&l

Communication Papers of the 20 Conference on Computer

DOI: 10.15439/2025F4185

Science and Intelligence Systems (FedCSIS) pp. 153-159 ISSN 2300-5963 ACSIS, Vol. 45

A Confidence-Interval Circular Intuitionistic Fuzzy
Zero Point Model for Optimizing Spare Parts
Transfer in Smart Manufacturing Environments

Velichka Traneva
BSU Prof. Dr Assen Zlatarov University
1 Prof. Yakimov Blvd, Burgas 8000, Bulgaria
Email: velekal3 @gmail.com

Mihai Petrov
BSU Prof. Dr Assen Zlatarov University
1 Prof. Yakimov Blvd, Burgas 8000, Bulgaria
Email: mihpetrov@abv.bg

Stoyan Tranev
BSU Prof. Dr Assen Zlatarov University
1 Prof. Yakimov Blvd, Burgas 8000, Bulgaria
Email: tranev@abv.bg

Venelin Todorov
Institute of Mathematics and Informatics, BAS,

8 Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria
Institute of Information and Communication Technologies, BAS,

25A Acad. Georgi Bonchev Str., 1113 Sofia, Bulgaria

Abstract—In Industry 4.0 systems, timely delivery of critical
components to maintenance points is essential for continuous
operation. This paper introduces a novel Confidence-Interval
Circular Intuitionistic Fuzzy Zero Point Method (CIC-IFZPM)
to optimize the transfer of spare parts in a smart factory setting.
The method addresses uncertainty in transfer cost, delivery time,
and priority assessment through circular intuitionistic fuzzy sets
(C-IFS), which reflect both membership and hesitancy with
geometric interpretation. A customized version of the index
matrix algorithm integrates transportation constraints, expert
confidence intervals, and machine availability limitations. The
model is validated through a simulated industrial scenario, where
production cells request components dynamically, and a central
warehouse must allocate them optimally. Compared to classical
fuzzy optimization approaches, the proposed method ensures
more robust decision-making under incomplete or imprecise data,
offering better performance in real-time control environments.
The framework is applicable to predictive maintenance logistics,
autonomous scheduling, and industrial resilience planning.

I. INTRODUCTION

RANSPORTATION problems (TPs) aim to determine
T optimal delivery routes that minimize total transportation
costs. The classical formulation originated with Hitchcock in
1941 [6], followed by Dantzig’s application of the simplex
method [5] and Kantorovich’s development of the “method of
potentials” in 1949 [8]. In practice, however, transport systems
operate under significant uncertainty caused by fluctuating fuel
prices, economic volatility, and external disruptions.

To model such vagueness, fuzzy logic approaches have
been widely adopted. Zadeh introduced fuzzy sets (FSs) in
1965 [23], and Atanassov later proposed intuitionistic fuzzy
sets (IFSs) in 1983 [1], enabling more nuanced uncertainty
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representation through the inclusion of membership, non-
membership, and hesitation degrees.

Numerous fuzzy TP methods have since emerged, includ-
ing the Zero Point Method applied to trapezoidal fuzzy
data [13], and enhancements using triangular, LR-flat, and
hybrid fuzzy numbers [9], [10], [15]. Comparative analyses
suggest the Zero Point Method often outperforms classi-
cal techniques [12]. Further variants include the zero suffix
method [7], IF Zero Suffix Method (IFZSM) [19], and IF
Zero Point Method (IFZPM) [18]. The proposed IFZPM
yielded a marginally better optimal solution than the pre-
viously established IFZSM [18] in the specific case study
under consideration, demonstrating its potential for enhanced
performance under fuzzy uncertainty.

To better capture multidimensional and circular uncertain-
ties, Atanassov introduced the Circular Intuitionistic Fuzzy
Set (C-IFS) [3] in 2020. Building upon this, we extend C-
IFSs to Confidence-Interval Circular Intuitionistic Fuzzy Sets
(CIC-IFSs) [22], where each fuzzy element is represented as
a circular region whose radius varies with a confidence level
B.
This paper proposes a novel CIC-IF Zero Point Method for
solving transportation problems under the CIC-IFTP frame-
work. Transportation costs, supply, and demand are modeled
as CIC-IF triples [22], incorporating expert evaluations and
uncertainty quantification. The solution algorithm builds on the
index matrix (IM) approach [2], while introducing additional
constraints such as transport cost caps and confidence-based
tolerances. The proposed algorithm is an extension of the
classical Zero Point Method [15], designed to accommodate
uncertain environments by incorporating circular intuitionistic
fuzzy representations and the level of confidence.

