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Abstract—This article presents a hybrid algorithm developed
to solve the Vehicle Routing Problem with Time Windows
(VRPTW), which involves finding optimal routes for a fleet
of vehicles serving a set of geographically dispersed customers
within specified time intervals. The proposed solution combines
Ant Colony Optimization (ACO) as the primary method for
global solution construction, with the 2-opt local search technique
used for route refinement, and a Tabu Search strategy to escape
local optima and further improve solution quality.

The algorithm dynamically adapts pheromone levels to favor
both spatial and temporal proximity between customers, enhanc-
ing decision making during route construction. Experimental
results demonstrate that the hybrid approach yields high-quality
solutions, significantly improving known results by up to 30%
in some cases, while maintaining reasonable computation times.
This makes the algorithm well-suited for real-time logistics
scenarios where time efficiency and solution accuracy are both
critical.

I. INTRODUCTION

OR MANY years, researchers have explored a wide range

of challenges in the field of combinatorial optimization.
One of the most thoroughly studied problems in this area
is the Traveling Salesman Problem (TSP). Although initially
mentioned in the 19-th century by Kirkman and Hamilton,
it was not formally defined until the 1930s by Schirjver [1].
The basic version of the TSP involves determining the shortest
possible route that visits 7 cities exactly once and returns to the
starting point. As an NP-hard problem, it is computationally
infeasible to exhaustively evaluate all permutations for larger
instances. Nevertheless, due to its straightforward formulation
and relevance to real-world applications, the TSP has become
a standard benchmark for evaluating the performance of opti-
mization algorithms [2].

The TSP can be seen as a specific instance of a broader class
of problems that focus on finding an optimal route through
a set of locations using a single vehicle. This concept is
generalized by the Vehicle Routing Problem (VRP), which
was formally introduced in 1959 by Dantzig and Ramser.
Their pioneering work not only proposed a mathematical
model but also applied it to a practical problem involving fuel
distribution [3].

VRP is one of the key issues in logistics and supply
chain management, having a direct impact on operating costs,
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customer service quality and overall business efficiency. n
practice, it involves the process of making decisions about
when, how and what to use to deliver goods to end users
in the most efficient way possible while meeting a number
of constraints, such as transport capacity, delivery time win-
dows, driver availability and road conditions [4]. Problems of
this type are extremely important not only for transport and
logistics companies, but also for commercial, manufacturing
and e-commerce organizations.

The VRP seeks to generate a set of vehicle routes that begin
and end at a central depot, such that customer demands are
met, all operational constraints are satisfied, and the total trans-
portation cost is minimized. Depending on the configuration of
the problem - such as the layout of the road network, customer
requirements, depot locations, and available vehicles - different
variants of the VRP can be defined, each corresponding to
specific research or operational challenges [5].

In most formulations, the transportation network is modeled
as a graph, where vertices represent depots and customers, and
edges represent roads (see Fig. 1). Edges may be directed (for
one-way streets) or undirected (for two-way roads), and each
edge has an associated cost metric, such as distance, travel
time, or monetary cost. Customers are typically described by
the following attributes [5]:

« the vertex in the network they are assigned to;

« the amount of goods to be delivered or picked up;

« the time window during which service must occur;

« the service duration (loading or unloading time);

« the set of vehicles eligible to serve them;

« penalties for non-service.

In the standard VRP, only the first two attributes are
considered, while the others are included in extended versions
of the problem.

To summarize, a solution to the VRP involves determining
routes for a fleet of vehicles that start and end at one or more
depots (represented as vertices in the graph). These depots are
defined not only by their location but also by the number
and types of vehicles they host, and the volume of goods
available for dispatch. The fleet itself may be homogeneous
(identical vehicles) or heterogeneous (vehicles with varying
capacities and capabilities), and the fleet size may be fixed
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Fig. 1. Graphic representation of VRP

or dynamically adjusted based on customer demand. Vehicles
can also have specific features, such as:

o their assigned depot (start and end location);

e capacity constraints (e.g., maximum weight, volume, or

number of units);

o compartmentalization for transporting multiple types of

goods;

« restricted access to certain parts of the road network;

« operational costs per distance unit, time unit, or network

edge.

