

# Perception and Emotional Response to AI-Generated Audiovisual Media: The Influence of Content and Context

Nina Krzemińska

AGH University of Krakow al. Mickiewicza 30, 30-059 Kraków, Poland Email: ninakrzem@student.agh.edu.pl

Mirosława M. Długosz 0000-0002-3397-3285 AGH University of Krakow al. Mickiewicza 30, 30-059 Kraków, Poland Email: mmd@agh.edu.pl

Abstract-In a world where artificial intelligence is rapidly reshaping creative industries, AI-generated audiovisual content is no longer a futuristic novelty; it is becoming an integral part of our present reality. This is a significant challenge, as the output produced from text prompts by video generators is becoming difficult to distinguish from footage recorded by humans. A sense of distrust emerges about the potential threats posed by such technology. However, not all AI-generated content is automatically met with disapproval; these videos may provoke strong criticism or, on the opposite, admiration. This leads to a central question: How do the visual decisions made by algorithms, in combination with the context in which the viewer consumes the content, shape their perception of the video? The study will examine people's opinions on specific features of the films and the context in which they are used, as well as how these factors influence overall reception.

# I. INTRODUCTION

AN WE truly trust the content presented in contemporary media? Many argue that we cannot. This growing skepticism is one of the reasons why artificial intelligence is often perceived negatively by the public. Not only are specific AI tools met with distrust or criticism; in some cases, all AI-generated output is preemptively stigmatized. However, when used creatively and responsibly, these technologies have the potential to produce works of high artistic value, even contributing to prestigious achievements such as winning the Fryderyk, one of Poland's most respected music awards [1]. This suggests that certain characteristics of AI-generated films may influence public perception and foster greater acceptance, indicating the need to better understand the factors that shape attitudes toward such content.

This article presents the current state of knowledge regarding public opinion on AI-generated art, with a particular focus on films, and introduces the findings of a pilot study exploring the influence of selected factors on viewer evaluations of such content. The purpose of the research is to determine the characteristics of AI-generated films that evoke specific emotional responses in viewers, both positive and negative,

This work was supported by Department of Humanities, AGH University of Krakow

and to identify recurring patterns in opinions regarding acceptable and unacceptable ways and context of using such content, the characters featured in the films, the themes they address, and their visual style. Additionally, the analysis will take into account potential differences in film perception based on gender and social factors (experience with AI, experience in film creation). The research will help identify which elements have the greatest impact on viewers' emotional engagement and how the perception of AI-generated films is evolving in the context of the growing presence of this technology in media and visual culture.

The use of artificial intelligence in film generation represents both a significant opportunity and a potential threat. Given the online popularity of AI-generated videos and the rapid pace at which their quality is improving, it can be stated with near certainty that this is not a passing trend. Videos generated using Google's Veo 3 tool - which was only recently introduced to the public - are currently dominating all major social media platforms. They are generating hundreds of thousands of views due to their "bizarre" and unconventional content and form, which attract a significant number of clicks. Algorithms pick up on this engagement and further promote the content, leading to even greater visibility and popularity [13]. Defining the characteristics of such content is crucial to determine an appropriate direction for further technological development and to ensure that the results are used in a reasonable, responsible, and socially acceptable manner. Given the limited number of studies concerning Human-Computer Interaction (HCI) in the context of tools such as video generators, it is important to explore this issue, particularly by examining public opinions and sentiments regarding such advanced technologies. It is also worthwhile to analyze how people engage with these creations in order to clearly define potential applications of AI-generated films that do not conflict with the values upheld by artists and average internet users. A thorough investigation of this field will enable a better adaptation of this content to the expectations and requirements of audiences across various domains.

