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Abstract—In Industry 4.0 systems, timely delivery of critical
components to maintenance points is essential for continuous
operation. This paper introduces a novel Confidence-Interval
Circular Intuitionistic Fuzzy Zero Point Method (CIC-IFZPM)
to optimize the transfer of spare parts in a smart factory setting.
The method addresses uncertainty in transfer cost, delivery time,
and priority assessment through circular intuitionistic fuzzy sets
(C-IFS), which reflect both membership and hesitancy with
geometric interpretation. A customized version of the index
matrix algorithm integrates transportation constraints, expert
confidence intervals, and machine availability limitations. The
model is validated through a simulated industrial scenario, where
production cells request components dynamically, and a central
warehouse must allocate them optimally. Compared to classical
fuzzy optimization approaches, the proposed method ensures
more robust decision-making under incomplete or imprecise data,
offering better performance in real-time control environments.
The framework is applicable to predictive maintenance logistics,
autonomous scheduling, and industrial resilience planning.

I. INTRODUCTION

T
RANSPORTATION problems (TPs) aim to determine

optimal delivery routes that minimize total transportation

costs. The classical formulation originated with Hitchcock in

1941 [6], followed by Dantzig’s application of the simplex

method [5] and Kantorovich’s development of the “method of

potentials” in 1949 [8]. In practice, however, transport systems

operate under significant uncertainty caused by fluctuating fuel

prices, economic volatility, and external disruptions.

To model such vagueness, fuzzy logic approaches have

been widely adopted. Zadeh introduced fuzzy sets (FSs) in

1965 [23], and Atanassov later proposed intuitionistic fuzzy

sets (IFSs) in 1983 [1], enabling more nuanced uncertainty
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representation through the inclusion of membership, non-

membership, and hesitation degrees.

Numerous fuzzy TP methods have since emerged, includ-

ing the Zero Point Method applied to trapezoidal fuzzy

data [13], and enhancements using triangular, LR-flat, and

hybrid fuzzy numbers [9], [10], [15]. Comparative analyses

suggest the Zero Point Method often outperforms classi-

cal techniques [12]. Further variants include the zero suffix

method [7], IF Zero Suffix Method (IFZSM) [19], and IF

Zero Point Method (IFZPM) [18]. The proposed IFZPM

yielded a marginally better optimal solution than the pre-

viously established IFZSM [18] in the specific case study

under consideration, demonstrating its potential for enhanced

performance under fuzzy uncertainty.

To better capture multidimensional and circular uncertain-

ties, Atanassov introduced the Circular Intuitionistic Fuzzy

Set (C-IFS) [3] in 2020. Building upon this, we extend C-

IFSs to Confidence-Interval Circular Intuitionistic Fuzzy Sets

(CIC-IFSs) [22], where each fuzzy element is represented as

a circular region whose radius varies with a confidence level

β .

This paper proposes a novel CIC-IF Zero Point Method for

solving transportation problems under the CIC-IFTP frame-

work. Transportation costs, supply, and demand are modeled

as CIC-IF triples [22], incorporating expert evaluations and

uncertainty quantification. The solution algorithm builds on the

index matrix (IM) approach [2], while introducing additional

constraints such as transport cost caps and confidence-based

tolerances. The proposed algorithm is an extension of the

classical Zero Point Method [15], designed to accommodate

uncertain environments by incorporating circular intuitionistic

fuzzy representations and the level of confidence.

To demonstrate applicability, we consider a smart manu-

facturing scenario involving the dynamic reallocation of spare
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parts. This environment is characterized by uncertain delivery

times and competing demands from maintenance units. Our

key contributions include the formalization of the CIC-IFTP

framework, a robust solution algorithm, and validation through

an industrial case study reflecting predictive maintenance

logistics.

The paper is structured as follows: Section II introduces

preliminaries on CIC-IF triples and index matrices. Section III

details the problem formulation, solution procedure, and indus-

trial case study. Section IV discusses computational results and

future work.

II. PRELIMINARIES

This section recalls the key concepts underpinning the

proposed approach: Confidence-Interval Circular Intuitionistic

Fuzzy Sets (CIC-IFSs), Triples (CIC-IFTs), and Index Matri-

ces (CIC-IFIMs). We define each structure and the operations

applicable to them.