Section Literature review presents a review of the literature
on VRP solutions discussed in this article. Section A Novel
Hybrid Algorithm for Solving VRP discusses the proposal
of a new hybrid approach to solving VRP combining the
ant algorithm, Tabu Search and 2-opt. Section Experimental
Evaluation and Results presents the research methodology, dis-
cusses the conducted experiments. Section Evaluation Against
Standard Benchmarks compares the obtained results with
the published results and indicates the improvement in the
effectiveness of the proposed new hybrid method.

II. LITERATURE REVIEW

For solving VRP, one of the simplest and most commonly
used heuristics for local search is the 2-opt algorithm, orig-
inally proposed by [6] for the traveling salesman problem
(TSP). This method consists in iteratively removing two edges
from the route and replacing them with others in such a way as
to reduce the cycle length [7]. Despite its simplicity, 2-opt is an
effective tool for local improvement of the solution and is often
an element of local refinement in more complex approaches.
In the context of VRP, 2-opt can be used in both classical and
extended versions — e.g. 2-opt* for multiple routes [8]. The
method is often combined with other metaheuristic algorithms
as part of the intensification phase [9].

Ant Colony Optimization (ACO) is a bioinspired meta-
heuristic proposed by Dorigo in the 1990s [10]. et al., 1996].
Modeled on the behavior of real ant colonies, the method relies
on the simulation of artificial agents (ants) that construct solu-
tions based on probabilistic choices driven by pheromones and
local heuristics. Pheromones are reinforced on edges leading
to good solutions, which leads to a gradual convergence of the
population towards optimal or near-optimal routes.

ACO has been successfully applied to VRP and its nu-
merous variants, including VRPTW (with time windows) and
VRP with limited fleet. An example is the work of [11],
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who applied a modified ACO to transportation problems in a
dynamic environment, but also in [12]. Modifications to ACO
include dynamic pheromone evaporation, local search (e.g. 2-
opt as an improvement component), and stagnation avoidance
mechanisms.

Tabu Search (TS) is a metaheuristic developed by [13]
whose main goal is to efficiently search the solution space
by avoiding cycles and local minima. TS uses a so-called tabu
list —- a data structure that stores information about illegal
moves for a certain time — to prevent backtracking to recent
solutions.

In the context of VRP, Tabu Search has proven to be
extremely effective, as evidenced by numerous successful
implementations in the literature [15], [14], [16]. This method
allows for the flexible consideration of complex constraints
such as time windows, payload constraints, or service zone
divisions. Many variants of TS for VRP implement advanced
aspiration strategies, restart procedures, and adaptive changes
to tabu list parameters [17], [18].

In recent years, there has been a growing interest in hybrid
approaches that combine the advantages of different methods.
An example is the integration of ACO with a local search
based on 2-opt, which allows for an increase in the quality
of the final solutions [19]. Other works combine ACO with
Tabu Search, where ACO generates initial solutions and TS
is responsible for their intensification and exploration of new
areas of the solution space. Hybrid approaches often achieve
better results than single algorithms, especially for large-scale
and multi-criteria problems [20], [21], [22], [23].

III. A NOVEL HYBRID ALGORITHM FOR SOLVING VRP

The central component responsible for solving VRP algo-
rithm that initiates the solution search using a hybrid algorithm
but also collects statistical data required for performance
analysis—such as the globally best-found routes, shortest total
distances, and average or worst distances per iteration is
proposed in this paper.

The algorithm proceeds as follows:

1) Initialization Phase:

« Set initial best distance and routes.
o Prepare containers for collecting statistics across
iterations.

2) Iterative Optimization Loop:

o For each iteration:
a) Ant Colony Construction:

— A colony of artificial ants is instantiated.
Each ant constructs a set of feasible routes,
attempting to serve all customers starting and
ending at the depot.

b) Local Improvement via 2-opt:

— Each route generated by the ants undergoes
local optimization using the 2-opt algorithm
to reduce path crossings and improve solution
quality.

¢) Best Ant Selection:
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— The ant with the shortest total distance in the
current iteration is selected. If it improves the
global best solution, it is recorded.

d) Tabu Search Activation:

— If no improvement is detected for a defined
number of iterations (e.g., 10), the algorithm
switches to a Tabu Search procedure applied
to the best known routes. This mechanism is
used to escape local minima.

e) Pheromone Update:

— A pheromone evaporation process is applied
to all edges.

