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Abstract—This paper introduces a novel framework for mod-
eling and optimizing flow networks with multiple constraints
using Sequential Dynamical Systems (SDS). We have extended
the Sequential Flow Network (SFN) definition to encompass both
Sequential Flow Networks (SFN) and Bounded Sequential Flow
Networks (bSFN), which incorporate directional constraints and
weighted transitions. These models can be utilized to simulate
intricate real-world applications, such as educational pathways
and labor market issues. In order to optimize local flow to
specific nodes with minimal global impact, we propose three novel
approaches: a linear programming formulation and two greedy
heuristics. The evaluation metrics employed are defined as a
means to balance local improvement and global disturbance. The
efficacy of these methods is evaluated through experimentation
on both artificial and real-world-inspired random networks.
Notwithstanding the encouraging results and observations yielded
by the experimental analysis of random graphs, suggestions for
further research will be made in order to overcome the limitations
of the present study.

I. INTRODUCTION

CONSIDERABLE number of real-world problems man-

ifest as phenomena or dynamics over networks and
graphs. For instance, urban traffic and transportation networks
can be represented as graphs, as illustrated in [1]). As another
example, the spread of disease on social contact graphs is
naturally represented in graphs [2]. Other examples include
packet flow in information and engineering networks, such as
cell phone communication, gene annotation and gene regula-
tory network (GRN), or optimization of SDS schedules, see
[3]. Thus, SDSs use networks for modeling, simulation, and
analysis. Networks are also widely used in other context for
data modeling and analysis, see for example [4].

The generic class of Graph Dynamical Systems (GDS) is
distinct from other dynamical systems. These systems operate
on discrete time and may utilize a finite number of states.
Consequently, classical dynamical systems theory and tools
frequently prove to be inapplicable. While GDS are rooted
in discrete mathematics, algebra, combinatorics, graph theory,
and probability theory, they are primarily utilized within the
context of computer simulation.

The central research question guiding this study is con-
cerned with the utilization of SDSs in the modeling and
optimization with several constraints of flow networks on
natural numbers, characterized by linear transition functions.
The primary emphasis of this study will be on real-world
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problems derived from labor market research. A comprehen-
sive literature review will precede a concise discussion of
the methods, tools, and theory for validation and theoretical
insights of SDSs that are necessary for modeling flow networks
with SDSs. In this study, we will propose three methodologies
for addressing the aforementioned problem. The first is an
approach based on linear programming, and the second and
third are greedy heuristics. Subsequent to this discussion, we
will present and analyze a series of experimental results. The
study’s conclusions and outlooks are articulated in the final
section.

II. LITERATURE REVIEW

Research on GDS and SDS remains limited. For a com-
prehensive introduction to SDSs, see [S] and [3]. A close
relationship exists between these models and Generalized
Cellular Automata with parallel update schemes, see [6]. SDSs
with sequential update schemes were introduced between 1999
and 2001 by Barrett et al, see [7]. Another related concept is
that of stochastic graph dynamical systems, see [8].

The examination of flow networks in graphs is not a novel
concept; see [9], [10]. However, to the best of our knowledge,
there is a lack of literature on modeling flow in graphs with
dynamical systems. The optimization of flow, whether local or
global, is a subject of study within the framework of classical
dynamical systems theory, see [11]. This concept has also been
explored in the context of distributed systems [12], chemical
systems [13], and traffic networks [14]. However, these is-
sues are frequently addressed through the implementation of
optimization methodologies or, in certain instances, artificial
intelligence algorithms, see [15], [16]

In summary, the field of SDSs is not generally associ-
ated with flow networks. The objective of this study is to
examine the feasibility of leveraging methodologies from
linear programming to enhance the operational efficiency of
flow networks in SDSs, which are characterized by multiple
constraints.

I1I. METHOD

In this section, we will first introduce Sequential Dynam-
ical Systems (SDS) and then develop the novel concept of
flow networks modeled with SDS. Subsequently, the issue of
local optimization of these flow networks will be presented.
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The following three approaches will be introduced: a linear
programming (LP) approach and two greedy approaches.

