
Domain-as-Particle with PSO Methods for

Neural-Network Feature Weighting

Fabio Berberi

University of Siena

Via Roma, 56, 53100 Siena, Italy

Leuphana University of Lueneburg

Universitätsallee 1, 21335 Lueneburg, Germany

ORCID: 0009-0004-8825-8707

Email: f.berberi@student.unisi.it

Paolo Mercorelli

Leuphana University of Lueneburg

Universitätsallee 1, 21335 Lueneburg, Germany

ORCID: 0000-0003-3288-5280

Email: paolo.mercorelli@leuphana.de

Abstract—We present a framework that integrates Particle
Swarm Optimization (PSO), machine learning, K-Fold cross-
validation, and surrogate modeling to identify optimal weight
vectors for feature scaling in neural network training. In our
approach, the n-dimensional weight space is partitioned into non-
overlapping subdomains, each corresponding to a PSO particle.
Particle movement is guided by a characteristic vector, which is
determined by the best-performing candidates in each subdomain
and by information exchanged with neighboring regions. To re-
duce evaluation costs, a surrogate model—trained on a uniformly
sampled subset of candidates—pre-filters particles before full K-
Fold validation. The top candidates then undergo comprehensive
validation, updating the characteristic vectors for subsequent iter-
ations. This domain-as-particle PSO framework enables efficient
weight discovery, significantly reducing computational overhead
while maintaining robust performance. The effectiveness of this
approach is demonstrated on real-world datasets.

Index Terms—Particle Swarm Optimization, surrogate model-
ing, neural networks, K-Fold cross-validation, feature weighting,
medical application.

I. INTRODUCTION

I
DENTIFICATION methods play a pivotal role in the

control and monitoring of dynamic systems. They form

the backbone of modern engineering, seamlessly integrating

concepts from various disciplines to achieve regulation, sta-

bilization, and optimization of these systems. This multi-

disciplinary nature makes system identification and control

a crucial area of both academic study and practical appli-

cation, extending its impact across diverse fields such as

engineering, computer science, mathematics, physics, biology,

economics, and environmental engineering. Notable examples

include contributions like [1] and [2], which demonstrate the

successful application of identification and control techniques

in environmental engineering and ecology. Similarly, [3] pro-

vides a practical case of identification methods applied within

an economic and commercial context, specifically to prey-

predator models.

Particle Swarm Optimization (PSO), first introduced in [4],

is an evolutionary computation technique inspired by the social

behaviors of bird flocking and fish schooling. Initially designed

for continuous optimization problems within computational

intelligence, PSO has evolved into a versatile, interdisciplinary

tool applied across numerous domains. In computer science,

it is utilized for tasks such as feature selection in machine

learning [5] and hyperparameter optimization in deep learning

models. The biomedical sector has also adopted PSO for appli-

cations like image segmentation [6] and gene expression data

analysis, illustrating its adaptability to high-dimensional and

noisy data environments. PSO’s popularity can be attributed

to its simplicity, flexibility, and effectiveness in addressing

nonlinear, non-differentiable, and multi-objective problems,

making it a powerful tool for both theoretical research and

real-world applications. A detailed and recent survey of PSO

can be found in [7]. Optimizing feature weights enhances

neural network training by scaling inputs to accelerate con-

vergence and improve accuracy. Manual feature engineering or

exhaustive hyperparameter search becomes infeasible in high-

dimensional spaces. We propose a domain-as-particle PSO

framework, where the n-dimensional weight space, defined as

the mother domain W , is partitioned into distinct regions. Each

region acts as a particle that independently explores its section

to search for optimal solutions.

Contribution and Structure of the Paper

This paper presents a new framework for neural-network

feature weighting based on a domain-as-particle Particle

Swarm Optimization (PSO) strategy. The method efficiently

partitions and explores the weight space, combining surrogate

modeling with adaptive domain updates to enable scalable

optimization in high-dimensional scenarios. The effectiveness

of this approach is demonstrated through experiments on real-

world datasets and benchmark comparisons.

The remainder of the paper is organized as follows. Sec-

tion II presents the proposed method in detail. Section III

describes the dataset and initialization procedures. Section IV

discusses the experimental results. Section V concludes the

paper and outlines future research directions.

