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Abstract—Large Language Models (LLMs) have demonstrated
potential as zero-shot Post-OCR correctors for historical texts.
However, previous research has typically focused on a single data
set and only evaluated Character Error Rate (CER) or Word
Error Rate (WER). This study investigates the potential of LLMs
to enhance the accuracy of Optical Character Recognition (OCR)
and the limitations of the models. To this end, an evaluation
of the approach is conducted for a number of German and
English historical datasets, with an in-depth analysis of the
model corrections and deviation from the ground truth. We
demonstrate that LLMs have the capacity to enhance the quality
of OCR results as zero-shot correctors in some cases, and fine-
tuning LLMs shows promise as part of an LLM-based Post-OCR
correction system, if certain risks are mitigated carefully.

I. INTRODUCTION

PTICAL CHARACTER RECOGNITION (OCR) is the

technology used to digitize printed and handwritten text,
enabling large-scale text extraction from scanned documents.
However, OCR systems are prone to errors, particularly when
dealing with degraded documents, handwritten scripts, or
complex layouts.

Recent advances in Large Language Models (LLMs) have
opened new possibilities for automated post-OCR correction.
LLMs, with their strong contextual understanding and ability
to generate human-like text, offer a promising approach to re-
fining OCR outputs by correcting errors and restoring missing
characters. However, due to their nature as a generative model
with a certain amount of creativity, they can also introduce new
errors. These new errors may be qualitatively different from
typical OCR errors, and potentially much harder to detect.
Thus, the effectiveness and limitations of different LLMs,
prompting techniques and fine-tuning strategies for post-OCR
correction remain an open research area.

This paper presents a series of experiments that seek to
enhance the accuracy of OCR texts through the utilization
of LLMs. It is important to note that these models were not
exposed to scanned images; rather, they were presented with
OCR texts from various German and English datasets. The
models were set up with a constant prompt and temperature
during the course of the experiments. Furthermore, a fine-
tuning process was implemented with the objective of enhanc-
ing the efficacy of the models.
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In order to evaluate the results, a comparison was made
between the Character Error Rate (CER) and Word Error Rate
(WER) before and after the usage of LLMs. Additionally, we
define the character change rate (CCR) and word change rate
(WCR) analogously, but between the original OCR result as a
reference, and the model-corrected version. A more in-depth
examination is also conducted of the particular edit operations
that are required in order to transform a piece of OCR text to
its ground truth, and the edit operations that are implied by
the LLMs.

II. RELATED WORKS

Prior research on the field of post-OCR correction has
explored various models, datasets, and evaluation techniques
to address errors in OCR-processed text.

Soper et al. [1] already show the capabilities of correcting
noisy text outputs with pre-trained language models.

One of the more recent works on post-OCR correction
using LLMs compares fine-tuned Llama2-7B, Llama2-13B,
and BART on the BLN600 dataset, a collection of British
newspapers from the 19" centuries [2], [3]. They highlight
the challenges posed by historical spelling conventions and
employ a simple instruction prompt. This work impressively
demonstrates the potential of fine-tuned LLMs for post-OCR
correction, but does not sufficiently highlight certain risks or
generalize to further datasets.

Earlier competitions, such as the ICDAR 2017 [4] and
ICDAR 2019 challenges [5], provided foundational datasets
for post-OCR correction. The ICDAR 2017 dataset includes 12
million aligned symbols extracted from newspapers and mono-
graphs in English and French, while the ICDAR 2019 com-
petition expanded this effort to 22 million symbols across 10
European languages, focusing on multilingual post-OCR cor-
rection. Although these competitions predate modern LLMs,
their datasets remain valuable for training and evaluation.

A notable study [6] in 2022 employed large ensembles of
character sequence-to-sequence transformer models for post-
OCR correction, achieving strong performance on the ICDAR
2019 dataset. This approach involved manually training a
transformer model from scratch and segmenting documents
into smaller pieces for processing. While effective, this method
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requires extensive training and does not leverage the zero-shot
or few-shot capabilities of modern LLMs.

Kanerva et al. use various LLMs for post-OCR correction
on an English and a Finnish dataset and note that the results
are much better for the English dataset [7]. Out of the models
they employed, GPT-40 shows the most promise for both
languages and achieves a reduction in the character error
rate even for the Finnish texts. However, they conclude that
this improvement for the Finnish texts is not considerable
enough to practically attempt zero-shot post-OCR correction
for Finnish at the present time.