To demonstrate applicability, we consider a smart manu-
facturing scenario involving the dynamic reallocation of spare
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parts. This environment is characterized by uncertain delivery
times and competing demands from maintenance units. Our
key contributions include the formalization of the CIC-IFTP
framework, a robust solution algorithm, and validation through
an industrial case study reflecting predictive maintenance
logistics.

The paper is structured as follows: Section II introduces
preliminaries on CIC-IF triples and index matrices. Section III
details the problem formulation, solution procedure, and indus-
trial case study. Section I'V discusses computational results and
future work.

II. PRELIMINARIES
This section recalls the key concepts underpinning the
proposed approach: Confidence-Interval Circular Intuitionistic
Fuzzy Sets (CIC-IFSs), Triples (CIC-IFTs), and Index Matri-
ces (CIC-IFIMs). We define each structure and the operations
applicable to them.

A. Confidence Interval Circular Intuitionistic Fuzzy Sets
(CIC-IFSs)

The definitions and properties of CIC-IF sets used in this
paper follow the construction proposed in [22]. Let A C E,
where E is a universe of discourse. A CIC-IFS with confidence
level B is defined as:

Ag = {<X’UA(X)’VA(X);”13> |x € E}’
where 1 (x) +va(x) <1, and uP € [0,+/2] is the circular radius
expressing confidence-based fuzziness. The uncertainty mar-
gin ma(x) = 1 — ua(x) — v4(x) complements the membership
functions.

The center of the circle is computed as:

(0P V()P = (2 P Hd)

Its radius is obtained from the maximal Euclidean deviation

between this center and individual expert evaluations:

P (x) = max /()P — )+ (v V).

B. Confidence Interval Circular Intuitionistic Fuzzy Triples
(CIC-IFTs)

The formalization of CIC-IFTs and related operations is
based on the framework introduced in [22]. Given expert
assessments for assertion p, we define a CIC-IFT as:
(u(p),v(p);uP) = (a(p),b(p);uP), where a(p)+b(p) < 1.

The center and radius follow similar constructions, based
on bounds a(p),b(p),c(p),d(p), and the maximum deviation
from the confidence center.

CIC-IFTs are closed under operations such as A,V,+,e, —,
with radius propagation via max/min functions. Comparison
and ranking between two CIC-IFTs is performed by domi-
nance or by proximity to the ideal (1,0;1/2).

C. 3D Confidence Interval Circular Intuitionistic Fuzzy Index
Matrices (3D CIC-IFIMs)
CIC-IFIMs extend index matrices to a three-dimensional
structure:
AB = [K7L’H7{<Iu“khlj~,hg7vkiﬁlj;hg;rflg,li,hg>}}'
Each entry represents a CIC-IFT, structured along three in-
dex dimensions—supply, demand, and operational scenar-
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ios—defined as subsets K,L,H C .#. The associated opera-
tions over CIC-IFIMs follow extensions of fuzzy matrix logic,
as discussed in [22].

To further process multidimensional data, we apply aggre-
gation operations (AOs) over one dimension of a 3D CIC-
IFIM [22]. Let * € {min,max} be a binary operator. Ten
aggregation operations #; (1 <i < 10) are defined over two
CIC-IFTs x = <a7b;rflﬁ> and y = <c7d;rf2ﬁ‘>, including for
example:

Xty = (ac,1 —ac,>f<(rflﬁ,rfzﬁ)>7

x#oy = (min(1,2 —b—d), max(0,b+d — l),*(rff,rff)).

Let ky ¢ K be an artificial aggregation index. The operator
ok # «(AP ko) aggregates over the supply dimension K,
yielding:

hg€H | I In

m
ko #y,x

B
(k.0 g Vi dn g+ ity )
i=1 #l[**

B \ "
(B 1y g Vi dy g i1y g Fq.
=l #gx

Depending on the scenario, we may choose #] for pes-
simistic aggregation (e.g., inflation), #35 or #; for moderate
strategies, and #}, for optimistic planning.