II. PROPOSED METHOD

The proposed domain-as-particle Particle Swarm Optimiza-

tion (PSO) framework for neural-network feature weighting

Communication Papers of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 41–47

DOI: 10.15439/2025F1427
ISSN 2300-5963 ACSIS, Vol. 45

©2025, PTI 41 Thematic Session: Data Science in Health,
Ecology and Commerce



mother domain W

Movement direction

Initial subdomain

Moved subdomain

Initial center
Updated center

Fig. 1. Conceptual illustration of domain movement: five subdomains, initially
uniformly distributed in W , each move a short distance to new positions. The
movement is driven by each subdomain’s characteristic vector and neighbor
influences.

operates through the following main steps:

• partitioning: The n-dimensional feature weight space

is divided into multiple subdomains, each acting as a

separate PSO particle.

• Particle generation and surrogate modeling: In each

subdomain, a set of candidate weight vectors (particles)

is generated. A subset is evaluated using neural network

training and K-Fold cross-validation, and the results are

used to train a surrogate model (ensemble of Random-

Forest and GradientBoosting regressors) that predicts the

quality of remaining candidates.

• Selection and validation of top candidates: The surro-

gate model identifies the most promising particles, which

are then fully validated using K-Fold cross-validation.

• Characteristic vector update: The best candidates in

each subdomain are combined into a characteristic vector

(e.g., weighted average) to guide the next search step.

• Domain update (PSO movement): Each subdomain’s

center is shifted according to its characteristic vector and,

optionally, information from neighboring subdomains.

• Iteration and stopping criteria: These steps repeat iter-

atively, with surrogate retraining and domain adaptation,

until convergence or budget limits are met.

This approach allows efficient and scalable search for opti-

mal feature weightings in high-dimensional problems.

A. Weight-Space Partitioning

The weight-space partitioning is the foundational step of the

proposed algorithm (see Fig. 2). The global weight space W
is defined as the n-dimensional hypercube [lb, ub]n, where n

is the number of features and lb, ub are the lower and upper

bounds for each weight, respectively. This weight space W is

partitioned into several uniformly distributed subdomains Dj ,

each with fixed side length L and centered at a grid point dj .

Importantly, these subdomains Dj do not overlap and have

deliberate spacing between them.

This spacing allows each subdomain Dj room to move and

adapt during optimization, facilitating thorough and indepen-

dent exploration of the search space. As the algorithm iterates,

each Dj shifts to investigate unexplored regions, ensuring

efficient coverage of the entire main domain.

Global weight space W

Dj

Dj

Dj

Dj

Dj

Dj

Dj

Dj

Dj

L s

Fig. 2. Weight-space partitioning: W is partitioned into a 3 × 3 grid of
subdomains Dj , each an n-dimensional cube of side length L, separated by
spacing s, and offset by an internal margin M .

B. Particle Generation and Surrogate Modeling

After defining the subdomains (see Fig. 3), the next step is

to generate candidate weight vectors inside each subdomain.

For every Dj , both standard particles and those selected

for surrogate modeling are uniformly sampled within the

subdomain boundaries. This allows the algorithm to explore

different weightings in each region of the search space.

Dj

Fig. 3. Illustration of a single subdomain Dj with a uniform interior grid of
black candidate particles (excluding the topmost row) and a uniformly spaced
subset highlighted in red.

After generating both types of particles—the P full parti-

cles and the S surrogate particles—we begin the surrogate

model construction as follows. For each surrogate particle,

we estimate performance using K-Fold cross-validation: the

dataset is split into K equal parts, with each part used once

as the validation set and the others as the training set. The final

performance metric is obtained by averaging results across all

folds. This approach provides a robust estimate of the model’s

generalization ability.

42 COMMUNICATION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



With reference to the neural network (see Fig. 4): For each

surrogate particle, the neural network is trained on the training

folds and tested on the test fold, resulting in a composite value

for each split. The composite value is defined as the arithmetic

mean of three key classification metrics: accuracy, precision,

and recall. This metric plays a central role in our algorithm

as the primary objective to optimize, representing a holistic

measure of the model’s predictive power on the dataset.

