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Abstract—Large Language Models (LLMs) have demonstrated
potential as zero-shot Post-OCR correctors for historical texts.
However, previous research has typically focused on a single data
set and only evaluated Character Error Rate (CER) or Word
Error Rate (WER). This study investigates the potential of LLMs
to enhance the accuracy of Optical Character Recognition (OCR)
and the limitations of the models. To this end, an evaluation
of the approach is conducted for a number of German and
English historical datasets, with an in-depth analysis of the
model corrections and deviation from the ground truth. We
demonstrate that LLMs have the capacity to enhance the quality
of OCR results as zero-shot correctors in some cases, and fine-
tuning LLMs shows promise as part of an LLM-based Post-OCR
correction system, if certain risks are mitigated carefully.

I. INTRODUCTION

O
PTICAL CHARACTER RECOGNITION (OCR) is the

technology used to digitize printed and handwritten text,

enabling large-scale text extraction from scanned documents.

However, OCR systems are prone to errors, particularly when

dealing with degraded documents, handwritten scripts, or

complex layouts.

Recent advances in Large Language Models (LLMs) have

opened new possibilities for automated post-OCR correction.

LLMs, with their strong contextual understanding and ability

to generate human-like text, offer a promising approach to re-

fining OCR outputs by correcting errors and restoring missing

characters. However, due to their nature as a generative model

with a certain amount of creativity, they can also introduce new

errors. These new errors may be qualitatively different from

typical OCR errors, and potentially much harder to detect.

Thus, the effectiveness and limitations of different LLMs,

prompting techniques and fine-tuning strategies for post-OCR

correction remain an open research area.

This paper presents a series of experiments that seek to

enhance the accuracy of OCR texts through the utilization

of LLMs. It is important to note that these models were not

exposed to scanned images; rather, they were presented with

OCR texts from various German and English datasets. The

models were set up with a constant prompt and temperature

during the course of the experiments. Furthermore, a fine-

tuning process was implemented with the objective of enhanc-

ing the efficacy of the models.

In order to evaluate the results, a comparison was made

between the Character Error Rate (CER) and Word Error Rate

(WER) before and after the usage of LLMs. Additionally, we

define the character change rate (CCR) and word change rate

(WCR) analogously, but between the original OCR result as a

reference, and the model-corrected version. A more in-depth

examination is also conducted of the particular edit operations

that are required in order to transform a piece of OCR text to

its ground truth, and the edit operations that are implied by

the LLMs.

II. RELATED WORKS

Prior research on the field of post-OCR correction has

explored various models, datasets, and evaluation techniques

to address errors in OCR-processed text.

Soper et al. [1] already show the capabilities of correcting

noisy text outputs with pre-trained language models.

One of the more recent works on post-OCR correction

using LLMs compares fine-tuned Llama2-7B, Llama2-13B,

and BART on the BLN600 dataset, a collection of British

newspapers from the 19th centuries [2], [3]. They highlight

the challenges posed by historical spelling conventions and

employ a simple instruction prompt. This work impressively

demonstrates the potential of fine-tuned LLMs for post-OCR

correction, but does not sufficiently highlight certain risks or

generalize to further datasets.

Earlier competitions, such as the ICDAR 2017 [4] and

ICDAR 2019 challenges [5], provided foundational datasets

for post-OCR correction. The ICDAR 2017 dataset includes 12

million aligned symbols extracted from newspapers and mono-

graphs in English and French, while the ICDAR 2019 com-

petition expanded this effort to 22 million symbols across 10

European languages, focusing on multilingual post-OCR cor-

rection. Although these competitions predate modern LLMs,

their datasets remain valuable for training and evaluation.

A notable study [6] in 2022 employed large ensembles of

character sequence-to-sequence transformer models for post-

OCR correction, achieving strong performance on the ICDAR

2019 dataset. This approach involved manually training a

transformer model from scratch and segmenting documents

into smaller pieces for processing. While effective, this method
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requires extensive training and does not leverage the zero-shot

or few-shot capabilities of modern LLMs.