III. PROBLEM STATEMENT: CIC-IFTP IN SMART
FACTORY MAINTENANCE LOGISTICS

We extend the C-IFTP framework from [20] to a novel
Confidence-Interval Circular Intuitionistic Fuzzy Transporta-
tion Problem (CIC-IFTP) with operational constraints tailored
for smart manufacturing environments.

A smart electronics factory seeks to optimize the allocation
of critical spare parts—such as sensors, microcontrollers, and
actuators—from central storage units {ki,...,k,} to mainte-
nance stations {/j,...,l,}. The available stock at each storage
unit is denoted by ¢y, g, while each station requests cg; units.

Each internal transport route (robotic or conveyor-based)
from k; to [; has an operational usage threshold ¢p;;; and
a unit transportation cost cy, ;;. These parameters are subject
to uncertainty and are evaluated by a panel of planners
{d1,...,dp}, who provide intuitionistic fuzzy (IF) preferences
represented as re; = (J;,&). Based on their assessments,
circular intuitionistic fuzzy (CIF) data are constructed using
a selected confidence level f3.

The decision variable Xkl denotes the number of units to
be routed from storage unit k; to station [;. Ten scenario
strategies—ranging from highly pessimistic to highly opti-
mistic—guide the decision-making process under uncertainty.

The objective is to minimize the total CIC-IF transportation
cost, subject to the following constraints:

o All station demands Co,1; must be satisfied;

« Storage capacities cy, g must not be exceeded;

« Route-specific operational thresholds ¢, must be re-

spected.

To solve this problem, we propose a novel Confidence-
Interval Circular Intuitionistic Fuzzy Zero Point Method (CIC-
IFZPM). This algorithm extends the index matrix-based ap-
proach introduced in [20]. While rooted in the classical Zero
Point Method, CIC-IFZPM advances the intuitionistic fuzzy
modeling framework by incorporating confidence-interval cir-
cular intuitionistic fuzzy structures [22]. These enhancements
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allow the model to more accurately capture imprecision, ex-
pert disagreement, and cyclic interdependencies—phenomena
frequently encountered in smart manufacturing and logistics
environments. The detailed solution algorithm is presented in
the following section.

A. The Solution Algorithm

Algorithm 1 Construction of CIC-IFIM (Step 1)
Require: Sets K = {ki,....k,}, L={l,...,1,}, experts E =
{d1,...,dp}, confidence coefficient € [0, 1]
1. for j=1tondo
22 fori=1tomdo
3: Each expert dg € E provides IF evaluation ev; ;; =
(Mi,js, Vi js) and reliability re; = <5s,£s>

: Aggregate evaluations: EV’; — @P  reg-ev; i
5: Apply circular IF aggregatlon pz‘fve —og4 (E lfj)
6: Compute radius: ri —
max|<g<p (\/(#i,j,s — Wi j)+ (Vijs — Vi,j)z)
7. Form CIC-IFT: ¢ ¢ (w;j,vijirl))
8:  end for
9: end for

10: Assemble CIC-IFIM: CPIK,L] = {cf }iit.m j—1.n
11: Extend to complete matrix: CP[K*, L*] by adding artificial
nodes Q, pl, pui, R, pu

| ... 1, R pu
7 — T 3 o
ky <IL/<]A1,,7V/<].1,,”‘1<1.1,,> <uk],R7vl<1AR’rI<1AR> <uk]./)LHVAI./M’rkI.pu>
C C « 6 C
kin Mt Vi ot Mo o Vi R ok M pres Vi o)
N (Ko "an o) </“1QR’VQR o) (K. pu Vo> "qu
pl (Mt 1y Vi s p[[”> (M k> VRS Tor.R) (Mt pues Vot pu’ ,71 pu
pui <#,ml tnoVouy o> Tpuy i) By & Vouy &7 5uy &) By pus Vpuy pu Tpuy pu