A more recent study from 2024 evaluates OpenAl’'s GPT-
4, GPT-4 Turbo, and GPT-3.5 Turbo models on post-OCR
correction of challenging English prosody texts [8]. This study
explores multiple prompts, metadata inclusion, and varying
temperature settings. Using CER as the only metric, the study
finds only marginal differences between models and prompt
variations. While valuable, the dataset used in this study is not
released to the community and highly specialized.

III. DATASETS AND MODEL SELECTION

A. Datasets

Three datasets were used in our experiment, as shown in
Table I. BLN60O [3] contains English-language crime reports
from newspapers from 1834 to 1894. This dataset has a
relatively low initial error rate.

The next dataset was developed within the Optical Character
Recognition Development (OCR-D) project, we refer to it as
OCR-D-GT. Its content is based on transcription data stored in
the German Text Archive [9]. The dataset is publicly accessible
on GitHub [10], but contains only ground truth data. Therefore,
for our experiments, an OCR workflow was executed on the
text to produce OCRed texts. The workflow is straightforward
and utilizes the tesserocr-recognize processor with the
German Print [11] model.

Lastly, the ICDAR2019 dataset [5], introduced for the
ICDAR 2019 Competition on Post-OCR Text Correction, com-
prises OCR outputs ground truth data for historical documents
in multiple languages. We utilize the English and German
subsets, which include digitized materials from sources such
as the British Library and the German National Library.
These texts contain a variety of printed materials, including
newspapers and historical books. Specific publication years
and genres are not detailed in the dataset’s documentation.

All employed datasets contain ground truth data, i.e. docu-
ments already correctly digitalized by human experts which we
use for evaluation of the results, as well as for preliminary fine-
tuning experiments. They are structured in individual files. An
OCR output file together with its ground truth file is referred
to as a page or document throughout this work.

The average CER reported in Table I refers to what we
measured for the full datasets.
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TABLE I: Datasets for Post-OCR Correction

Dataset Avg. CER Pages  Language(s) Years
BLN600 0.07248 600  English 1834-1894
OCR-D-GT 0.1486 217  German, others  1506-1897
ICDAR2019-EN 0.2018 150  English

ICDAR2019-DE 0.2543 10,032  German

B. Model Selection

In line with promising models from previous research, we
select a model from the Llama family, and one from the GPT
family.

GPT-40 mini [12] is optimized for efficiency while retaining
strong multilingual reasoning capabilities, making it suitable
for practical large-scale application as a post-OCR corrector.

Llama 3.3 70B [13] is a state-of-the-art instruction-tuned
open-source LLM. It performs competitively on a range of
benchmarks and is freely available for research and commer-
cial use. It is also the successor of Llama 2, the model who
showed promise for correcting errors in the BLN600 datasets.

IV. METRICS

We define several character-level metrics comparing the
ground truth (GT), the original OCR output (OCR), and the
model output (PostOCR) for a single document.

A. Character Error Rate

CER measures the minimum number of character-level ed-
its (insertions, deletions, and substitutions) required to convert
a hypothesis string into a reference string, normalized by the
length of the reference:

S+D+1

CER(h.7) = "= )

where:

o h is the hypothesis string,

o 7 is the reference (ground truth),

e S is the number of substitutions,

e D is the number of deletions,

o [ is the number of insertions,

e N is the number of characters in the reference.

Based on this, we define:

o CERg4 = CER(OCR, GT): the error rate of the original
OCR output against the ground truth.

e CER,y, = CER(PostOCR,GT): the error rate of the
model-corrected text against the ground truth.

B. Relative CER Reduction

To quantify the effectiveness of post-OCR correction, we
define the relative improvement in CER as:
CERold - CERnew

ER Reduction = ——————— 2
C eduction CER.. 2)

A value of 1 indicates perfect correction (i.e., all original
errors were fixed), while a value of 0 indicates no improve-
ment.
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C. Character Change Rate

In addition to the traditional metrics comparing the OCR
text with its ground truth, we introduce theCharacter Change
Rate (CCR). It quantifies the modification introduced by the
post-OCR correction model, by using the original OCR output
as the reference:

CCR = CER(PostOCR, OCR) 3)

D. Change Ratio

From CCR, we derive a relative metric that quantifies the
amount of change the model introduced with respect to the
original CER.