Kanerva et al. use various LLMs for post-OCR correction

on an English and a Finnish dataset and note that the results

are much better for the English dataset [7]. Out of the models

they employed, GPT-4o shows the most promise for both

languages and achieves a reduction in the character error

rate even for the Finnish texts. However, they conclude that

this improvement for the Finnish texts is not considerable

enough to practically attempt zero-shot post-OCR correction

for Finnish at the present time.

A more recent study from 2024 evaluates OpenAI’s GPT-

4, GPT-4 Turbo, and GPT-3.5 Turbo models on post-OCR

correction of challenging English prosody texts [8]. This study

explores multiple prompts, metadata inclusion, and varying

temperature settings. Using CER as the only metric, the study

finds only marginal differences between models and prompt

variations. While valuable, the dataset used in this study is not

released to the community and highly specialized.

III. DATASETS AND MODEL SELECTION

A. Datasets

Three datasets were used in our experiment, as shown in

Table I. BLN600 [3] contains English-language crime reports

from newspapers from 1834 to 1894. This dataset has a

relatively low initial error rate.

The next dataset was developed within the Optical Character

Recognition Development (OCR-D) project, we refer to it as

OCR-D-GT. Its content is based on transcription data stored in

the German Text Archive [9]. The dataset is publicly accessible

on GitHub [10], but contains only ground truth data. Therefore,

for our experiments, an OCR workflow was executed on the

text to produce OCRed texts. The workflow is straightforward

and utilizes the tesserocr-recognize processor with the

German Print [11] model.

Lastly, the ICDAR2019 dataset [5], introduced for the

ICDAR 2019 Competition on Post-OCR Text Correction, com-

prises OCR outputs ground truth data for historical documents

in multiple languages. We utilize the English and German

subsets, which include digitized materials from sources such

as the British Library and the German National Library.

These texts contain a variety of printed materials, including

newspapers and historical books. Specific publication years

and genres are not detailed in the dataset’s documentation.

All employed datasets contain ground truth data, i.e. docu-

ments already correctly digitalized by human experts which we

use for evaluation of the results, as well as for preliminary fine-

tuning experiments. They are structured in individual files. An

OCR output file together with its ground truth file is referred

to as a page or document throughout this work.

The average CER reported in Table I refers to what we

measured for the full datasets.

TABLE I: Datasets for Post-OCR Correction

Dataset Avg. CER Pages Language(s) Years

BLN600 0.07248 600 English 1834-1894
OCR-D-GT 0.1486 217 German, others 1506-1897
ICDAR2019-EN 0.2018 150 English
ICDAR2019-DE 0.2543 10,032 German

B. Model Selection

In line with promising models from previous research, we

select a model from the Llama family, and one from the GPT

family.

GPT-4o mini [12] is optimized for efficiency while retaining

strong multilingual reasoning capabilities, making it suitable

for practical large-scale application as a post-OCR corrector.

Llama 3.3 70B [13] is a state-of-the-art instruction-tuned

open-source LLM. It performs competitively on a range of

benchmarks and is freely available for research and commer-

cial use. It is also the successor of Llama 2, the model who

showed promise for correcting errors in the BLN600 datasets.

IV. METRICS

We define several character-level metrics comparing the

ground truth (GT), the original OCR output (OCR), and the

model output (PostOCR) for a single document.

A. Character Error Rate

CER measures the minimum number of character-level ed-

its (insertions, deletions, and substitutions) required to convert

a hypothesis string into a reference string, normalized by the

length of the reference:

CER(h, r) =
S +D + I

N
(1)

where:

• h is the hypothesis string,

• r is the reference (ground truth),

• S is the number of substitutions,

• D is the number of deletions,

• I is the number of insertions,

• N is the number of characters in the reference.

Based on this, we define:

• CERold = CER(OCR,GT): the error rate of the original

OCR output against the ground truth.

• CERnew = CER(PostOCR,GT): the error rate of the

model-corrected text against the ground truth.