A. Confidence Interval Circular Intuitionistic Fuzzy Sets

(CIC-IFSs)

The definitions and properties of CIC-IF sets used in this

paper follow the construction proposed in [22]. Let A ⊆ E,

where E is a universe of discourse. A CIC-IFS with confidence

level β is defined as:

Aβ
u = {⟨x,µA(x),νA(x);uβ ⟩ | x ∈ E},

where µA(x)+νA(x)≤ 1, and uβ ∈ [0,
√

2] is the circular radius

expressing confidence-based fuzziness. The uncertainty mar-

gin πA(x) = 1− µA(x)− νA(x) complements the membership

functions.

The center of the circle is computed as:

⟨µ(x)β ,ν(x)β ⟩=
〈

a(x)+ c(x)

2
,

b(x)+d(x)

2

〉

.

Its radius is obtained from the maximal Euclidean deviation

between this center and individual expert evaluations:

uβ (x) = max
1≤i≤kx

√

(µ(x)β −µ
β
ki
)2 +(ν(x)β −ν

β
ki
)2.

B. Confidence Interval Circular Intuitionistic Fuzzy Triples

(CIC-IFTs)

The formalization of CIC-IFTs and related operations is

based on the framework introduced in [22]. Given expert

assessments for assertion p, we define a CIC-IFT as:

⟨µ(p),ν(p);uβ ⟩= ⟨a(p),b(p);uβ ⟩, where a(p)+b(p)≤ 1.
The center and radius follow similar constructions, based

on bounds a(p),b(p),c(p),d(p), and the maximum deviation

from the confidence center.

CIC-IFTs are closed under operations such as ∧,∨,+,•,−,

with radius propagation via max/min functions. Comparison

and ranking between two CIC-IFTs is performed by domi-

nance or by proximity to the ideal ⟨1,0;
√

2⟩.
C. 3D Confidence Interval Circular Intuitionistic Fuzzy Index

Matrices (3D CIC-IFIMs)

CIC-IFIMs extend index matrices to a three-dimensional

structure:

Aβ = [K,L,H,{⟨µki,l j ,hg
,νki,l j ,hg

;r f
β
ki,l j ,hg

⟩}].
Each entry represents a CIC-IFT, structured along three in-

dex dimensions—supply, demand, and operational scenar-

ios—defined as subsets K,L,H ⊂ I . The associated opera-

tions over CIC-IFIMs follow extensions of fuzzy matrix logic,

as discussed in [22].

To further process multidimensional data, we apply aggre-

gation operations (AOs) over one dimension of a 3D CIC-

IFIM [22]. Let ∗ ∈ {min,max} be a binary operator. Ten

aggregation operations #i (1 ≤ i ≤ 10) are defined over two

CIC-IFTs x = ⟨a,b;r f
β
1 ⟩ and y = ⟨c,d;r f

β1
2 ⟩, including for

example:

x#1y = ⟨ac,1−ac,∗(r f
β
1 ,r f

β
2 )⟩,

x#10y = ⟨min(1,2−b−d),max(0,b+d−1),∗(r f
β
1 ,r f

β
2 )⟩.

Let k0 /∈ K be an artificial aggregation index. The operator
αK,#q,∗(A

β ,k0) aggregates over the supply dimension K,
yielding:

hg ∈ H l1 . . . ln

k0

m
#q ,∗
i=1 #q ,∗

⟨µki ,l1 ,hg
,νki ,l1 ,hg

;r f
β
ki ,l1 ,hg

⟩ . . .
m

#q ,∗
i=1 #q ,∗

⟨µki ,ln ,hg
,νki ,ln ,hg

;r f
β
ki ,ln ,hg

⟩

Depending on the scenario, we may choose #∗1 for pes-

simistic aggregation (e.g., inflation), #∗5 or #∗6 for moderate

strategies, and #∗10 for optimistic planning.

III. PROBLEM STATEMENT: CIC-IFTP IN SMART

FACTORY MAINTENANCE LOGISTICS

We extend the C-IFTP framework from [20] to a novel

Confidence-Interval Circular Intuitionistic Fuzzy Transporta-

tion Problem (CIC-IFTP) with operational constraints tailored

for smart manufacturing environments.

