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Abstract—This paper introduces a novel framework for mod-
eling and optimizing flow networks with multiple constraints
using Sequential Dynamical Systems (SDS). We have extended
the Sequential Flow Network (SFN) definition to encompass both
Sequential Flow Networks (SFN) and Bounded Sequential Flow
Networks (bSFN), which incorporate directional constraints and
weighted transitions. These models can be utilized to simulate
intricate real-world applications, such as educational pathways
and labor market issues. In order to optimize local flow to
specific nodes with minimal global impact, we propose three novel
approaches: a linear programming formulation and two greedy
heuristics. The evaluation metrics employed are defined as a
means to balance local improvement and global disturbance. The
efficacy of these methods is evaluated through experimentation
on both artificial and real-world-inspired random networks.
Notwithstanding the encouraging results and observations yielded
by the experimental analysis of random graphs, suggestions for
further research will be made in order to overcome the limitations
of the present study.

I. INTRODUCTION

A
CONSIDERABLE number of real-world problems man-

ifest as phenomena or dynamics over networks and

graphs. For instance, urban traffic and transportation networks

can be represented as graphs, as illustrated in [1]). As another

example, the spread of disease on social contact graphs is

naturally represented in graphs [2]. Other examples include

packet flow in information and engineering networks, such as

cell phone communication, gene annotation and gene regula-

tory network (GRN), or optimization of SDS schedules, see

[3]. Thus, SDSs use networks for modeling, simulation, and

analysis. Networks are also widely used in other context for

data modeling and analysis, see for example [4].

The generic class of Graph Dynamical Systems (GDS) is

distinct from other dynamical systems. These systems operate

on discrete time and may utilize a finite number of states.

Consequently, classical dynamical systems theory and tools

frequently prove to be inapplicable. While GDS are rooted

in discrete mathematics, algebra, combinatorics, graph theory,

and probability theory, they are primarily utilized within the

context of computer simulation.

The central research question guiding this study is con-

cerned with the utilization of SDSs in the modeling and

optimization with several constraints of flow networks on

natural numbers, characterized by linear transition functions.

The primary emphasis of this study will be on real-world

problems derived from labor market research. A comprehen-

sive literature review will precede a concise discussion of

the methods, tools, and theory for validation and theoretical

insights of SDSs that are necessary for modeling flow networks

with SDSs. In this study, we will propose three methodologies

for addressing the aforementioned problem. The first is an

approach based on linear programming, and the second and

third are greedy heuristics. Subsequent to this discussion, we

will present and analyze a series of experimental results. The

study’s conclusions and outlooks are articulated in the final

section.

II. LITERATURE REVIEW

Research on GDS and SDS remains limited. For a com-

prehensive introduction to SDSs, see [5] and [3]. A close

relationship exists between these models and Generalized

Cellular Automata with parallel update schemes, see [6]. SDSs

with sequential update schemes were introduced between 1999

and 2001 by Barrett et al, see [7]. Another related concept is

that of stochastic graph dynamical systems, see [8].

The examination of flow networks in graphs is not a novel

concept; see [9], [10]. However, to the best of our knowledge,

there is a lack of literature on modeling flow in graphs with

dynamical systems. The optimization of flow, whether local or

global, is a subject of study within the framework of classical

dynamical systems theory, see [11]. This concept has also been

explored in the context of distributed systems [12], chemical

systems [13], and traffic networks [14]. However, these is-

sues are frequently addressed through the implementation of

optimization methodologies or, in certain instances, artificial

intelligence algorithms, see [15], [16]

In summary, the field of SDSs is not generally associ-

ated with flow networks. The objective of this study is to

examine the feasibility of leveraging methodologies from

linear programming to enhance the operational efficiency of

flow networks in SDSs, which are characterized by multiple

constraints.

III. METHOD

In this section, we will first introduce Sequential Dynam-

ical Systems (SDS) and then develop the novel concept of

flow networks modeled with SDS. Subsequently, the issue of

local optimization of these flow networks will be presented.
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The following three approaches will be introduced: a linear

programming (LP) approach and two greedy approaches.

A. Sequential Dynamical System

An SDS consists of the following parts, which we will illus-

trate with a continuous example introduced by [3]. However,

we will not strictly follow their notation and will add other

remarks that focus on our research. First, we need a Graph

G = (V,E) with vertices V and edges E.