B. Relative CER Reduction

To quantify the effectiveness of post-OCR correction, we

define the relative improvement in CER as:

CER Reduction =
CERold − CERnew

CERold

(2)

A value of 1 indicates perfect correction (i.e., all original

errors were fixed), while a value of 0 indicates no improve-

ment.
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C. Character Change Rate

In addition to the traditional metrics comparing the OCR

text with its ground truth, we introduce theCharacter Change

Rate (CCR). It quantifies the modification introduced by the

post-OCR correction model, by using the original OCR output

as the reference:

CCR = CER(PostOCR,OCR) (3)

D. Change Ratio

From CCR, we derive a relative metric that quantifies the

amount of change the model introduced with respect to the

original CER.

Change Ratio =
CCR

CERold

(4)

A high Change Ratio together with a small CER Reduction

indicates the model introduces many new errors.

E. Consecutive Edit Operations

While the CER and CCR capture the extent of changes

necessary or introduced by a model, it does not reflect their

distribution or locality. To address this, we define the consec-

utive edit sequence as a run of character-level edit operations

that are adjacent in the edit space. We define adjacency

according to the edit operations computed in the Levenshtein

algorithm, whose output is an ordered list of tuples (op, i, j)
where op ∈ {I, S,D} at position i in the source string and j in

the target. A sequence of operations is considered consecutive

if the positions follow valid edit path transitions:

• replace: (i+ 1, j + 1)
• delete: (i+ 1, j)
• insert: (i, j + 1)

Given a threshold k, we compute the following metrics over

these sequences:

• Average Number of Consecutive Edit Sequences ≥ k
– The arithmetic mean of detected consecutive edit se-

quences ≥ k per document.

• Average Length of Consecutive Edit Sequences ≥ k –

The average number of operations within each consecu-

tive sequence meeting the threshold.

We also computed analogous metrics while restraining the

types of consecutive operations, inspecting pure insertion and

pure deletion sequences. This is useful to quantify missing

information from OCR results as well as model hallucinations

in post-OCR outputs.

F. Word-Level Metrics

All of these definitions are analogous at the word level,

where insertions, deletions and substitutions are made at the

level of words. For example, we use the term Word Change

Rate (WCR) for the Word Change Rate, without defining it

explicitly.

V. EXPERIMENT SETUP

A. Data loading

We create a custom data loader for each of the datasets

to homogenize the structure and prepare them to be passed

to the LLMs for correction. The loader matches OCR texts

with their ground truths to allow for automatic evaluation. The

loaders use dinglehopper [14] to extract text from XML

files (which are in PAGE [15] or ALTO [16] format), or plain-

text files and apply minimal pre-processing.

B. LLM-based Post-OCR Correction

For each of the datasets, we run the LLM-based post-OCR

correction pipelines, using the prompts shown in Figure 1. For

the fine-tuned GPT models, a 75/25 train-test split is used,

and the evaluation results are reported on the documents of

the test partition. Fine-tuning is done using OpenAI’s fine-

tuning API [17] with the default settings. Note that this does

not include any holdout or cross-validation, but simply runs

for a fixed number of epochs. We plan on implementing more

sophisticated fine-tuning approaches with in future research.

Prompt Templates for Post-OCR Correction

Zero-Shot:

"You are a Post-OCR corrector. You

correct mistakes in historical

texts that are caused by errors in

the Optical Character Recognition.

You should NOT fix grammar or

spelling which deviate from Standard

{{language}}, because the texts are

historical. Please only include the

processed text in your response."

Fine-Tuned Models:

"You are a Post-OCR corrector. You

correct mistakes in historical

texts that are caused by errors in

the Optical Character Recognition.

Please ONLY include the corrected

text in your replies."

Common User Query:

"Please correct OCR-related mistakes

in the following historical text:

\n\n [OCR TEXT]"

Fig. 1: Prompt Templates Used for Post-OCR Correction

We use all models via a REST API and we use a temperature

of 0.5 across all experiments for simplicity.

C. Automatic Evaluation

For each correction run, an automated evaluation script

computes all metrics described in the previous section on a per-

document basis and saves them as a dataframe. Additionally,
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aggregations such as averages are computed and reported. The

exact edit operations and a number of visualization plots are

also saved automatically for each run.