#### II. RELATED WORK

When browsing most websites or engaging in discussions about artificial intelligence in the film industry, one can observe a significant polarity in public opinion. A major portion of the audiences who consume this content express concerns about the capabilities of this technology. They are particularly aware that it is a powerful tool that, in the wrong hands, could lead to catastrophic consequences. However, some view AI as a tremendous opportunity to improve inclusivity in the film industry or as an excellent means of creating new humorous content for social media. However, empirical research on public acceptance of this technology, as well as on how people interact with it, remains limited [3].

In a study published on HAL Open Science, a manipulation phase was conducted in which participants were led to believe that a given work had been created by AI, while in fact it was human-made. The responses indicated that the vast majority of participants believed and remembered their assigned condition (i.e. AI or human author). The results showed that the images labeled as AI-generated were perceived as less beautiful, innovative, and meaningful compared to those attributed to human creators. A similar pattern was observed when AI was indeed the actual author - AI-generated images received lower ratings in terms of likability, aesthetics, novelty, and significance. In addition, a modified Turing test, in which participants had to guess the true author of the images, revealed better recognition of human-created images (66%) compared to those generated by AI (56%). In particular, the participants more accurately identified the authorship in the case of portraits (69%) than landscapes (53%). This may suggest that AI's technical capabilities in generating landscapes currently surpass its ability to produce convincing portraits. One possible explanation for the bias against AI-generated images is intergroup bias. Artificial intelligence can be anthropomorphized and treated as an 'outgroup'. Intergroup bias refers to the tendency to evaluate one's own group more favorably than external groups. Among the possible causes of negative perceptions towards AI is technophobia, the fear of machines. AI may be viewed as a threat, particularly due to its potential to replace humans in various fields. Research like this is vital for the exploration of AI, as it provides evidence of existing negative biases and offers valuable insights for the design of effective humancomputer interactions [5].

In 2023, a study was conducted to investigate the interaction between sociodemographic factors and the acceptance of AI video technologies in education. The goal was to identify how variables such as age, gender, level of parental education, and socioeconomic status influence students' attitudes toward the creation of AI-assisted video content. The findings revealed that among the factors analyzed, gender, the number of devices used daily, and age, only participation in AI-related training programs (regarding access to and creation of content) showed a statistically significant relationship with students' attitudes toward AI and machine learning. These findings align with previous studies [6], which suggested that targeted educational

initiatives aimed at improving AI literacy can foster more positive attitudes and, in turn, greater acceptance. No significant correlations with the other variables were found. This research contributes to a deeper understanding of the transformative role of AI in the creation of video content and highlights the importance of considering pedagogical contexts and principles to ensure a fair and inclusive digital media platform for students of various sociodemographic backgrounds [8].

Another notable study was conducted among experts with at least eight years of video production experience. The researchers sought to answer the following questions: What factors influence the acceptance and usage of AI Video Generator Tools (AIVGTS) by practitioners, and how do these factors interact with each other? Based on the findings, eight key adoption barriers were identified: innovation, market demand, technological maturity, interdisciplinary collaboration, ethics and privacy, public acceptance, data security and copyright, and global vs. local perspectives. The most important factor was technological maturity, suggesting that as AI continues to evolve and improve in the video production domain, its usage rate is likely to increase substantially. The creators perceive a more 'mature' technology as more reliable and efficient. The second most significant factor was the ability to balance global needs with local requirements, for example, the importance of overcoming language barriers while also aligning with the aesthetics and cultural traditions of specific regions. Data security and copyright issues are essential for the implementation of AI in video production, as they also help build public trust. According to IDC forecasts, market demand continues to grow - the AI software sector ranks first in terms of growth among all technology markets [3].