Example III.1. For example we may use a circular

graph on four nodes: V = {v0, ..., v3} and E =
{(v0, v1), (v1, v2), (v2, v3), (v3, v0)}.

Each node has a particular vertex state xi from a state set

K, for example K = F2 = {0, 1}. This results in a system

state, which is also called the configuration of an SDS. For

G in the example III.1 the system state contains four vertex

states:

x = (x0, x1, x2, x3).

Next, we use a G-local function Fi : Kn → Kn, which is

also called a local transition function. It takes the system state

as input.

For each vertex vi ∈ V fvi : Kd(vi)+1 → K is called the

vertex function. Here, d(v) denotes the degree of vertex v and

N(v) its closed neighborhood. The input set is vertex state of

the node vi and the vertex state of all its neighbors, denoted

by x[N(vi)]. We can define the local function Fv node-wise

as by

Fvi = Fi = (x0, ..., xi−1, fvi
(x[N(vi)]), xi+1, ..., xn)

Example III.2. Continuing Example III.1 we may set

F0(x0, x1, x2, x3) = (nor3(x0, x1, x3), x1, x2, x3)

F1(x0, x1, x2, x3) = (x0, nor3(x0, x1, x2), x2, x3)

F2(x0, x1, x2, x3) = (x0, x1, nor3(x1, x2, x3), x3)

F3(x0, x1, x2, x3) = (x0, x1, x2, nor3(x2, x3, x0))

It is important to note that this function can only change

the state of vertex i. We apply the updates sequentially and

therefore need to define a order, e.g. π = (0, 1, 2, 3).
To start the system, we define a initial state x0 =

(x0
0, ..., x

0
n). Typically, the context provides sufficient clarity

regarding the intended state, thereby obviating the necessity

for dual indexes.

Example III.3. Continuing example III.1, we may set

x0 = (x0, x1, x2, x3) = (1, 1, 0, 0)

By applying the maps we get (1, 1, 0, 0)
F0
7−−→ (0, 1, 0, 0)

F1
7−−→

(0, 0, 0, 0)
F2
7−−→ (0, 0, 1, 0)

F3
7−−→ (0, 0, 1, 0).

Effectively we have applied the composed map F3 ◦ F2 ◦
F1 ◦ F0. In a more algorithmic perspective, each step of an

SDS involves n substeps:

Algorithm 1 System Update

1: for i = 1 to n do

2: xπ(i) = fπ(i)(x[N(vπ(i)])
3: end for

In summary, A SDS is thus defined by a graph G, FG =
(Fv)v∈V , which is the vertex-indexed family of vertex func-

tions and π:

Definition III.4 (Sequential Dynamical System, SDS, see [3]).

Let G = (V,E) be a graph, let (fv)v∈V be a family of

vertex functions, and let π = (vπ(1), vπ(2), ..., vπ(n)) be a

permutation of the vertices of G. The sequential dynamical

system (SDS) is the triple

(G, (Fv)v, π).

Its associated SDS-map is [FG, π] : K
n → Kn defined by

[FG, π] = Fπn
◦ Fπn−1

◦ ... ◦ Fπ1
.

Often, scenarios are considered where G is undirected.

Thus, if not specified, we will assume that G is undirected. The

application of the G-local map Fv is the update of vertex v, and

the application of [FG, π] is a system update, see Algorithm

1.

To visualize the behavior of an SDS we may use a table

representing all node states in a table, where each column

represents a particular node state and each row represents a

system update. In the case of K = F2, a vertex state that is

zero is represented as a white square and a vertex state that

is one is represented as a black square. Consider the previous

example:

x
0 = (1, 0, 1, 0)

x
0

x
1

x
2

x
3

x
4

x
5

x
6

x
7

This table represents the so-called forward orbit of x =
(1, 0, 1, 0):

Definition III.5 (Forward Orbit, see [3]). Let x be a system

state of a SDS with system update function [FG, π]. The

forward orbit is given by

O+(x) = (x, [FG, π](x), [FG, π]
2(x), [FG, π]

3(x), ...).

However, this only represents the forward orbit of an initial

state. To visualize a complete SDS we may use Phase spaces,

see [3] for more details. It is obvious that we can only visualize

a finite state of system states with these approaches. Thus, it

is common to analyze the dynamics of sequential dynamical

systems defined using classical Boolean functions. They have

several nice properties, including symmetry:
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Definition III.6. We say that a function f(x1, ..., xn) is

symmetric if the order in which we describe its inputs does not

change the output: i.e. if f(x1, ..., xn) = f(xπ(1), ..., xπ(n)),
for any permutation π.