Specifically, the composite value quantifies the overall qual-

ity of the candidate feature weighting by balancing multiple

aspects of classification performance:

• Accuracy measures the proportion of correctly classified

instances among all samples, providing a general assess-

ment of model correctness.

• Precision evaluates the proportion of true positive predic-

tions among all positive predictions made by the model,

reflecting the model’s ability to avoid false positives.

• Recall (also known as sensitivity) assesses the proportion

of true positive cases correctly identified by the model,

indicating its effectiveness at detecting positive instances.

Each of these metrics addresses a distinct aspect of clas-

sification performance, and combining them equally in the

composite value ensures a balanced evaluation that mitigates

biases inherent in any single metric. Maximizing the composite

value during optimization directly corresponds to improving

the model’s ability to generalize and make accurate predic-

tions, which is the ultimate goal of our feature weighting

approach.

The hyperparameters and structural characteristics of the

neural network used are not fixed but depend on factors

such as the dataset size, the number of features, and other

intrinsic properties of the data. Consequently, users applying

this framework should perform preliminary experiments to

identify a network configuration that produces high composite

values from the earliest iterations, enhancing optimization

efficiency.

In future work, we intend to augment this approach by

leveraging Particle Swarm Optimization to automatically tune

neural network hyperparameters, thus optimizing both feature

weights and model architecture in a unified framework.

This procedure is repeated for all splits. At the end, the av-

erage performance is calculated for the model trained with the

weight vector defined by the surrogate particle. This procedure

is called full validation. This entire process is performed for

every surrogate particle, so that for each surrogate particle,

a composite value is generated. In other words, for each

surrogate particle k in domain Dj , the K-Fold cross-validation

returns a single composite value σj,k, representing the average

performance of the neural network when trained and vali-

dated using the weight vector associated with that surrogate

particle. At this stage, for each domain, the surrogate model

is constructed by leveraging the composite values already

computed for the surrogate particles. As illustrated in Fig. 5,

the surrogate consists of a RandomForestRegressor and

a GradientBoostingRegressor, both trained on (par-

ticle, composite value) pairs from K-Fold cross-validation.

{

"MODEL_ARCHITECTURE": {

"layer1_units": 124,

"layer1_activation": "relu",

"dropout1": 0.3,

"layer2_units": 64,

"layer2_activation": "relu",

"dropout2": 0.3,

"output_units": 1,

"output_activation": "sigmoid"

},

"TRAINING": {

"EPOCHS": 2,

"batch_size": 16

}

}

Fig. 4. Neural network configuration: two-layer
feed-forward network with ReLU activation and
dropout in the hidden layers, and a sigmoid activa-
tion in the output layer. The training is performed
for 2 epochs with a batch size of 16. Both the
architecture and all training hyperparameters are
fully customizable and can be modified as needed
for different applications.

The RandomForestRegressor operates by training a

large number of independent decision trees, each built on

different random subsets of the data and features. The final

prediction is made by averaging the outputs of all the trees,

which helps reduce overfitting and increases prediction stabil-

ity.

The GradientBoostingRegressor, on the other

hand, builds its decision trees sequentially. Each new tree

is trained to correct the errors (residuals) of the combined

predictions of the previous trees, gradually improving the

overall predictive accuracy. This makes Gradient Boosting

particularly effective at capturing complex patterns in the data.

For each candidate, the surrogate prediction is obtained

by taking the mean of the outputs from the two regressors.

By combining these two different regression techniques, the

surrogate model provides fast, reliable, and robust estimates of

candidate performance. This enables the algorithm to quickly

identify and select the most promising candidates for ex-

pensive full validation with the neural network, significantly

reducing computational costs.

Surrogate

particles

+ Composite

values

Train

ensemble

model

Estimate

composite value

for normal

particles

RandomForest GradientBoosting

composed by

used for evaluate

Fig. 5. Schematic of surrogate model creation: composite values from
surrogate particles are used to train an ensemble consisting of RandomForest
and GradientBoosting models. The predictions from both models are averaged
to estimate the composite value for normal candidate particles.