— Each ant deposits pheromone proportional to
the inverse of its total distance.

— An additional pheromone bonus is granted to
the elite (best) ant.

3) Statistics Collection:

o At the end of each iteration, the best, worst, and
average distances are stored to support further anal-
ysis.

4) Termination and Output:

o After completing all iterations, the algorithm returns
the best-found solution along with its performance
metrics.

To improve decision-making during the constructive phase
of the solution, the pheromone initialization strategy was en-
hanced to incorporate problem-specific heuristics. Specifically,
the initial pheromone levels between each pair of customers
are adjusted to favor geographically closer customers and those
with overlapping or adjacent time windows. This is achieved
by combining a distance-based component—computed as the
inverse of the Euclidean distance—with a time window sim-
ilarity component—calculated as the inverse of the absolute
difference between the customers’ ready times. As a result,
the algorithm introduces a meaningful prior bias in the search
space, guiding ants toward more promising initial configura-
tions while still allowing stochastic exploration..

Once initial solutions are constructed by the ants, each route
undergoes refinement using a 2-opt local search procedure.
This well-known heuristic systematically explores pairs of
edges within a route and checks whether reversing the interme-
diate segment reduces the total traveled distance. The process
is repeated iteratively until no further improvement can be
achieved, thereby ensuring that each solution reaches a local
minimum with respect to intra-route edge exchanges. Although
2-opt does not guarantee a globally optimal solution, its ap-
plication significantly reduces path crossings and unnecessary
detours, particularly in randomly scattered customer instances.

The underlying algorithm is a hybrid metaheuristic com-
posed of three synergistic components: (1) Ant Colony Op-
timization (ACO) serves as the base method for generating
initial feasible solutions, leveraging pheromone-based proba-
bilistic construction; (2) a local search mechanism based on
2-opt further improves individual routes; and (3) a Tabu Search

algorithm is activated in case of stagnation, helping the system
escape local optima by performing controlled, memory-guided
explorations of the solution neighborhood. Tabu Search is
triggered when no better solution is found over a predefined
number of iterations, and it operates by modifying the current
best-known solution while preventing reversals through a tabu
list.

Each ant in the algorithm is implemented as an object-
oriented entity encapsulating the coordinates of the depot,
vehicle capacity constraints, a list of customers, pheromone
information, and parameters controlling the influence of
pheromone trails («), heuristic desirability (3), and time win-
dow urgency (coef_urgency). During the route construction
process, each ant maintains a dynamically updated list of
feasible customers to visit next—those that do not violate ca-
pacity or time window constraints. Once no feasible customer
remains, the ant returns to the depot, completing a route and
potentially starting a new one if unvisited customers remain.

The main objective of the algorithm is the minimization of
the total transportation cost, which in this context is expressed
as the cumulative distance traveled by all vehicles across
all routes. By integrating global exploration (ACO), local
refinement (2-opt), and intensification-diversification control
(Tabu Search), the proposed hybrid approach balances solu-
tion quality and convergence speed, showing strong potential
for solving real-world instances of the Capacitated Vehicle
Routing Problem with Time Windows (CVRPTW).

A. Main algorithm

The proposed hybrid algorithm combines the global search
capabilities of Ant Colony Optimization (ACO) with the local
refinement of 2-opt and diversification strategies provided by
Tabu Search (TS). The objective is to minimize the total
distance traveled while satisfying customer demands and time
window constraints.

To provide a clear understanding of the solution approach,
the pseudocode in Algorithm 1 illustrates the overall procedure
of the hybrid algorithm.

B. Choosing next client

Probability of choosing next client during delivery is defined
by equation (1):

[fi5 ()] - [gi; (1)])°
Saenr ([fii (O] - 19:5]7)

where pf'j - probability of choosing unvisited jth client
for ant k that is currently located at the position of client
i; a - the influence of pheromone trails; 8 - the influence
of heuristics; N - the set of client that ant k has not yet
visited, and to which there is a path from client i; f;;(t) -
value of the function representing the intensity of pheromone
trails on the path between clients ¢ and j; g;;(t) - value of
the function representing the heuristic component of the path
between clients ¢ and j.