Fig. 1. Extended CIC-IFIM with CIC-IF entries

Step 1 (continued). Initialization of Auxiliary Matrices
After constructing the CIC-IFIM matrix CP[K,L,h/], we ex-
tend the sets:
o K" =KU{Q,pl,pm} = |K*|=m+3;
o L*=LU{R,pu} = |L*|=n+2.
Then, the following auxiliary matrices are initialized:
1) State matrix SP[K*, L*]: Initialized as a duplicate of CP,
ie,sP =cf .
> Pkl i kil j
2) Discard matrix D[K,L]: Each di.1; € {1,2} tracks the
number of times a cell has been eliminated.
3) Row crossing indicator RC[K]: rcy, ., € {0, 1} indicates
whether row k; has been excluded.
4) Column crossing indicator CC[L]: ccy,; € {0,1} indi-
cates whether column [; has been excluded.
5) Projections:

e RMIK,R] = prxg(C)
o CMpuy,L] = prpu, 1.(C)
Used in balancing, particularly regarding R and pu;
nodes.
6) Utility matrix U[K,L]: Defined as:
- 1, if Chil; .< Cpll;
Y L, otherwise
7) Initial allocation matrix X[K,L]: All entries start as
xfi,lj =(0,1;V2).
Initial Setup: All indicators are initialized as:

FMjg R = FClyeq = CCry 1, = CMpuy I, = 0, U 1 =1.
Balancing the System: If the transportation problem is un-
balanced (i.e., Y, Supply # ¥ Demand), balancing is applied by
adding artificial nodes Q, pu, R with synthetic cost entries,
following [18].

The algorithm then proceeds to Step 2.

Step 2. Verifying the Transportation Cost Constraints
For each warehouse k; € K and destination cell /; € L, verify
whether the transportation cost from k; to [; is strictly prefer-
able to the baseline from the pseudo-node pl. Iterate:
fori=1tom: for j=1ton:

k:
if ﬁ;L prpl’l,.CB Dy p?’ki‘l,.C‘B then U 1; < 1
p ! i+, !

After evaluating all entries, define the set of non-preferable
allocations:

EG:Indexu)(U):{<kil,zjl> TNy ...,<k,-¢,l,-¢>}
For each (k;,l;) € EG, penalize the corresponding entry in
matrix S as:

s, (1,0; V2) (s in [11])
Proceed to Step 3.
Step 3. Row-Level Normalization Using Zero Membership
Values
In this step, we compute a row-specific zero-cost reference
based on membership minimization. This value is stored in
the auxiliary column pu, facilitating row-wise normalization
aligned with the Zero Point Method principle.

1) Identify Minimum Cost Elements:
For each row i = 1 to m, determine the minimum CIC-
IF value among columns j =1 to n using a selected
aggregation index:
AGIndex{min, ming, min,, minf{""}(prki»LSﬁ) = <ki’lvj>
2) Compare to Baseline:
If the minimal cell is still preferable (or at least non-
worse) than the baseline rseudo—node pl:

k.
i, ﬁ
- pl’q P, S > )

prki’lijﬁ - <
then define:
St ik ) = priga, P

b= sP

L,
§ 1= ©0, 0,57
3) Perform Row-Wise Normalization:
For every i=1,...,m and j=1,...,n, apply:
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10*(01‘02‘*) (<kivljasﬁ>a <kiapuaerSﬁ>)
This operation ensures that each row in S# has at least
one cell with minimal (zero-like) cost, allowing a valid
zero-point to be selected in the next stage.
After this normalization step, continue to Step 4.

Step 4. Column-Level Zero Membership Normalization
In this step, we determine the minimum cost for each column
of the matrix $# and normalize the elements accordingly.
1) Identify minimum cost per column:
forj=1ton:
AGIndex{mim ming, mine, mingo } (er,l_,-SB> = <kw,-alj>
2) Construct intermediate matrices and adjust:

SE o, 1] = pri, 08P, S5 = [‘Z”‘ J_} s
sPi=sP D(oy.00,%) Sg
3) Normalize column-wise:
for j=1ton, fori=1tom:

107(01.02_*) (<ki’l/7sﬁ>7 <pu1 7ljaprpu1,LSB>)

Proceed to Step 5.

Step 5. Optimality Criteria Evaluation

Step 5.1. For each warehouse k; € K, verify whether the total

offered quantity is less than or equal to the sum of allocations

with zero membership degree:

for i=1tom: Index(ming) s (CP) = {(kislyy),- .., kil )}
GP ki, 1y, == prigs, CP,  GP[ki,R] == prki,Rcﬁ

l7lVr

If:
GPlki,R] C @Gv , then go to Step 5.2;
else set RM [ki,R] :=1 and go to Step 6.