A smart electronics factory seeks to optimize the allocation

of critical spare parts—such as sensors, microcontrollers, and

actuators—from central storage units {k1, . . . ,km} to mainte-

nance stations {l1, . . . , ln}. The available stock at each storage

unit is denoted by cki,R, while each station requests cQ,l j
units.

Each internal transport route (robotic or conveyor-based)

from ki to l j has an operational usage threshold cpl,l j
and

a unit transportation cost cki,l j
. These parameters are subject

to uncertainty and are evaluated by a panel of planners

{d1, . . . ,dD}, who provide intuitionistic fuzzy (IF) preferences

represented as res = ⟨δs,εs⟩. Based on their assessments,

circular intuitionistic fuzzy (CIF) data are constructed using

a selected confidence level β .

The decision variable xki,l j
denotes the number of units to

be routed from storage unit ki to station l j. Ten scenario

strategies—ranging from highly pessimistic to highly opti-

mistic—guide the decision-making process under uncertainty.

The objective is to minimize the total CIC-IF transportation

cost, subject to the following constraints:

• All station demands cQ,l j
must be satisfied;

• Storage capacities cki,R must not be exceeded;

• Route-specific operational thresholds cpl,l j
must be re-

spected.

To solve this problem, we propose a novel Confidence-

Interval Circular Intuitionistic Fuzzy Zero Point Method (CIC-

IFZPM). This algorithm extends the index matrix-based ap-

proach introduced in [20]. While rooted in the classical Zero

Point Method, CIC-IFZPM advances the intuitionistic fuzzy

modeling framework by incorporating confidence-interval cir-

cular intuitionistic fuzzy structures [22]. These enhancements
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allow the model to more accurately capture imprecision, ex-

pert disagreement, and cyclic interdependencies—phenomena

frequently encountered in smart manufacturing and logistics

environments. The detailed solution algorithm is presented in

the following section.

A. The Solution Algorithm

Algorithm 1 Construction of CIC-IFIM (Step 1)

Require: Sets K = {k1, . . . ,km}, L = {l1, . . . , ln}, experts E =
{d1, . . . ,dD}, confidence coefficient β ∈ [0,1]

1: for j = 1 to n do

2: for i = 1 to m do

3: Each expert ds ∈ E provides IF evaluation evi, j,s =
⟨µi, j,s,νi, j,s⟩ and reliability res = ⟨δs,εs⟩

4: Aggregate evaluations: EV ∗i, j←
⊕D

s=1 res · evi, j,s

5: Apply circular IF aggregation: piave
i, j ← αE,#2

(EV ∗i, j)

6: Compute radius: r
β
i, j ←

max1≤s≤D

(

√

(µi, j,s−µi, j)2 +(νi, j,s−νi, j)2
)

