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Abstract—We present a framework that integrates Particle
Swarm Optimization (PSO), machine learning, K-Fold cross-
validation, and surrogate modeling to identify optimal weight
vectors for feature scaling in neural network training. In our
approach, the n-dimensional weight space is partitioned into non-
overlapping subdomains, each corresponding to a PSO particle.
Particle movement is guided by a characteristic vector, which is
determined by the best-performing candidates in each subdomain
and by information exchanged with neighboring regions. To re-
duce evaluation costs, a surrogate model—trained on a uniformly
sampled subset of candidates—pre-filters particles before full K-
Fold validation. The top candidates then undergo comprehensive
validation, updating the characteristic vectors for subsequent iter-
ations. This domain-as-particle PSO framework enables efficient
weight discovery, significantly reducing computational overhead
while maintaining robust performance. The effectiveness of this
approach is demonstrated on real-world datasets.

Index Terms—Particle Swarm Optimization, surrogate model-
ing, neural networks, K-Fold cross-validation, feature weighting,
medical application.

I. INTRODUCTION

DENTIFICATION methods play a pivotal role in the
Icontrol and monitoring of dynamic systems. They form
the backbone of modern engineering, seamlessly integrating
concepts from various disciplines to achieve regulation, sta-
bilization, and optimization of these systems. This multi-
disciplinary nature makes system identification and control
a crucial area of both academic study and practical appli-
cation, extending its impact across diverse fields such as
engineering, computer science, mathematics, physics, biology,
economics, and environmental engineering. Notable examples
include contributions like [1] and [2], which demonstrate the
successful application of identification and control techniques
in environmental engineering and ecology. Similarly, [3] pro-
vides a practical case of identification methods applied within
an economic and commercial context, specifically to prey-
predator models.

Particle Swarm Optimization (PSO), first introduced in [4],
is an evolutionary computation technique inspired by the social
behaviors of bird flocking and fish schooling. Initially designed
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for continuous optimization problems within computational
intelligence, PSO has evolved into a versatile, interdisciplinary
tool applied across numerous domains. In computer science,
it is utilized for tasks such as feature selection in machine
learning [5] and hyperparameter optimization in deep learning
models. The biomedical sector has also adopted PSO for appli-
cations like image segmentation [6] and gene expression data
analysis, illustrating its adaptability to high-dimensional and
noisy data environments. PSO’s popularity can be attributed
to its simplicity, flexibility, and effectiveness in addressing
nonlinear, non-differentiable, and multi-objective problems,
making it a powerful tool for both theoretical research and
real-world applications. A detailed and recent survey of PSO
can be found in [7]. Optimizing feature weights enhances
neural network training by scaling inputs to accelerate con-
vergence and improve accuracy. Manual feature engineering or
exhaustive hyperparameter search becomes infeasible in high-
dimensional spaces. We propose a domain-as-particle PSO
framework, where the n-dimensional weight space, defined as
the mother domain VV, is partitioned into distinct regions. Each
region acts as a particle that independently explores its section
to search for optimal solutions.
Contribution and Structure of the Paper

This paper presents a new framework for neural-network
feature weighting based on a domain-as-particle Particle
Swarm Optimization (PSO) strategy. The method efficiently
partitions and explores the weight space, combining surrogate
modeling with adaptive domain updates to enable scalable
optimization in high-dimensional scenarios. The effectiveness
of this approach is demonstrated through experiments on real-
world datasets and benchmark comparisons.

The remainder of the paper is organized as follows. Sec-
tion II presents the proposed method in detail. Section III
describes the dataset and initialization procedures. Section IV
discusses the experimental results. Section V concludes the
paper and outlines future research directions.

