispus (0.907), with a combined mAP50 of 0.930.

and the benefits of transfer learning, where Model A’s weights
provided a solid starting point.

C. Generalisation to Norwegian Grasslands

Detection results were visualised on images collected from
Norwegian grasslands containing mostly Rumex longifolius to
evaluate how well the models generalise to unseen environ-
ments and species. Four images were selected, each shown
with predicted bounding boxes from both Model A and Model
B.

In the examples, both models identified dock plants in varied
settings, including dense vegetation and challenging lighting
conditions. Some variation in the number and classification of
detections can be observed between the two models. Predic-
tions included both R. obtusifolius and R. crispus labels.

Figures 11 and 12 show detection results in scenes with vi-
sual complexity. These images contain background distractions
such as shoes, camera equipment, and uneven lighting, making
the detection task more difficult. The Rumex longifolius plants
are not immediately noticeable even to the human eye. In
Figure 11, Model A produced a single prediction in a bright
area near a camera leg. In contrast, Model B identified a R.
crispus leaf, though the prediction has low confidence and
is accompanied by a duplicated bounding box. In figure 12
Model A detected a central plant as R. crispus with a con-
fidence of 0.69. Model B also identified this plant, but with
slightly lower confidence. Additionally, Model B predicted two
extra detections with low confidence in areas where no dock
plants are visible. It also detected a plant in the upper left with
0.54 confidence, which Model A missed entirely.

TABLE V: BoT-SORT tracking metrics for Model A and
Model B. Metrics include Multiple Object Tracking Accuracy
(MOTA), Precision (MOTP), and IDF1.

Model MOTA MOTP IDF1
Model A 0.894 0.893 0.883
Model B 0.898 0.89 0.883

The qualitative results from the Norwegian grasslands
dataset provide insight into how well the models generalise to
completely unseen environments and species. Neither Model
A nor Model B was trained on images of Rumex longifolius,
yet both produced detections on the unlabelled Norwegian
images. Model B showed a better overall result. However, both
models also displayed false positives, including misclassifica-
tions of sunlit areas, plant residues, and patches of grass. This
suggests that although the models are capable of transferring
some learned features to unfamiliar conditions, their ability
to distinguish R. longifolius from the background remains
limited. The improved responsiveness of Model B indicates
that additional training data from varied domains contributes
to broader generalisation, but the presence of misclassifications
also highlights the need for further adaptation or fine-tuning
when deploying such models in new and different environ-
ments.

D. Tracking Evaluation Using BoT-SORT

Tracking performance for Model A and Model B was
evaluated using the BoT-SORT tracking algorithm. Table V
presents the resulting scores across three standard multi-object
tracking metrics: MOTA, MOTP and IDF1. The results showed
that both models achieved similar performance, with only
minor differences observed in MOTA and MOTP, with values
between 0.89 and 0.90. The IDF1 score remained identical at
0.883 for both.

To further assess how well the models perform in tracking
dock plants over time, the predicted number of detections was
compared to the manually annotated ground truth. As shown
in Table VI, both models correctly detect five instances of R.
crispus, while both overestimate the number of R. obtusifolius
plants by ten. In addition, both models produced a distribution
that closely matched the expected locations. Most predictions
were concentrated along a path.

The tracking results using BoT-SORT show that both Model
A and Model B maintained high tracking performance across
video sequences. This suggests that as long as the object detec-
tor provides consistent and confident detections, the tracking
algorithm is able to assign and maintain identities effectively.
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(a) Model A

(b) Model B

Fig. 11: Detection results in a sparse vegetation scene with
visual distractions such as camera equipment and bright light-
ing. Model A (top) produced one detection near the camera
leg, while Model B (bottom) detected a dock leaf with low
confidence and overlapping boxes.

TABLE VI: Number of dock plants detected by Model A and
Model B compared to the manually annotated ground truth.