VI. EVALUATION AND ANALYSIS

In this section, we will first perform the standard evalua-

tion based on CER and WER, before diving deeper to also

investigate what changes the models applied and which errors

it could (not) correct.

A. CER and WER

1) BLN600 - An English low-error dataset: For the BLN600

dataset, the CER and WER reduction are displayed in Table II.

Both the GPT-4o mini and the Llama-3.3-70B models achieved

a significant reduction in the average CER. The GPT model

and the open-source Llama model reduced the CER by almost

58% and 48% respectively. The zero-shot approach with GPT-

4o-mini thus slightly outpeforms the fine-tuned Llama 2 model

tested on this dataset [2], while the newer-generation Llama

model almost achieves the performance.

On the word level, the improvements are even more con-

siderable, with both models reducing the WER by over 75%.

This is a clear indication that the models were particularly

effective at correcting words with just one or few errors.

Remaining errors might be in part due to sequences with

accumulated errors, where it is increasingly hard or impossible

to reconstruct missing information.

To get a better view of the distribution of error rates, it

is useful to look at Figure 2, which shows the CER and

WER of each document before and after correction for the

more effective zero-shot model GPT-4o mini. The results

demonstrate that both the CER and WER can be substantially

reduced for numerous documents, particularly those exhibiting

low initial CER values. Conversely, for documents with high

initial CER, it becomes more challenging for the model to

correct.

The fine-tuned model achieved even higher reduction in both

CER and WER, reducing the character errors by almost 65%

on average. This is a further indication that the fine-tuned

models show promise of further improvements, when the zero-

shot approach already yields good results. However, it should

be noted that this is not necessarily statistically significant

given the smaller test size for the fine-tuning approach.

2) OCR-D-GT - A tricky German dataset: For the German-

language OCR-D-GT dataset, the aggregated results are sum-

marized in Table III. Unfortunately, the models could not reach

reduction in the character or word error rate. In fact, the CER

actually increased by at least 30%.

The fine-tuned model performed much worse on average. It

is extremely volatile and introduced many mistakes and even

hallucinated entire paragraphs for some of the articles, leading

to a large increase in CER when taking the arithmetic mean.

This can partially be attributed to the relatively small and

extremely heterogeneous dataset, covering several centuries

with different genres and a spread of base CER from 0.23% up

to 78.31%. Some of the fine-tuning examples of OCR results

with up to 95% WER encourage the model to hallucinate

corrections.

The fine-tuned model did however reduce the CER for a

larger share of articles than the base model. This suggests that

a more involved fine-tuning approach together with a larger

and improved dataset can still be a promising approach.

3) ICDAR2019: For the ICDAR 2019 datasets, we use the

German and English subsets, removing alignment data in the

data loading step. In the case of the English dataset, both

Llama 3.3 70 B Instruct and GPT-4o mini achieve a small

reduction of the WER, but also a small increase in the CER.

For the German texts, GPT-4o mini achieves a slight reduction

in the CER and WER, while the Llama model yields very poor

results, increasing the CER by 40%.

Although both models showed much promise as zero-shot

correctors when employed for the BLN600 dataset, this is

unfortunately not the case for the more complex datasets with

higher initial error rates.

B. Comparing OCR and Model Output – CCR and WCR

There are various commonly found OCR errors, such as

misinterpreted characters, disjointed characters and problems

with hyphenation [18]. These might be recognizable to readers

due to the visual similarity that lead to the error. Unfortunately,

LLM correctors can introduce new types of errors that might

be more problematic. For this reason, it is not enough to

simply investigate CER and WER when comparing model

performance. For example, in an OCR text with 10% CER,

let a post-OCR correction model A reduce the CER to 5%

by performing the edit operations needed to eliminate 5% of

errors (CCR of 5%). Let model B also reduce the CER to

5%, but with a CCR of 7%. In this case, model A should

be preferred since it did not introduce any new, potentially

more problematic errors. In Figure 3, the CER before and after

correction, as well as the CCR, are displayed for the BLN600

dataset.