Some functions like nor, nand, or and and are all symmet-

ric. Other functions may not, especially the linear functions

which we will consider in the next section are generally not

symmetric.

B. Flow Networks

We will now consider flow networks. Usually they are

studied as another problem in graph theory where shortest

paths can be useful [9], [10]. In fact, the Maximum Flow

Problem is e so useful that we can apply them to many

practical problems. Suppose we want to transport a good from

one point to another, for example water, natural gas, oil, or

electricity. In these networks edges refer to some kind of pipe

or route to transport these good, not only pipes, but also roads,

or railways. Here, the question is: How can we send as much

as possible? Or in other words: How can we maximize the

flow?

However, when simulating flow with dynamical systems, the

question is usually rather: How can we manipulate the flow

so that particular nodes get more goods, for example without

affecting the whole other nodes? So for example, how can

one particular factory get more resources without the need

that other factories decrease their production.

In this case, a flow network G = (V,E) is a directed graph

comprising, here every node v ∈ V may be a source node and

a target node. We set K = N. Each edge ei ∈ E has a weight

w(ei) ∈ R which identifies the share of how many goods from

the source node “go” to the target node. Attention: This is not

the capacity, but a real share. When we define E−(v) as the

set of incoming edges for node v ∈ V , we can define the the

generic class of SDS flow networks:

Definition III.7 (SDS Flow Network (SFN)). Let G = (V,E)
be a directed weighted graph with edge weights w : E →∈
R. Let (fv)v∈V be a family of vertex functions with fv :
Kd(vi)+1 × E−(v) → K, and let π = (vπ(1), vπ(2), ..., vπ(n))
be a permutation of the vertices of G. The sequential dy-

namical system (SDS) defined by (G, (Fv)v, π) is called a

sequential flow network (SFN).

In summary, the basic difference to an SDS is the usage

of weights in the vertex functions. The difference to generic

flow networks is that every node is a source and target node

at the same time. However, these networks may have further

constrains and we will develop some of them by starting with

a very simple example and extend it.

We have n nodes v1, ..., vn and we may group all other

nodes in q groups V1, ...Vq to keep track of the update order.

This step is not technically necessary but allows to define

constrains.

We can model a small network with educational pathways,

as described in Figure 1. Here, V = { V0
︸︷︷︸
v0

, V1
︸︷︷︸

v1,v2,v3

, V3
︸︷︷︸
v4,v5

},

v0

v1

v2

v3

v40.49

0.49

v5

0.9

0.9

0.020.02

Fig. 1: An example of educational pathways. Green nodes are

in V0, blue nodes in V1 and yellow nodes in V2

and we have six nodes with a certain weight, see Figure

1. Here, the group V0 represents the ‘incoming’ actors on

the labor market, for example school-leavers, V1 represents

school-leaving certificates and V3 vocational or academical

education. Since education and qualification is usually not

‘lost’, we can assume that a particular share of people with a

given qualification achieve another qualification during a given

time, for example a year. Here, w(ei) ∈ [0, 1]. In our artificial

and simplified example, 49% of all people entering the labor

market receive school leaving certificate v3 and 90% of them

get a vocational degree v5. Note, that in this example we only

allow edges between nodes u, v with u ∈ Vi and v ∈ Vi+1.

With this, We can now define the the G-local function as

Fi(x0, ..., xn) = (x1, ..., xi +
∑

j∈N−(vi)

w ((vj , vi))xj

︸ ︷︷ ︸

position i

, ..., xn).

This function sums over all incoming edges and adds the share

defined as edge weight of the system state of the incoming

node.

By using the reverse order π = (n, n−1, ..., 2, 1, 0) we can

now define an SDS (G, (Fv)v, π) and compute the forward

orbit for a given initial state, for example

x = (10000, 2000, 80000, 40000, 130000, 110000).

Thus, we will apply the composed map F5◦F4◦F3◦F2◦F1◦F0

step by step as follows:

F5 = (10000, ...., 110000
︸ ︷︷ ︸

=x5

+( 0.9
︸︷︷︸

=w((v3,v5))

· 40000
︸ ︷︷ ︸
=x3

)

︸ ︷︷ ︸
=146,000

)

F4 = (...., 130000
︸ ︷︷ ︸

=x4

+( 0.02
︸︷︷︸

=w((v1,v4))

· 2000
︸︷︷︸
=x1

)+( 0.9
︸︷︷︸

=w((v2,v4))

· 80000
︸ ︷︷ ︸
=x2

)

︸ ︷︷ ︸
=202,040

, ...)