CCR
CERyy4

A high Change Ratio together with a small CER Reduction
indicates the model introduces many new errors.

Change Ratio =

“

E. Consecutive Edit Operations

While the CER and CCR capture the extent of changes
necessary or introduced by a model, it does not reflect their
distribution or locality. To address this, we define the consec-
utive edit sequence as a run of character-level edit operations
that are adjacent in the edit space. We define adjacency
according to the edit operations computed in the Levenshtein
algorithm, whose output is an ordered list of tuples (op,i,7)
where op € {I,S,D} at position ¢ in the source string and j in
the target. A sequence of operations is considered consecutive
if the positions follow valid edit path transitions:

e replace: (i+1,5+1)

o delete: (i+1,7)

e insert: (4,5 +1)

Given a threshold k, we compute the following metrics over
these sequences:

o Average Number of Consecutive Edit Sequences > k
— The arithmetic mean of detected consecutive edit se-
quences > k per document.

« Average Length of Consecutive Edit Sequences > k —
The average number of operations within each consecu-
tive sequence meeting the threshold.

We also computed analogous metrics while restraining the
types of consecutive operations, inspecting pure insertion and
pure deletion sequences. This is useful to quantify missing
information from OCR results as well as model hallucinations
in post-OCR outputs.

F. Word-Level Metrics

All of these definitions are analogous at the word level,
where insertions, deletions and substitutions are made at the
level of words. For example, we use the term Word Change
Rate (WCR) for the Word Change Rate, without defining it
explicitly.

V. EXPERIMENT SETUP
A. Data loading

We create a custom data loader for each of the datasets
to homogenize the structure and prepare them to be passed
to the LLMs for correction. The loader matches OCR texts
with their ground truths to allow for automatic evaluation. The
loaders use dinglehopper [14] to extract text from XML
files (which are in PAGE [15] or ALTO [16] format), or plain-
text files and apply minimal pre-processing.

B. LLM-based Post-OCR Correction

For each of the datasets, we run the LLM-based post-OCR
correction pipelines, using the prompts shown in Figure 1. For
the fine-tuned GPT models, a 75/25 train-test split is used,
and the evaluation results are reported on the documents of
the test partition. Fine-tuning is done using OpenAl’s fine-
tuning API [17] with the default settings. Note that this does
not include any holdout or cross-validation, but simply runs
for a fixed number of epochs. We plan on implementing more
sophisticated fine-tuning approaches with in future research.

Zero-Shot:

"You are a Post-OCR corrector.
correct mistakes in historical
texts that are caused by errors in
the Optical Character Recognition.
You should NOT fix grammar or
spelling which deviate from Standard
{{language}}, because the texts are
historical. Please only include the
processed text in your response."

You

Fine-Tuned Models:

"You are a Post-OCR corrector.
correct mistakes in historical
texts that are caused by errors in
the Optical Character Recognition.
Please ONLY include the corrected
text in your replies."

You

Common User Query:

"Please correct OCR-related mistakes
in the following historical text:
\n\n [OCR TEXT]"

Fig. 1: Prompt Templates Used for Post-OCR Correction

We use all models via a REST API and we use a temperature
of 0.5 across all experiments for simplicity.

C. Automatic Evaluation

For each correction run, an automated evaluation script
computes all metrics described in the previous section on a per-
document basis and saves them as a dataframe. Additionally,



114

aggregations such as averages are computed and reported. The
exact edit operations and a number of visualization plots are
also saved automatically for each run.

VI. EVALUATION AND ANALYSIS

In this section, we will first perform the standard evalua-
tion based on CER and WER, before diving deeper to also
investigate what changes the models applied and which errors
it could (not) correct.

A. CER and WER

1) BLN60O - An English low-error dataset: For the BLN600
dataset, the CER and WER reduction are displayed in Table II.
Both the GPT-40 mini and the Llama-3.3-70B models achieved
a significant reduction in the average CER. The GPT model
and the open-source Llama model reduced the CER by almost
58% and 48% respectively. The zero-shot approach with GPT-
40-mini thus slightly outpeforms the fine-tuned Llama 2 model
tested on this dataset [2], while the newer-generation Llama
model almost achieves the performance.

