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Abstract—Brain extraction, or skull stripping, is a crucial pre-
processing step in magnetic resonance imaging (MRI), isolating
brain tissue from surrounding structures like the skull and scalp.
However, existing methods have limitations, such as parameter
sensitivity in traditional approaches and computational complex-
ity in advanced deep learning architectures. This study proposes
a knowledge distillation framework utilizing two UNet++ mod-
els—a high-capacity teacher network and an efficient student
network—for 3D brain extraction tasks. The teacher network
generates detailed grayscale brain predictions, capturing subtle
intensity transitions and anatomical boundaries. The student net-
work learns to produce precise binary segmentation masks from
the teacher’s feature representations, guided by a hybrid loss
function combining Dice, Structural Similarity Index Measure
(SSIM), and Mean Squared Error (MSE). Evaluations conducted
on T1-weighted, T2-weighted, and proton-density weighted MRI
images from the IXI dataset demonstrated the student model’s
superior performance, achieving a Dice coefficient of 0.97857.
These findings suggest that the proposed framework may offer
a practical and accurate solution for brain extraction in diverse
medical imaging scenarios.

Index Terms—brain extraction, deep learning, hybrid loss,
knowledge distillation, UNet++

I. INTRODUCTION

RAIN extraction (or skull stripping) is a key Magnetic
Resonance Imaging (MRI) preprocessing step that iso-
lates brain tissue from non-brain structures like the skull and
scalp. Its accuracy significantly impacts downstream tasks
such as volumetric analysis, image registration, lesion segmen-
tation, anatomical delineation, cortical thickness estimation,
motor function prediction, and neurosurgical planning [1-3].
Brain extraction enhances the accuracy of downstream
analyses by isolating the brain region, thereby eliminating
extraneous signals and noise from surrounding non-brain tis-
sues. This results in more precise and consistent outcomes.
Although manual segmentation remains the gold standard, it is
labor-intensive, time-consuming, and subject to inter-operator
variability, affecting reproducibility [4]. Inadequate brain ex-
traction, if not manually corrected, can introduce significant
errors in further neuroimaging analyses. To overcome these
challenges, many (semi-)automated brain extraction methods
have been proposed and refined in recent years.
In the literature, many methods have been proposed to
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separate the brain—considered the region of interest—from
non-brain tissues. These include basic image processing steps
like erosion, dilation, thresholding, and edge detection [4-7].
One well-known approach is the Brain Surface Extraction
(BSE) method developed by Shattuck et al. [6], which is
used in the BrainSuite software [7]. BSE combines anisotropic
diffusion filtering, edge detection, and morphological opera-
tions to extract the brain. However, these types of methods
often need manual tuning of parameters for each image, which
makes them less practical and more time-consuming for large
datasets.

To improve brain extraction, deformable models such as
active contours (snakes) and level sets have been used [4].
These methods iteratively adjust a shape to match the brain’s
boundaries by minimizing energy. A well-known example is
the Brain Extraction Tool (BET) [8] and its improved version
BET2 [9], both part of the FMRIB Software Library (FSL)
[10]. They begin with a spherical model at the head’s center
and deform it to fit the brain. These models handle intensity
variations well and produce smooth results, but their accuracy
depends on initial settings and may be limited by irregular
brain shapes or pathologies [4].

Another widely used approach involves atlas-based meth-
ods, which use pre-segmented brain atlases to guide the
segmentation of new MRI scans. These approaches typically
involve registering the atlas to the subject’s image and trans-
ferring labels to identify brain regions. For example, Dale
et al. [11] introduced a skull-stripping method within the
FreeSurfer framework [12], which normalizes image intensi-
ties and deforms a tessellated ellipsoidal template to fit the
inner skull surface. Another well-known method, BEaST [13],
performs patch-based segmentation with linear registration to
the ICBM152 template using multi-resolution images from
both healthy and Alzheimer’s patients. Although atlas-based
methods can achieve high accuracy—especially when the atlas
closely represents the target population—their performance
strongly depends on the accuracy of image registration and
the quality of the chosen template.