C. Selection and Validation of Top Candidates

After the surrogate model predicts composite values for all

candidate particles, a two-step selection process is applied,

FABIO BERBERI, PAOLO MERCORELLI: DOMAIN-AS-PARTICLE WITH PSO METHODS FOR NEURAL-NETWORK FEATURE WEIGHTING 43



as illustrated in Fig. 6. First, the top K particles with the

highest surrogate-predicted scores are selected from the initial

candidate set. Next, these selected candidates undergo full

validation using K-Fold cross-validation with the actual neural

network, in order to accurately assess their true performance.

Particle Surrogate

Prediction

w1 0.65

w2 0.71

w3 0.81

w4 0.68

w5 0.77

w6 0.59

w7 0.83

w8 0.62

Top K

Surrogate

Prediction

w7

w3

w5

Particle True Comp.

(NN)

w7 0.78

w3 0.79

w5 0.76

select top K full validation

Fig. 6. Workflow of candidate selection: All candidate particles with surrogate
predictions (left); selection of top K candidates (center); true composite values
after full validation with the neural network (right).

D. Characteristic Vector Update

Once the top-K candidates {wj,k}
K
k=1 in each subdomain

Dj have been fully validated, we aggregate their information

into a single “characteristic” vector cj that will guide the next

movement of Dj . Let σj,k denote the composite value assigned

to candidate wj,k. We define:

cj =

K∑

k=1

σj,k wj,k

K∑

k=1

σj,k

(1)

In other words, cj is the weighted average of the K best

weight vectors in Dj , with weights proportional to their ob-

served performance. This choice has two desirable properties:

• Exploit high-quality solutions: vectors with larger σj,k

contribute more strongly, pulling cj toward regions of

higher performance.

• Smooth update: by averaging, we avoid abrupt jumps in

domain center due to outlier candidates.

The updated characteristic vector cj then serves as the new

position (center) of subdomain Dj in the subsequent PSO

iteration.

E. Domain Update (PSO Movement)

After defining the characteristic vector cj , each subdomain

Dj is shifted by combining four components—inertia, per-

sonal best, global best, and, most critically, the neighbor

influence that pulls Dj toward positions discovered by its

adjacent domains. It is precisely this social component that

enables our algorithm to operate in a PSO-like manner.

First, we introduce the three acceleration components:

∆p
j = ϕp rp

(
pj − c

(t−1)
j

)
,

∆n
j = ϕn rn

(
nj − c

(t−1)
j

)
, (2)

∆g
j = ϕg rg

(
g − c

(t−1)
j

)
.

where:

• pj is the personal best position of Dj ,

• nj is the best position discovered by its neighbors,

• g is the global best across all subdomains,

• rp, rn, rg ∼ U(0, 1)n are independent uniform random

vectors.

Next, the velocity is updated in PSO fashion:

v
(t)
j = ω v

(t−1)
j

︸ ︷︷ ︸

inertia

+∆p
j +∆n

j +∆g
j , (3)

and the subdomain center shifts according to

c
(t)
j = c

(t−1)
j + v

(t)
j . (4)

Fig. 7 illustrates how the characteristic vector (black arrow)

and neighbor influences (red arrows) combine to drive each

subdomain from its initial (blue solid) to its moved (blue

dotted) position.

Interpretation of terms:

• ω v
(t−1)
j (inertia): retains part of the previous velocity,

smoothing motion.

• ∆p
j (cognitive/personal): pulls the center toward pj , ex-

ploiting its own best.

• ∆n
j (social/neighbor): pulls toward the neighbor best nj ,

enabling coordinated exploration.

• ∆g
j (global): draws all subdomains toward the global best

g for convergence.

• rp, rn, rg ∼ U(0, 1)n (random vectors): introduce

stochastic variation—larger values favor exploration,

smaller values fine-tune exploitation.

• The update c
(t)
j = c

(t−1)
j +v

(t)
j completes the PSO move

for Dj .

Characteristic vector

Neighbor influence

Initial subdomain

Moved subdomain

Initial center

Updated center

Fig. 7. Characteristic vector with neighbor influence: solid-line subdomains
are initial, dotted are moved; centers shift from blue to red dots; black arrow
shows characteristic vector; red arrows show neighbor influence.

Having detailed how each domain’s center is updated via

its characteristic vector, we now describe how these updates

are organized over time and when the algorithm terminates.