On the word level, the improvements are even more con-
siderable, with both models reducing the WER by over 75%.
This is a clear indication that the models were particularly
effective at correcting words with just one or few errors.
Remaining errors might be in part due to sequences with
accumulated errors, where it is increasingly hard or impossible
to reconstruct missing information.

To get a better view of the distribution of error rates, it
is useful to look at Figure 2, which shows the CER and
WER of each document before and after correction for the
more effective zero-shot model GPT-40 mini. The results
demonstrate that both the CER and WER can be substantially
reduced for numerous documents, particularly those exhibiting
low initial CER values. Conversely, for documents with high
initial CER, it becomes more challenging for the model to
correct.

The fine-tuned model achieved even higher reduction in both
CER and WER, reducing the character errors by almost 65%
on average. This is a further indication that the fine-tuned
models show promise of further improvements, when the zero-
shot approach already yields good results. However, it should
be noted that this is not necessarily statistically significant
given the smaller test size for the fine-tuning approach.

2) OCR-D-GT - A tricky German dataset: For the German-
language OCR-D-GT dataset, the aggregated results are sum-
marized in Table III. Unfortunately, the models could not reach
reduction in the character or word error rate. In fact, the CER
actually increased by at least 30%.

The fine-tuned model performed much worse on average. It
is extremely volatile and introduced many mistakes and even
hallucinated entire paragraphs for some of the articles, leading
to a large increase in CER when taking the arithmetic mean.
This can partially be attributed to the relatively small and
extremely heterogeneous dataset, covering several centuries
with different genres and a spread of base CER from 0.23% up
to 78.31%. Some of the fine-tuning examples of OCR results

COMMUNICATION PAPERS OF THE FEDCSIS. KRAKOW, POLAND, 2025

with up to 95% WER encourage the model to hallucinate
corrections.

The fine-tuned model did however reduce the CER for a
larger share of articles than the base model. This suggests that
a more involved fine-tuning approach together with a larger
and improved dataset can still be a promising approach.

3) ICDAR2019: For the ICDAR 2019 datasets, we use the
German and English subsets, removing alignment data in the
data loading step. In the case of the English dataset, both
Llama 3.3 70 B Instruct and GPT-4o0 mini achieve a small
reduction of the WER, but also a small increase in the CER.
For the German texts, GPT-40 mini achieves a slight reduction
in the CER and WER, while the Llama model yields very poor
results, increasing the CER by 40%.

Although both models showed much promise as zero-shot
correctors when employed for the BLN600 dataset, this is
unfortunately not the case for the more complex datasets with
higher initial error rates.

B. Comparing OCR and Model Output — CCR and WCR

There are various commonly found OCR errors, such as
misinterpreted characters, disjointed characters and problems
with hyphenation [18]. These might be recognizable to readers
due to the visual similarity that lead to the error. Unfortunately,
LLM correctors can introduce new types of errors that might
be more problematic. For this reason, it is not enough to
simply investigate CER and WER when comparing model
performance. For example, in an OCR text with 10% CER,
let a post-OCR correction model A reduce the CER to 5%
by performing the edit operations needed to eliminate 5% of
errors (CCR of 5%). Let model B also reduce the CER to
5%, but with a CCR of 7%. In this case, model A should
be preferred since it did not introduce any new, potentially
more problematic errors. In Figure 3, the CER before and after
correction, as well as the CCR, are displayed for the BLN600
dataset.

We can see that the Llama 3.3 70B Instruct model actually
introduced more changes to the OCR text than GPT-4o0 mini,
but unfortunately many of these changes did not reduce CER.
On the other hand, it is a positive result that the fine-tuned
model’s higher CER reduction does not come with the price
of an increased change rate.

As previously established, the results for the other datasets
were not satisfactory. In the only other case, where a CER re-
duction was reached, the GPT-40-mini model for the English-
language subset of /ICDAR2019, the model reduced the CER
from 25.43% to 25.01% with a change rate of 3.92%. Although
this is a relatively low CCR, given the amount of errors in
the OCR result, it still means that the model introduced or
changed existing errors amounting to more than 3% of the
total characters, almost ten times more than it corrected.