Step 5.2. For each region /; € L, verify whether the re-

quired quantity does not exceed the sum of allocated zero-

membership values:

for j=1ton: Indexuminy), (C‘B): {{kw, 1), -,
Gb Tk, 1j] == pre,, 1,CP,

CEBG

else set CM[pm,l /] :=1 and go to Step 6.

<kwwvlj>}
GP pur, ;] := prpulvleB
If:

pul, then go to Step §;

Step 6. Update the Cost CIC-IF Index Matrix
In this step, the matrix $P (initially identical to CP) is refined
to improve cost allocation feasibility. All elements of the form
(0,1; r/€2> for i=1,...,m and j=1,...,n are considered
“zero-membership” and marked for elimination through the
minimal number of horizontal and vertical lines.

o If a row or column contains no such zero-membership
entry, the element with the smallest membership degree
is crossed out.

o The auxiliary matrix D[K, L] tracks eliminations: di1; =1
for one line, dk,-,l,- = 2 for both.

« Two matrices, RC[K| and CC|L], indicate whether a row
or column is crossed: rcy, o, € {0, 1}, ccyyy; € {0, 1}
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Foreachi=1tom, j=1 to n:
o If sg’lj = (0, 1;r,€’j/_> and rmy, g =0 and dj, ;; =0, then:
relkiseo) :=1;  dyy =1 Vl;, in row ka 0
. If sg’lj - <O71;r]€:l ), cmpu] ;=0 and dyy, = 1, then:
dk,,lj
e

islj

CCrol; = 1;

— : B
=1 Vki, in column S(i-,lj)

Step 7. Refinement of the Revised Cost Matrix
Identify the smallest non-crossed cost element in $P and
subtract it from all uncovered entries. Then, add the same
value to each entry covered by two lines.
1) Identify minimal non-covered cost:
(ke,1y) 1= AGIndex(min max) (SP)
2) Adjust uncovered entries:
10— . (8P kel SP))
3) Adjust double-covered entries:
o For dk,.,[/, =2:
P = pry., CP
1 - P kx,[y )
ki 1
Sg = prki-,ljcﬁ D (oy,00,%) [kl’ lj:| Slls
X y
sPi=sP DBloy.00%) Sg
o For dk;,[, =1:
sP=sP D(o},00,%) prkzﬁljcﬁ

Proceed to Step 8.

Step 8. Allocation of Maximum Feasible Quantity
1) Find the cell with the largest cost value in SP using:
AGIndex(max,min,*) (SB) = (kys, l)'*>
2) Assign the maximum feasible quantity to this cell and
reduce either the row or column:
o Compare:
slndex(minu),kx* (Cﬁ) and Slndex(min“)‘,y* (Cﬁ>
o Let st be the lesser of the two. Assign it and
reduce SP accordingly:

B B .
- If SR < sQJg.

le] B
XB = Xﬁ @(01,02,*) |:l,R:| S8
(reduce row)
— Else:

k.
XB ::Xﬁ @(01-,029*) [Qe;J_] Sg

(reduce column)

Repeat Step 8 until |S#| = 6. Then proceed to Step 9.

Step 9. Degeneracy Resolution in IF Solution
If |D| < m+n—1, introduce a new basic variable xfa‘ Is at the
minimum cost among unassigned cells:

AGIndex{(min /max). 1,40} (CP) = (kai, 1)

Assign:
x4, 1y = (0,1:0)

Step 10. Finalizing the IF Transportation Plan
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1) If for any xf , # (L, L) and (k;,1;) € EG, the problem
is infeasible. Stop.
2) Otherwise, define the final optimal IF transport plan:
Xou K LA, Y]
3) Assign defaults for unallocated cells:
xfi,,j =(0,1;V2) if xfh,j =(L,1)
4) Compute the total aggregated transportation cost:
AGIOéB(max.min,*) C{Q-,Plspul}-{RsW} & (min,max, ) Xfpt
5) Finally, de-fuzzify each circular IF value to obtain a
crisp fuzzy pair (as in [4]):
a b
a+b’a+b >
B. Illustrative Example: Smart Factory Spare Parts Distribu-
tion

We demonstrate the application of the proposed Confidence-
Interval Circular Intuitionistic Fuzzy Transportation Problem
(CIC-IFTP) model to a smart manufacturing scenario, where
spare parts must be dynamically dispatched from warehouse
units to robotic production cells across a cyber-physical
shopfloor.