7: Form CIC-IFT: c
β
i, j← ⟨µi, j,νi, j;r

β
i, j⟩

8: end for

9: end for

10: Assemble CIC-IFIM: Cβ [K,L] = {cβ
i, j}i=1..m, j=1..n

11: Extend to complete matrix: Cβ [K∗,L∗] by adding artificial

nodes Q, pl, pu1, R, pu

. . . ln R pu

k1 . . . ⟨µc
k1 ,ln

,νc
k1 ,ln

;rc
k1 ,ln
⟩ ⟨µc

k1 ,R
,νc

k1 ,R
;rc

k1 ,R
⟩ ⟨µc

k1 ,pu,ν
c
k1 ,pu;rc

k1 ,pu⟩
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

km . . . ⟨µc
km ,ln

,νc
km ,ln

;rc
km ,ln
⟩ ⟨µc

km ,R,ν
c
km ,R;rc

km ,R⟩ ⟨µc
km ,pu,ν

c
km ,pu;rc

km ,pu⟩
Q . . . ⟨µc

Q,ln
,νc

Q,ln
;rc

Q,ln
⟩ ⟨µc

Q,R,ν
c
Q,R;rc

Q,R⟩ ⟨µc
Q,pu,ν

c
Q,pu;rc

Q,pu⟩
pl . . . ⟨µc

pl,ln
,νc

pl,ln
;rc

pl,ln
⟩ ⟨µc

pl,R,ν
c
pl,R;rc

pl,R⟩ ⟨µc
pl,pu,ν

c
pl,pu;rc

pl,pu⟩
pu1 . . . ⟨µc

pu1 ,ln
,νc

pu1 ,ln
;rc

pu1 ,ln
⟩ ⟨µc

pu1 ,R
,νc

pu1 ,R
;rc

pu1 ,R
⟩ ⟨µc

pu1 ,pu,ν
c
pu1 ,pu;rc

pu1 ,pu⟩

Fig. 1. Extended CIC-IFIM with CIC-IF entries

Step 1 (continued). Initialization of Auxiliary Matrices

After constructing the CIC-IFIM matrix Cβ [K,L,h f ], we ex-

tend the sets:

• K∗ = K∪{Q, pl, pu1}⇒ |K∗|= m+3;

• L∗ = L∪{R, pu}⇒ |L∗|= n+2.

Then, the following auxiliary matrices are initialized:

1) State matrix Sβ [K∗,L∗]: Initialized as a duplicate of Cβ ,

i.e., s
β
ki,l j

= c
β
ki,l j

.

2) Discard matrix D[K,L]: Each dki,l j
∈ {1,2} tracks the

number of times a cell has been eliminated.

3) Row crossing indicator RC[K]: rcki,e0
∈ {0,1} indicates

whether row ki has been excluded.

4) Column crossing indicator CC[L]: ccr0,l j
∈ {0,1} indi-

cates whether column l j has been excluded.

5) Projections:

• RM[K,R] = prK,R(C)
• CM[pu1,L] = prpu1,L(C)

Used in balancing, particularly regarding R and pu1

nodes.

6) Utility matrix U [K,L]: Defined as:

uki,l j
=

{

1, if cki,l j
< cpl,l j

⊥, otherwise

7) Initial allocation matrix X [K,L]: All entries start as

x
β
ki,l j

= ⟨0,1;
√

2⟩.
Initial Setup: All indicators are initialized as:

rmki,R = rcki,e0
= ccr0,l j

= cmpu1,l j
= 0, uki,l j

=⊥ .
Balancing the System: If the transportation problem is un-

balanced (i.e., ∑Supply ̸= ∑Demand), balancing is applied by

adding artificial nodes Q, pu, R with synthetic cost entries,

following [18].

The algorithm then proceeds to Step 2.

Step 2. Verifying the Transportation Cost Constraints

For each warehouse ki ∈ K and destination cell l j ∈ L, verify

whether the transportation cost from ki to l j is strictly prefer-

able to the baseline from the pseudo-node pl. Iterate:

for i = 1 to m : for j = 1 to n :

if

([

ki

pl
;⊥

]

prpl,l j
Cβ

)

⊃v prki,l j
Cβ then uki,l j

← 1

After evaluating all entries, define the set of non-preferable

allocations:

EG = Index(⊥)(U) =
{

⟨ki1 , l j1⟩,⟨ki2 , l j2⟩, . . . ,⟨kiφ , l jφ ⟩
}

For each ⟨ki, l j⟩ ∈ EG, penalize the corresponding entry in

matrix S as:

s
β
ki,l j
← ⟨1,0;

√
2⟩ (as in [11])

Proceed to Step 3.

Step 3. Row-Level Normalization Using Zero Membership

Values

In this step, we compute a row-specific zero-cost reference

based on membership minimization. This value is stored in

the auxiliary column pu, facilitating row-wise normalization

aligned with the Zero Point Method principle.

1) Identify Minimum Cost Elements:

For each row i = 1 to m, determine the minimum CIC-

IF value among columns j = 1 to n using a selected

aggregation index:

AGIndex{min, min2, min⋄, mincirc
R }(prki,LSβ ) = ⟨ki, lv j

⟩
2) Compare to Baseline:

If the minimal cell is still preferable (or at least non-

worse) than the baseline pseudo-node pl:

prki,lv j
Sβ ⊆v

([

ki

pl
;⊥

]

prpl,lv j
Sβ

)

,

then define:

S
β
6 [ki, lv j

] := prki,lv j
Sβ

S
β
7 :=

[

⊥;
pu

lv j

]

S
β
6

Sβ := Sβ ⊕(◦1,◦2,∗) S
β
7

3) Perform Row-Wise Normalization:

For every i = 1, . . . ,m and j = 1, . . . ,n, apply:
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IO−(◦1 ,◦2 ,∗)

(

⟨ki, l j,S
β ⟩, ⟨ki, pu, prKSβ ⟩

)

This operation ensures that each row in Sβ has at least

one cell with minimal (zero-like) cost, allowing a valid

zero-point to be selected in the next stage.