The well-documented scientific phenomenon known as The Uncanny Valley refers to the hypothesis that a certain degree of human likeness in robots, computer-generated characters, or animations can evoke a sense of unease among observers. Interestingly, this effect is often amplified by the movement of the character [10]. Analyzing research papers, YouTube comments on AI-generated videos, social media posts, and blog discussions, one can find numerous accounts describing similar Uncanny Valley-like experiences while watching AI-generated films. When viewers see characters or machines that are highly human-like but contain minor artifacts or imperfections revealing their synthetic nature, they often report feelings of anxiety or discomfort. These emotional reactions to algorithmically generated content can be explained by analogous flaws, just as with humanoid avatars. Videos that are easily recognizable as AI-generated typically provoke laughter. However, when the content mimics realistic, camera-recorded human production but subtly deviates from real-world coherence, it becomes a trigger for discomfort or unease in the viewer. This is not a straightforward issue, as not every factor will affect every individual in the same way - an element of subjectivity is always present in such studies. For example, in one study of the Uncanny Valley, the effect varied according to the skin tone of the character presented. Black characters were perceived as less realistic, but generated more comfort compared to lighterskinned characters. One possible explanation lies in rendering and lighting techniques - most CGI methods are optimized for light-skinned characters, which can lead to visual inaccuracies in darker-skinned ones. Furthermore, the algorithms used in the training were based primarily on models of light-skinned people, which could contribute to the perception of darker-skinned characters as less 'human' [9]. This shows that when studying such a complex phenomenon, attention must be paid to every detail. In the case of AI-generated video content, this means considering all elements present within the video itself.

# III. METHODOLOGY

The study has an experimental character. The experiment originates from social research and is commonly used to explain psychological and social phenomena [2]. The research described in this paper was designed by combining the experimental method with a qualitative approach, allowing the incorporation of elements of in-depth interviews. The quantitative stage involves participants completing questionnaires. Each research effort is characterized by its individual approach. During the study, respondents complete the questionnaire on a tablet. After completing the first part of the questionnaire, general questions (about the presence of AI in the film industry, especially its role as a tool for film makers, its potential, associated risks, and possible applications), they proceed to the second part, in which they answer questions related to the videos they have watched. Each video is followed by the same three questions: an assessment of the video's realism, the participant's opinion on its distribution, and a visual evaluation. The questionnaire includes both closed and semiopen questions. The videos were generated using the SORA tool (the topics and program were selected based on online research, user comments, testing of various video generation tools, and insights from articles discussed in part in Section II). Following this, participants are asked open-ended questions. This stage also allows for free commentary and reflections on the viewed videos.

The study was carried out in a laboratory room at the Faculty of Humanities of the AGH University of Kraków. It was carried out over two days and consisted of 22 sessions. A test with a few volunteers was conducted one week before the main study and, based on its results, each participant was assigned 30 minutes - the main part of the study was a detailed in-depth interview. During each session, one moderator, one research assistant, and one respondent were present in the room. The assistant observed the reactions of the participants to the videos they watched, which allowed for more fluid interaction between the moderator and the respondent. In addition, the assistant wrote the answers to open-ended questions, allowing the moderator to focus on the interviewee and maintain a natural flow of conversation.

For the purpose of the study, 13 films were generated in 7 categories:

 Landscape - A video showing a distant shot of a city or nature.

## Prompt a:

A drone flight over Florence, Italy during the golden hour. The camera glides above the terracotta rooftops, drawing closer to the iconic dome of the Florence Cathedral. The drone sweeps gracefully around the dome and Giotto's bell tower, unveiling intricate Renaissance details and the Arno River shimmering in the distance. The atmosphere is serene and eternal - Florence as a living masterpiece suspended in golden light.

#### Prompt b:

Portrait video: tropical, mountain, time lap, flower, loop animation, camera angle still don't move, sunset, poetry landscape.

 Abstraction - A video depicting an unrealistic scene with a cat.

#### Prompt a:

In a whimsical surreal scene, a gigantic white fluffy cat is lounging atop a skyscraper in the middle of a bustling cityscape during the day. The cat looks serene and content, with its long fluffy tail and relaxed posture. The surrounding buildings are typical of a metropolitan skyline, including an iconic tall structure in the background. The bright, clear sky enhances the playful and surreal atmosphere, creating a light -hearted and imaginative depiction of urban life.