A. Sequential Dynamical System

An SDS consists of the following parts, which we will illus-
trate with a continuous example introduced by [3]. However,
we will not strictly follow their notation and will add other
remarks that focus on our research. First, we need a Graph
G = (V, E) with vertices V and edges E.

Example IIL.1. For example we may use a circular
graph on four nodes: V. = {vg,..,vs} and E =
{(vo,v1), (v1,v2), (v2,v3), (v3,v0)}-

Each node has a particular vertex state z; from a state set
K, for example K = Fo = {0,1}. This results in a system
state, which is also called the configuration of an SDS. For
G in the example III.1 the system state contains four vertex
states:

x = (29,21, %2, T3).

Next, we use a G-local function F; : K™ — K", which is
also called a local transition function. It takes the system state
as input.

For each vertex v; € V f,, : K¥v)+!1 5 K is called the
vertex function. Here, d(v) denotes the degree of vertex v and
N(v) its closed neighborhood. The input set is vertex state of
the node v; and the vertex state of all its neighbors, denoted
by z[N(v;)]. We can define the local function F; node-wise

as by
Py, =F = Ti—1, fo, ([N (0i)]), Tig1,s -

Example II1.2. Continuing Example IIl.1 we may set

(zo, .., Tn)

Fo(zo, 1,72, 23) = (nors(xo, x1,3), T1, T2, T3

To,T1,22,T3 960,’1073(370,961,3"2) T2, T3
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It is important to note that this function can only change
the state of vertex 7. We apply the updates sequentially and
therefore need to define a order, e.g. 7 = (0, 1,2, 3).

To start the system, we define a initial state =z
(29,...,29). Typically, the context provides sufficient clarity
regarding the intended state, thereby obviating the necessity
for dual indexes.

0

Example II1.3. Continuing example IIl.1, we may set
xo = (.1‘0, Ty, T2, I3) = (1, ].7 07 0)

By applying the maps we get (1,1,0, O) % (0,1,0, O)

(0000) (0010) % (0,0,1,0).
Effectively we have applied the composed map F35 o F» o

Fy o Fy. In a more algorithmic perspective, each step of an
SDS involves n substeps:
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Algorithm 1 System Update
1: for =1 to n do

2 Za) = fr) (@[N(vry])
3: end for

In summary, A SDS is thus defined by a graph G, Fg =
(Fy)vev, which is the vertex-indexed family of vertex func-
tions and 7:

Definition III.4 (Sequential Dynamical System, SDS, see [3]).
Let G = (V,E) be a graph, let (f,)vey be a family of
vertex functions, and let T = (Ur(1),Vr(2); -+ Vn(n)) be a
permutation of the vertices of G. The sequential dynamical
system (SDS) is the triple

(G7 (F'U)'U7 Tr)'
Its associated SDS-map is [Fg, 7] : K™ — K™ defined by
[Fe,n)=Fy, oFy, _,0..0F.

1

Often, scenarios are considered where G is undirected.
Thus, if not specified, we will assume that GG is undirected. The
application of the G-local map F, is the update of vertex v, and
the application of [F, 7| is a system update, see Algorithm
1.

To visualize the behavior of an SDS we may use a table
representing all node states in a table, where each column
represents a particular node state and each row represents a
system update. In the case of K = [Fo, a vertex state that is
zero is represented as a white square and a vertex state that
is one is represented as a black square. Consider the previous
example:

29 = (1, 0 1, 0)
il

xl

x2

m3

x4

a® [
6

x

« 1R I

This table represents the so-called forward orbit of x =
(1,0,1,0):

Definition IIL.5 (Forward Orbit, see [3]). Let x be a system
state of a SDS with system update function [Fqg, 7). The
forward orbit is given by

O+(.%‘) = ('%'7 [FG’W]('%')’ [FGJT]Q('%')’ [FGvﬂ}g(l‘)v )

However, this only represents the forward orbit of an initial
state. To visualize a complete SDS we may use Phase spaces,
see [3] for more details. It is obvious that we can only visualize
a finite state of system states with these approaches. Thus, it
is common to analyze the dynamics of sequential dynamical
systems defined using classical Boolean functions. They have
several nice properties, including symmetry:
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Definition IIL6. We say that a function f(x1,...,2zp) is
symmetric if the order in which we describe its inputs does not
change the output: i.e. if f(x1,....%n) = f(Zr(1)s -, Tr(n))s
for any permutation .

