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Abstract—Brain extraction, or skull stripping, is a crucial pre-
processing step in magnetic resonance imaging (MRI), isolating
brain tissue from surrounding structures like the skull and scalp.
However, existing methods have limitations, such as parameter
sensitivity in traditional approaches and computational complex-
ity in advanced deep learning architectures. This study proposes
a knowledge distillation framework utilizing two UNet++ mod-
els—a high-capacity teacher network and an efficient student
network—for 3D brain extraction tasks. The teacher network
generates detailed grayscale brain predictions, capturing subtle
intensity transitions and anatomical boundaries. The student net-
work learns to produce precise binary segmentation masks from
the teacher’s feature representations, guided by a hybrid loss
function combining Dice, Structural Similarity Index Measure
(SSIM), and Mean Squared Error (MSE). Evaluations conducted
on T1-weighted, T2-weighted, and proton-density weighted MRI
images from the IXI dataset demonstrated the student model’s
superior performance, achieving a Dice coefficient of 0.97857.
These findings suggest that the proposed framework may offer
a practical and accurate solution for brain extraction in diverse
medical imaging scenarios.

Index Terms—brain extraction, deep learning, hybrid loss,
knowledge distillation, UNet++

I. INTRODUCTION

BRAIN extraction (or skull stripping) is a key Magnetic

Resonance Imaging (MRI) preprocessing step that iso-

lates brain tissue from non-brain structures like the skull and

scalp. Its accuracy significantly impacts downstream tasks

such as volumetric analysis, image registration, lesion segmen-

tation, anatomical delineation, cortical thickness estimation,

motor function prediction, and neurosurgical planning [1-3].

Brain extraction enhances the accuracy of downstream

analyses by isolating the brain region, thereby eliminating

extraneous signals and noise from surrounding non-brain tis-

sues. This results in more precise and consistent outcomes.

Although manual segmentation remains the gold standard, it is

labor-intensive, time-consuming, and subject to inter-operator

variability, affecting reproducibility [4]. Inadequate brain ex-

traction, if not manually corrected, can introduce significant

errors in further neuroimaging analyses. To overcome these

challenges, many (semi-)automated brain extraction methods

have been proposed and refined in recent years.

In the literature, many methods have been proposed to

separate the brain—considered the region of interest—from

non-brain tissues. These include basic image processing steps

like erosion, dilation, thresholding, and edge detection [4–7].

One well-known approach is the Brain Surface Extraction

(BSE) method developed by Shattuck et al. [6], which is

used in the BrainSuite software [7]. BSE combines anisotropic

diffusion filtering, edge detection, and morphological opera-

tions to extract the brain. However, these types of methods

often need manual tuning of parameters for each image, which

makes them less practical and more time-consuming for large

datasets.

To improve brain extraction, deformable models such as

active contours (snakes) and level sets have been used [4].

These methods iteratively adjust a shape to match the brain’s

boundaries by minimizing energy. A well-known example is

the Brain Extraction Tool (BET) [8] and its improved version

BET2 [9], both part of the FMRIB Software Library (FSL)

[10]. They begin with a spherical model at the head’s center

and deform it to fit the brain. These models handle intensity

variations well and produce smooth results, but their accuracy

depends on initial settings and may be limited by irregular

brain shapes or pathologies [4].

Another widely used approach involves atlas-based meth-

ods, which use pre-segmented brain atlases to guide the

segmentation of new MRI scans. These approaches typically

involve registering the atlas to the subject’s image and trans-

ferring labels to identify brain regions. For example, Dale

et al. [11] introduced a skull-stripping method within the

FreeSurfer framework [12], which normalizes image intensi-

ties and deforms a tessellated ellipsoidal template to fit the

inner skull surface. Another well-known method, BEaST [13],

performs patch-based segmentation with linear registration to

the ICBM152 template using multi-resolution images from

both healthy and Alzheimer’s patients. Although atlas-based

methods can achieve high accuracy—especially when the atlas

closely represents the target population—their performance

strongly depends on the accuracy of image registration and

the quality of the chosen template.