F3 = (...., 40000
︸ ︷︷ ︸
=x3

+( 0.49
︸︷︷︸

=w((v0,v3))

· 10000
︸ ︷︷ ︸
=v0

))

︸ ︷︷ ︸
=44,900

, ...)

Here, the colors refer to the coloring in Figure 1. So we get

the following forward orbit:
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v0

v1

v2

v3

v40.49

0.49

v5

0.9

0.9

0.02

v6

0.02

Fig. 2: An example of educational pathways. Green nodes are

in V0, blue nodes in V1 and yellow nodes in V2, red nodes

in V3

v0 v1 v2 v3 v4 v5

x
0 10,000 2,000 80,000 40,000 130,000 110,000

x
1 10,000 2,200 84,900 44,900 203,040 146,000

As we can see, the number of people with a certain

education raises every time step. This is not very natural, and

we can thus extend the model by adding negative weights

w(ei) ∈ [−1, 1] and adjusting the G-local function with

u(xi, xj) =

{

e((vj , vi))xj e((vj , vi)) ≥ 0

e((vj , vi))xi e((vj , vi)) < 0

Fi(x0, ..., xn) = (x1, ..., xi +
∑

j∈N−(vi)

u(xi, xj)

︸ ︷︷ ︸

position i

, ...). (1)

With this, we can also model an increasing flow with backward

egdes. Extending our previous example with another node in

V3 and backward edges with a small share to all other nodes,

see Figure 2, we can model the share of people leaving the

labor market, for example because of death or retirement.

Here, e(v, v6) = −0.01 ∀v ∈ V \ {v0, v6}.

Again, we can compute the forward orbit. Let

x = (10000, 2000, 80000, 40000, 130000, 110000, 0)

be the inital state. Then

F6 = (10, 000, ...., 0)

F5 = (10, 000, ...., 110000−(0.01 · 110000)+(0.9 · 40000)
︸ ︷︷ ︸

=144,900

, 0)

F4 = (...., 130000−(0.01 · 130000)+(0.9 · 80000)+(0.02 · 2000)
︸ ︷︷ ︸

=200,740

, ...)

F3 = (...., 40000−(0.01 · 40000)+(0.49 · 10000))
︸ ︷︷ ︸

=44,500

, ...)

F2 = (...., 80000−(0.01 · 80000)+(0.49 · 10000))
︸ ︷︷ ︸

=84,100

, ...)

F1 = (10, 000, 2000−(0.01 · 2000)+(0.02 · 10000))
︸ ︷︷ ︸

=2,180

, ...)

F0 = (10, 000, ..., 0)

v0 v1 v2 v3 v4 v5 v6

x
0 10,000 2,000 80,000 40,000 130,000 110,000 0

x
1 10,000 2,180 84,100 44,500 200,740 144,900 0

V0 V1 V2 Vq-1 Vq

Fig. 3: Illustration of the concept of Bounded SDS Flow

Networks: The positive flow goes from left to right, the

negative flow from right to left

Which leads to the following forward orbit: We can make

two observations: First, the vertex state of v6 never changes.

However, if we add ‘backward’-edges, e.g. (v5, v6) with

w(v5, v6) = −w(v6, v5), this simulates the desired behavior.

The second observation is that the newly added negative edges

conflict with our assumption that edges are only between

two nodes in groups Vi and Vi+1. This rule is not realistic,

especially since some education may rely on other education in

the same group, for example elementary school as dependency

for higher school degrees. Thus, we define a specific subset

of SDS flow networks:

Definition III.8 (Bounded SDS Flow Network (bSFN)). Let

G = (V,E) be a directed weighted graph with edge weights

w : E →∈ R. Let (fv)v∈V be a family of vertex func-

tions with fv : Kd(vi)+1 × E−(v) → K, and let π =
(vπ(1), vπ(2), ..., vπ(n)) be a permutation of the vertices of G.

All n nodes v0, ..., vn are grouped in q groups V0, ...Vq .