Some functions like nor, nand, or and and are all symmet-
ric. Other functions may not, especially the linear functions
which we will consider in the next section are generally not
symmetric.

B. Flow Networks

We will now consider flow networks. Usually they are
studied as another problem in graph theory where shortest
paths can be useful [9], [10]. In fact, the Maximum Flow
Problem is e so useful that we can apply them to many
practical problems. Suppose we want to transport a good from
one point to another, for example water, natural gas, oil, or
electricity. In these networks edges refer to some kind of pipe
or route to transport these good, not only pipes, but also roads,
or railways. Here, the question is: How can we send as much
as possible? Or in other words: How can we maximize the
flow?

However, when simulating flow with dynamical systems, the
question is usually rather: How can we manipulate the flow
so that particular nodes get more goods, for example without
affecting the whole other nodes? So for example, how can
one particular factory get more resources without the need
that other factories decrease their production.

In this case, a flow network G = (V, E) is a directed graph
comprising, here every node v € V may be a source node and
a target node. We set ' = N. Each edge e; € E has a weight
w(e;) € R which identifies the share of how many goods from
the source node “go” to the target node. Attention: This is not
the capacity, but a real share. When we define E~(v) as the
set of incoming edges for node v € V, we can define the the
generic class of SDS flow networks:

Definition IIL.7 (SDS Flow Network (SFN)). Let G = (V, E)
be a directed weighted graph with edge weights w : E —¢€
R. Let (f,)vev be a family of vertex functions with f, :
KW+t 5 B~ (v) = K, and let 7 = (Vr(1)s V(25 > Vr(n))
be a permutation of the vertices of G. The sequential dy-
namical system (SDS) defined by (G, (Fy),, ) is called a
sequential flow network (SFN).

In summary, the basic difference to an SDS is the usage
of weights in the vertex functions. The difference to generic
flow networks is that every node is a source and target node
at the same time. However, these networks may have further
constrains and we will develop some of them by starting with
a very simple example and extend it.

We have n nodes v, ...,v, and we may group all other
nodes in g groups Vi, ...V, to keep track of the update order.
This step is not technically necessary but allows to define
constrains.

We can model a small network with educational pathways,

as described in Figure 1. Here, V. = {V,, Vi , V3 }
'~ =~

Vo  V1,VU2,U3 V4,Us5

7N\
Vo —0.49—>( VQ/}—O.9~> Vg
\Z
0.49

™\
(va }—0.9»( vs
N

Fig. 1: An example of educational pathways. Green nodes are
in Vj, blue nodes in V; and yellow nodes in V5

and we have six nodes with a certain weight, see Figure
1. Here, the group V, represents the ‘incoming’ actors on
the labor market, for example school-leavers, V; represents
school-leaving certificates and V3 vocational or academical
education. Since education and qualification is usually not
‘lost’, we can assume that a particular share of people with a
given qualification achieve another qualification during a given
time, for example a year. Here, w(e;) € [0, 1]. In our artificial
and simplified example, 49% of all people entering the labor
market receive school leaving certificate v3 and 90% of them
get a vocational degree vs. Note, that in this example we only
allow edges between nodes u,v with v € V; and v € V4.
With this, We can now define the the G-local function as

Fi(zo, oy mpn) = (21, o0y 7 + Z w ((vj,05)) Tj,y ooy Tn)-
JEN~(v;)

position %

This function sums over all incoming edges and adds the share
defined as edge weight of the system state of the incoming
node.