In recent years, hybrid methods have been proposed to build

on the strengths of atlas-based and other traditional techniques.

These methods aim to improve both robustness and accuracy
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by combining multiple approaches. For instance, thresholding

can be enhanced with machine learning, or deformable models

can be integrated with atlas-based strategies. Souza et al. [14]

used eight segmentation methods to generate brain masks,

which were then fused using the STAPLE algorithm [15]

to produce a consensus result. Another example, the Hybrid

Watershed Algorithm (HWA) [16], combines watershed seg-

mentation with deformable surface modeling based solely on

intensity information. While hybrid approaches often yield

better results than individual methods, their performance still

depends on factors such as parameter tuning, atlas/template

selection, and registration quality.

Artificial neural networks (ANNs), especially deep learning

(DL) models, have shown strong performance in medical

image analysis tasks [3, 17-18]. In brain extraction, several

DL-based methods have been developed to improve segmen-

tation accuracy. One of the earliest was proposed by Kleesiek

et al. [19], who introduced a convolutional neural network

(CNN) for brain extraction. Their model achieved competitive

Dice scores on T1-weighted, T2-weighted, and FLAIR MRI

scans and showed better specificity compared to traditional

methods. Building on early CNN-based work, researchers have

adapted 3D-UNet architectures from their 2D versions, using

encoder–decoder blocks to improve performance [4, 19-23].

Hwang et al. [20] applied a modified 3D-UNet to T1w MRIs,

and Isensee et al. [4] introduced HD-BET, which performed

well across different MRI sequences and scanners. Zhang et

al. [21] proposed FRNET with residual connections and a

boundary loss function, showing strong results on infant MRIs,

though it has not been tested on adult data. Other studies have

also enhanced 3D-UNet models using residual features [22],

or by combining real and synthetic images through GANs, as

seen in the work by Hoopes et al. [23].

The UNet model has been adapted in many ways to handle

complex medical imaging tasks better, especially those involv-

ing MRI. In recent studies, several ensemble and cascaded

versions of UNet have been developed to improve segmenta-

tion accuracy. Cascaded UNet architectures, in particular, have

shown strong performance in capturing complex anatomical

structures and resolving ambiguous boundaries. These mod-

els often work in multiple stages, where an initial network

produces a rough prediction and a second network refines it.

This setup leads to more stable and detailed results, especially

around brain edges [24-26].

However, despite their benefits, cascaded UNet models can

be computationally expensive and may overfit when trained

on limited or highly variable datasets. To address these issues,

this study proposes a knowledge distillation framework where

a high-capacity teacher model guides a lightweight student

model for 3D brain extraction from MRI scans. The teacher

network produces a detailed grayscale brain prediction, which

helps the student model learn to generate an accurate bi-

nary brain mask. Both models are designed for volumetric

data, and a hybrid loss function—combining Dice, structural

similarity index measure (SSIM), and mean squared error

(MSE)—is used to improve boundary accuracy while handling

class imbalance. This approach achieves strong segmentation

performance on the tested dataset and shows potential for

broader application in similar medical imaging tasks.

II. METHODOLOGY

This study proposes a knowledge distillation framework that

integrates two UNet++ models, each trained with a distinct ob-

jective to balance anatomical precision and segmentation effi-

ciency. The teacher model is trained to perform grayscale brain

extraction using input from three common MRI modalities:

T1-weighted (T1w), which highlights anatomical structure;

T2-weighted (T2w), which is sensitive to fluid and pathology;

and proton density-weighted (PDw) imaging, which empha-

sizes tissue contrast based on hydrogen concentration. These

scans were obtained from the IXI dataset and selected to

ensure diversity in anatomical and contrast information. This

design enables the teacher to capture fine-grained intensity pat-

terns and structural boundaries. In contrast, the student model

receives the same MRI input but is trained to produce a binary

brain mask. By learning from the feature representations of

the teacher, the student model acquires anatomical awareness

while remaining optimized for efficient binary segmentation.