II. PROPOSED METHOD

The proposed domain-as-particle Particle Swarm Optimiza-
tion (PSO) framework for neural-network feature weighting
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Fig. 1. Conceptual illustration of domain movement: five subdomains, initially
uniformly distributed in WV, each move a short distance to new positions. The
movement is driven by each subdomain’s characteristic vector and neighbor
influences.

operates through the following main steps:

« partitioning: The n-dimensional feature weight space
is divided into multiple subdomains, each acting as a
separate PSO particle.

o Particle generation and surrogate modeling: In each
subdomain, a set of candidate weight vectors (particles)
is generated. A subset is evaluated using neural network
training and K-Fold cross-validation, and the results are
used to train a surrogate model (ensemble of Random-
Forest and GradientBoosting regressors) that predicts the
quality of remaining candidates.

« Selection and validation of top candidates: The surro-
gate model identifies the most promising particles, which
are then fully validated using K-Fold cross-validation.

o Characteristic vector update: The best candidates in
each subdomain are combined into a characteristic vector
(e.g., weighted average) to guide the next search step.

+ Domain update (PSO movement): Each subdomain’s
center is shifted according to its characteristic vector and,
optionally, information from neighboring subdomains.

« Iteration and stopping criteria: These steps repeat iter-
atively, with surrogate retraining and domain adaptation,
until convergence or budget limits are met.

This approach allows efficient and scalable search for opti-

mal feature weightings in high-dimensional problems.

A. Weight-Space Partitioning

The weight-space partitioning is the foundational step of the
proposed algorithm (see Fig. 2). The global weight space W
is defined as the n-dimensional hypercube [lb, ub]™, where n
is the number of features and lb, ub are the lower and upper
bounds for each weight, respectively. This weight space W is
partitioned into several uniformly distributed subdomains D,
each with fixed side length L and centered at a grid point d;.
Importantly, these subdomains D; do not overlap and have
deliberate spacing between them.

This spacing allows each subdomain D; room to move and
adapt during optimization, facilitating thorough and indepen-
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dent exploration of the search space. As the algorithm iterates,
each D; shifts to investigate unexplored regions, ensuring
efficient coverage of the entire main domain.

Global weight space W
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Fig. 2. Weight-space partitioning: WV is partitioned into a 3 X 3 grid of
subdomains D;, each an n-dimensional cube of side length L, separated by
spacing s, and offset by an internal margin M.

B. Particle Generation and Surrogate Modeling

After defining the subdomains (see Fig. 3), the next step is
to generate candidate weight vectors inside each subdomain.
For every D;, both standard particles and those selected
for surrogate modeling are uniformly sampled within the
subdomain boundaries. This allows the algorithm to explore
different weightings in each region of the search space.
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Fig. 3. Illustration of a single subdomain D; with a uniform interior grid of
black candidate particles (excluding the topmost row) and a uniformly spaced
subset highlighted in red.

After generating both types of particles—the P full parti-
cles and the S surrogate particles—we begin the surrogate
model construction as follows. For each surrogate particle,
we estimate performance using K-Fold cross-validation: the
dataset is split into K equal parts, with each part used once
as the validation set and the others as the training set. The final
performance metric is obtained by averaging results across all
folds. This approach provides a robust estimate of the model’s
generalization ability.
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With reference to the neural network (see Fig. 4): For each
surrogate particle, the neural network is trained on the training
folds and tested on the test fold, resulting in a composite value
for each split. The composite value is defined as the arithmetic
mean of three key classification metrics: accuracy, precision,
and recall. This metric plays a central role in our algorithm
as the primary objective to optimize, representing a holistic
measure of the model’s predictive power on the dataset.

Specifically, the composite value quantifies the overall qual-
ity of the candidate feature weighting by balancing multiple
aspects of classification performance:

o Accuracy measures the proportion of correctly classified
instances among all samples, providing a general assess-
ment of model correctness.

« Precision evaluates the proportion of true positive predic-
tions among all positive predictions made by the model,
reflecting the model’s ability to avoid false positives.

« Recall (also known as sensitivity) assesses the proportion
of true positive cases correctly identified by the model,
indicating its effectiveness at detecting positive instances.