#### Prompt b:

Small ginger cat cooks in the kitchen. It wears chef's hat. Sunny warm light.

 Product advertisement - A video presenting a product or object.

## Prompt a:

Ultra-realistic cinematic video of a blue mercedes parked on a mountaintop road at golden hour. The camera slowly circles the front driver side, The background shows an expansive panoramic view of mountains and a glowing sky. 4K, 24fps, dramatic color grading, supercar commercial feel with deep shadows and glowing highlights.

### Prompt b:

Make an elegant andvertisment for a diamond ring. The ring should be in the main focus of the camera, two different angles. Fast move of the camera, showing the ring form diffrent sides.

used - transition blend

4) **Portrait** - A portrait video showing a highly realistic human figure.

**Prompt a:** First, generating the image: Create a portret of a women with blond long hair.

Create a wideo from this picture - one shot, no cuts. She smiles at the camera and looks down timidly. Suspended in golden light.

**Prompt b:** The same as Prompt a.

 Animation - An animated video featuring a cartoon character.

#### Prompt a:

An enchanting blond fairy of the forest tending to her garden. Cartoon inspired style.

## Prompt b:

An enchanting blond fairy of the forest tending to her garden. Lofi anime inspired style.

 Remix - A video modification (animation) of a real static artwork turned into a moving video.

**Prompt a:** First, inserting the painting: Józef Chelmoński "Babie lato".

The girl slowly moves her hand to the left and then to the right, the  $\log$  in the back moves its

tail subtly.

**Prompt b:** First, inserting the painting: Aleksander Gierymski "Żydówka z pomarańczami"

The woman in the painting blinking with her eyes.

 Video featuring a real person - A video modification of a private photo of a real person (the researcher, the author of the study).

#### Prompt a:

It's me - animate the image so i look back on the view behind me and then I look back at camera. Very subtle and small moves.

Two sets of films were created and shown to the participants in turns. The participants were unaware of the existence of the second set. The films within each category were very similar, differing mainly in the object being depicted. In the Portrait category, the variation between films was very subtle (different character movements), while the Realistic Human Figure category included only one film, shown to all participants. This approach aimed to minimize the influence of the character depicted in the film and on the overall evaluation of the category.

#### IV. RESULTS

A total of 22 volunteers with an average age of 22 participated in the study, making the research sample a small group of young students of similar age, all residing in Kraków. The study included thirteen men and nine women. More than half of the participants - twelve individuals - stated that they use AI several times a week. Four participants selected the option '1 to 2 times per week', five reported 'several times a day', and only one person stated that they do not use AI at all.

Six participants described their experience in video creation as 'intermediate' or 'advanced', seven identified as 'beginners' and nine reported not having any experience at all. No one was identified as an 'expert' in this field. Due to the fact that only six participants describe their level of experience in filmmaking as intermediate or higher, it is not possible to compare the responses of individuals involved in film production with those of participants without experience. To conduct such a comparison, the sample of enthusiasts and professionals would need to be larger.

At the beginning of the study, participants were asked whether they agreed with 4 statements regarding their general attitude toward artificial intelligence [Table I]. The AI Attitude Scale (AIAS-4) was used, which was developed and described in the study 'Development and validation of the AI Attitude Scale (AIAS-4): a brief measure of general attitude toward artificial intelligence' [4]. The original ten-point Likert scale was reduced to a five-point scale, and the questions were translated into Polish.

When expressing their opinions in the section with the AIAS-4 scale, all respondents agreed with the statement that they would use AI in the future. The vast majority also agreed that AI would improve their work. However, in the remaining two statements, "I believe that AI will improve my quality of life" and "I think AI technologies are good



Fig. 1. Frames from films generated in Sora for the research.

for humanity", there were some dissenting voices, with 6 individuals disagreeing with each of these statements.