F. Iteration and Stopping Criteria

Our framework proceeds in discrete iterations t = 1, 2, . . .,
mirroring the structure of classical PSO.

44 COMMUNICATION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



Per-iteration workflow:

1) Domain movement: each Dj is shifted by its updated

velocity and characteristic vector.

2) Surrogate set refresh: the surrogate particles farthest

from the new center are discarded and replaced by new

samples drawn in the region just explored.

3) Surrogate retraining: the surrogate model for Dj is re-

trained on the updated surrogate set and their composite

values.

Stopping criteria:

• Target composite value: terminate as soon as any candi-

date reaches a predefined composite score.

• Fixed budget: run for a preset number of iterations or

wall-time, then return the best vector seen across all

domains and iterations.

• Budget exhaustion: stop when the allotted computational

resources (e.g. number of network evaluations or CPU-

hours) are consumed.

Upon termination, the algorithm returns the highest-scoring

weight vector found.

For j = 1
For i = 1

Iteration j

Extraction of surrogate particles

Creation of surrogate model

Surrogate prediction

Selection of top-K normal particles

Creation of characteristic vector

Movement of the domain

i = i+ 1

if (i = Ndomains) :
j = j + 1
i = 1

Fig. 8. Illustrative flow of the per-domain, per-iteration update loop: each
iteration processes surrogate particle extraction, surrogate model training,
prediction, top-K selection, characteristic-vector creation, and domain move-
ment, followed by index updates. Here Ndomains denotes the total number
of subdomains within the parent domain.

III. DATASET AND INITIALIZATION PROCEDURES

The proposed framework was validated on the Wisconsin

Diagnostic Breast Cancer (WDBC) dataset, which includes

n = 30 cellular features per sample and binary labels indicat-

ing malignant (M) or benign (B) tumors. The dataset consists

of N = 569 samples; the label column was converted to 1
(malignant) and 0 (benign) for classification.

All features were standardized using z-score normalization.

The dataset was split into training and test sets with an

80-20 stratified split to preserve the original class balance.

Categorical labels were mapped as follows: M → 1, B → 0.

The main phases of data preparation and the per-domain

optimization cycle are illustrated in Fig. 8.

For class imbalance, balanced class weights were computed

and applied during training.

The PSO-based optimization was initialized as follows:

• Global weight bounds: lb = 1.0, ub = 10.0
• Number of subdomains: m = 10
• Subdomain width: L = 0.5
• Particles per domain: P = 100
• Surrogate particles per domain: S = 10
• Precision: weights rounded to one decimal

• Domain update factor: γ = 0.1
• Number of global iterations: T = 5
• Early stopping threshold: ϵ = 0.001
• Top K = 20 particles per domain revalidated

Within each subdomain, candidate weight vectors (particles)

were generated using Latin Hypercube Sampling and sorted

by the sum of their components. Surrogate models (Random

Forest and Gradient Boosting Regressors) were trained on a

uniform subset of particles, allowing efficient pre-selection

before full neural network validation.

The neural network used was a feed-forward model with two

hidden layers (124 and 64 units, ReLU activation, 0.2 dropout),

trained using the Adam optimizer and binary cross-entropy

loss, following established approaches that apply sensitivity

and feature-importance analysis for medical diagnosis using

neural networks [8]. Performance was assessed via 5-fold

cross-validation, averaging accuracy, precision, and recall into

a composite metric.

IV. EXPERIMENTAL RESULTS

To rigorously assess the performance of our domain-as-

particle PSO framework, we conducted a direct compar-

ison with the standard (classical) PSO approach on the

widely studied Wisconsin Diagnostic Breast Cancer (WDBC)

dataset. Both methods were evaluated under challenging, high-

dimensional conditions (n = 30), which are typical of real-

world feature weighting problems.