Using the calculated probability next client is being chosen
using the roulette wheel selection.
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Algorithm 1 Overall algorithm

for Number of iterations do
2:  Ant colony initialization
for Every ant in the colony do

4: while Unvisited client exists do

while Feasible clients exist do
6: for Every client in feasible

clients do
Calculate probability

8: end for
Choose next client using Roulette wheel selec-
tion
10: Update visited routes
Remove chosen client from unvisited
12: end while
Return to the depot
14: end while
Apply two-opt
16: Check for stagnation
if No improvement > 10 then
18: Activate tabu search
end if
20: Update best-known solution

Update pheromone trails
22:  end for
end for

C. Heuristic component

During preliminary experiments, the typical calculation of
the heuristic component using only the Euclidean metric
did not prove effective. Therefore, after conducting thorough
analysis and taking into consideration the additional aspect of
time windows of the problem, the heuristic determining was
extended with a time-based coefficient that defines the urgency
of the client and how quickly the vehicle must reach the client
for the most effective use of time (2):

1 n urgency
dij (t) VAt + dij (t)+1

where d;;(t) - Euclidean distance between clients ¢ and
J; urgency - time-based coefficient of influence of the time
window. The bigger coefficient is the bigger constraint of the
time windows At - difference in time between time remaining
until the end of the time window of the client ¢ and current
time.

2

9ij(t) =

D. System initialization

1) Pheromone initialization: During the analysis stage in-
stead of the typical pheromone initialization function was
utilized equation (3) that takes into consideration time window
constraint. This equation assigns higher priority, namely higher
pheromone intensity to paths leading not only to clients
positioned, but also to those that are available earlier. This
approach allows to reduce potential delays caused by the
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vehicle having to wait for the client’s time window to begin
before service can be provided:

n 1
d(i,j)+1  |rj—r|+1’

D =10+ Vizj (3
where fi(jo) - initial intensity of pheromones on path between
clients ¢ and j; d(i,7) - Euclidean distance between clients ¢
and j; r; - start of the time window of the client j.
2) Ant colony initialization: Ant colony is initialized at the
depot. All vehicles start and finish their journey at the depot.

E. Pheromone trails

After careful consideration of problem’s domain and some
preliminary experiments we suggested next algorithm for
refreshing pheromone trails (4):

o Pheromone Evaporation - lowering intensity of existing

pheromone trails.

o Increasing the pheromone levels based on the analysis of

previously traversed path by ant colony.

« Elite ant acknowledgment - reinforcing pheromone level

along the best-known path found by the best-performing
ant.

fii ' = Q=)+ 3 (1; 'h(i,j)6rz>+DV'h(i,j>eTbest
ke K k best

“)

where fj - level of pheromones on path between clients

¢ and j in iteration t; p - evaporation coefficient; K - set of
ants representing ant colony; % - route traversed by ant k in
iteration t; DZ - total distance traveled by ant k in iteration
t; hg j)er = 1 if path 47 is in traversed route 7 (otherwise
h; jyer = 0); v - elite coefficient for the best ant; Dpest
- total distance traveled by the best ant; 1.5 - best-known

found route.

FE. Local route optimization using 2-opt

For local improvement of the traversed route implementa-
tion of the 2-opt algorithm was used [6]. Main goal of utilizing
this algorithm was to find crossing sections of the concrete
route and then swap subsections to improve the distance
(presented in Algorithm 2).

G. Neighborhood search using Tabu search

After all ants traversed all routes, the neighborhood search
is activated that compares clients between routes and tries to
swap them if it improves the overall distance. This approach
allows for quick exploitation and exploration simultaneously
saving the algorithm from stagnating too early — Algorithm 3.