Rumex Obtusifolius Rumex Crispus
Ground truth 41 5

Model A 51 5
Model B 51 5

When comparing the number of tracked detections with the
ground truth, both models correctly identified all instances of
R. crispus, but overestimated the number of R. obtusifolius.
This overcount likely results from multiple detections on the
same plant across frames or slightly offset bounding boxes
being treated as separate objects. This observation coincides
with the low recall and mAP50-95 values of both Model A
and Model B on high confidence thresholds. Since bounding
box offset is a contributing factor, this points to potential
improvements in the tracking pipeline. Despite these minor

(a) Model A

(b) Model B

Fig. 12: Detection results in a visually cluttered scene. Model
A (top) identified one dock plant with high confidence.
Model B (bottom) detected the same plant and additional
low-confidence detections, some of which appear to be false
positives.

inaccuracies, the spatial distribution of tracked detections
closely matched the expected GPS coordinates, indicating that
the pipeline is suitable for mapping dock presence in the field.

This demonstrates the potential of the combined detection
and tracking pipeline for supporting automated weed monitor-
ing and management in real-world farming environments.

E. Real-Time Robotic Platform Performance

Model B was tested in a real-world field environment,
resulting in six different video sequences with corresponding
text files containing detection information. Table VII sum-
marises the results from each sequence, including the number
of frames, the number of unique tracking IDs, the number
of unique tracking IDs with average confidence above 0.50
and the number of actual R. longifolius plants present in the
sequences. The tracking ID number does not correspond well
with the ground truth number, due to several false positives.
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TABLE VII: Statistics from the six sequences showing infor-
mation about the number of frames, tracking IDs, and ground
truth counts.

Sequence Frames Tracking IDs Average
confidence >

0.50

Ground
Truth
Docks

1 433 28 13 2
2 715 60 34 2
3 607 41 19 3
4 762 17 11 2
5 637 81 53 3
6 708 31 16 8

Fig. 13: Frame from sequence 1 showing multiple bounding
boxes around a dock and background elements.

In addition to this information, the text files contained a
line saying “Coordinates: Location not available" for each
detection, meaning it tried to collect the GPS information, but
was not able to since there was no GPS module connected.

As illustrated in Figure 13, sequence 1 shows a R. longi-
folius plant with two relatively confident bounding boxes.
As the robot moved, an additional bounding box appeared
around the same dock. Significant background content, such
as the sky, trees, and red farming equipment, is also visible,
likely leading to false positives where background objects were
misclassified as Rumex in later frames. Figure 14 provides an
example where a non-Rumex object was confidently classified
as a dock.

Figure 15 shows a cropped frame from sequence 3, where
a R. longifolius appears very close to the camera. Only part of
the dock is detected, with relatively low confidence. A similar
situation is visible in Figure 16 from sequence 5, where the
same dock is divided into multiple bounding boxes across
different leaves, each with varying confidence levels.

Figure 17 shows two frames from sequence 4. In this situa-
tion, the sun is shining directly into the camera, causing strong
image diffusion. As a result, the two visible R. longifolius
plants were not detected at all. A similar issue occurred
in sequence 6, where sunlight again affected the camera’s
visibility. According to Table VII, sequence 6 generated 31
unique tracking IDs, but only two out of eight actual docks
were detected. This pattern, where most docks were missed,
is unique to sequences 4 and 6. In contrast, in the other
sequences, all docks were detected in some form, although

Fig. 14: Frame from sequence 1 showing a non-Rumex object
incorrectly classified as Rumex.

Fig. 15: Frame from sequence 3 showing a close-up of R.
longifolius with partial and low-confidence detection.

with too many, too few, or poorly placed bounding boxes.
The robotic platform test served as a proof-of-concept to

assess whether it would be possible to detect R. longifolius
in the field using a robot. The overall results were not ideal.
However, in cases where the conditions were favourable, such
as in Figure 13, the platform successfully detected the dock
plants, though with several bounding boxes. This suggests that
under improved conditions, the system has the potential to
perform significantly better.

Several factors could have contributed to the false positives
observed during the field test. The camera on the robot was
positioned relatively low, and a higher mounting position
would likely have captured a more complete view of the scene.
Additionally, tilting the camera further towards the ground
could reduce background noise, such as trees and the sky.

Fig. 16: Frame from sequence 5 showing a R. longifolius with
multiple overlapping bounding boxes.
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Fig. 17: Both images show a R. longifolius that has not been
detected. The frames have become diffused due to the sun.