We allow edges e = (u, v) with w((u, v)) ≥ 0 only between

nodes u ∈ Vi, v ∈ Vj with i ≤ j or edges e = (u, v) with

w((u, v)) < 0 only between nodes u ∈ Vi, v ∈ Vj with j ≤ i.

The sequential dynamical system (SDS) defined by

(G, (Fv)v, π) is called a bounded flow network (bSFN).

If not otherwise mentioned, we will assume that π is the

reverse order (n, ..., 1, 0). This means that the flow in this

network is bounded by V0 and Vq , see Figure 3 for an

illustration. We can now study scenarios where we apply

methods to optimize the local flow in these networks.

C. Local Optimization of Flow Networks

In general, the local optimization of flow networks refers to

the maximization of the incoming flow to one particular node.

So let vι ∈ Vi with 0 < i < q and x an initial system state and

x′ = [FG, π](x). How can we change G so that we maximize

x′
ι whereas we want to keep δj = |xj − x′

j | ∀j ∈ [0, ..., n],
j ̸= ι minimal. In other words, after the system update the

system state for vι should be maximized whereas ideally all

other nodes have the same system state or change minimally.

While generally we can use or add new positive nodes from

all nodes in Vi and all Vj with j < i and use or add new

58 COMMUNICATION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



negative nodes from all nodes in Vi and all Vj with j > i, we

may restrict the candidate set for positive edges to C+ ⊆ E

and the candidate set for negative edges to C− ⊆ E.

We set c+ij = w((vi, vj)) for vi, vj ∈ V , i ≤ j if (vi, vj) ∈

E and else c+ij = 0. Similarly, we set c−ij = w((vi, vj))

vi, vj ∈ V , i ≥ j if (vi, vj) ∈ E and else c+ij = 0. In Figure 4

we describe the adjacency matrix representation, where each

entry holds the weight of an edge an 0 if no edge exists. The

lower triangular part (green) represents values in c+, the upper

triangular part the values in c−:

c12

c21

c13 c23
c14

c42

c31 c41
c32

c43
c24 c34

v1 v2 v3 v4

v2
v3

v1

v4
...

...

...

...

vι

vι

...

...

Fig. 4: Adjacency matrix representation

It is easy to see that the updated value of vι can be computed

by considering the ι-th row of the matrix. So we want to

maximize

x′
ι = xι +

∑

vi∈V ; (i,ι)∈E i<ι

c+iιxi −
∑

vi∈V ; (i,ι)∈E i>ι

c−iιxι.

However, only those values of ciι that are in C+ or C−

are subject to optimization. All other variables are fixed. In

addition, this formula does not update those vertex states

which are updated before π−1(ι), leading to an approximation

of the optimal solution.

However, if we restrict the update schema to π = (n −
1, ..., 1, 0), the update of vi does not influence any other nodes

in the current system update:

Lemma III.9. Let π = (n− 1, ..., 1, 0) be the update schema

for a Bounded SDS Flow Network on n nodes. Then, the vertex

state of xi is not included in the vertex update function of any

other node vj with j < i.

Proof. Let vj be a node with a vertex update function that

includes xi with i > j. Then, according to Formula 1, and

edge (vi, vj) with positive weight would exist. This is a

contradiction to Definition III.8.

More generic, changing the value of x′
ι influences all other

summands for other update values x′
j , j ̸= ι which is

represented by the ι-th column in the adjacency matrix. If π is

the ordering (0, 1, ..., n), this only affects the lower triangular

part, if π = (n, ..., 1, 0) it only affects the upper triangular

part.

From now on, we will assume the update schema is π =
(n − 1, ..., 1, 0). Since – unless C+ and C− includes edges

not connected to vι – in the first system update only xι is

changed, we will compare [FG, π]
2(x) to [FG′ , π]2(x) where

G′ is the graph with adjusted weights. We can then compute

the distance between the expected and modified vertex state

of all other nodes as

δ = |[FG, π]
2(x)− [FG′ , π]2(x)|

In summary, we can model this as optimization problem using

a linear program:

max z = x′
ι − δ (2)

s.t. x′
ι = xι +

∑

vi∈C+

c+iιxi −
∑

vi∈C−

c+iιxι (3)

δ =
∑

j=0,...,n−1

|([FG, π]
2(x))j − ([FG′ , π]2(x))j |

(4)

c+ij ∈ [0, 1]c−ij ∈ [−1, 0] for all c+ij ∈ C+, c−ij ∈ C−

(5)

Here, line 3 gives the objective function for the updated system

state, omitting the update of other node’s state. Line 4 returns

the influence of changing edge weights, using the modified

state of vι.