H. Hyperparameters

Efficiency of the algorithm is directly dependent on values
of defined hyperparameters. The set of experiments was con-
ducted for every hyperparameter in order to determine the best
results for the given value of hyperparameter. Every experi-
ment was performed 3 times in order to eliminate accidental
or unstable results. Here is the list of defined hyperparameters:
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Algorithm 2 2-opt implementation
Require: route {Route that ant traversed}
Ensure: A locally optimized route
1: improved < true
2: while improved =true do
3:  improved < false
4:  for i < 1 to route.length — 2 do
5: for j < i+ 2 to route.length —1 do
6: new_route < concatenate(route[l to i-1],
reverse(route[i to j-1]), route[j to route.length])

7: old_dist < distance(route[i—1], route[i]) +
distance(route[j—1], route[j])

8: new_dist < distance(new_route[i—1], new_routeli]) ,
+ distance(new_route[j—1], new_route[j])

9: if new_dist < old_dist then

10: route <— new_route

11: improved < true

12: end if

13: end for

14:  end for
15: end while
16: return route

Algorithm 3 Neighborhood search
Require: routes, vehicle_capacity {Routes that ants traversed
and vehicle capacity}
Ensure: Optimized routes
1: best_routes < routes

2: best_distance < sum(routes)

3: for ¢ < 0 to routes.length do

4:  for j < 1 to routes[i].length-1 do

5: for k& < 0 to routes.length do

6: if £ = j then

7: continue

8: end if

9: for pos < 1 to routes[k].length - 1 do

10: new_routes <— routes

11: customer < new_routes[i].pop(j)

12: new_routes[k].insert(pos, customer)

13: if new_routes[k].total_demand <
vehicle_capacity then

14: new_distance < sum(new_routes)

15: end if

16: if new_distance < best_distance then

17: best_routes <— new_routes

18: best_distance <+ new_distance

19: end if

20: end for

21: end for

22:  end for

23: end for

24: return best_routes

e Amount of ants - small amount of ants (less than
20) caused bad and unstable results, whereas excessive
amount (greater than 30) did not introduced improvement.
This phenomenon can be explained by greater interfer-
ence of pheromone trails between ants then required.
Hence, as experiments proved, 20 ants as an optimal com-
promise between quality of solution and time required for
computations.

o« Amount of algorithm iterations - as confirmed in
practice, the best found solution stagnated before reaching
30th iteration. So greater amount of iterations unneces-
sarily increased time required for the algorithm to finish
without potentially drastic improvement of the result.
Pheromone evaporation - small level of evaporation
(around 0.1) meant, that pheromone trails had too big
of influence o later iterations and hindered exploration
settling in local minimum. On the other hand too great
intensity of evaporation even though sometimes improved
results, but they were unstable. On a balance, medium
intensity of evaporation of around 0.5-0.6 lead to bal-
ance between exploration and exploitation even on big
distances between clients.

o Influence o of pheromone component - pheromone
level coefficient should be big enough for effective ex-
ploitation (around 0.5), however excessive value greater
then 0.6 destabilizes solution

o Influence of heuristic component - heuristic compo-
nent was implemented considering aspects of the studied
problem, therefore this coefficient should be around 1.4-
2.0 which produces the best result which was confirmed
experimentally

o Urgency coefficient - Total neglecting of time window
constraint as was expected complicates search of optimal
routes, however setting the coefficient greater then 2 does
not improve results.

+« Maximum amount of tabu search iterations - The
greater amount of iterations of tabu search the better
results are. Nevertheless, on the downside time required
for the algorithm to finish also grows drastically. Hence,
30 iterations allows for optimal results without requiring
such big amount of time.

IV. EXPERIMENTAL EVALUATION AND RESULTS

All computations were carried out using the Google Colab
platform [24], which provided a cloud-based virtual machine
environment. The hardware configuration allocated to the
runtime included a dual-core Intel(R) Xeon(R) CPU running
at 2.20GHz and 12 GiB of available RAM. This environment
ensured a consistent and reproducible execution setting for all
test instances.

The use of Google Colab allowed for efficient prototyping
and rapid experimentation without the need for dedicated
local computational infrastructure. Furthermore, the platform’s
support for Python-based scientific libraries and its seamless
integration with Jupyter notebooks greatly facilitated the de-
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TABLE I
AVERAGE RESULTS FOR EACH GROUP

Vehicle Routes

Client group | Distance | Vehicles | Time (min)
R1 1062.91 11.72 3.61
. R2 1044.70 8.85 1.73
B Cl 1072.88 11.93 2.52
C2 771.07 5.29 2.96
’ RCl1 1254.60 11.92 3.87
RC2 1004.34 7.25 3.09