As with the analysis of CER and WER, it is useful to gain
a better view of the distribution of results on a document-
by-document basis, instead of just considering averages. To
visualize this, we add a color map to the scatter plot considered
in the previous section. Since the CCR naturally correlates
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TABLE II: Benchmarking LLMs for Post-OCR Correction on BLN600

Model CER

WER CER / WER Reduction

0.07248 — 0.03065
0.07248 — 0.03778
0.06578 — 0.0231

GPT-40 mini
Llama-3.3-70B
FT GPT-40 mini

0.18634 — 0.04404
0.18634 — 0.04613
0.16577 — 0.03216

57.71% 1 76.37%
47.89% 1 75.24%
64.93% / 80.6%

Changes in WER (gpt-40-mini)
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Fig. 2: Per-Document Changes in WER and CER for BLN600 using GPT-40 mini.

TABLE III: Benchmarking LLMs for Post-OCR Correction on OCR-D-GT

Model CER

WER CER / WER Reduction

0.14855 — 0.17619
0.14855 — 0.17735
0.15716 — 0.37338

Llama-3.3-70B-Instruct
GPT-40 mini
FT GPT-40 mini

0.27290 — 0.36078
0.27290 — 0.37705
0.27118 — 0.53738

-18.60% / -32.20%
-19.39% / -38.16%
-137.58% / -98.16%

TABLE IV: Benchmarking LLMs for Post-OCR Correction on ICDAR-2019

Language Subset  Model CER WER CER / WER Reduction
EN Llama-3.3-70B-Instruct ~ 0.20179 — 0.21304  0.31620 — 0.29992 -5.57% 1 5.15%

EN GPT-40 mini 0.20179 — 0.20264  0.31620 — 0.31130 -0.42% / 1.55%

DE Llama-3.3-70B-Instruct ~ 0.25430 — 0.35742  0.81175 — 0.83743 -40.55% / -3.16%
DE GPT-40 mini 0.25430 — 0.25010  0.81175 — 0.77108 1.65% / 5.01%

with both CER,q and CER,., it does not give a clear
enough visual indication of the relative change. To account
for this, we use the Change Ratio for the color axis, but clip
the values at 2.0, which already indicates a very high change
relative to the base CER, but keeps the scale readable at lower
values.

In Figure 4, we can see that the Change Ratio for the
BLN600 documents using GPT-4o mini is usually between
0.6 and 0.9, although it is lower for some documents that still
exhibit a CER reduction. Concerning the documents with a
high CER,;4 there are several documents with some CER re-
duction, but they generally have a significantly higher Change

Ratio. There are also some documents with no improvements
and barely any changes made by the model.

In Figure 5 the same plot is shown for the output of the
Llama 3.3 70B model. We can see one outlier, where the
model introduced a large amount of incorrect text for a single
document. Apart from that, the plots look relatively similar,
but due to the fixed color map with 0 on the low end and
2+ on the high end, we can also see that the Change Ratio
is slightly higher for most documents, compared to the GPT
model output.
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BLN600 Evaluation Metrics

3.78%

. 6.58% 2.31% 6.41%

3.06%

CER Old CER New CCR

Fig. 3: Macro-averaged CER and CCR of correction models
on BLN600
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Fig. 4: Per-Document Changes in CER with Change Ratio as
Color Axis for BLN600 using GPT-40 mini

C. Diving Deeper — Edit Operations and Consecutive Edits

When considering only the CER, the information about the
types of edit operations in the shortest transformation sequence
is lost. The average number of insertions (I), substitutions (S)
and deletions (D) necessary to transform the OCR result to
the Ground Truth (Expected) and to the Post-OCR document
(Predicted) is given in Table V for all datasets. The position of
the edit operations in the document can also be of interest. This
is particularly the case when many errors occur consecutively
in an OCR text, because this vastly increases the difficulty
of the correction task. On the other hand, when a model
prediction contains long consecutive sequences, especially of
insertions, this is an indication of model hallucinations.

For BLN600, the dataset where the models achieved good
results, we can see that the models predicted less insertions
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Fig. 5: Per-Document Changes in CER with Change Ratio as
Color Axis for BLN600 using Llama 3.3 70B

than were expected. GPT-40 mini predicted less insertions,
but reached a higher CER reduction. This becomes clearer
when we look at the consecutive edit sequences with minimum
length k = 6 operations. These are likely not retrievable from
the OCR text. While GPT-40 mini applied 1.94 such sequences
per document with an average length of 9.32, a large portion
of these are pure “delete”, on average namely 1.55 sequence
per document with an average length of 9.89. This means
that the model sometimes deleted sequences of characters that
it deemed corrupted or illegible. On the other hand, it only
applied 0.09 pure insertion sequences with an average length
of 7.25.