Each of these metrics addresses a distinct aspect of clas-
sification performance, and combining them equally in the
composite value ensures a balanced evaluation that mitigates
biases inherent in any single metric. Maximizing the composite
value during optimization directly corresponds to improving
the model’s ability to generalize and make accurate predic-
tions, which is the ultimate goal of our feature weighting
approach.

The hyperparameters and structural characteristics of the
neural network used are not fixed but depend on factors
such as the dataset size, the number of features, and other
intrinsic properties of the data. Consequently, users applying
this framework should perform preliminary experiments to
identify a network configuration that produces high composite
values from the earliest iterations, enhancing optimization
efficiency.

In future work, we intend to augment this approach by
leveraging Particle Swarm Optimization to automatically tune
neural network hyperparameters, thus optimizing both feature
weights and model architecture in a unified framework.

This procedure is repeated for all splits. At the end, the av-
erage performance is calculated for the model trained with the
weight vector defined by the surrogate particle. This procedure
is called full validation. This entire process is performed for
every surrogate particle, so that for each surrogate particle,
a composite value is generated. In other words, for each
surrogate particle k in domain D, the K-Fold cross-validation
returns a single composite value o ., representing the average
performance of the neural network when trained and vali-
dated using the weight vector associated with that surrogate
particle. At this stage, for each domain, the surrogate model
is constructed by leveraging the composite values already
computed for the surrogate particles. As illustrated in Fig. 5,
the surrogate consists of a RandomForestRegressor and
a GradientBoostingRegressor, both trained on (par-
ticle, composite value) pairs from K-Fold cross-validation.

{

"MODEL_ARCHITECTURE": {
"layerl_units": 124,
"layerl_activation":
"dropoutl": 0.3,
"layer2_units": 64,
"layer2_activation":
"dropout2": 0.3,
"output_units": 1,
"output_activation":

by

"TRAINING": {
"EPOCHS": 2,
"batch_size": 16

}

"relu",
"relu",

"sigmoid"

}

Fig. 4. Neural network configuration: two-layer
feed-forward network with ReLU activation and
dropout in the hidden layers, and a sigmoid activa-
tion in the output layer. The training is performed
for 2 epochs with a batch size of 16. Both the
architecture and all training hyperparameters are
fully customizable and can be modified as needed
for different applications.

The RandomForestRegressor operates by training a
large number of independent decision trees, each built on
different random subsets of the data and features. The final
prediction is made by averaging the outputs of all the trees,
which helps reduce overfitting and increases prediction stabil-
ity.

The GradientBoostingRegressor, on the other
hand, builds its decision trees sequentially. Each new tree
is trained to correct the errors (residuals) of the combined
predictions of the previous trees, gradually improving the
overall predictive accuracy. This makes Gradient Boosting
particularly effective at capturing complex patterns in the data.

For each candidate, the surrogate prediction is obtained
by taking the mean of the outputs from the two regressors.
By combining these two different regression techniques, the
surrogate model provides fast, reliable, and robust estimates of
candidate performance. This enables the algorithm to quickly
identify and select the most promising candidates for ex-
pensive full validation with the neural network, significantly
reducing computational costs.

Surrogate Trai Estimate
particles used for ra“;] evaluate | composite value
+ Composite e]::er(rjl le for normal
values ode particles
composed by
RandomForest GradientBoosting

Fig. 5. Schematic of surrogate model creation: composite values from
surrogate particles are used to train an ensemble consisting of RandomForest
and GradientBoosting models. The predictions from both models are averaged
to estimate the composite value for normal candidate particles.

C. Selection and Validation of Top Candidates

After the surrogate model predicts composite values for all
candidate particles, a two-step selection process is applied,
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as illustrated in Fig. 6. First, the top K particles with the
highest surrogate-predicted scores are selected from the initial
candidate set. Next, these selected candidates undergo full
validation using K-Fold cross-validation with the actual neural
network, in order to accurately assess their true performance.

