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Abstract—This paper compares classical statistical models and
machine learning techniques for claim frequency estimation in
compulsory motor third-party liability insurance (MTPL). We
evaluate Generalized Linear Models (GLMs), Hurdle models,
and feedforward neural networks on real-world insurance data.
Emphasis is placed on the trade-off between interpretability and
predictive power, especially in segments with scarce data. Our
findings show that expert-driven data preparation enables GLMs
to perform competitively with complex neural networks. Hurdle
models further improve performance in zero-inflated settings.
While neural networks offer improved predictive performance in
some segments, they struggle in underrepresented ones. Results
highlight that careful preprocessing is as important as model
complexity.

Index Terms—claim frequency, motor third-party liability,
neural network, generalized linear model, hurdle model

I. RELATED WORK

C
LAIM frequency modeling in motor third-party liability
(MTPL) insurance has traditionally been dominated by

classical statistical techniques, especially Generalized Linear
Models (GLMs) [1]. These models are widely used due to
their interpretability and compatibility with insurance-specific
assumptions, such as the use of exposure as an offset and count
response distributions like Poisson or negative binomial.

To handle overdispersion and zero-inflated data, hurdle
models and zero-inflated Poisson models have been pro-
posed [2]. These models separate the claim occurrence process
from the frequency process and are particularly useful when
a large proportion of the policies report zero claims.

This research was supported by the grant no. F4/36/2025 which has been
provided by the Internal Grant Agency of the Prague University of Economics
and Business.

In recent years, machine learning (ML) techniques, includ-
ing random forests, gradient boosting, and neural networks,
have been introduced to actuarial problems [4]. Their flexi-
bility allows them to capture non-linearities and interactions
automatically, potentially leading to improved predictive per-
formance. However, the trade-off between predictive accuracy
and interpretability remains a critical consideration in insur-
ance applications.

Classical models have shown limitations in highly heteroge-
neous MTPL segments or in portfolios with high zero inflation.
This motivates exploration of machine learning methods which
might overcome these shortcomings by capturing complex
nonlinear interactions. This study investigates whether neural
networks and hybrid models offer significant improvements
over classical GLMs in MTPL frequency modeling, particu-
larly in underrepresented risk segments.

II. DATA AND METHODS

Modeling in actuarial science plays a key role in risk esti-
mation, pricing, and reserving within the insurance industry.
Traditionally, it relies on statistical methods using historical
data to predict future outcomes. A widely used framework is
the frequency-severity approach, where claim frequency and
severity are modeled separately [5]. This modular approach
supports flexible and interpretable analysis across various
insurance products.

Claim frequency modeling focuses on counting the number
of claims over a specific period or policy. Commonly used
models include the Poisson and negative binomial distribu-
tions, which accommodate different levels of dispersion in the
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data [1]. In the context of compulsory motor third-party liabil-
ity (MTPL) insurance, claim frequency is typically influenced
by observable risk factors such as driver age, accident history,
or region [6].

A prominent framework for frequency modeling is the
generalized linear model (GLM), which provides a flexible
yet interpretable approach to capturing linear effects on the
log scale [2]. However, insurance data often exhibit structural
properties such as excess zeros and overdispersion, which
GLMs may not sufficiently handle. To address these issues,
hurdle models [3] have been introduced as a semi-parametric
extension of GLMs, where zero and positive counts are
modeled separately. This two-part structure allows for more
robust modeling of claim occurrence and intensity, particularly
in MTPL datasets.

With the increasing availability of computational power
and large-scale data, modern machine learning techniques
such as neural networks have become attractive alternatives
for predictive modeling [7]. Although these models typi-
cally lack the interpretability of classical approaches, they
are capable of capturing nonlinear interactions and complex
relationships between predictors. Recently, their application
in actuarial science has gained attention, and comparative
studies of traditional and machine learning-based frequency
models have started to emerge [4]. This paper contributes to
this line of research by evaluating the performance of GLMs,
hurdle models, and feedforward neural networks in the task of
frequency modeling for MTPL insurance.

Since their introduction by Nelder and Wedderburn [8],
generalized linear models (GLMs) have become a standard
tool in actuarial modeling. They link the expected value of
a dependent variable to a linear combination of covariates
through a specified link function. GLMs support a variety
of distributions, including Poisson, Gamma, and Tweedie,
making them suitable for different types of insurance data.

Despite their strengths, GLMs may struggle with highly
sparse or zero-inflated data structures. In such contexts, hurdle
models offer a valuable alternative by explicitly modeling the
excess zeros separately from the positive outcomes. This is
particularly relevant in claim frequency modeling, where the
majority of policyholders may not report any claim, while
a smaller subset reports one or more claims.