Based on Spearman correlation strength levels defined as follows [7]:

- <0.2 weak correlation;
- 0.2–0.4 low correlation;
- 0.4–0.6 moderate correlation;
- 0.6–0.8 strong correlation;
- 0.8–0.9 very strong correlation;
- 0.9–1.0 nearly complete dependence,

a moderate correlation was observed between the frequency of using AI tools and the belief that AI will improve quality of life ( $r_s = 0.536$ ; p = 0.01). A similar moderate correlation was found between perceiving AI as beneficial to humanity and the belief that it will improve life quality. A strong correlation

was observed between the frequency of use of AI tools and the declaration of willingness to use AI in the future ( $r_s = 0.730$ ; p < 0.001). The arithmetic mean for each of the four items was greater than 3. The responses were consistent.

TABLE I
THE AIAS-4 SCALE USED IN THE STUDY AND ITS RESULTS

**Response scale:** 1 – strongly disagree, 2 – rather disagree, 3 – neutral, 4 – rather agree, 5 – strongly agree

| Statement                                       | Mean | sd   |
|-------------------------------------------------|------|------|
| I believe that AI will improve my life.         | 3.5  | 1.19 |
| I believe that AI will improve my work.         | 4.4  | 0.73 |
| I think I will use AI technology in the future. | 4.4  | 0.67 |
| I think AI technology is positive for humanity. | 3.27 | 0.88 |

## A. Application

In the question regarding areas where respondents see the greatest potential for the use of AI, the most frequent responses pointed to AI as a tool for beginner creators and as a means of generating humorous content for personal websites [Figure 2]. When asked about areas of AI application, the highest number of responses - 13 - indicated the potential to manipulate public opinion through propaganda content. The second most common concern was the ability of AI to generate highly realistic videos depicting people saying or doing things they never actually said or did. The third concern was the increasing spread of illegal content [Figure 3]. These are the areas that respondents are most concerned about, which they also emphasized during the interviews.

## B. Film Ratings

One of the most important aspects when evaluating images - whether static or moving - is the visual impression. Frames that are aesthetically pleasing or visually interesting can evoke positive emotions and engagement, independently of their content. It is therefore worth examining how AI performs in this regard, according to the participants. They were asked to rate the visual quality of the film they watched on a scale from 0 to 10, where 0 meant "terrible" and 10 meant "outstanding." The highest score was given to the Portrait category.

In addition to the visual scale, participants also assessed how realistic they found what they were seeing (unrealistic, moderately realistic, very realistic). Again, the Category 4 received the highest rating.

Spearman correlation tests for the pair of variables - visual rating and realism rating - revealed four potential dependencies in the categories: Landscape, Advertisement, Portrait, and Real Person (with the highest correlation in the last one). The average ratings for all films, except Animation, exceeded the value of five. The highest rating was given to the Portrait category.

Responses regarding the online sharing of AI-generated films were highly varied. For most films, at least half of the

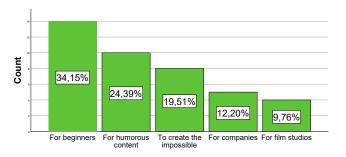



Fig. 2. Visualization of responses on the appropriate use of AI in the film industry.

#### **Responses:**

- For beginners A tool for beginner creators who lack the budget and resources to film everything they envision.
- For humorous content A tool for internet users who want to create humorous content for personal or public pages and profiles.
- To create the impossible A tool for all filmmakers to depict scenes that cannot be physically recorded, such as generating footage with actors who are no longer alive.
- For companies A tool for companies to create internal materials, such as presentations using deepfakes, or to produce advertisements for their products or services.
- For film studios A tool for film studios to produce more diverse content in a faster and more cost-effective way.

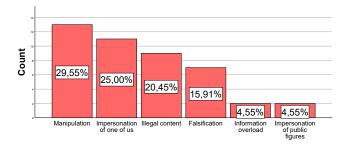



Fig. 3. Visualization of responses on the areas that respondents find the most concerning.