Fie 2. Visualization of th d vehicl for the VRPTW i of the client set "R’ - sparse density, 'C’ - clustered clients
. 2. Visualizat t t tes for t st o s .
Cllgm puatization of fhe comptied veele foules Tor e ISEACE " and "RC” is a mix of both of them) and the first number means

the travel time type (1’ - short scheduling horizon and 2’ -
long scheduling horizon). Each client set contains 100 clients.
Vehicle has constant capacity which varies between groups
of client sets (C1*, R1* and RC1* - 200 vehicles; C2* -
700 vehicles; R2* and RC2* - 1000 vehicles). Furthermore,
each client set has a depot from which every route should
start and should finish. Each client has their demand which
should be fulfilled fully by vehicle. Additionally clients have
time constraints, namely each client has the time period during
] | | | which he can be served by vehicle. Moreover each client has
B its service time which required to serve that client. Number of
vehicles required to serve the client is not set so together with
Fig. 3. Visualization of the computed vehicle routes for the VRPTW instance  the total traversed distance is the subject for optimization. In
Riol our algorithm we focused on optimizing the total distance and
the number of required vehicles was secondary.

Vehicle Rotes

velopment, debugging, and performance analysis of the hybrid
algorithm.

While the hardware provided by Google Colab may
not match the performance of high-end servers or GPU-
accelerated environments, it is sufficiently powerful for evalu-
ating medium-scale instances of the vehicle routing problem.
The reported computation times in Table I reflect the algo-
rithm’s performance under these standard conditions, offering
practical insight into its applicability for real-world use cases
on accessible computing resources.

B. Experiments

For final results each set of 100 clients was tested for 3 times
which eliminated accidental results and ensured stability

In order to evaluate the performance of the proposed hy-
brid algorithm, a series of computational experiments were
conducted on benchmark instances with varying numbers of
customers, time window constraints, and vehicle capacities.
The results of these experiments are summarized in Table 1.
A. Dataset Table I presents not only the total minimum distance

Algorithm was tested using benchmark created by achieved for each problem instance and the number of vehicles

Solomon [25]. Dataset contains 56 sets of clients which are required to serve all customers, but also the total computa-

divided in 6 groups. Letter in the group name means density ~tional time measured in minutes. These metrics allow for a
comprehensive assessment of both the solution quality and

the efficiency of the algorithm.

The total minimum distance reflects the main optimization
objective and serves as a primary indicator of route efficiency.
The number of vehicles used corresponds to the operational
feasibility and reflects how well the algorithm can consolidate
deliveries. Finally, the computation time provides insight into
the algorithm’s scalability and runtime behavior across differ-
ent instance sizes.

Vehicle Routes

This experimental setup allows for both qualitative and
quantitative comparison of the algorithm’s performance. Addi-
tionally, the data collected enables further analysis of the trade-

Fig. 4. Visualization of the computed vehicle routes for the VRPTW instance Offs_ between SOluthIl. quality and computation time under
RC101 various parameter settlngs.
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stats for file c10L.csv

3500

3000

2500

2000

1500

1000

Fig. 5. Best, worst and average results in iteration receipts for instance C101

Stats for file r10L.csv
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Fig. 6. Best, worst and average results in iteration receipts for instance R101

V. EVALUATION AGAINST STANDARD BENCHMARKS

For each set, drawings were generated showing the routes of
individual vehicles and statistics were presented showing the
best, worst and average route searches in individual iterations.

The diagram presents the resulting vehicle routes generated
by the proposed hybrid algorithm for the benchmark instance
C101 (2). Each colored line represents the route of a single
vehicle, starting and ending at the central depot (marked with
a black square). Individual customer locations are depicted as
dots, and the connected paths illustrate the order of service
while respecting both vehicle capacity and time window con-
straints. Similar diagrams were created for other benchmark
instances to validate the robustness and adaptability of the
proposed solution across various configurations of customer
distribution and time constraints (f.e. Fig. 3 and Fig. 4).

In Fig. 5, the green line represents the best result obtained
(minimum route length), the red line represents the worst, and
the blue line represents the average value obtained in a given
iteration.

stats for file rc10L.csv

Fig. 7. Best, worst and average results in iteration receipts for instance RC101

A clear trend of improving average results and gradual sta-
bilization of the values of the best solutions can be observed,
which indicates effective exploration of the solution space by
the algorithm. Significant quality improvement occurs already
in the initial iterations, and further calculations allow for
successive refinement and local optimization of solutions. A
sudden drop in the best result after about 25 iterations suggests
effective operation of the tabu search component or local
optimization (2-opt), leading to significant improvement of
previously found routes.