Figure 9 displays the composite value trajectories for each

subdomain during the optimization process using our proposed

framework. In this experiment, we initialized 1000 particles

per domain (i.e., per subdomain), adopted a batch size of

30 samples per neural network update, and used the neural

network architecture described in Figure 4. The plot shows

the evolution of composite values for all 10 domains dis-

tributed throughout the search space. Notably, subdomain 6

(highlighted in orange) achieved the highest composite value,

indicating that this region of the weight space contained weight

vectors that assigned the most effective feature scaling to

the dataset. In contrast, the other domains, which do not

FABIO BERBERI, PAOLO MERCORELLI: DOMAIN-AS-PARTICLE WITH PSO METHODS FOR NEURAL-NETWORK FEATURE WEIGHTING 45



reach such high composite values, are evidently located in

less favorable regions of the 30-dimensional search space,

where the initialized weights do not lead to optimal model

performance.

For the baseline comparison, Figure 10 presents results

obtained using the classical PSO algorithm, without any sub-

domain partitioning or surrogate modeling. In this setting, we

distributed 100,000 particles across the entire weight space

to achieve comprehensive coverage of the 30-dimensional

space, and used a batch size of 40 samples. Importantly, this

approach does not leverage any of the domain-as-particle or

surrogate-assisted strategies introduced in our framework. As

a consequence, the algorithm must directly evaluate every

candidate weight vector with full neural network training,

leading to a substantial increase in computational burden and

runtime.

From a computational perspective, the efficiency gain pro-

vided by our method is substantial. While the classical PSO

required approximately hours to complete, our domain-as-

particle approach achieved comparable or superior composite

values in just 3 hours. This demonstrates not only a significant

reduction in runtime, but also a clear advantage in terms

of computational cost and scalability. The improvement in

both efficiency and solution quality highlights the effectiveness

of the proposed surrogate-assisted, multi-domain optimiza-

tion strategy for neural-network feature weighting. To further

benchmark our method, we implemented a simple attention-

based classifier. The model consists of a self-attention layer

with dimensionality equal to the number of input features

(30), followed by two fully connected layers with ReLU

activations and a sigmoid output layer for binary classification.

The classifier was trained with the Adam optimizer at a

learning rate of 1 × 10−3, a batch size of 32, and for 50

epochs. This attention-based model achieved a composite

value of approximately 0.94, which is slightly lower than the

composite value obtained by our proposed domain-as-particle

PSO framework, demonstrating that our method outperforms

this baseline in terms of feature weighting effectiveness.

V. CONCLUSION AND FUTURE WORK

This paper introduced a domain-as-particle Particle Swarm

Optimization (PSO) framework for neural network feature

weighting, validated on medical data for breast cancer diag-

nosis. The method leverages surrogate models to efficiently

guide the optimization process, achieving fast convergence to

high-quality solutions with reduced computational cost. Our

framework demonstrated robustness and scalability, making it

well-suited for complex, high-dimensional feature weighting

problems.

The algorithm has been tested on multiple datasets beyond

the one presented here, consistently producing promising

results that validate its general applicability and effectiveness.

We plan to extend this line of research by applying the method

1 2 3 4 5 6 7 8 9 10
0.93

0.95

0.97

0.98

Iteration
G

lo
b

al
co

m
p

o
si

te
v
al

u
e

Composite value per subdomain (10 subdomains)

Subdomain 1 Subdomain 2

Subdomain 3 Subdomain 4

Subdomain 5 Subdomain 6 (best)

Subdomain 7 Subdomain 8

Subdomain 9 Subdomain 10

Fig. 9. Composite value per subdomain obtained using the domain-as-particle
PSO method (multi-domain, surrogate-assisted).

1 3 5 7 9 11 13 15 17 19 20
0.73

0.75

0.77

0.78

0.79

0.8

Iteration

B
es

t
co

m
p

o
si

te
v
al

u
e

Composite value computed with the classical method

Best

Fig. 10. Best composite value per iteration for the classical PSO approach
(single-domain, no surrogate model).

46 COMMUNICATION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



to a wider variety of datasets from diverse domains, to further

confirm its versatility and real-world impact.

As a significant avenue for future work, we propose an

adaptive extension of the algorithm that incorporates auto-

matic hyperparameter tuning using PSO itself. Specifically,

this variant will treat the hyperparameters of the Domain-as-

Particle algorithm as an n-dimensional search space, where

n is the number of hyperparameters to optimize. PSO will

then seek the vector of hyperparameter values that yields the

best composite value from the very first iteration, effectively

initializing the algorithm in a data-driven, intelligent manner.