In recent years, hybrid methods have been proposed to build
on the strengths of atlas-based and other traditional techniques.
These methods aim to improve both robustness and accuracy
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by combining multiple approaches. For instance, thresholding
can be enhanced with machine learning, or deformable models
can be integrated with atlas-based strategies. Souza et al. [14]
used eight segmentation methods to generate brain masks,
which were then fused using the STAPLE algorithm [15]
to produce a consensus result. Another example, the Hybrid
Watershed Algorithm (HWA) [16], combines watershed seg-
mentation with deformable surface modeling based solely on
intensity information. While hybrid approaches often yield
better results than individual methods, their performance still
depends on factors such as parameter tuning, atlas/template
selection, and registration quality.

Artificial neural networks (ANNSs), especially deep learning
(DL) models, have shown strong performance in medical
image analysis tasks [3, 17-18]. In brain extraction, several
DL-based methods have been developed to improve segmen-
tation accuracy. One of the earliest was proposed by Kleesiek
et al. [19], who introduced a convolutional neural network
(CNN) for brain extraction. Their model achieved competitive
Dice scores on T1-weighted, T2-weighted, and FLAIR MRI
scans and showed better specificity compared to traditional
methods. Building on early CNN-based work, researchers have
adapted 3D-UNet architectures from their 2D versions, using
encoder—decoder blocks to improve performance [4, 19-23].
Hwang et al. [20] applied a modified 3D-UNet to TIw MRIs,
and Isensee et al. [4] introduced HD-BET, which performed
well across different MRI sequences and scanners. Zhang et
al. [21] proposed FRNET with residual connections and a
boundary loss function, showing strong results on infant MRIs,
though it has not been tested on adult data. Other studies have
also enhanced 3D-UNet models using residual features [22],
or by combining real and synthetic images through GANSs, as
seen in the work by Hoopes et al. [23].

The UNet model has been adapted in many ways to handle
complex medical imaging tasks better, especially those involv-
ing MRI. In recent studies, several ensemble and cascaded
versions of UNet have been developed to improve segmenta-
tion accuracy. Cascaded UNet architectures, in particular, have
shown strong performance in capturing complex anatomical
structures and resolving ambiguous boundaries. These mod-
els often work in multiple stages, where an initial network
produces a rough prediction and a second network refines it.
This setup leads to more stable and detailed results, especially
around brain edges [24-26].

However, despite their benefits, cascaded UNet models can
be computationally expensive and may overfit when trained
on limited or highly variable datasets. To address these issues,
this study proposes a knowledge distillation framework where
a high-capacity teacher model guides a lightweight student
model for 3D brain extraction from MRI scans. The teacher
network produces a detailed grayscale brain prediction, which
helps the student model learn to generate an accurate bi-
nary brain mask. Both models are designed for volumetric
data, and a hybrid loss function—combining Dice, structural
similarity index measure (SSIM), and mean squared error
(MSE)—is used to improve boundary accuracy while handling
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class imbalance. This approach achieves strong segmentation
performance on the tested dataset and shows potential for
broader application in similar medical imaging tasks.

II. METHODOLOGY

This study proposes a knowledge distillation framework that
integrates two UNet++ models, each trained with a distinct ob-
jective to balance anatomical precision and segmentation effi-
ciency. The teacher model is trained to perform grayscale brain
extraction using input from three common MRI modalities:
T1-weighted (T1w), which highlights anatomical structure;
T2-weighted (T2w), which is sensitive to fluid and pathology;
and proton density-weighted (PDw) imaging, which empha-
sizes tissue contrast based on hydrogen concentration. These
scans were obtained from the IXI dataset and selected to
ensure diversity in anatomical and contrast information. This
design enables the teacher to capture fine-grained intensity pat-
terns and structural boundaries. In contrast, the student model
receives the same MRI input but is trained to produce a binary
brain mask. By learning from the feature representations of
the teacher, the student model acquires anatomical awareness
while remaining optimized for efficient binary segmentation.