We can see that the Llama 3.3 70B Instruct model actually

introduced more changes to the OCR text than GPT-4o mini,

but unfortunately many of these changes did not reduce CER.

On the other hand, it is a positive result that the fine-tuned

model’s higher CER reduction does not come with the price

of an increased change rate.

As previously established, the results for the other datasets

were not satisfactory. In the only other case, where a CER re-

duction was reached, the GPT-4o-mini model for the English-

language subset of ICDAR2019, the model reduced the CER

from 25.43% to 25.01% with a change rate of 3.92%. Although

this is a relatively low CCR, given the amount of errors in

the OCR result, it still means that the model introduced or

changed existing errors amounting to more than 3% of the

total characters, almost ten times more than it corrected.

As with the analysis of CER and WER, it is useful to gain

a better view of the distribution of results on a document-

by-document basis, instead of just considering averages. To

visualize this, we add a color map to the scatter plot considered

in the previous section. Since the CCR naturally correlates
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TABLE II: Benchmarking LLMs for Post-OCR Correction on BLN600

Model CER WER CER / WER Reduction

GPT-4o mini 0.07248 → 0.03065 0.18634 → 0.04404 57.71% / 76.37%

Llama-3.3-70B 0.07248 → 0.03778 0.18634 → 0.04613 47.89% / 75.24%

FT GPT-4o mini 0.06578 → 0.0231 0.16577 → 0.03216 64.93% / 80.6%
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(b) CER Scatter Plot

Fig. 2: Per-Document Changes in WER and CER for BLN600 using GPT-4o mini.

TABLE III: Benchmarking LLMs for Post-OCR Correction on OCR-D-GT

Model CER WER CER / WER Reduction

Llama-3.3-70B-Instruct 0.14855 → 0.17619 0.27290 → 0.36078 -18.60% / -32.20%

GPT-4o mini 0.14855 → 0.17735 0.27290 → 0.37705 -19.39% / -38.16%

FT GPT-4o mini 0.15716 → 0.37338 0.27118 → 0.53738 -137.58% / -98.16%

TABLE IV: Benchmarking LLMs for Post-OCR Correction on ICDAR-2019

Language Subset Model CER WER CER / WER Reduction

EN Llama-3.3-70B-Instruct 0.20179 → 0.21304 0.31620 → 0.29992 -5.57% / 5.15%

EN GPT-4o mini 0.20179 → 0.20264 0.31620 → 0.31130 -0.42% / 1.55%

DE Llama-3.3-70B-Instruct 0.25430 → 0.35742 0.81175 → 0.83743 -40.55% / -3.16%
DE GPT-4o mini 0.25430 → 0.25010 0.81175 → 0.77108 1.65% / 5.01%

with both CERold and CERnew it does not give a clear

enough visual indication of the relative change. To account

for this, we use the Change Ratio for the color axis, but clip

the values at 2.0, which already indicates a very high change

relative to the base CER, but keeps the scale readable at lower

values.

In Figure 4, we can see that the Change Ratio for the

BLN600 documents using GPT-4o mini is usually between

0.6 and 0.9, although it is lower for some documents that still

exhibit a CER reduction. Concerning the documents with a

high CERold there are several documents with some CER re-

duction, but they generally have a significantly higher Change

Ratio. There are also some documents with no improvements

and barely any changes made by the model.

In Figure 5 the same plot is shown for the output of the

Llama 3.3 70B model. We can see one outlier, where the

model introduced a large amount of incorrect text for a single

document. Apart from that, the plots look relatively similar,

but due to the fixed color map with 0 on the low end and

2+ on the high end, we can also see that the Change Ratio

is slightly higher for most documents, compared to the GPT

model output.
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CER Old CER New CCR