Example III.10. Coming back to our initial example in the

last section, and let C+ = {e1,4, e2,4, e3,4}, the optimization

approach is as follows:

max z = 2000c14 + 80000c24 + 40000c34− δ + 128700.0
(6)

s.t. δ = −83.2 + 4160c14 + 163300c24 + 84100c34 (7)

The optimal solution in this trivial case is c14 = c24 = c34 =
1.

However it is also possible to use a greedy approach to

maximize the local flow. The simplest approach would just set

the value for all incoming edges to node vι to the maximum

positive value. This means, if we restrict the edge weights to

the range [−1, 1] to set all edge weights in C+ to 1 and in

C− to zero:

Algorithm 2 Greedy 1

Ensure: bSDS-FN G = (V,E), edge weights restricted to

[a, b], allowed edge sets C+ and C−, and a node vι ∈ V

1: for (v, vι) ∈ C+ do

2: w((v, vι)) = b

3: end for

4: for (v, vι) ∈ C− do

5: w((v, vι)) = max(0, a)
6: end for

However, this brute-force approach will significantly in-

fluence parts of the network. The changes are limited to

those nodes, which are reachable from node vι. Considering

Example 2, we see that changing x4 or x5 has no influence

on other nodes. We can measure this influence using the

betweenness centrality measure [17], [18], which is the sum of

the fraction of all-pairs shortest paths that pass this particular
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node; it was first introduced by [19]. Given a node v, it

calculates all shortest paths in a network Pv(k, j) for all

beginning and ending nodes k, j ∈ V . If P (k, j) denotes the

total number of paths between k and j, the importance of v

is given by the ratio of both values. Thus, the betweenness

centrality according to [20] is given by

bc(v) =
∑

k ̸=j,v ̸=k,v ̸=j

Pv(k, j)

P (k, j)
·

2

(n− 1)(n− 2)
,

Coming back to Example 2, we see that the bc-value of all

nodes is zero, except bc(v1) = bc(v2) ≈ 0.01, and bc(v3) ≈
0.08.

Algorithm 3 Greedy 2

Ensure: bSDS-FN G = (V,E), edge weights restricted to

[a, b], allowed edge sets C+ and C−, and a node vι ∈ V

1: for (v, vι) ∈ C+ do

2: w((v, vι)) = min{max{w((v, vι)) · bc(vι), bc(vι)}, b}
3: end for

4: for (v, vι) ∈ C− do

5: w((v, vι)) = max{min{w((v, vι))·bc(vι),−bc(vι)}, a}
6: end for

D. Evaluation Metrics

As we have discussed in the last sectrion, the optimization

approach has two foci: First, it tries to optimize the flow

towards one particular node, second, it tries to keep the

influence on the whole network flow minimal. Thus, while

we want to maximize

δk(xι) = xk
ι − xk−1

ι ,

we want to minimize

∆k(X) =
∑

i ̸=ι

|xk
i − xk−1

i |.

Thus, our evaluation will be based on both metrics.

IV. EXPERIMENTAL RESULTS

We used Python 3.11.2 with Pulp and NetworkX for creat-

ing random instances and implement the greedy heuristic as

well as the Linear Program. We used GLPK (GNU Linear

Programming Kit) 5.01 to solve the linear program. Random

instances are build for a particular number of nodes n and a

given probability p ∈ [0, 1] that two nodes are connected when

not violating the conditions defined previously. Edge weights

are randomly chosen from the same interval. We define C+

and C− with all possible direct edges. For all instances, we

used 40 iterations to compare the results with ∆k and δk with

k = 2.

A. Small networks

In Table I we present the average, minimal and maximal

error rates for n = 200 and n = 400 and different values for

p. For a visualization of the corresponding values we refer to

Figures 5 and 6.
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Fig. 5: Measures for different values of p and n = 200
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Fig. 6: Measures for different values of p and n = 400

For flow networks which are not so dense (p = 0.2) we

see that the LP-approach outperforms Greedy1 with both met-

rics. However, for flow networks with more edges, Greedy1

produces better local improvements δ, but also much higher

global errors ∆. Greedy2 generally produces best results,

while keeping the global error low – but also with lower local
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improvement. However, comparing to the IP solutions tend to

be at least comparable and for larger p IP even outperforms

Greedy2. The overall behavior is similar for larger instances,

see the results for n = 400.