Analogous graphs were generated for the remaining test
instances, which allows for analysis of the stability and re-
peatability of the proposed approach (f.e. Fig. 6 and Fig. 7).

TABLE II
RELATIVE EFFICIENCY IMPROVEMENT COMPARING TO PREVIOUSLY
KNOWN RESULTS

109

File Best Known Distance | Distance obtained | Relative efficiency(%)
r101 1650.80 1011.41 38.73
r102 1486.12 1054.03 29.08
r103 1292.68 1029.14 20.39
r104 1007.31 1006.33 0.10
r105 1377.11 975.83 29.14
r106 1252.03 993.79 20.63
r107 1104.66 1060.89 4.00
r109 1194.73 1075.12 10.01
rl10 1118.84 992.36 11.30
rlll 1096.72 1062.86 3.09
1201 1252.37 1029.12 17.83
1202 1192.70 969.44 18.65
rcl101 1696.95 1189.84 29.88
rc102 1554.75 1295.17 16.70
rcl103 1261.67 1205.30 4.47
rc105 1629.44 1240.40 23.88
rc106 1424.73 1265.33 11.19
rc107 1230.48 1218.62 0.96
rc201 1406.94 964.95 31.42
rc202 1365.65 990.67 27.46
rc203 1049.62 918.56 12.49
rc205 1297.65 1089.39 16.05
rc206 1146.32 937.28 18.24
rc207 1061.14 885.42 16.56

In Table II, the relative efficiency improvement achieved by
the proposed hybrid algorithm is presented in comparison with
the best-known solutions reported in [26]. The evaluation was
conducted using the efficiency formula defined in equation (5),
which quantifies the relative gain by measuring how much
shorter the total distance of the obtained solution is compared
to the reference result.

B =210 100% )
Zo
where E; - relative efficiency of our solution; xz; - distance
retrieved as a result of our solution; zy - distance for best
known solution.

The suggested approach not only outperformed previously
known results in the majority of benchmark instances, but
in some cases achieved drastic improvements-up to approx-
imately 30% reduction in total distance. Such a substantial
gain is particularly impressive given that it was achieved



110

without significantly increasing computation time. In fact,
the algorithm maintained practical execution times, making
it suitable for applications where responsiveness is critical.

These results underline the robustness and effectiveness of
the hybrid approach, especially in scenarios with tight time
windows and large numbers of customers. The combined use
of Ant Colony Optimization for initial solution generation, 2-
opt local search for intra-route optimization, and Tabu Search
for escaping local minima, proved particularly effective in
navigating complex solution landscapes.

Importantly, the efficiency gains translate directly into more
resource-effective planning-fewer vehicles and less travel dis-
tance, while respecting time constraints. This makes the pro-
posed method highly valuable in real-time logistics and trans-
portation scenarios, where computational speed and solution
quality must go hand-in-hand. The consistent improvements
across problem instances confirm that the developed algorithm
is not only scalable and adaptive, but also practical for
deployment in real-world operations.

VI. CONCLUSION

In this study, a novel hybrid algorithm combining Ant
Colony Optimization, 2-opt local search, and Tabu Search has
been proposed for solving the Vehicle Routing Problem with
Time Windows. The algorithm effectively integrates global
exploration with local refinement and strategic escape from
local optima, resulting in a robust and adaptive solution
method.

The experimental results confirmed that the proposed
method significantly improves upon previously known solu-
tions in terms of total route distance, with some instances
showing improvements of up to 30%. Importantly, these
improvements were achieved without incurring substantial
computational cost, demonstrating the algorithm’s suitability
for real-time and large-scale applications.

The results also indicate that the hybrid approach ensures
a better balance between intensification and diversification in
the search process. This leads to high-quality solutions that
respect all problem constraints, including capacity and time
windows, while optimizing the number of vehicles and total
travel distance.

Future work may involve extending the algorithm to dy-
namic or stochastic versions of the VRP, testing its per-
formance on real-world datasets, and incorporating learning-
based mechanisms to further enhance its adaptability and
efficiency.
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