After this normalization step, continue to Step 4.

Step 4. Column-Level Zero Membership Normalization

In this step, we determine the minimum cost for each column

of the matrix Sβ and normalize the elements accordingly.

1) Identify minimum cost per column:

for j = 1 to n :

AGIndex{min, min2, min⋄, minR◦}
(

prK,l j
Sβ

)

= ⟨kwi
, l j⟩

2) Construct intermediate matrices and adjust:

S
β
6 [kwi

, l j] := prkwi
,l j

Sβ , S
β
7 :=

[

pu1

kwi

;⊥
]

S
β
6

Sβ := Sβ ⊕(◦1,◦2,∗) S
β
7

3) Normalize column-wise:

for j = 1 to n, for i = 1 to m :

IO−(◦1 ,◦2 ,∗)

(

⟨ki, l j,S
β ⟩, ⟨pu1, l j, prpu1,LSβ ⟩

)

Proceed to Step 5.

Step 5. Optimality Criteria Evaluation

Step 5.1. For each warehouse ki ∈ K, verify whether the total

offered quantity is less than or equal to the sum of allocations

with zero membership degree:

for i = 1 to m : Index(min µ),ki
(Cβ ) = {⟨ki, lv1

⟩, . . . ,⟨ki, lvV
⟩}

Gβ
vr
[ki, lvr ] := prki,lvr

Cβ , Gβ [ki,R] := prki,RCβ

If:

Gβ [ki,R]⊆v

V
⊕

r=1

Gβ
vr
, then go to Step 5.2;

else set RM[ki,R] := 1 and go to Step 6.

Step 5.2. For each region l j ∈ L, verify whether the re-

quired quantity does not exceed the sum of allocated zero-

membership values:

for j = 1 to n : Index(min µ),l j
(Cβ )=

{

⟨kw1
, l j⟩, . . . ,⟨kwW

, l j⟩
}

Gβ
wr
[kwr , l j] := prkwr ,l j

Cβ , Gβ [pu1, l j] := prpu1,l j
Cβ

If:

Gβ [pu1, l j]⊆v

W
⊕

r=1

Gβ
wr
, then go to Step 8;

else set CM[pu1, l j] := 1 and go to Step 6.

Step 6. Update the Cost CIC-IF Index Matrix

In this step, the matrix Sβ (initially identical to Cβ ) is refined

to improve cost allocation feasibility. All elements of the form

⟨0,1; r
β ,c
ki,l j
⟩ for i = 1, . . . ,m and j = 1, . . . ,n are considered

“zero-membership” and marked for elimination through the

minimal number of horizontal and vertical lines.

• If a row or column contains no such zero-membership

entry, the element with the smallest membership degree

is crossed out.

• The auxiliary matrix D[K,L] tracks eliminations: dki,l j
= 1

for one line, dki,l j
= 2 for both.

• Two matrices, RC[K] and CC[L], indicate whether a row

or column is crossed: rcki,e0
∈ {0,1}, ccr0,l j

∈ {0,1}.

For each i = 1 to m, j = 1 to n:

• If s
β
ki,l j

= ⟨0,1;r
β ,c
ki,l j
⟩ and rmki,R = 0 and dki,l j

= 0, then:

rc[ki,e0] := 1; dki,l j
:= 1 ∀l j, in row S

β
(ki,⊥)

• If s
β
ki,l j

= ⟨0,1;r
β ,c
ki,l j
⟩, cmpu1,l j

= 0 and dki,l j
= 1, then:

dki,l j
:= 2; ccr0,l j

:= 1;

dki,l j
:= 1 ∀ki, in column S

β
(⊥,l j)

Step 7. Refinement of the Revised Cost Matrix

Identify the smallest non-crossed cost element in Sβ and

subtract it from all uncovered entries. Then, add the same

value to each entry covered by two lines.