B. Real-world inspired random networks

The German Labor Market Ontology (GLMO) was de-

veloped to facilitate the modeling of labor market flows.

The ontology in question was developed principally on the

basis of two sources: the multilingual European ontology for

occupations and skills, known as ESCO, and the German clas-

sification of occupations, denoted as KldB. In addition to the

comprehensive classification system of KldB occupations, the

GLMO encompasses sets of skills, tools, and educational train-

ing relevant to the German labor market. These competencies

are delineated by the BA and will be designated as BA skills,

tools, and educational training in the subsequent discussion.

In the ontology, the concepts are organized in a hierarchical

structure and mapped to KldB-occupational unit groups [21],

[22]. In [23], the ontology was expanded by incorporating data

from BERUFENET, an online portal that provides information

on KldB occupational titles. BERUFENET organizes these

occupational titles into distinct study fields, activity fields,

and activity areas. In addition, this encompasses mappings to

associated or alternative occupations, supplementary qualifica-

tions, and other CVET categories from KURSNET, along with

information fields comprising extensive additional information

(e.g., competencies, abilities, knowledge, and skills, cf. [24],

[25]). It is possible to create a comprehensive model of the

German labor market that incorporates educational pathways,

in conjunction with additional data, such as information re-

garding individuals with specific training.

In order to analyze the efficacy of our approach for these

networks, we created an additional set of larger random

instances. Here, 2,000 nodes were utilized, and the probability

p set at 0.4. The results are presented in Figure 7 and Table II.

It is evident that Greedy2 demonstrates superior performance

in comparison to IP for larger instances. In order to determine

the most efficacious course of action, a rigorous examination

of the pertinent real-world applications is imperative. This

involves a judicious evaluation of the relative merits of a

modest yet substantial increase, characterized by a limited

global impact, as compared to a more pronounced increase

accompanied by a concomitant global error (IP). Therefore,

given the consideration of these three approaches, it can be

concluded that a universal solution does not exist.

V. CONCLUSIONS AND OUTLOOK

In this study, a novel approach for modeling and opti-

mizing flow networks with multiple constraints was intro-

duced. This approach was developed using the framework of

Sequential Dynamical Systems (SDS). The extension of the

system dynamics (SDS) framework to encompass sequential

flow networks (SFN) and a subclass of bounded SDS flow

networks (BSFN) has yielded a highly versatile structure for

the simulation and analysis of complex networked systems. In
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Fig. 7: Measures for different values of p and n = 2000

these systems, each node possesses the capacity to function as

both a source and a sink, thereby enhancing their operational

flexibility.

We hereby present three approaches for local flow optimiza-

tion within these networks: a linear programming formulation

and two greedy heuristics. Through extensive experimentation

on both random and real-world inspired random network

scenarios, it was found that the linear programming method

generally yields superior local improvements in node-specific

flow while maintaining control over global impact. However,

for large-scale networks or instances with high edge densities,

the Faster Greedy2 heuristic offers a compelling balance

between performance and computational efficiency.

The findings of this study underscore the efficacy of SDS-

based flow modeling in facilitating precise manipulation of

local flows within the confines of bounded and interpretable

constraints. This attribute renders it particularly well-suited for

applications in educational pathways, labor market modeling,

and other socioeconomic systems. The incorporation of nega-

tive weights facilitates the incorporation of realistic dynamics,

such as attrition or regression in states, thereby enhancing the

expressiveness of traditional flow models.

A number of promising avenues emerge for future research.

Firstly, extending the model to accommodate stochastic or

time-dependent edge weights has the potential to enhance

realism, particularly in dynamic environments such as trans-

portation or information networks. Secondly, the incorporation

of machine learning algorithms to adaptively learn optimal

edge weights from historical data has the potential to enhance

the system’s predictive capabilities and adaptability.

Additionally, the exploration of other update schemes or

hybrid SDS models has the potential to enhance scalability

and model expressiveness. Another area of interest involves

the formalization of stability and convergence properties of

flow dynamics for bSFN, especially in feedback-rich or cyclic

networks. The potential practical utility of this methodology

can be demonstrated by its application to real-world datasets,

such as longitudinal educational or employment data. Such an

application could also drive domain-specific innovation.
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