Particle Surrogate
Prediction
w1 0.65 Top K
Particle True Comp.
w2 0.71 Surrogate
select top K lidati (NN)
w3 0.1 P | prediction ™" N
= > wr 0.78
wy 0.68 wy
w3 0.79
w5 0.77 w3
ws 0.76
we 059 ws
wr 0.83
ws 0.62

Fig. 6. Workflow of candidate selection: All candidate particles with surrogate
predictions (left); selection of top K candidates (center); true composite values
after full validation with the neural network (right).

D. Characteristic Vector Update

Once the top-K candidates {w;;} | in each subdomain
D; have been fully validated, we aggregate their information
into a single “characteristic” vector c; that will guide the next
movement of D;. Let 0; ;, denote the composite value assigned
to candidate w ;. We define:

K
§ ,\UJ’JC Wik
k=1

cj = )
27k
k=1

In other words, c; is the weighted average of the K best
weight vectors in D;, with weights proportional to their ob-
served performance. This choice has two desirable properties:

e Exploit high-quality solutions: vectors with larger o j

contribute more strongly, pulling c; toward regions of
higher performance.

o Smooth update: by averaging, we avoid abrupt jumps in

domain center due to outlier candidates.

The updated characteristic vector c; then serves as the new
position (center) of subdomain D; in the subsequent PSO
iteration.

E. Domain Update (PSO Movement)

After defining the characteristic vector c;, each subdomain
Dj is shifted by combining four components—inertia, per-
sonal best, global best, and, most critically, the neighbor
influence that pulls D; toward positions discovered by its
adjacent domains. It is precisely this social component that
enables our algorithm to operate in a PSO-like manner.

First, we introduce the three acceleration components:

Aé‘) =¢p Tp(pj - C§t71))7
AT = ¢,y — ' 7Y), @)
Af = ¢41y (g — cgtfl)).
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where:

e Pj; is the personal best position of D,

e n; is the best position discovered by its neighbors,

« g is the global best across all subdomains,

o Tp,Tn,Tg ~ U(0,1)" are independent uniform random
vectors.

Next, the velocity is updated in PSO fashion:
v = vV AR £ AT AY 3)
—
inertia

and the subdomain center shifts according to

(t) _ .(t-1) (t)
c;’ =c; +v;. (€))
Fig. 7 illustrates how the characteristic vector (black arrow)
and neighbor influences (red arrows) combine to drive each
subdomain from its initial (blue solid) to its moved (blue
dotted) position.

Interpretation of terms:

. wv§-t_1) (inertia): retains part of the previous velocity,

smoothing motion.

. A? (cognitive/personal): pulls the center toward p;, ex-
ploiting its own best.

o AY (social/neighbor): pulls toward the neighbor best n;,
enabling coordinated exploration.

. A;’. (global): draws all subdomains toward the global best
g for convergence.

o 7p,Tn,Tg ~ U(0,1)" (random vectors): introduce
stochastic variation—larger values favor exploration,
smaller values fine-tune exploitation.

o The update cy) = c§.t_1) +v](-t) completes the PSO move

for Dj.
N Ty —> Characteristic vector
\ﬁ —_—> Neighbor influence
D Initial subdomain
Moved subdomain
ry o Initial center
° ° Updated center

Fig. 7. Characteristic vector with neighbor influence: solid-line subdomains
are initial, dotted are moved; centers shift from blue to red dots; black arrow
shows characteristic vector; red arrows show neighbor influence.

Having detailed how each domain’s center is updated via
its characteristic vector, we now describe how these updates
are organized over time and when the algorithm terminates.

FE. Iteration and Stopping Criteria

Our framework proceeds in discrete iterations ¢t = 1,2, ...,
mirroring the structure of classical PSO.
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Per-iteration workflow:

1) Domain movement: each D; is shifted by its updated
velocity and characteristic vector.