By using the reverse order 7 = (n,n—1,...,2,1,0) we can
now define an SDS (G, (Fy),, ) and compute the forward
orbit for a given initial state, for example

2 = (10000, 2000, 80000, 40000, 130000, 110000).

Thus, we will apply the composed map FsoF o F30F50F 0k
step by step as follows:

Fs = (10000, ...., +( 09 -40000))
=5 =w((vs,v5)) =3
=146,000
Fy= (..., +( 0.02 -2000)+( 0.9 -80000), ...
=T4 =w((v1,v4)) =71 =w((vz,v4)) =T2
=202,040
F3 = (...., 40000 )s--)
=x3
—44.900

Here, the colors refer to the coloring in Figure 1. So we get
the following forward orbit:
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g
(V3 —0.9> v5
"/

Fig. 2: An example of educational pathways. Green nodes are
in Vp, blue nodes in V; and yellow nodes in V5, red nodes
in V3

Vo V1 V2 v3 V4 Vs
z® 10,000 2,000 80,000 40,000 130,000 110,000
z' 10,000 2200 84,900 44,900 203,040 146,000

As we can see, the number of people with a certain
education raises every time step. This is not very natural, and
we can thus extend the model by adding negative weights
w(e;) € [—1,1] and adjusting the G-local function with

u(zg, z;) = {e((vj7 ;)T

e((vj, vi))z;

e((vj,v:)) = 0
e((vj,v3)) <0

Fi(zg,...,zn) = (T1, .o, m; + Z u(xs, 5), ...)-

JEN—(v3)

)

position %
With this, we can also model an increasing flow with backward
egdes. Extending our previous example with another node in
V3 and backward edges with a small share to all other nodes,
see Figure 2, we can model the share of people leaving the
labor market, for example because of death or retirement.
Here, e(v,v6) = —0.01Vv € V' \ {vg, vs}.

Again, we can compute the forward orbit. Let

x = (10000, 2000, 80000, 40000, 130000, 110000, 0)
be the inital state. Then

Fs = (10,000, ....,0)
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Vo U1 V2 V3 V4 Us Ve
z° 10,000 2,000 80,000 40,000 130,000 110,000 0
z' 10,000 2,180 84,100 44,500 200,740 144,900 0

Fig. 3: Illustration of the concept of Bounded SDS Flow
Networks: The positive flow goes from left to right, the
negative flow from right to left

Which leads to the following forward orbit: We can make
two observations: First, the vertex state of vg never changes.
However, if we add ‘backward’-edges, e.g. (us,vg) with
w(vs,vs) = —w(vg, vs), this simulates the desired behavior.
The second observation is that the newly added negative edges
conflict with our assumption that edges are only between
two nodes in groups V; and V;,;. This rule is not realistic,
especially since some education may rely on other education in
the same group, for example elementary school as dependency
for higher school degrees. Thus, we define a specific subset
of SDS flow networks:

Definition III.8 (Bounded SDS Flow Network (bSFN)). Let
G = (V, E) be a directed weighted graph with edge weights
w : E —€ R Let (fy)vev be a family of vertex func-
tions with f, : K¥W)+tl x E=(v) — K, and let 7 =
(Vr(1)> Vr(2)s -+ Un(n)) be a permutation of the vertices of G.

All n nodes vy, ...,v, are grouped in q groups Vy,...V,.
We allow edges e = (u,v) with w((u,v)) > 0 only between
nodes w € Vi,v € V; with i < j or edges e = (u,v) with
w((u,v)) < 0 only between nodes v € Vi,v € V; with j < i.

The sequential dynamical system (SDS) defined by
(G, (Fy)v, ) is called a bounded flow network (bSFN).

If not otherwise mentioned, we will assume that 7 is the
reverse order (n,...,1,0). This means that the flow in this
network is bounded by V; and V,, see Figure 3 for an
illustration. We can now study scenarios where we apply
methods to optimize the local flow in these networks.