The proposed framework incorporates a modified DL ar-
chitecture (UNet++), a hybrid loss function combining Dice,
SSIM, and MSE, and a knowledge transfer strategy to enhance
generalization. Details of the model structure, the training
objectives for both teacher and student networks, the knowl-
edge distillation process, and the evaluation metrics used
for performance assessment are described in the following
sections.

A. UNET++

In this study, the UNet++ architecture, shown in Figure 1,
was employed for 3D brain extraction from MRI. UNet++ was
selected due to its enhanced capability to capture fine structural
details and improve segmentation accuracy—particularly at
object boundaries—through its nested and densely connected
design. As an advanced variant of the original U-Net, UNet++
replaces simple skip connections with intermediate convolu-
tional blocks that help reduce the semantic gap between en-
coder and decoder features. In the architecture diagram, solid
black arrows indicate down-sampling in the encoder, while
dashed black arrows represent up-sampling in the decoder.
Dashed green arrows show lateral dense skip connections at
the same resolution, and dashed blue arrows highlight up-
sampled features passed into intermediate convolution blocks.
The light blue modules represent these nested blocks, which
contribute to progressive feature refinement. Additionally, the
architecture supports deep supervision at multiple decoder
depths, facilitating efficient training and making it well-suited
for complex volumetric segmentation tasks such as brain
extraction [27].

B. Knowledge Distillation

Knowledge distillation (KD) is a technique where a larger
teacher model guides a smaller student model by transferring
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Fig. 1. UNet++ is structured with an encoder and decoder linked by a series
of nested, densely connected convolutional blocks.

learned representations. Instead of learning only from ground
truth labels, the student also learns from the teacher’s soft
outputs, capturing richer structural information. In this study,
the teacher produces grayscale brain predictions, and the
student learns to generate binary brain masks, supervised by
both segmentation and distillation losses.

To transfer knowledge from the teacher network to the
student network in a medical image segmentation context, we
employed a custom distillation loss formulation that integrates
both task-specific segmentation loss and feature-level guidance
from the teacher model[28].

During training, the student model is supervised by two
objectives:

Ltotal - (1 - CV) X Lseg + a X Ldistill (1)

Where L., is the segmentation loss computed between
the predicted mask from the student and the ground truth
binary mask. This ensures that the student learns the final
segmentation task correctly.

Lgistin 1s the distillation loss, calculated between the stu-
dent’s predicted mask and the gray-level soft prediction output
of the teacher. This guides the student to imitate the spatial
structure and internal representation captured by the teacher.

a € [0,1] is a weighting coefficient that balances the
contribution of the segmentation loss and the distillation loss.
In this study «, which is set as 0.3, emphasizes the importance
of teacher guidance during training.

C. Loss Function

This study employed a hybrid loss denoted as L., uses
a hybrid loss function combining MSE, SSIM loss, and
Dice loss, while Lg;s4; typically employs MSE to align the
student’s output with the soft gray-level guidance provided by
the teacher network. The overall hybrid loss function is as in

).

Lseg = Linse + Lssim + Laice ()

L.se 1s used to penalize pixel-wise intensity differences and
ensures that the predicted output closely matches the ground
truth in terms of raw voxel intensities.

Lgsim captures perceptual differences by focusing on lu-
minance, contrast, and structure, thus preserving anatomical
consistency in the predicted images.

Lgice promotes spatial alignment between binary structures
in the ground truth and prediction, which is crucial for accurate
segmentation performance.

Lgim and Lg;.. losses are calculated as in (3) and (4).

Lysim = 1 — SSIM (P, R) 3)

Lgice =1 — DICE(P,R) “)

SSIM and DICE between predicted (P) and real (R) images
are computed as in (5) and (6).