2) Surrogate set refresh: the surrogate particles farthest
from the new center are discarded and replaced by new
samples drawn in the region just explored.

3) Surrogate retraining: the surrogate model for D; is re-
trained on the updated surrogate set and their composite
values.

Stopping criteria:

o Target composite value: terminate as soon as any candi-
date reaches a predefined composite score.

e Fixed budget: run for a preset number of iterations or
wall-time, then return the best vector seen across all
domains and iterations.

o Budget exhaustion: stop when the allotted computational
resources (e.g. number of network evaluations or CPU-
hours) are consumed.

Upon termination, the algorithm returns the highest-scoring

weight vector found.

Forj =1
Fori=1

hd

v
Extraction of surrogate particles

Vv
Creation of surrogate model

4
Surrogate prediction

4
Selection of top-K normal particles

t=1414+1
if (l = Ndomains) :
4 ] = ] +1
Creation of characteristic vector i=1

Vv
Movement of the domain

Fig. 8. Illustrative flow of the per-domain, per-iteration update loop: each
iteration processes surrogate particle extraction, surrogate model training,
prediction, top-K selection, characteristic-vector creation, and domain move-
ment, followed by index updates. Here Ngomains denotes the total number
of subdomains within the parent domain.

III. DATASET AND INITIALIZATION PROCEDURES

The proposed framework was validated on the Wisconsin
Diagnostic Breast Cancer (WDBC) dataset, which includes
n = 30 cellular features per sample and binary labels indicat-
ing malignant (M) or benign (B) tumors. The dataset consists

of N = 569 samples; the label column was converted to 1
(malignant) and O (benign) for classification.

All features were standardized using z-score normalization.
The dataset was split into training and test sets with an
80-20 stratified split to preserve the original class balance.
Categorical labels were mapped as follows: M — 1, B — 0.

The main phases of data preparation and the per-domain
optimization cycle are illustrated in Fig. 8.

For class imbalance, balanced class weights were computed
and applied during training.

The PSO-based optimization was initialized as follows:

« Global weight bounds: 1b = 1.0, ub = 10.0

o Number of subdomains: m = 10

¢ Subdomain width: L = 0.5

o Particles per domain: P = 100

o Surrogate particles per domain: S = 10

« Precision: weights rounded to one decimal

o Domain update factor: v = 0.1

o Number of global iterations: T' = 5

o Early stopping threshold: € = 0.001

e Top K = 20 particles per domain revalidated

Within each subdomain, candidate weight vectors (particles)
were generated using Latin Hypercube Sampling and sorted
by the sum of their components. Surrogate models (Random
Forest and Gradient Boosting Regressors) were trained on a
uniform subset of particles, allowing efficient pre-selection
before full neural network validation.

The neural network used was a feed-forward model with two
hidden layers (124 and 64 units, ReLU activation, 0.2 dropout),
trained using the Adam optimizer and binary cross-entropy
loss, following established approaches that apply sensitivity
and feature-importance analysis for medical diagnosis using
neural networks [8]. Performance was assessed via 5-fold
cross-validation, averaging accuracy, precision, and recall into
a composite metric.

IV. EXPERIMENTAL RESULTS

To rigorously assess the performance of our domain-as-
particle PSO framework, we conducted a direct compar-
ison with the standard (classical) PSO approach on the
widely studied Wisconsin Diagnostic Breast Cancer (WDBC)
dataset. Both methods were evaluated under challenging, high-
dimensional conditions (n = 30), which are typical of real-
world feature weighting problems.