—(0.01 - 130000)+(0.9 - 80000)+(0.02 - 2000)¢:.- }ocal Optimization of Flow Networks

F5 = (10,000, ...., —(0.01 - 110000)(0.9 - 40000), 0)
=144,900
Fy=(..,
=200,740
F3 = (....,40000—(0.01 - 40000) ),)
=44,500
Fy = (....,80000—(0.01 - 80000) ),)
=84,100
F; = (10,000, 2000—(0.01 - 2000) ),
=2,180

F, = (10,000, ..., 0)

In general, the local optimization of flow networks refers to
the maximization of the incoming flow to one particular node.
Solet v, € V; with 0 < i < ¢ and z an initial system state and
z' = [Fg, ](x). How can we change G so that we maximize
z, whereas we want to keep 0; = |z; — 2| Vj € [0,...,n],
j # ¢ minimal. In other words, after the system update the
system state for v, should be maximized whereas ideally all
other nodes have the same system state or change minimally.

While generally we can use or add new positive nodes from
all nodes in V; and all V; with j < 4 and use or add new
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negative nodes from all nodes in V; and all V; with j > i, we
may restrict the candidate set for positive edges to Ct C E
and the candidate set for negative edges to C~ C E.

We set c;; = w((v;,v;)) for v, v; € V, i < jif (v;,v;) €
E and else c;; = 0. Similarly, we set c;; = w((vi,v)))
vi,v; €V, i > jif (v;,v;) € E and else c;;- = 0. In Figure 4
we describe the adjacency matrix representation, where each
entry holds the weight of an edge an 0 if no edge exists. The
lower triangular part (green) represents values in ¢, the upper
triangular part the values in ¢ :

Fig. 4: Adjacency matrix representation

It is easy to see that the updated value of v, can be computed
by considering the (-th row of the matrix. So we want to

maximize
+o. -
>, dm > G

v, €V (in)EE i<u v €V (i)EE i>1

/
T, =z, +

However, only those values of ¢;, that are in C™ or C~
are subject to optimization. All other variables are fixed. In
addition, this formula does not update those vertex states
which are updated before 7~1(1), leading to an approximation
of the optimal solution.

However, if we restrict the update schema to 7 = (n —
1,...,1,0), the update of v; does not influence any other nodes
in the current system update:

Lemma IIL9. Let 7 = (n—1,...,1,0) be the update schema
for a Bounded SDS Flow Network on n nodes. Then, the vertex
state of x; is not included in the vertex update function of any
other node v; with j < 1.

Proof. Let v; be a node with a vertex update function that
includes x; with ¢ > j. Then, according to Formula 1, and
edge (v;,v;) with positive weight would exist. This is a
contradiction to Definition III.8. [

More generic, changing the value of z influences all other
summands for other update values m;, j #  which is
represented by the ¢-th column in the adjacency matrix. If 7 is
the ordering (0,1, ...,n), this only affects the lower triangular
part, if 7 = (n,...,1,0) it only affects the upper triangular
part.

From now on, we will assume the update schema is m =
(n —1,...,1,0). Since — unless C* and C~ includes edges
not connected to v, — in the first system update only z, is
changed, we will compare [Fg, 71])?(z) to [Fgr, 7)?(x) where
G’ is the graph with adjusted weights. We can then compute

the distance between the expected and modified vertex state
of all other nodes as

§ = |[Fg,7)*(x) — [For, 7)?(z)]

In summary, we can model this as optimization problem using
a linear program:

max z=2a —§ (2)
st xl =z, + Z cta; — Z cta, 3)
v, €Ct v, €C—
5= > |([Fa,m*)); — (Far, 7 ()
7=0,....n—1
€]
+ — + + - -

ci; € [0,1]c;; € [=1,0] for all ¢, € CT,c;; € C )

Here, line 3 gives the objective function for the updated system
state, omitting the update of other node’s state. Line 4 returns
the influence of changing edge weights, using the modified
state of v,.

Example II1.10. Coming back to our initial example in the
last section, and let Ct = {ey1 4, €24, €34}, the optimization
approach is as follows:

max z = 2000c14 + 80000¢24 + 40000¢34 — § + 128700.0
(6)
s.t. 6 = —83.2 + 4160c14 + 163300c24 4 84100c34  (7)

The optimal solution in this trivial case is c14 = Coq4 = C34 =
1.