The proposed framework incorporates a modified DL ar-

chitecture (UNet++), a hybrid loss function combining Dice,

SSIM, and MSE, and a knowledge transfer strategy to enhance

generalization. Details of the model structure, the training

objectives for both teacher and student networks, the knowl-

edge distillation process, and the evaluation metrics used

for performance assessment are described in the following

sections.

A. UNET++

In this study, the UNet++ architecture, shown in Figure 1,

was employed for 3D brain extraction from MRI. UNet++ was

selected due to its enhanced capability to capture fine structural

details and improve segmentation accuracy—particularly at

object boundaries—through its nested and densely connected

design. As an advanced variant of the original U-Net, UNet++

replaces simple skip connections with intermediate convolu-

tional blocks that help reduce the semantic gap between en-

coder and decoder features. In the architecture diagram, solid

black arrows indicate down-sampling in the encoder, while

dashed black arrows represent up-sampling in the decoder.

Dashed green arrows show lateral dense skip connections at

the same resolution, and dashed blue arrows highlight up-

sampled features passed into intermediate convolution blocks.

The light blue modules represent these nested blocks, which

contribute to progressive feature refinement. Additionally, the

architecture supports deep supervision at multiple decoder

depths, facilitating efficient training and making it well-suited

for complex volumetric segmentation tasks such as brain

extraction [27].

B. Knowledge Distillation

Knowledge distillation (KD) is a technique where a larger

teacher model guides a smaller student model by transferring

72 COMMUNICATION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



Fig. 1. UNet++ is structured with an encoder and decoder linked by a series
of nested, densely connected convolutional blocks.

learned representations. Instead of learning only from ground

truth labels, the student also learns from the teacher’s soft

outputs, capturing richer structural information. In this study,

the teacher produces grayscale brain predictions, and the

student learns to generate binary brain masks, supervised by

both segmentation and distillation losses.

To transfer knowledge from the teacher network to the

student network in a medical image segmentation context, we

employed a custom distillation loss formulation that integrates

both task-specific segmentation loss and feature-level guidance

from the teacher model[28].

During training, the student model is supervised by two

objectives:

Ltotal = (1− α)× Lseg + α× Ldistill (1)

Where Lseg is the segmentation loss computed between

the predicted mask from the student and the ground truth

binary mask. This ensures that the student learns the final

segmentation task correctly.

Ldistill is the distillation loss, calculated between the stu-

dent’s predicted mask and the gray-level soft prediction output

of the teacher. This guides the student to imitate the spatial

structure and internal representation captured by the teacher.

α ∈ [0, 1] is a weighting coefficient that balances the

contribution of the segmentation loss and the distillation loss.

In this study α, which is set as 0.3, emphasizes the importance

of teacher guidance during training.

C. Loss Function

This study employed a hybrid loss denoted as Lseg uses

a hybrid loss function combining MSE, SSIM loss, and

Dice loss, while Ldistill typically employs MSE to align the

student’s output with the soft gray-level guidance provided by

the teacher network. The overall hybrid loss function is as in

(2).

Lseg = Lmse + Lssim + Ldice (2)

Lmse is used to penalize pixel-wise intensity differences and

ensures that the predicted output closely matches the ground

truth in terms of raw voxel intensities.

Lssim captures perceptual differences by focusing on lu-

minance, contrast, and structure, thus preserving anatomical

consistency in the predicted images.

Ldice promotes spatial alignment between binary structures

in the ground truth and prediction, which is crucial for accurate

segmentation performance.

Lssim and Ldice losses are calculated as in (3) and (4).

Lssim = 1− SSIM(P,R) (3)

Ldice = 1−DICE(P,R) (4)

SSIM and DICE between predicted (P) and real (R) images

are computed as in (5) and (6).