## **Responses:**

- Manipulation Public opinion manipulation through the production of propaganda and deepfake-style videos.
- Impersonation of one of us Generating highly realistic videos depicting people saying or doing things they never actually said or did.
- Illegal content An increase in the spread of illegal content, such as videos depicting child pornography.
- Falsification Impact on the justice system through the creation of falsified evidence in the form of video recordings.
- Information overload a flood of cheaply generated videos saturating the internet.
- Impersonation of public figures impersonations of celebrities, experts, scientists etc.

| TABLE II                                       |             |
|------------------------------------------------|-------------|
| AVERAGE VISUAL AND REALISM RATINGS ACROSS FILM | CATEGORIES. |

| Category      | Average Visual Rating | Average Realism Rating |
|---------------|-----------------------|------------------------|
| Landscape     | 5.82                  | 2.05                   |
| Abstraction   | 6.77                  | 1.27                   |
| Advertisement | 5.73                  | 2.05                   |
| Portrait      | 7.27                  | 2.59                   |
| Animation     | 4.77                  | 1.41                   |
| Remix         | 5.55                  | 1.68                   |
| Real Person   | 6.09                  | 2.41                   |

respondents were indifferent to their presence on the internet. The Abstraction category had the highest potential for user interaction - 40% of participants said they might like, share, or upload such a video themselves. The category that sparked the strongest opposition to being shared online was the Real Person category.

## C. Interviews

As part of the study, respondents were asked a series of open-ended questions, following the viewing of all video materials. The answers yielded several noteworthy insights. Half of the participants reported experiencing discomfort or unease while watching one or more of the videos. These feelings were most commonly associated with videos from the Portrait, Remix, and Real Person categories, in which human figures were prominently featured. Additionally, a few participants reported similar reactions to videos in the Landscape, Abstraction, and Animation categories.

Some respondents described the Portrait and Real Person videos as highly realistic and therefore unsettling, noting their impressive quality and realism. The realization that video generation technology has reached such a high level of sophistication contributed to this discomfort. Many participants expressed concern about the implications of these capabilities, with remarks such as: "It's disturbing that you can believe this video is real." Others attributed their unease to imperfections in the videos - lack of detail, unnatural character movements, and inconsistencies between the appearance of the person in the video and their real-life presence when seen simultaneously. This resulted in what participants referred to as a "strange feeling," or that "the brain doesn't know what's going on." The videos were described as lacking depth, appearing noticeably different from typical content, and containing visual artifacts that quickly drew attention. Faces were often described as distorted.

Although participants did not unanimously agree, a significant majority noted that their perception of a given video would vary depending on its context of use. There was a shared belief that AI-generated content should not appear on television - primarily due to the older average age of TV audiences and their greater susceptibility to believing such content is authentic. Television was viewed as a medium that should remain reliable and trustworthy.

Numerous responses highlighted the need for proper labeling of AI-generated content. While such content was not universally condemned, participants emphasized that any appearance of synthetic media in public channels should be accompanied by clear information about the fact that it was generated. This was seen as especially critical for videos featuring human figures. A common fear expressed by respondents was the possibility of generating and distributing a video showing anyone, in any setting or situation.

Some participants raised concerns about children's exposure to such videos - noting that, like older viewers, children might also be unable to distinguish between real and synthetic content and might absorb messages or behaviors that parents would not wish them to see. A frequently asked question was: "What is the purpose?" Why should we generate content that could simply be recorded, and why create fictional scenes or people at all? In the absence of a clear purpose, participants were generally less supportive of such materials, struggled to see their benefits, and often failed to identify any advantages over traditionally filmed content. The Advertisement category was especially criticized in this context. Participants commonly argued that advertisements should depict real products rather than generated approximations. This category was also linked to concerns about potential manipulation of media content by companies, including enhancement or beautification of products in ways that could mislead consumers.