For the same dataset, Llama 3.3 70B applied 2.87 con-
secutive edit sequences to such sequences with an average
length of 10.49. While a considerable part of these were pure
delete sequences as well, it also includes 0.26 pure insertion
sequences of this length. This means that the Llama model’s
corrections contain some hallucinations, even for the dataset
where we obtained a reduction in CER.

For the other datasets, the models do not achieve significant
reduction of the error rate. Considering the expected edit
operations and consecutive operations can give additional clues
concerning the difficulty of the correction task for the various
datasets. While the English-language ICDAR2019 and the
OCR-D-GT data both have a higher number of expected
consecutive operations, this is not the case for the German-
language subset of ICDAR2019, which actually requires a
large number of character substitutions, but few long con-
secutive transformation sequences. This means that missing
information due to sequences of errors is not the sole reason
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for unsuccessful LLM-based Post-OCR correction.

Unfortunately, standard fine-tuning with ground truth data
encourages hallucinations instead of preventing them since
ground truths contain coherent, legible text that can in some
cases not be reconstructed from the OCR result alone. This
holds true for both of the fine-tuned models we employed, as
can be seen from the increased average number and length of
consecutive edit sequences.

Taking a deeper look at pure insertions sequences, such
“predicted” pure insertion sequences were usually of much
greater length than arbitrary consecutive operations and espe-
cially prominent for the fine-tuned models, as well as the base
Llama model for the German-language ICDAR2019 data. It
predicted an average of 1.55 pure insertion sequences with an
average length of 86.7 characters for this dataset.

While such insertion sequences indicate dangerous errors,
they are easy to fix, once we are aware of them since they
can easily be detected algorithmically without the need for
a ground truth. Of course, picking a threshold and reverting
insertion sequences above it, is a trade-off.

D. The Danger of LLMs as Post-OCR correctors — A concrete
example

We have seen that models can introduce long sequences of
characters to an OCR text. To show the effects of this, it is
useful to consider an example. An excerpt from a BLN600
page with the ground truth, OCR result, and two model
corrections are shown in Figure 6.

Both correctors fix the typical OCR error at the beginning
of the excerpt, transforming “(’harles” to “Charles”. They both
do not remove the hyphen for “Charles-street” seeing as the
other names of streets are hyphenated in the text. They also
both remove the duplicate “u” from “Trevor-squuare”. Then,
a passage with many errors starts. While the GPT model
removes some of the characters, it manages to reconstruct
some information and also keeps some illegible text. The
Llama model on the other hand, is determined to create
fluent legible text and hallucinates information for two full
sentences, even introducing a new person, Mr. Miller, who is
not mentioned anywhere in the OCR text. The model’s training
gives it a high incentive to create legible and grammatically
correct text which outweighs the instructions to only correct
OCR-induced error.

It should be mentioned that this excerpt is from one of
the highest-CER documents of the BLN600 corpus. Although
hallucinations of this scale are less likely in scenarios with
lower base error rates, and some models are more prone to
them than others, they can never be fully excluded.

VII. CONCLUSION AND FUTURE WORK

The paper presents the experiments in which LLMs were
used in the post-correction step of an OCR workflow. It has
been observed that when tasked with correcting errors in
OCR texts, these models often introduce new and qualitatively
different errors. However, the extent of these errors is relatively

HOLRO-YD.  —H. -D. E-ggleton, of -Ch-arles
street, Trevor-squ-are, -Br-ompton, -coal-
merchant, at two adjo-u-rned- exa-mination—

GT Steph-enson ~and B-l-unt, of -Great O-r-mond-
street, Queen-square, -surveyors, at twel-ve,
adjour-ned examination. ON THE --GROU:ND
F-LOOR. -In H-enry Kai-n's b-ankruptcy, at

eleven; creditors to -meet th-e assignee:s.
1111 LROVI'.- 11.it. El wrletoiul if (‘h a'les-

street. Trevor-squuare, lIr inptl | 1'tllt-rblit, It till

tijoiullriledl xanminatirn--Stephlieson ,,,d Billl
OCR (t f (ire't O rniuid street, Queen-square.
aeycv-ori, i- leill CI. I IVJIrllil | -illiioll -Ov THE
eitrtoU%1, Fllme rt-111 H1,1rs hiill'S btih rUit(i
at elvren; a reditors to ineet thleaycgineew .