However it is also possible to use a greedy approach to
maximize the local flow. The simplest approach would just set
the value for all incoming edges to node v, to the maximum
positive value. This means, if we restrict the edge weights to
the range [—1,1] to set all edge weights in CT to 1 and in
C™ to zero:

Algorithm 2 Greedy 1

Ensure: bSDS-FN G = (V, E), edge weights restricted to
[a, b], allowed edge sets C™ and C'~, and a node v, € V

1: for (v,v,) € C* do

22 w((v,v,)) =0

3: end for

4: for (v,v,) € C~ do

5. w((v,v,)) = max(0, a)
6: end for

However, this brute-force approach will significantly in-
fluence parts of the network. The changes are limited to
those nodes, which are reachable from node v,. Considering
Example 2, we see that changing x4 or x5 has no influence
on other nodes. We can measure this influence using the
betweenness centrality measure [17], [18], which is the sum of
the fraction of all-pairs shortest paths that pass this particular
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node; it was first introduced by [19]. Given a node v, it
calculates all shortest paths in a network P,(k,j) for all
beginning and ending nodes k,j € V. If P(k,j) denotes the
total number of paths between k and j, the importance of v
is given by the ratio of both values. Thus, the betweenness
centrality according to [20] is given by

D

k#j,v#k,v#]
Coming back to Example 2, we see that the bc-value of all

nodes is zero, except be(vy) = be(vg) & 0.01, and be(vs) =~
0.08.

Pokj) 2
P(k,j) (n=1)(n—2)’

be(v) =

Algorithm 3 Greedy 2
Ensure: bSDS-FN G = (V, E), edge weights restricted to
[a, b], allowed edge sets C* and C~, and a node v, € V

1: for (v,v,) € C* do
2. w((v,v,)) = min{max{w((v,v,)) - be(v,), be(v,)}, b}
3: end for

4: for (v,v,) € C~ do

5

6

w((v,v,)) = max{min{w((v,v,))-be(v,), —be(v,)}, a}
: end for

D. Evaluation Metrics

As we have discussed in the last sectrion, the optimization
approach has two foci: First, it tries to optimize the flow
towards one particular node, second, it tries to keep the
influence on the whole network flow minimal. Thus, while
we want to maximize

we want to minimize

Ap(X) =D |af —af ™,
i#£L
Thus, our evaluation will be based on both metrics.

IV. EXPERIMENTAL RESULTS

We used Python 3.11.2 with Pulp and NetworkX for creat-
ing random instances and implement the greedy heuristic as
well as the Linear Program. We used GLPK (GNU Linear
Programming Kit) 5.01 to solve the linear program. Random
instances are build for a particular number of nodes n and a
given probability p € [0, 1] that two nodes are connected when
not violating the conditions defined previously. Edge weights
are randomly chosen from the same interval. We define C'
and C'~ with all possible direct edges. For all instances, we
used 40 iterations to compare the results with Ay and J;, with

=2

A. Small networks

In Table I we present the average, minimal and maximal
error rates for n = 200 and n = 400 and different values for
p. For a visualization of the corresponding values we refer to
Figures 5 and 6.
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Fig. 5: Measures for different values of p and n = 200

Fig. 6: Measures for different values of p and n = 400

For flow networks which are not so dense (p = 0.2) we
see that the LP-approach outperforms Greedyl with both met-
rics. However, for flow networks with more edges, Greedy1
produces better local improvements J, but also much higher
global errors A. Greedy2 generally produces best results,
while keeping the global error low — but also with lower local
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improvement. However, comparing to the IP solutions tend to
be at least comparable and for larger p IP even outperforms
Greedy2. The overall behavior is similar for larger instances,
see the results for n = 400.