Let:

K = {ki,ka,k3}: three autonomous warehouse stations; L =
{li,l,13,la}: four production cells requiring critical spare
components; E = {d|,dy,d3}: expert panel assessing fuzzy
transport costs under uncertainty; 8 = 0.85: confidence level
chosen by the system operator.

Each expert d; € E provides a confidence-weighted intu-
itionistic fuzzy evaluation evy, ; 4, = </~‘k,~,l,u,d,ka,~,l,u,d5>’ with
individual ratings re; = (J;, &) as follows:

{rei1,rez,rez} = {(0.65,0.10),(0.55,0.08), (0.75,0.07) }.

Using the aggregation operator O #,, we compute the
adjusted cost matrix PI*"¢, followed by transformation into the
Confidence-Interval Circular Intuitionistic Fuzzy Cost Matrix
CP at decision moment /. Each entry cE’_ 5= (uB VBB
includes a radius 7# that geometrically captures expert dis-
agreement at confidence level f3.

The resulting CIC-IFIM for the smart transportation prob-

Iy Iy R pu

lerr[n appears as:
3 0.52,0.28;0.2)
ky (0.42,0.35;0.2)
K3 (0.32,0.28;0.3)
[ (0.32,0.28:0.3)
pl | (0.47,038;0.3)
puy (L1

(0.62,0.18;0.3)
(0.32,0.18;0.3)
(0.22,0.28;0.2)
(0.42,0.38;0.3)
(0.52,0.48;0.3)
(1,1)

0.22,0.18:02) _ (0.72,0.18;0.2) _ (0.42,0.28,0.3) (L, 1)
(0.42,0.18:0.3)  (0.22,0.28:0.3)  (0.62,0.18;0.3) (1, 1)
(0.52,0.18:0.3)  (0.62,0.28:0.2)  (0.32,0.58;0.3) (L, 1)
(0.52,0.28;0.3)  (0.02,0.10:0.3) (L,1) (1,1)
(0.67,0.28:0.3)  (0.7,0.33;0.2) (L,1) (L,1)

(L,1) (L,1) (L,1) (L,1)

The total transport cost is computed using:
1
AGIOg, o (C(Q.pt.pun (R pu}) B (ominmax.) Xopt) -
For the scenario with minimal uncertainty and pessimistic
valuation, the final cost is represented by the CIC-IF triple:
(0.42,0.28;0.2) =

Fuzzy projection: (0.6,0.4) = Crisp cost: 5344.

In comparative analysis: Optimistic scenario
yields: (0.08,0.42;0.2) — 1869; Realistic scenario:
(0.25,0.56;0.2) — 2769.62.
B circ

The ranking function R assists in determining sce-
nario preferences and strategic planning under expert-informed
fuzziness in the smart factory.

C. Method Validation and Comparative Advantage

The Improved Zero Point Method (IZPM) has been demon-
strated to consistently outperform well-known heuristics such
as VAM, SVAM, GVAM, BVAM, and RVAM for both crisp
and fuzzy transportation problems [15]. Unlike these methods,
which often lead to suboptimal or infeasible solutions, IZPM
ensures optimality through a structured and robust process,
even in unbalanced settings.

Building upon this strong foundation, the proposed CIC-
IFZPM algorithm extends IZPM by introducing two key
enhancements: (1) modeling circular intuitionistic fuzzy data,
which allows capturing cyclic uncertainty in dynamic envi-
ronments, and (2) applying confidence intervals to represent
varying degrees of reliability in expert estimates.

In the considered case study, CIC-IFZPM produced a
slightly improved transportation cost compared to the pre-
viously proposed IFZSM [18], demonstrating its enhanced
capability to yield robust solutions in uncertain environments.
Moreover, the method preserved the optimality structure of the
classical ZPM while effectively generalizing it to a broader
fuzzy framework.

The time complexity of the CIC-IFZPM algorithm is
O(2Dmn+ 13mn+m+n), where D is the number of experts,
and m,n are the numbers of supply and demand nodes,
respectively. The dominant computational cost arises from the
expert-based construction of the CIC-IFIM matrix and the
structured zero-point allocation. However, since D is typically
a small constant (e.g., 3—7 experts), the overall complexity
scales linearly with the number of experts and quadratically
with the transportation matrix size. Thus, the method retains
the same computational class as the classical Improved Zero
Point Method [16].