Güldenring et al. [17] used a camera height of approximately
1m and an angle of 75◦, which appeared to be more effective.
Another challenge was that the test was conducted when the
sun was relatively low in the sky, causing strong shadows and
uneven lighting. Capturing images closer to midday would
likely improve lighting conditions. Finally, the use of a non-
specialised camera and detection code that was not fully
optimised for the hardware may also have contributed to the
reduced detection performance.

In addition to false positives in detection, a high number of
unique tracking IDs were observed. The ground surface was
uneven and textured, causing the robot to move unpredictably
across the grassland. The BoT-SORT algorithm predicts object
movement to maintain consistent tracking IDs. However, the
irregular movement of the camera likely made it difficult
for the tracking algorithm to generate stable and meaningful
tracking results. In future applications, using a larger or
wider robot platform could help reduce camera instability and
improve tracking accuracy.

Lastly, the absence of GPS coordinates meant that mapping
dock occurrences in the field was not possible. However, the
proof-of-concept demonstrated that it would be feasible to
collect GPS data alongside detection results if such data were
available. This indicates a promising potential for mapping
dock occurrences in future applications.

IV. CONCLUSION AND FURTHER WORK

This paper explored the use of YOLOv11 and BoT-SORT
for detecting and tracking dock weeds in grasslands, focusing
on improving generalisation across different environments
and species. Two models were trained and tested: Model A,
trained only on the RumexWeeds dataset, and Model B, which
used transfer learning with additional datasets to improve
robustness.

The results showed that Model A performed very well on
the RumexWeeds dataset but struggled to generalise to new
environments, such as the Open Plant Phenotyping Database
and UAV High-Resolution Images. Model B, trained with ad-
ditional data, improved performance on these external datasets
while maintaining high accuracy on the original RumexWeeds
data. Both models detected R. longifolius in images from

Norwegian grasslands, with Model B performing slightly
better. These findings demonstrate that adding more diverse
training data is an effective way to improve the generalisation
of deep learning models for weed detection.

The tracking results showed that both Model A and Model
B achieved high scores across all evaluated tracking metrics.
This indicates that the combined detection and tracking sys-
tem worked reliably for counting and mapping dock weeds.
However, challenges such as slightly inaccurate bounding
boxes and overcounting suggest that further improvements to
detection precision and tracking stability are needed.

Testing the system in real-time using a robotic platform
showed that it is possible to detect R. longifolius plants under
field conditions, although the results were not ideal. Factors
such as strong shadows, a low camera angle, background
distractions, and an uneven ground surface likely affected
detection accuracy. These results highlight that hardware setup
and environmental conditions are critical factors when apply-
ing the model outside controlled environments. Despite these
challenges, the proof-of-concept showed promising potential
for real-time robotic weed detection in future applications.

Further Work: The promising results of this paper show
that the system has strong potential and should be developed
further. Based on the findings discussed above, several specific
areas for improvement have been identified that could further
strengthen the system.

First, the project would benefit greatly from expanding the
training datasets. If the focus remains on R. obtusifolius and
R. crispus, it would be essential to collect additional images of
R. crispus to better balance the class distribution. In addition,
given the emphasis on Norwegian grasslands, creating a large,
open-access dataset specifically for R. longifolius would be
highly valuable. Another idea worth exploring is training R.
crispus and R. obtusifolius as a single class, as done by
Güldenring et al. [17]. Since both species are targeted for re-
moval in the same way, merging them into one detection class
could simplify the classification task and possibly improve the
model’s ability to detect R. longifolius as well.

Model B was trained using the same hyperparameters as
Model A for simplicity. Future work could investigate tuning
the hyperparameters specifically for Model B, as this may
further improve performance, particularly when training on
more varied data.

For the robotic platform, it would be beneficial to implement
the improvements suggested in the discussion, such as opti-
mising camera position and movement stability. In addition,
designing a camera flash solution that provides consistent
lighting, similar to the one used by Kilter [13], could help
reduce issues caused by varying weather and lighting condi-
tions during field operations.
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