(QMPHR +C1)(20pr + CQ)

SSIM(P, R) = 5

B R [ R A M
2/PNR|

DICE(P, R ()
ST

The proposed KD framework employs two UNet++ models
with distinct training objectives tailored to optimize both
anatomical precision and segmentation efficiency. The teacher
model is trained to learn a grayscale brain extraction task,
where the input is the original T1w, T2w, or PDw MRI image,
and the output is a grayscale brain-only image. This approach
encourages the teacher network to capture subtle intensity tran-
sitions and detailed structural boundaries of the brain tissue.
On the other hand, the student model is trained using the same
original brain image as input, but its target output is a binary
brain mask that delineates the brain region. By learning from
the teacher’s feature representations via knowledge distillation,
the student model gains anatomical awareness while being
optimized for efficient binary segmentation.

D. Dataset

The IXI dataset includes multiple MRI modalities. In this
study, T1w, T2w, and proton PDw MRI images from the IXI
dataset [23] were selected to ensure sufficient anatomical detail
and to introduce modality diversity in the brain extraction
experiments (Table 1).

TABLE I
SUMMARY OF IXI DATASET MODALITIES, VOXEL SIZE, AND DATASET
Modality | Voxel Size (mm?® | Images
Tlw MRI 0.9x0.9x1.2 50
T2w MRI 0.9x0.9x1.2 50
PDw MRI 0.9x0.9x1.2 50
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E. Performance Metrics

The segmentation performance of the UNet++ model was
assessed using three standard metrics: Dice coefficient, sen-
sitivity, and specificity. As shown in equation (6), the Dice
coefficient is computed as the ratio of twice the overlap
between the predicted and ground truth masks to the total area
covered by both masks.

Sensitivity, also known as recall, quantifies the model’s abil-
ity to correctly identify brain tissue within the segmentation,
as defined in equation (8). In contrast, specificity measures
the effectiveness of the model in correctly excluding non-
brain tissue and is computed using the formulation provided
in equation (9).

TP
Sensitivity = ————— 7
ensitivity TP FN (7
TN
Specificity = —————— 8
pecificity TN+ FP (8)

III. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed DL model was implemented using the Keras
library (Python 3.9) with TensorFlow. Experiments were con-
ducted on a workstation equipped with an NVIDIA RTX
A6000 GPU (48 GB), an Intel i9-12900KS processor (3.40
GHz), and 64 GB of RAM. The model was trained using the
Adam optimizer with dropout and L2 regularization to reduce
overfitting. Key training parameters were set as follows: a
learning rate of 0.001, momentum of 0.8, and weight decay of
0.00001. Based on empirical testing, training was performed
for 100 epochs with a batch size of 4 to accommodate the
memory demands of 3D volumes. An 80/20 train-test split
was used, and model performance was evaluated using five-
fold repeated random subsampling validation (RSV).

Figure 2 presents representative axial, coronal, and sagittal
slices from a Tlw MRI scan in the IXI dataset. Figure 2a
shows the original input image, while Figure 2b displays the
corresponding grayscale brain image used as ground truth for
training the teacher model. Figure 2c illustrates the output
predicted by the UNet++ teacher network. The predicted brain
images show strong visual similarity to the reference images,
preserving anatomical structures and intensity gradients across
views. Quantitatively, the teacher model achieved a Mean
Absolute Error (MAE) of 0.0249, a PSNR of 51.46 decibel
(dB), and an SSIM of 0.9490, demonstrating high reconstruc-
tion accuracy and perceptual quality. These results confirm
the effectiveness of the proposed approach in generating
anatomically faithful grayscale brain extractions.

Figure 3 shows representative binary segmentation results
from axial, coronal, and sagittal MRI slices. Figure 3a displays
the ground truth binary brain masks used as references. Figure
3b illustrates predictions generated by a standard UNet++
model trained without knowledge distillation, while Figure
3c presents outputs from the UNet++ student model trained
with knowledge distillation. The student model predictions
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Fig. 2.  Sagittal, coronal, and axial slices from a TIw MRI image in the
IXT dataset. (a) Original 3D input volume, (b) ground truth grayscale brain
image, (c) grayscale brain output predicted by the UNet++ teacher model.

Fig. 3.