1) Identify minimal non-covered cost:

⟨kx, ly⟩ := AGIndex(min,max)(S
β )

2) Adjust uncovered entries:

IO−(◦1 ,◦2 ,∗)
(Sβ ,⟨kx, ly,S

β ⟩)
3) Adjust double-covered entries:

• For dki,l j
= 2:

S
β
1 := prkx,lyC

β ,

S
β
2 := prki,l j

Cβ ⊕(◦1,◦2,∗)

[

ki

kx

;
l j

ly

]

S
β
1

Sβ := Sβ ⊕(◦1,◦2,∗) S
β
2

• For dki,l j
= 1:

Sβ := Sβ ⊕(◦1,◦2,∗) prki,l j
Cβ

Proceed to Step 8.

Step 8. Allocation of Maximum Feasible Quantity

1) Find the cell with the largest cost value in Sβ using:

AGIndex(max,min,∗)(S
β ) = ⟨kx∗ , ly∗⟩

2) Assign the maximum feasible quantity to this cell and

reduce either the row or column:

• Compare:

sIndex(min µ),kx∗
(Cβ ) and sIndex(min µ),ly∗

(Cβ )

• Let ske,lg be the lesser of the two. Assign it and

reduce Sβ accordingly:

– If s
β
ke,R

< s
β
Q,lg

:

Xβ := Xβ ⊕(◦1,◦2,∗)

[

⊥;
lg

R

]

S
β
8

(reduce row)

– Else:

Xβ := Xβ ⊕(◦1,◦2,∗)

[

ke

Q
;⊥

]

S
β
9

(reduce column)

Repeat Step 8 until |Sβ |= 6. Then proceed to Step 9.

Step 9. Degeneracy Resolution in IF Solution

If |D|< m+n−1, introduce a new basic variable x
β
kα ,lβ

at the

minimum cost among unassigned cells:

AGIndex{(min/max),̸⊥,/∈D}(C
β ) = ⟨kα , lβ ⟩

Assign:

x
β
kα ,lβ

:= ⟨0,1;0⟩

Step 10. Finalizing the IF Transportation Plan
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1) If for any x
β
ki,l j
̸= ⟨⊥,⊥⟩ and ⟨ki, l j⟩ ∈ EG, the problem

is infeasible. Stop.

2) Otherwise, define the final optimal IF transport plan:

X
β
opt [K,L,{xβ

ki,l j
}]

3) Assign defaults for unallocated cells:

x
β
ki,l j

= ⟨0,1;
√

2⟩ if x
β
ki,l j

= ⟨⊥,⊥⟩
4) Compute the total aggregated transportation cost:

AGIO1
⊕(max,min,∗)

(

C
β
{Q,pl,pu1},{R,pu}⊗(min,max,∗) X

β
opt

)

5) Finally, de-fuzzify each circular IF value to obtain a

crisp fuzzy pair (as in [4]):
〈

a

a+b
,

b

a+b

〉

B. Illustrative Example: Smart Factory Spare Parts Distribu-

tion

We demonstrate the application of the proposed Confidence-

Interval Circular Intuitionistic Fuzzy Transportation Problem

(CIC-IFTP) model to a smart manufacturing scenario, where

spare parts must be dynamically dispatched from warehouse

units to robotic production cells across a cyber-physical

shopfloor.

Let:

K = {k1,k2,k3}: three autonomous warehouse stations; L =
{l1, l2, l3, l4}: four production cells requiring critical spare

components; E = {d1,d2,d3}: expert panel assessing fuzzy

transport costs under uncertainty; β = 0.85: confidence level

chosen by the system operator.