Ewrletoiul of Charles-street, Trevor-square, lIr
imptl | I'tllt-rblit, at till tijo unlined
examination--Stephhie-son and B-ull (of Great

G PT Ormiund street, Queen-square. aeycv-ofi, i
Heill C . IVJIrllil | “illiioll -Ov THE eitrtoU%1,
Fllme rt-111 H1,1rs hiill'S btih rUit(i- at eleven;
a creditors to meet the aycgi-neew.

-At twelv-e, --Charles-street, Trevor-square,
,atth

Stephenson and B-ull, of Great Ormond-street,

linen-drap-er e same time,

Queen-square, auctionee rs, to be examined-
LLama ‘
At half past twelve, Mr. Miller, of the same

place, to be examined. ‘OF THE INSOLVENTS,
Flame, i-n the Rules of the Ben:ch, to meet the
creditors this ev--en-ing-.

Fig. 6: Highly erroneous excerpt from BLN document — GT
vs OCR vs GPT and Llama corrections

minor for certain datasets, particularly low-error English-
language texts that don’t deviate too from Standard English,
such as BLN600. These errors can, however, be partially
removed during post-processing. In addition, our preliminary
findings indicate that fine-tuning significantly enhances model
accuracy for the task of post-OCR correction, although it
introduces additional risks such as overfitting and potentially
increased hallucinations.

In subsequent studies, we intend to run LLMs locally to
retain more control. Furthermore, different fine-tuning ap-
proaches will be tested, including utilizing synthetic datasets,
which have demonstrated considerable potential in recent
studies [19]. Particular focus will be placed on the develop-
ment of a robust correction pipeline capable of consistently
reducing OCR errors in historical texts, while simultaneously
minimizing new model-induced errors.
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TABLE V: Macro-averaged Expected and Predicted Edit Operations

Avg. # Consec. Ops  Avg. Consec. Ops

Dataset Model 1/ S / D Operations
Diffs > 6 chars > 6 chars Length
BLN600 llama-3.3-70b-instruct Expected: 39.06 / 79.76 / 76.58 2.24 11.89
Predicted: 30.40 / 81.82 / 82.76 2.87 10.49
BLN600 apt-do-mini Expected: 39.06 / 79.76 / 76.58 2.24 11.89
Predicted: 19.97 / 68.16 / 82.15 1.94 9.32
BLN600 apt-do-mini (fine-tuned) Expected: 48.12 / 73.80 / 64.33 232 13.11
Predicted: 34.85 / 76.23 / 68.34 2.39 9.74
OCR-D-GT llama-3.3-70b-instruct Expected: 71.04 / 60.35 / 64.15 5.87 16.19
Predicted: 18.28 / 43.80 / 33.30 1.16 14.37
: 71 3 . . .
OCR-D-GT apt-do-mini Expected: 71.04 / 60.35 / 64.15 5.87 16.19
Predicted: 40.18 / 40.53 / 16.66 0.28 15.98
OCR-D-GT apt-do-mini (fine-tuned) Expected: 85.94 / 79.37 / 91.53 8.16 16.17
Predicted: 559.94 / 164.76 / 53.82 22.67 26.80
ICDAR2019-DE  llama-3.3-70b-instruct Expected: 41.83 / 255.78 / 85.49 1.06 11.16
Predicted: 165.95 / 84.97 / 41.72 2.64 55.19
E: s 41, 255. 4 1. 11.1
ICDAR2019-DE  gpt-4o-mini xpected 83 /25578 / 85.49 06 6
Predicted: 13.10 / 31.61 / 18.16 0.29 17.83
ICDAR2019-EN  llama-3.3-70b-instruct Expected: 112.50 / 124.32 / 107.65 9.17 19.60
Predicted: 52.21 / 54.40 / 40.68 2.04 26.55
ICDAR2019-EN  gpt-do-mini Expected: 112.50 / 124.32 / 107.65 9.17 19.60
Predicted: 19.44 / 39.07 / 42.53 1.23 18.92
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