Figure 9 displays the composite value trajectories for each
subdomain during the optimization process using our proposed
framework. In this experiment, we initialized 1000 particles
per domain (i.e., per subdomain), adopted a batch size of
30 samples per neural network update, and used the neural
network architecture described in Figure 4. The plot shows
the evolution of composite values for all 10 domains dis-
tributed throughout the search space. Notably, subdomain 6
(highlighted in orange) achieved the highest composite value,
indicating that this region of the weight space contained weight
vectors that assigned the most effective feature scaling to
the dataset. In contrast, the other domains, which do not
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reach such high composite values, are evidently located in
less favorable regions of the 30-dimensional search space,
where the initialized weights do not lead to optimal model
performance.

For the baseline comparison, Figure 10 presents results
obtained using the classical PSO algorithm, without any sub-
domain partitioning or surrogate modeling. In this setting, we
distributed 100,000 particles across the entire weight space
to achieve comprehensive coverage of the 30-dimensional
space, and used a batch size of 40 samples. Importantly, this
approach does not leverage any of the domain-as-particle or
surrogate-assisted strategies introduced in our framework. As
a consequence, the algorithm must directly evaluate every
candidate weight vector with full neural network training,
leading to a substantial increase in computational burden and
runtime.

From a computational perspective, the efficiency gain pro-
vided by our method is substantial. While the classical PSO
required approximately hours to complete, our domain-as-
particle approach achieved comparable or superior composite
values in just 3 hours. This demonstrates not only a significant
reduction in runtime, but also a clear advantage in terms
of computational cost and scalability. The improvement in
both efficiency and solution quality highlights the effectiveness
of the proposed surrogate-assisted, multi-domain optimiza-
tion strategy for neural-network feature weighting. To further
benchmark our method, we implemented a simple attention-
based classifier. The model consists of a self-attention layer
with dimensionality equal to the number of input features
(30), followed by two fully connected layers with ReL.U
activations and a sigmoid output layer for binary classification.
The classifier was trained with the Adam optimizer at a
learning rate of 1 x 1073, a batch size of 32, and for 50
epochs. This attention-based model achieved a composite
value of approximately 0.94, which is slightly lower than the
composite value obtained by our proposed domain-as-particle
PSO framework, demonstrating that our method outperforms
this baseline in terms of feature weighting effectiveness.

V. CONCLUSION AND FUTURE WORK

This paper introduced a domain-as-particle Particle Swarm
Optimization (PSO) framework for neural network feature
weighting, validated on medical data for breast cancer diag-
nosis. The method leverages surrogate models to efficiently
guide the optimization process, achieving fast convergence to
high-quality solutions with reduced computational cost. Our
framework demonstrated robustness and scalability, making it
well-suited for complex, high-dimensional feature weighting
problems.

The algorithm has been tested on multiple datasets beyond
the one presented here, consistently producing promising
results that validate its general applicability and effectiveness.
We plan to extend this line of research by applying the method

Global composite value
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to a wider variety of datasets from diverse domains, to further
confirm its versatility and real-world impact.

As a significant avenue for future work, we propose an
adaptive extension of the algorithm that incorporates auto-
matic hyperparameter tuning using PSO itself. Specifically,
this variant will treat the hyperparameters of the Domain-as-
Particle algorithm as an m-dimensional search space, where
n is the number of hyperparameters to optimize. PSO will
then seek the vector of hyperparameter values that yields the
best composite value from the very first iteration, effectively
initializing the algorithm in a data-driven, intelligent manner.
This approach will allow the algorithm to automatically adapt
to the characteristics of each dataset, significantly reducing the
time and effort required to manually tune hyperparameters and
accelerating convergence toward optimal solutions.

Moreover, we plan to investigate the introduction of a
grandmother domain concept, a hierarchical multi-level struc-
ture within which multiple mother domains operate. This
layered framework will enable optimization across larger and
more complex weight spaces by coordinating exploration at
different granularities, potentially enhancing solution quality
and search efficiency.

Finally, future developments will explore new surrogate
modeling techniques and innovative exploration strategies to
further improve performance and scalability. These advance-
ments aim to broaden the applicability of our framework and
address emerging challenges in neural network optimization
for real-world applications.
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