This approach will allow the algorithm to automatically adapt

to the characteristics of each dataset, significantly reducing the

time and effort required to manually tune hyperparameters and

accelerating convergence toward optimal solutions.

Moreover, we plan to investigate the introduction of a

grandmother domain concept, a hierarchical multi-level struc-

ture within which multiple mother domains operate. This

layered framework will enable optimization across larger and

more complex weight spaces by coordinating exploration at

different granularities, potentially enhancing solution quality

and search efficiency.

Finally, future developments will explore new surrogate

modeling techniques and innovative exploration strategies to

further improve performance and scalability. These advance-

ments aim to broaden the applicability of our framework and

address emerging challenges in neural network optimization

for real-world applications.

ACKNOWLEDGMENT

This work was inspired by the lecture held by Prof. Paolo

Mercorelli entitled: “Applied Algorithms in Estimation and in

Control of Technical, Economical, and Biological Dynamical

Systems” within the scope of the Complementary Studies

Programme at Leuphana University of Lueneburg during the

winter semester 2024–2025. In this framework, students can

explore other disciplinary and methodological approaches

from the second semester onwards, focusing on additional

aspects in parallel with their subjects and giving them the

opportunity to sharpen skills across disciplines.

REFERENCES

[1] K. Benz, C. Rech, and P. Mercorelli, “Sustainable management of
marine fish stocks by means of sliding mode control,” in Proceedings of

the 2019 Federated Conference on Computer Science and Information

Systems, ser. FedCSIS 2019, vol. 18. IEEE, Sep. 2019. doi:
10.15439/2019f221. ISSN 2300-5963 p. 907–910. [Online]. Available:
http://dx.doi.org/10.15439/2019F221

[2] K. Benz, C. Rech, P. Mercorelli, and O. Sergiyenko, “Two cascaded
and extended Kalman filters combined with sliding mode control
for sustainable management of marine fish stocks,” Journal of

Automation, Mobile Robotics and Intelligent Systems, p. 28–35,
Jul. 2019. doi: 10.14313/jamris/3-2020/30. [Online]. Available: http:
//dx.doi.org/10.14313/JAMRIS/3-2020/30

[3] D. Normatov and P. Mercorelli, “Parameters estimation of a Lotka-
Volterra model in an application for market graphics processing units,”
in 2022 17th Conference on Computer Science and Intelligence Systems

(FedCSIS), 2022. doi: 10.15439/2022F61 pp. 935–938.
[4] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-

ings of ICNN’95 - International Conference on Neural Networks, vol. 4,
1995. doi: 10.1109/ICNN.1995.488968 pp. 1942–1948 vol.4.

[5] B. Xue, M. Zhang, W. N. Browne, and X. Yao, “A survey on evolutionary
computation approaches to feature selection,” IEEE Transactions on

Evolutionary Computation, vol. 20, no. 4, pp. 606–626, 2016. doi:
10.1109/TEVC.2015.2504420

[6] Y. Zhang, L. Wu, and S. Wang, “Magnetic resonance brain image
classification by an improved artificial Bee Colony Algorithm,”
Progress In Electromagnetics Research, vol. 116, p. 65–79, 2011. doi:
10.2528/pier11031709. [Online]. Available: http://dx.doi.org/10.2528/
PIER11031709

[7] T. M. Shami, A. A. El-Saleh, M. Alswaitti, Q. Al-Tashi, M. A. Sum-
makieh, and S. Mirjalili, “Particle swarm optimization: A comprehensive
survey,” IEEE Access, vol. 10, pp. 10 031–10 061, 2022. doi: 10.1109/AC-
CESS.2022.3142859

[8] P. A. Kowalski and M. Kusy, “Determining the significance of
features with the use of sobol’ method in probabilistic neural
network classification tasks,” in Proceedings of the 2017 Federated

Conference on Computer Science and Information Systems (FedCSIS),
2017. doi: 10.15439/2017F225 pp. 39–48. [Online]. Available: https:
//annals-csis.org/Volume_11/drp/225.html

FABIO BERBERI, PAOLO MERCORELLI: DOMAIN-AS-PARTICLE WITH PSO METHODS FOR NEURAL-NETWORK FEATURE WEIGHTING 47