Although only one illustrative example is currently pro-
vided, a dedicated software implementation of the CIC-IFZPM
algorithm is under development. This implementation will
enable large-scale computational experiments on real and
synthetic datasets, including stress tests in highly uncertain
circular fuzzy environments. The objective is to rigorously
examine the algorithm’s efficiency, scalability, and stability
across various industrial configurations. These experiments are
planned for a follow-up study, which will also include a public
release of the source code.

Table I provides a concise comparative overview of the main
methods used for solving transportation problems, highlighting
their scope and distinguishing features.

IV. CONCLUSION

his paper introduces an advanced CIC-IF Zero-Point Method
tailored for Transportation Problems under uncertainty, within
the CIC-IFTP framework. The proposed methodology lever-
ages Confidence-Interval Circular Intuitionistic Fuzzy Num-
bers (CIC-IFNs) and the concept of index matrices to enhance
decision-making in environments characterized by imprecise
cost evaluations, dynamic supply availability, and fluctuating
demand. Applied to a smart factory logistics scenario, the
algorithm demonstrates its capability to model and resolve
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TABLE 1
OVERVIEW OF MAIN METHODS FOR SOLVING TRANSPORTATION PROBLEMS
Abbr. Full Name Description
VAM Vogel’s Approximation Method Classical heuristic for initial feasible solution based on
penalty costs;
does not guarantee optimality.
SVAM Shimshak’s Vogel’s Approximation Method Modification of VAM that ignores penalties
involving dummy rows/columns.
GVAM Goyal’s Vogel’s Approximation Method Assigns maximum transportation cost
to dummy cells instead of zero.
BVAM Balakrishnan’s Vogel’s Approximation Method Enhances SVAM with additional
allocation rules.
RVAM Ramakrishnan’s Vogel’s Approximation Method | Uses four-step reduction and VAM
for better approximation.
MODI Modified Distribution Method Optimizes allocations after an initial feasible solution.
FMDM Fuzzy Modified Distribution Method Fuzzy version of MODI that handles
trapezoidal fuzzy numbers.
FVAM Fuzzy Vogel’s Approximation Method Fuzzy adaptation of VAM using fuzzy numbers
for cost, supply, and demand.
FzZpM Fuzzy Zero Point Method One-stage method using fuzzy arithmetic;
often gives optimal results directly.
1ZPM Improved Zero Point Method Enhanced ZPM proven to outperform many heuristics;
guarantees optimality.
CI-CIFZPM | Confidence-Interval Circular Intuitionistic Our proposed extension of IZPM that integrates
Fuzzy Zero Point Method circular intuitionistic fuzzy data and confidence
intervals for robust decision-making under uncertainty.

the allocation of spare parts across cyber-physical production
cells. It robustly accounts for expert uncertainty through ad-
justable confidence levels and scenario analysis (pessimistic,
realistic, optimistic). The model ensures feasible and non-
degenerate solutions, even in the presence of incomplete or
ambiguous information.

The approach notably mitigates degeneracy through a struc-
tured mechanism of IF-index tracking and scenario-based
refinement. It proves especially effective in applications re-
quiring adaptive, multi-expert-driven decision processes, such
as Industry 4.0 systems, smart supply chains, and decentralized
logistics.

From a methodological standpoint, the proposed CIC-IF
ZPM provides several key contributions: it integrates intu-
itionistic fuzzy logic with circular preference structures and
confidence intervals; it generalizes the classic Zero-Point
Method by embedding it in a multi-scenario fuzzy setting;
it introduces a novel mechanism for degeneracy resolution via
circular ranking indices.

These advances position the method as a competitive alter-
native to traditional fuzzy or crisp TP solvers, especially in
complex environments where expert evaluation under uncer-
tainty is essential. Related concepts for modeling uncertainty
in logistics using granular computing can be found in [17],
while multi-criteria optimization frameworks for transport
tasks are also discussed in [14].

Future developments will focus on extending the model to
handle confidence-interval elliptic intuitionistic fuzzy struc-
tures [21], with applications in elliptic IF multi-criteria
decision-making. Additionally, dedicated software tools will
be developed to support practical deployment in intelligent
logistics platforms.
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