llama-3.3-70b-instruct

gpt-4o-mini-FINETUNED

gpt-4o-mini

7.25% 3.78% 7.17%

6.58% 2.31% 6.41%

7.25% 3.06% 6.21%

BLN600 Evaluation Metrics

Fig. 3: Macro-averaged CER and CCR of correction models

on BLN600

Fig. 4: Per-Document Changes in CER with Change Ratio as

Color Axis for BLN600 using GPT-4o mini

C. Diving Deeper – Edit Operations and Consecutive Edits

When considering only the CER, the information about the

types of edit operations in the shortest transformation sequence

is lost. The average number of insertions (I), substitutions (S)

and deletions (D) necessary to transform the OCR result to

the Ground Truth (Expected) and to the Post-OCR document

(Predicted) is given in Table V for all datasets. The position of

the edit operations in the document can also be of interest. This

is particularly the case when many errors occur consecutively

in an OCR text, because this vastly increases the difficulty

of the correction task. On the other hand, when a model

prediction contains long consecutive sequences, especially of

insertions, this is an indication of model hallucinations.

For BLN600, the dataset where the models achieved good

results, we can see that the models predicted less insertions

Fig. 5: Per-Document Changes in CER with Change Ratio as

Color Axis for BLN600 using Llama 3.3 70B

than were expected. GPT-4o mini predicted less insertions,

but reached a higher CER reduction. This becomes clearer

when we look at the consecutive edit sequences with minimum

length k = 6 operations. These are likely not retrievable from

the OCR text. While GPT-4o mini applied 1.94 such sequences

per document with an average length of 9.32, a large portion

of these are pure “delete”, on average namely 1.55 sequence

per document with an average length of 9.89. This means

that the model sometimes deleted sequences of characters that

it deemed corrupted or illegible. On the other hand, it only

applied 0.09 pure insertion sequences with an average length

of 7.25.

For the same dataset, Llama 3.3 70B applied 2.87 con-

secutive edit sequences to such sequences with an average

length of 10.49. While a considerable part of these were pure

delete sequences as well, it also includes 0.26 pure insertion

sequences of this length. This means that the Llama model’s

corrections contain some hallucinations, even for the dataset

where we obtained a reduction in CER.

For the other datasets, the models do not achieve significant

reduction of the error rate. Considering the expected edit

operations and consecutive operations can give additional clues

concerning the difficulty of the correction task for the various

datasets. While the English-language ICDAR2019 and the

OCR-D-GT data both have a higher number of expected

consecutive operations, this is not the case for the German-

language subset of ICDAR2019, which actually requires a

large number of character substitutions, but few long con-

secutive transformation sequences. This means that missing

information due to sequences of errors is not the sole reason

116 COMMUNICATION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



for unsuccessful LLM-based Post-OCR correction.

Unfortunately, standard fine-tuning with ground truth data

encourages hallucinations instead of preventing them since

ground truths contain coherent, legible text that can in some

cases not be reconstructed from the OCR result alone. This

holds true for both of the fine-tuned models we employed, as

can be seen from the increased average number and length of

consecutive edit sequences.

Taking a deeper look at pure insertions sequences, such

“predicted” pure insertion sequences were usually of much

greater length than arbitrary consecutive operations and espe-

cially prominent for the fine-tuned models, as well as the base

Llama model for the German-language ICDAR2019 data. It

predicted an average of 1.55 pure insertion sequences with an

average length of 86.7 characters for this dataset.

While such insertion sequences indicate dangerous errors,

they are easy to fix, once we are aware of them since they

can easily be detected algorithmically without the need for

a ground truth. Of course, picking a threshold and reverting

insertion sequences above it, is a trade-off.

D. The Danger of LLMs as Post-OCR correctors – A concrete

example

We have seen that models can introduce long sequences of

characters to an OCR text. To show the effects of this, it is

useful to consider an example. An excerpt from a BLN600

page with the ground truth, OCR result, and two model

corrections are shown in Figure 6.