Binary brain masks from sagittal, coronal, and axial views: (a)
Ground truth brain masks, (b) UNet++ model predictions without knowledge
distillation, (c) UNet++ student model predictions trained via knowledge
distillation.

(Figure 3c) closely match the ground truth masks, demonstrat-
ing smoother boundaries and fewer segmentation inaccuracies
compared to the standard UNet++ outputs (Figure 3b).

Table 2 summarizes these observations quantitatively by
comparing the segmentation performance of the standard
UNet++ model, the proposed UNet++ student model, and a



KALI GURHARAMAN ET AL.: 3D BRAIN EXTRACTION FROM MAGNETIC RESONANCE IMAGING USING KNOWLEDGE DISTILLATION

TABLE II
SEGMENTATION PERFORMANCE COMPARISON OF UNET++ MODELS.
DL Model Dice Sensitivity | Specificity
UNet++ 0.95997 | 0.95766 0.99827
UNet++ Student | 0.97857 | 0.97478 0.99899
Hoopes et al.[23] | 0.96700 | - -

recent method in terms of Dice, sensitivity, and specificity
metrics [23]. The UNet++ student model achieved superior
performance, with a Dice score of 0.97857, sensitivity of
0.97478, and specificity of 0.99899. These qualitative and
quantitative results collectively confirm that the knowledge
distillation approach significantly enhances segmentation ac-
curacy, especially in improving boundary delineation and
detection sensitivity for 3D brain extraction tasks.

This study demonstrates strong segmentation performance
using a knowledge distillation framework with UNet++ models
trained on Tlw, T2w, and PDw MRI from the IXI dataset.
Accurate brain extraction is critical in MRI, enabling both
automated analysis and clinical interpretation to focus on rel-
evant regions, particularly in noisy images or when detecting
subtle lesions. Unlike traditional methods that require manual
parameter tuning and are sensitive to variability, the proposed
approach is robust and parameter-free. Knowledge distillation
further allows a lightweight student model to achieve high
accuracy at a lower computational cost, making it well-suited
for practical use. Nevertheless, certain limitations should be
considered, as discussed below.

Although multiple MRI contrasts were utilized, experiments
were confined to a single dataset; therefore, further validation
across different datasets is necessary to establish broader
applicability and robustness. Additionally, the relatively large
3D input dimensions (256x288x288) used in this study might
present challenges in terms of computational resource de-
mands and practical deployment, particularly in clinical sce-
narios. The relatively small size of the dataset may also
limit the statistical power and generalizability of the results.
Future studies may address this by augmenting the dataset, for
example, through synthetic image generation or advanced data
augmentation techniques, to improve robustness. Furthermore,
the proposed framework is inherently flexible and could be
adapted to other MRI sequences, such as diffusion-weighted
or FLAIR imaging, as well as to different neuroimaging
modalities, including PET and functional MRI, by adjusting
to their specific characteristics and spatial resolutions (e.g., 1
mm or 2 mm isotropic), thereby extending its clinical applica-
bility. Nevertheless, given the modular nature of the proposed
knowledge distillation framework, it is reasonable to suggest
that extending this approach to other UNet-based architectures
may also yield improved segmentation performance.

IV. CONCLUSION

In this study, we proposed a knowledge distillation-based
DL model using UNet++ models for 3D brain extraction from
MRI scans. Our results demonstrate that knowledge distillation
effectively enhances segmentation accuracy, particularly at

brain boundaries, by transferring detailed anatomical knowl-
edge from a high-capacity teacher model to a more efficient
student model. The student model achieved superior Dice,
sensitivity, and specificity scores compared to both a standard
UNet++ model and recent literature results. These findings
highlight the capability of knowledge distillation to improve
segmentation performance while maintaining computational
efficiency.

Despite the promising outcomes, further validation using
additional MRI datasets is necessary to confirm the generaliz-
ability of the proposed approach. Future studies could explore
integrating attention mechanisms or evaluating other UNet-
based architectures within the proposed knowledge distillation
framework to further enhance segmentation performance.
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