Each expert ds ∈ E provides a confidence-weighted intu-

itionistic fuzzy evaluation evki,l j ,ds
= ⟨µki,l j ,ds

,νki,l j ,ds
⟩, with

individual ratings res = ⟨δs,εs⟩ as follows:

{re1,re2,re3}= {⟨0.65,0.10⟩,⟨0.55,0.08⟩,⟨0.75,0.07⟩}.
Using the aggregation operator αE,#2

, we compute the

adjusted cost matrix PIave, followed by transformation into the

Confidence-Interval Circular Intuitionistic Fuzzy Cost Matrix

Cβ at decision moment h f . Each entry c
β
ki,l j

= ⟨µβ ,νβ ;rβ ⟩
includes a radius rβ that geometrically captures expert dis-

agreement at confidence level β .
The resulting CIC-IFIM for the smart transportation prob-

lem appears as:


































l1 l2 l3 l4 R pu

k1 ⟨0.52,0.28;0.2⟩ ⟨0.62,0.18;0.3⟩ ⟨0.22,0.18;0.2⟩ ⟨0.72,0.18;0.2⟩ ⟨0.42,0.28;0.3⟩ ⟨⊥,⊥⟩
k2 ⟨0.42,0.35;0.2⟩ ⟨0.32,0.18;0.3⟩ ⟨0.42,0.18;0.3⟩ ⟨0.22,0.28;0.3⟩ ⟨0.62,0.18;0.3⟩ ⟨⊥,⊥⟩
k3 ⟨0.32,0.28;0.3⟩ ⟨0.22,0.28;0.2⟩ ⟨0.52,0.18;0.3⟩ ⟨0.62,0.28;0.2⟩ ⟨0.32,0.58;0.3⟩ ⟨⊥,⊥⟩
Q ⟨0.32,0.28;0.3⟩ ⟨0.42,0.38;0.3⟩ ⟨0.52,0.28;0.3⟩ ⟨0.02,0.10;0.3⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩
pl ⟨0.47,0.38;0.3⟩ ⟨0.52,0.48;0.3⟩ ⟨0.67,0.28;0.3⟩ ⟨0.7,0.33;0.2⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩

pu1 ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩ ⟨⊥,⊥⟩



































The total transport cost is computed using:

AGIO1
⊕(max,min,∗)

(

C({Q,pl,pu1},{R,pu})⊗(min,max,∗) Xopt

)

.

For the scenario with minimal uncertainty and pessimistic

valuation, the final cost is represented by the CIC-IF triple:

⟨0.42,0.28;0.2⟩ ⇒
Fuzzy projection: ⟨0.6,0.4⟩ ⇒ Crisp cost: 5344.

In comparative analysis: Optimistic scenario

yields: ⟨0.08,0.42;0.2⟩ → 1869; Realistic scenario:

⟨0.25,0.56;0.2⟩ → 2769.62.

The ranking function Rβ ,circ assists in determining sce-

nario preferences and strategic planning under expert-informed

fuzziness in the smart factory.

C. Method Validation and Comparative Advantage

The Improved Zero Point Method (IZPM) has been demon-

strated to consistently outperform well-known heuristics such

as VAM, SVAM, GVAM, BVAM, and RVAM for both crisp

and fuzzy transportation problems [15]. Unlike these methods,

which often lead to suboptimal or infeasible solutions, IZPM

ensures optimality through a structured and robust process,

even in unbalanced settings.

Building upon this strong foundation, the proposed CIC-

IFZPM algorithm extends IZPM by introducing two key

enhancements: (1) modeling circular intuitionistic fuzzy data,

which allows capturing cyclic uncertainty in dynamic envi-

ronments, and (2) applying confidence intervals to represent

varying degrees of reliability in expert estimates.

In the considered case study, CIC-IFZPM produced a

slightly improved transportation cost compared to the pre-

viously proposed IFZSM [18], demonstrating its enhanced

capability to yield robust solutions in uncertain environments.

Moreover, the method preserved the optimality structure of the

classical ZPM while effectively generalizing it to a broader

fuzzy framework.

The time complexity of the CIC-IFZPM algorithm is

O(2Dmn+13mn+m+n), where D is the number of experts,

and m,n are the numbers of supply and demand nodes,

respectively. The dominant computational cost arises from the

expert-based construction of the CIC-IFIM matrix and the

structured zero-point allocation. However, since D is typically

a small constant (e.g., 3–7 experts), the overall complexity

scales linearly with the number of experts and quadratically

with the transportation matrix size. Thus, the method retains

the same computational class as the classical Improved Zero

Point Method [16].