B. Real-world inspired random networks

The German Labor Market Ontology (GLMO) was de-
veloped to facilitate the modeling of labor market flows.
The ontology in question was developed principally on the
basis of two sources: the multilingual European ontology for
occupations and skills, known as ESCO, and the German clas-
sification of occupations, denoted as KIdB. In addition to the
comprehensive classification system of KldB occupations, the
GLMO encompasses sets of skills, tools, and educational train-
ing relevant to the German labor market. These competencies
are delineated by the BA and will be designated as BA skills,
tools, and educational training in the subsequent discussion.
In the ontology, the concepts are organized in a hierarchical
structure and mapped to KldB-occupational unit groups [21],
[22]. In [23], the ontology was expanded by incorporating data
from BERUFENET, an online portal that provides information
on KldB occupational titles. BERUFENET organizes these
occupational titles into distinct study fields, activity fields,
and activity areas. In addition, this encompasses mappings to
associated or alternative occupations, supplementary qualifica-
tions, and other CVET categories from KURSNET, along with
information fields comprising extensive additional information
(e.g., competencies, abilities, knowledge, and skills, cf. [24],
[25]). It is possible to create a comprehensive model of the
German labor market that incorporates educational pathways,
in conjunction with additional data, such as information re-
garding individuals with specific training.

In order to analyze the efficacy of our approach for these
networks, we created an additional set of larger random
instances. Here, 2,000 nodes were utilized, and the probability
p set at 0.4. The results are presented in Figure 7 and Table II.
It is evident that Greedy2 demonstrates superior performance
in comparison to IP for larger instances. In order to determine
the most efficacious course of action, a rigorous examination
of the pertinent real-world applications is imperative. This
involves a judicious evaluation of the relative merits of a
modest yet substantial increase, characterized by a limited
global impact, as compared to a more pronounced increase
accompanied by a concomitant global error (IP). Therefore,
given the consideration of these three approaches, it can be
concluded that a universal solution does not exist.

V. CONCLUSIONS AND OUTLOOK

In this study, a novel approach for modeling and opti-
mizing flow networks with multiple constraints was intro-
duced. This approach was developed using the framework of
Sequential Dynamical Systems (SDS). The extension of the
system dynamics (SDS) framework to encompass sequential
flow networks (SFN) and a subclass of bounded SDS flow
networks (BSFN) has yielded a highly versatile structure for
the simulation and analysis of complex networked systems. In

Fig. 7: Measures for different values of p and n = 2000

these systems, each node possesses the capacity to function as
both a source and a sink, thereby enhancing their operational
flexibility.

We hereby present three approaches for local flow optimiza-
tion within these networks: a linear programming formulation
and two greedy heuristics. Through extensive experimentation
on both random and real-world inspired random network
scenarios, it was found that the linear programming method
generally yields superior local improvements in node-specific
flow while maintaining control over global impact. However,
for large-scale networks or instances with high edge densities,
the Faster Greedy2 heuristic offers a compelling balance
between performance and computational efficiency.

The findings of this study underscore the efficacy of SDS-
based flow modeling in facilitating precise manipulation of
local flows within the confines of bounded and interpretable
constraints. This attribute renders it particularly well-suited for
applications in educational pathways, labor market modeling,
and other socioeconomic systems. The incorporation of nega-
tive weights facilitates the incorporation of realistic dynamics,
such as attrition or regression in states, thereby enhancing the
expressiveness of traditional flow models.

A number of promising avenues emerge for future research.
Firstly, extending the model to accommodate stochastic or
time-dependent edge weights has the potential to enhance
realism, particularly in dynamic environments such as trans-
portation or information networks. Secondly, the incorporation
of machine learning algorithms to adaptively learn optimal
edge weights from historical data has the potential to enhance
the system’s predictive capabilities and adaptability.

Additionally, the exploration of other update schemes or
hybrid SDS models has the potential to enhance scalability
and model expressiveness. Another area of interest involves
the formalization of stability and convergence properties of
flow dynamics for bSFN, especially in feedback-rich or cyclic
networks. The potential practical utility of this methodology
can be demonstrated by its application to real-world datasets,
such as longitudinal educational or employment data. Such an
application could also drive domain-specific innovation.
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