The category that elicited the most visibly positive emotional reactions from participants was Abstraction. The video's humorous character brought smiles to the faces of more than half of the respondents. During the viewing of the Animation and Commercial categories, expressions of dissatisfaction, confusion, or puzzlement were observed. The Real Person category was watched for the longest time. It evoked noticeable surprise, discomfort, and at times even admiration. Videos in the Portrait category also required more time from participants for analysis and evaluation.

Even if this information had not been disclosed at the beginning, a significant majority of participants noted that all the videos could be easily recognized as AI-generated. This was mainly due to various inconsistencies or inaccuracies - such as the depiction of nature - that deviated from real-world expectations. Another characteristic element was the very smooth and slow camera movement present in each AI-generated video. These aspects were identified as the most in need of improvement; participants believed that addressing them could significantly enhance the overall film ratings.

### V. DISCUSSION

Artificial intelligence is a key enabler of digital transformation; it is not merely a technical innovation, but a transformative force that is reshaping the nature of work across various sectors - including creative and knowledge-based professions [11]. This study demonstrates that attitudes toward AI-generated films are not as negative as might be assumed and highlights the lack of academic research on societal perceptions and the proper, beneficial forms of generative AI

usage, especially those that do not infringe upon the rights of creators or fundamental human rights. The research objectives were successfully achieved: key factors influencing human perception of AI-generated videos were identified, and aspects facilitating their positive reception were analyzed. Factors such as context of use, content, visual quality, and viewers' awareness of artificial origin were found to be crucial. Respondents evaluated AI-generated videos more favorably in entertainment contexts, while their assessment was more critical for informational or documentary content. Realistic rendering of motion and facial expressions significantly enhanced positive reception, but visual unnaturalness often caused discomfort. Reviewing recent literature, despite the popularity of generative tools, society continues to display ambivalence toward their application—ranging from enthusiasm to concerns about authenticity, manipulation, and loss of control. An interesting observed pattern was that previous experience with AI correlated with higher acceptance of AI-generated content, and trust in the video's source played a key role. The reception of AI-generated videos is a complex process, shaped by both material characteristics and the viewing context, as well as individual viewer traits. This opens the door for further indepth analyses of perceptual biases, new applications in the arts, and the uncanny valley effect - not only for human-like figures but for all AI-generated elements emulating reality.

#### VI. CONCLUSION

The results of this exploratory study suggest that further research — based on larger, more diversified samples — is both valuable and necessary. One important finding concerns the uncanny valley phenomenon in AI-generated films: over half the participants reported negative emotions (unease, discomfort), especially in highly realistic videos with human characters, though visually those were rated highest. The study found discrepancies in perception of landscapes versus human figures, indicating a need for comparative analysis of AI's capabilities across different content categories. A central recommendation from participants was the clear labeling of AI-generated content. Even when the information on algorithmic origin appeared neutral, it significantly impacted perception - not only of the work itself but also of the channel or person sharing it. Proper disclosure of synthetic media origins was considered crucial for safe, conscious media consumption and preventing misuse, especially for content featuring human characters. Respondents underlined concerns over vulnerable groups such as older adults and children, highlighting the societal consequences of AI development. The analysis of the AIAS-4 scale revealed a generally positive attitude toward artificial intelligence's role as a practical tool. Notably, technological maturity increases adoption, suggesting that further popularization and transparency could enhance public trust. The rapid progress of companies such as Google and OpenAI could soon enable the automatic detection of AIgenerated content, increasing safety and reliability in media environments [12]. In summary, this technology should be

approached as a potential force for societal benefit - provided it is implemented transparently and ethically.

#### ACKNOWLEDGMENT

Parts of this manuscript (language editing and translation) were supported by generative artificial intelligence (AI) tools. All AI-generated content was reviewed and edited by the authors to ensure accuracy and compliance with the conference's ethical guidelines. The authors take full responsibility for the final version of the manuscript.