SSIM(P,R) =
(2µPµR + C1)(2σPR + C2)

(µ2

P + µ2

R + C1)(σ2

P + σ2

R + C2)
(5)

DICE(P,R) =
2|P ∩R|

|P |+ |R|
(6)

The proposed KD framework employs two UNet++ models

with distinct training objectives tailored to optimize both

anatomical precision and segmentation efficiency. The teacher

model is trained to learn a grayscale brain extraction task,

where the input is the original T1w, T2w, or PDw MRI image,

and the output is a grayscale brain-only image. This approach

encourages the teacher network to capture subtle intensity tran-

sitions and detailed structural boundaries of the brain tissue.

On the other hand, the student model is trained using the same

original brain image as input, but its target output is a binary

brain mask that delineates the brain region. By learning from

the teacher’s feature representations via knowledge distillation,

the student model gains anatomical awareness while being

optimized for efficient binary segmentation.

D. Dataset

The IXI dataset includes multiple MRI modalities. In this

study, T1w, T2w, and proton PDw MRI images from the IXI

dataset [23] were selected to ensure sufficient anatomical detail

and to introduce modality diversity in the brain extraction

experiments (Table 1).

TABLE I
SUMMARY OF IXI DATASET MODALITIES, VOXEL SIZE, AND DATASET

Modality Voxel Size (mm³) Images

T1w MRI 0.9×0.9×1.2 50

T2w MRI 0.9×0.9×1.2 50

PDw MRI 0.9×0.9×1.2 50
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E. Performance Metrics

The segmentation performance of the UNet++ model was

assessed using three standard metrics: Dice coefficient, sen-

sitivity, and specificity. As shown in equation (6), the Dice

coefficient is computed as the ratio of twice the overlap

between the predicted and ground truth masks to the total area

covered by both masks.

Sensitivity, also known as recall, quantifies the model’s abil-

ity to correctly identify brain tissue within the segmentation,

as defined in equation (8). In contrast, specificity measures

the effectiveness of the model in correctly excluding non-

brain tissue and is computed using the formulation provided

in equation (9).

Sensitivity =
TP

TP + FN
(7)

Specificity =
TN

TN + FP
(8)

III. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed DL model was implemented using the Keras

library (Python 3.9) with TensorFlow. Experiments were con-

ducted on a workstation equipped with an NVIDIA RTX

A6000 GPU (48 GB), an Intel i9-12900KS processor (3.40

GHz), and 64 GB of RAM. The model was trained using the

Adam optimizer with dropout and L2 regularization to reduce

overfitting. Key training parameters were set as follows: a

learning rate of 0.001, momentum of 0.8, and weight decay of

0.00001. Based on empirical testing, training was performed

for 100 epochs with a batch size of 4 to accommodate the

memory demands of 3D volumes. An 80/20 train-test split

was used, and model performance was evaluated using five-

fold repeated random subsampling validation (RSV).

Figure 2 presents representative axial, coronal, and sagittal

slices from a T1w MRI scan in the IXI dataset. Figure 2a

shows the original input image, while Figure 2b displays the

corresponding grayscale brain image used as ground truth for

training the teacher model. Figure 2c illustrates the output

predicted by the UNet++ teacher network. The predicted brain

images show strong visual similarity to the reference images,

preserving anatomical structures and intensity gradients across

views. Quantitatively, the teacher model achieved a Mean

Absolute Error (MAE) of 0.0249, a PSNR of 51.46 decibel

(dB), and an SSIM of 0.9490, demonstrating high reconstruc-

tion accuracy and perceptual quality. These results confirm

the effectiveness of the proposed approach in generating

anatomically faithful grayscale brain extractions.

Figure 3 shows representative binary segmentation results

from axial, coronal, and sagittal MRI slices. Figure 3a displays

the ground truth binary brain masks used as references. Figure

3b illustrates predictions generated by a standard UNet++

model trained without knowledge distillation, while Figure

3c presents outputs from the UNet++ student model trained

with knowledge distillation. The student model predictions

Fig. 2. Sagittal, coronal, and axial slices from a T1w MRI image in the
IXI dataset. (a) Original 3D input volume, (b) ground truth grayscale brain
image, (c) grayscale brain output predicted by the UNet++ teacher model.