Both correctors fix the typical OCR error at the beginning

of the excerpt, transforming “(’harles” to “Charles”. They both

do not remove the hyphen for “Charles-street” seeing as the

other names of streets are hyphenated in the text. They also

both remove the duplicate “u” from “Trevor-squuare”. Then,

a passage with many errors starts. While the GPT model

removes some of the characters, it manages to reconstruct

some information and also keeps some illegible text. The

Llama model on the other hand, is determined to create

fluent legible text and hallucinates information for two full

sentences, even introducing a new person, Mr. Miller, who is

not mentioned anywhere in the OCR text. The model’s training

gives it a high incentive to create legible and grammatically

correct text which outweighs the instructions to only correct

OCR-induced error.

It should be mentioned that this excerpt is from one of

the highest-CER documents of the BLN600 corpus. Although

hallucinations of this scale are less likely in scenarios with

lower base error rates, and some models are more prone to

them than others, they can never be fully excluded.

VII. CONCLUSION AND FUTURE WORK

The paper presents the experiments in which LLMs were

used in the post-correction step of an OCR workflow. It has

been observed that when tasked with correcting errors in

OCR texts, these models often introduce new and qualitatively

different errors. However, the extent of these errors is relatively

Fig. 6: Highly erroneous excerpt from BLN document – GT

vs OCR vs GPT and Llama corrections

minor for certain datasets, particularly low-error English-

language texts that don’t deviate too from Standard English,

such as BLN600. These errors can, however, be partially

removed during post-processing. In addition, our preliminary

findings indicate that fine-tuning significantly enhances model

accuracy for the task of post-OCR correction, although it

introduces additional risks such as overfitting and potentially

increased hallucinations.

In subsequent studies, we intend to run LLMs locally to

retain more control. Furthermore, different fine-tuning ap-

proaches will be tested, including utilizing synthetic datasets,

which have demonstrated considerable potential in recent

studies [19]. Particular focus will be placed on the develop-

ment of a robust correction pipeline capable of consistently

reducing OCR errors in historical texts, while simultaneously

minimizing new model-induced errors.
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TABLE V: Macro-averaged Expected and Predicted Edit Operations

Dataset Model I / S / D Operations
Avg. # Consec. Ops Avg. Consec. Ops

Diffs ≥ 6 chars ≥ 6 chars Length

BLN600 llama-3.3-70b-instruct
Expected: 39.06 / 79.76 / 76.58 2.24 11.89

Predicted: 30.40 / 81.82 / 82.76 2.87 10.49

BLN600 gpt-4o-mini
Expected: 39.06 / 79.76 / 76.58 2.24 11.89

Predicted: 19.97 / 68.16 / 82.15 1.94 9.32

BLN600 gpt-4o-mini (fine-tuned)
Expected: 48.12 / 73.80 / 64.33 2.32 13.11

Predicted: 34.85 / 76.23 / 68.34 2.39 9.74

OCR-D-GT llama-3.3-70b-instruct
Expected: 71.04 / 60.35 / 64.15 5.87 16.19

Predicted: 18.28 / 43.80 / 33.30 1.16 14.37

OCR-D-GT gpt-4o-mini
Expected: 71.04 / 60.35 / 64.15 5.87 16.19

Predicted: 40.18 / 40.53 / 16.66 0.28 15.98

OCR-D-GT gpt-4o-mini (fine-tuned)
Expected: 85.94 / 79.37 / 91.53 8.16 16.17

Predicted: 559.94 / 164.76 / 53.82 22.67 26.80

ICDAR2019-DE llama-3.3-70b-instruct
Expected: 41.83 / 255.78 / 85.49 1.06 11.16

Predicted: 165.95 / 84.97 / 41.72 2.64 55.19

ICDAR2019-DE gpt-4o-mini
Expected: 41.83 / 255.78 / 85.49 1.06 11.16

Predicted: 13.10 / 31.61 / 18.16 0.29 17.83

ICDAR2019-EN llama-3.3-70b-instruct
Expected: 112.50 / 124.32 / 107.65 9.17 19.60

Predicted: 52.21 / 54.40 / 40.68 2.04 26.55

ICDAR2019-EN gpt-4o-mini
Expected: 112.50 / 124.32 / 107.65 9.17 19.60

Predicted: 19.44 / 39.07 / 42.53 1.23 18.92
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