#### REFERENCES

- [1] ZPAV, Fryderyki 2025 rozdane. Poznaliśmy laureatów w kategoriach muzyki rozrywkowej, 2025. [Online]. Available: https://fryderyki.pl/fryderyki-2025-rozdane-poznalismy-laureatow-w-kategoriach-muzyki-rozrywkowei/
- [2] M. Gigoła, Eksperyment jako metoda badania wpływu Visual Merchandisingu na skłonności zakupowe, Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, no. 459, pp. 79–89, 2016. [Online]. https://doi.org/10.15611/pn.2016.459.08
- [3] T. Yu, W. Yang, J. Xu, and Y. Pan, "Barriers to Industry Adoption of AI Video Generation Tools: A Study Based on the Perspectives of Video Production Professionals in China," *Applied Sciences*, vol. 14, no. 13, pp. 5770–, 2024. https://doi.org/10.3390/app14135770
- [4] S. Grassini. Development and validation of the ai attitude scale (aias-4): a brief measure of general attitude toward artificial intelligence. Frontiers in Psychology, Volume 14 - 2023, 2023 https://doi.org/10.3389/fpsyg.2023. 1191628
- [5] M. Ragot and N. Martin and S. Cojean "AI-generated vs. Human Artworks. A Perception Bias Towards Artificial Intelligence?" CHI '20: CHI Conference on Human Factors in Computing Systems Honolulu, United States, 2020 https://dx.doi.org/10.1145/3334480.3382892
- [6] I. Adeshola and A. Praise Adepoju "The opportunities and challenges of ChatGPT in education" *Interactive Learning Environments*, Routledge, vol. 32 (10), pp. 6159–6172, 2024, https://doi.org/10.1080/10494820. 2023.2253858
- [7] Oziembłowski, Maciej and Lesiów, Tomasz and Šabanagić, Cornelia "Metodologia testu chi-kwadrat na przykładzie badań ankietowych dotyczących europejskich serów regionalnych" Engineering Sciences And Technologie, pp. 134-163, 2022. https://doi.org/10.15611/nit.2022.38.09
- Technologie, pp. 134-163, 2022, https://doi.org/10.15611/nit.2022.38.09
  [8] N. Pellas, "The influence of sociodemographic factors on students' attitudes toward AI-generated video content creation" Smart Learning Environments, vol. 10, no. 1, pp. 57–20, 2023. Springer Nature Singapore. [Online]. https://doi.org/10.1186/s40561-023-00276-4
- [9] V. F. de Andrade Araujo, A. B. Costa, and S. R. Musse, "Evaluating the Uncanny Valley Effect in Dark Colored Skin Virtual Humans" Proc. 2023 36th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 1–6, 2023. https://doi.org/10.1109/SIBGRAPI59091. 2023.10347145
- [10] M. Mori, K. F. MacDorman, and N. Kageki, "The Uncanny Valley [From the Field]" *IEEE Robotics & Automation Magazine*, vol. 19, no. 2, pp. 98– 100, 2012. https://doi.org/10.1109/MRA.2012.2192811
- [11] C. Gerhards and M. Baum, "AI in the Workplace: Who Is Using It and Why? A Look at the Driving Forces Behind Artificial Intelligence in German Companies" *Communication Papers of the 19th Conference on Computer Science and Intelligence Systems (FedCSIS)*, vol. 41, pp. 45–52, 2024. https://doi.org/10.15439/2024F2752
- [12] Google DeepMind, "SynthID: A Tool to Watermark and Identify Content Generated Through AI," https://deepmind.google/science/synthid/
- [13] Kanał Zero, "GOOGLE VEO 3 Viralowy trend czy narzędzie dezinformacji?," YouTube, 2025. https://www.youtube.com/watch?v= Mgx5DVqQaus&t=632s&ab\_channel=KanałZero