Fig. 3. Binary brain masks from sagittal, coronal, and axial views: (a)
Ground truth brain masks, (b) UNet++ model predictions without knowledge
distillation, (c) UNet++ student model predictions trained via knowledge
distillation.

(Figure 3c) closely match the ground truth masks, demonstrat-

ing smoother boundaries and fewer segmentation inaccuracies

compared to the standard UNet++ outputs (Figure 3b).

Table 2 summarizes these observations quantitatively by

comparing the segmentation performance of the standard

UNet++ model, the proposed UNet++ student model, and a
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TABLE II
SEGMENTATION PERFORMANCE COMPARISON OF UNET++ MODELS.

DL Model Dice Sensitivity Specificity

UNet++ 0.95997 0.95766 0.99827

UNet++ Student 0.97857 0.97478 0.99899

Hoopes et al.[23] 0.96700 - -

recent method in terms of Dice, sensitivity, and specificity

metrics [23]. The UNet++ student model achieved superior

performance, with a Dice score of 0.97857, sensitivity of

0.97478, and specificity of 0.99899. These qualitative and

quantitative results collectively confirm that the knowledge

distillation approach significantly enhances segmentation ac-

curacy, especially in improving boundary delineation and

detection sensitivity for 3D brain extraction tasks.

This study demonstrates strong segmentation performance

using a knowledge distillation framework with UNet++ models

trained on T1w, T2w, and PDw MRI from the IXI dataset.

Accurate brain extraction is critical in MRI, enabling both

automated analysis and clinical interpretation to focus on rel-

evant regions, particularly in noisy images or when detecting

subtle lesions. Unlike traditional methods that require manual

parameter tuning and are sensitive to variability, the proposed

approach is robust and parameter-free. Knowledge distillation

further allows a lightweight student model to achieve high

accuracy at a lower computational cost, making it well-suited

for practical use. Nevertheless, certain limitations should be

considered, as discussed below.

Although multiple MRI contrasts were utilized, experiments

were confined to a single dataset; therefore, further validation

across different datasets is necessary to establish broader

applicability and robustness. Additionally, the relatively large

3D input dimensions (256×288×288) used in this study might

present challenges in terms of computational resource de-

mands and practical deployment, particularly in clinical sce-

narios. The relatively small size of the dataset may also

limit the statistical power and generalizability of the results.

Future studies may address this by augmenting the dataset, for

example, through synthetic image generation or advanced data

augmentation techniques, to improve robustness. Furthermore,

the proposed framework is inherently flexible and could be

adapted to other MRI sequences, such as diffusion-weighted

or FLAIR imaging, as well as to different neuroimaging

modalities, including PET and functional MRI, by adjusting

to their specific characteristics and spatial resolutions (e.g., 1

mm or 2 mm isotropic), thereby extending its clinical applica-

bility. Nevertheless, given the modular nature of the proposed

knowledge distillation framework, it is reasonable to suggest

that extending this approach to other UNet-based architectures

may also yield improved segmentation performance.

IV. CONCLUSION

In this study, we proposed a knowledge distillation-based

DL model using UNet++ models for 3D brain extraction from

MRI scans. Our results demonstrate that knowledge distillation

effectively enhances segmentation accuracy, particularly at

brain boundaries, by transferring detailed anatomical knowl-

edge from a high-capacity teacher model to a more efficient

student model. The student model achieved superior Dice,

sensitivity, and specificity scores compared to both a standard

UNet++ model and recent literature results. These findings

highlight the capability of knowledge distillation to improve

segmentation performance while maintaining computational

efficiency.

Despite the promising outcomes, further validation using

additional MRI datasets is necessary to confirm the generaliz-

ability of the proposed approach. Future studies could explore

integrating attention mechanisms or evaluating other UNet-

based architectures within the proposed knowledge distillation

framework to further enhance segmentation performance.
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