Although only one illustrative example is currently pro-

vided, a dedicated software implementation of the CIC-IFZPM

algorithm is under development. This implementation will

enable large-scale computational experiments on real and

synthetic datasets, including stress tests in highly uncertain

circular fuzzy environments. The objective is to rigorously

examine the algorithm’s efficiency, scalability, and stability

across various industrial configurations. These experiments are

planned for a follow-up study, which will also include a public

release of the source code.

Table I provides a concise comparative overview of the main

methods used for solving transportation problems, highlighting

their scope and distinguishing features.

IV. CONCLUSION

his paper introduces an advanced CIC-IF Zero-Point Method

tailored for Transportation Problems under uncertainty, within

the CIC-IFTP framework. The proposed methodology lever-

ages Confidence-Interval Circular Intuitionistic Fuzzy Num-

bers (CIC-IFNs) and the concept of index matrices to enhance

decision-making in environments characterized by imprecise

cost evaluations, dynamic supply availability, and fluctuating

demand. Applied to a smart factory logistics scenario, the

algorithm demonstrates its capability to model and resolve
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TABLE I
OVERVIEW OF MAIN METHODS FOR SOLVING TRANSPORTATION PROBLEMS

Abbr. Full Name Description

VAM Vogel’s Approximation Method Classical heuristic for initial feasible solution based on
penalty costs;
does not guarantee optimality.

SVAM Shimshak’s Vogel’s Approximation Method Modification of VAM that ignores penalties
involving dummy rows/columns.

GVAM Goyal’s Vogel’s Approximation Method Assigns maximum transportation cost
to dummy cells instead of zero.

BVAM Balakrishnan’s Vogel’s Approximation Method Enhances SVAM with additional
allocation rules.

RVAM Ramakrishnan’s Vogel’s Approximation Method Uses four-step reduction and VAM
for better approximation.

MODI Modified Distribution Method Optimizes allocations after an initial feasible solution.

FMDM Fuzzy Modified Distribution Method Fuzzy version of MODI that handles
trapezoidal fuzzy numbers.

FVAM Fuzzy Vogel’s Approximation Method Fuzzy adaptation of VAM using fuzzy numbers
for cost, supply, and demand.

FZPM Fuzzy Zero Point Method One-stage method using fuzzy arithmetic;
often gives optimal results directly.

IZPM Improved Zero Point Method Enhanced ZPM proven to outperform many heuristics;
guarantees optimality.

CI-CIFZPM Confidence-Interval Circular Intuitionistic Our proposed extension of IZPM that integrates
Fuzzy Zero Point Method circular intuitionistic fuzzy data and confidence

intervals for robust decision-making under uncertainty.

the allocation of spare parts across cyber-physical production

cells. It robustly accounts for expert uncertainty through ad-

justable confidence levels and scenario analysis (pessimistic,

realistic, optimistic). The model ensures feasible and non-

degenerate solutions, even in the presence of incomplete or

ambiguous information.

The approach notably mitigates degeneracy through a struc-

tured mechanism of IF-index tracking and scenario-based

refinement. It proves especially effective in applications re-

quiring adaptive, multi-expert-driven decision processes, such

as Industry 4.0 systems, smart supply chains, and decentralized

logistics.

From a methodological standpoint, the proposed CIC-IF

ZPM provides several key contributions: it integrates intu-

itionistic fuzzy logic with circular preference structures and

confidence intervals; it generalizes the classic Zero-Point

Method by embedding it in a multi-scenario fuzzy setting;

it introduces a novel mechanism for degeneracy resolution via

circular ranking indices.

These advances position the method as a competitive alter-

native to traditional fuzzy or crisp TP solvers, especially in

complex environments where expert evaluation under uncer-

tainty is essential. Related concepts for modeling uncertainty

in logistics using granular computing can be found in [17],

while multi-criteria optimization frameworks for transport

tasks are also discussed in [14].

Future developments will focus on extending the model to

handle confidence-interval elliptic intuitionistic fuzzy struc-

tures [21], with applications in elliptic IF multi-criteria

decision-making. Additionally, dedicated software tools will

be developed to support practical deployment in intelligent

logistics platforms.
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