With the growing availability of detailed policyholder and
behavioural data, new approaches such as neural networks
are increasingly considered. These models are capable of
capturing complex nonlinear relationships and interactions that
traditional methods may miss, thereby enhancing predictive
accuracy [9].

A. Claim Frequency modeling in Actuarial Science

In actuarial science, modeling the frequency of insurance
claims is traditionally addressed through count data models.
The fundamental statistical framework for this task begins with
the Poisson regression model, which assumes that the number
of claims Yi for observation i follows a Poisson distribution,

Yi ∼ Poisson(λi), with log(λi) = x
⊤
i
β, (1)

where λi represents the expected number of claims for i-th
observation, xi is a vector of covariates (such as age, region,
or vehicle type) of i-th observation, and β is a vector of
coefficients to be estimated [8]. This model is embedded in
the framework of generalized linear models (GLMs), which
relate to the conditional mean of the response variable to linear
predictors via a link function and specify a distribution from
the exponential family [2].

However, a common issue with real insurance data is
overdispersion, i.e., the variance of Yi exceeds the mean,
violating the commonly known Poisson assumption, i.e.,
E(Yi) = var(Yi). A standard solution is the negative binomial

model (NB), which introduces an additional parameter θ to
model the dispersion,

Yi ∼ NB(µi, θ),

log(µi) = x
⊤
i
β,

var(Yi) = µi +
µ2

i

θ
,

(2)

keeping the mathematical notation the same as before. The
NB model maintains the GLM structure and is estimated using
quasi-likelihood or maximum likelihood methods [1], [10].

In many practical applications, especially in motor third-
party liability (MTPL) insurance, datasets are zero-inflated:
a large proportion of policyholders report no claims. To
account for this, hurdle models [3] have become a useful
extension. A hurdle model separates the modeling of zeros
and positive counts. Formally, it combines

• a binary model for the probability of at least one claim,

P (Yi > 0) = πi, with logit(πi) = x
⊤
i
γ, (3)

• a truncated count model (typically truncated Poisson or
NB) for Yi | Yi > 0,

Yi | Yi > 0 ∼ ftrunc(µi), (4)

where πi is the probability that policyholder i reports at
least one claim, xi is the vector of explanatory variables
for policyholder i, γ is the parameter vector of the binary
component, µi is the conditional expected number of claims
given Yi > 0, and ftrunc(µi) denotes the probability distribution
of the count component truncated at zero (e.g., zero-truncated
Poisson or negative binomial) with mean µi.

This two-part model allows separate covariate effects for
claim occurrence and claim frequency conditional on having
a claim, offering greater flexibility.

More recently, neural networks and other machine learning

models have been explored in actuarial applications. Neural
networks estimate nonlinear functions of covariates without
requiring a prespecified parametric form,

ŷi = f(xi,θ) (5)

where f is a composite function defined by layers of transfor-
mations [7]. These models are particularly powerful in large
datasets with complex interactions, although they often lack
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TABLE I
SUMMARY OF KEY VARIABLES USED IN THE GLM

Variable Description

Vehicle power Engine power grouped into categories (e.g., <50,
50–74, 75–89, 90–109, 110+)

Vehicle weight Weight category of the vehicle in kilograms
Driver age Age group of the main driver (e.g., 18–22, 23–29,

..., 65+)
Driver–owner Whether the driver differs from the policyholder
Vehicle status Vehicle usage classification (e.g., personal, com-

pany)
Bonus–Malus Claim-free discount class (e.g., -1, 0–10, M1–M6)
Region Region category (e.g., Prague, Town, Rural)
Payment frequency Frequency of premium payments
Fuel type Type of fuel (e.g., petrol, diesel, other)

the interpretability of GLMs and often require regularization
to prevent overfitting.

While GLMs remain the backbone of actuarial modeling
due to their interpretability and regulatory acceptability, the
flexibility of hurdle models and the predictive power of neural
networks provide valuable complements, especially in large-
scale portfolios with heterogeneous policyholder characteris-
tics.

B. Data preprocessing

The data created for this paper are derived from real
data of the Czech compulsory liability insurance market and
include only passenger cars up to 3.5 tonnes. In total, 130,585
contracts have an aggregate insurance period equal to 115,492
years. Each contract specifies an exposure period expressed
as a fraction of a full year. These individual exposures are
aggregated across contracts to obtain the total insurance ex-
posure, also referred to as the aggregate insurance period.
Since compulsory liability insurance policies are typically
written for one year, the exposure values range from zero to
one. In the case of policyholder retention when the insured
renews coverage with the same insurer, the subsequent period
is treated as a new contract and includes information on the
policyholder’s prior behavior within the portfolio.

Each contract includes an exposure period, expressed as
a proportion of a full year, which is aggregated across policies
to form the total insurance exposure (referred to as the
aggregate insurance period).

An important aspect of data preparation step was the
transformation of selected continuous predictors into cate-
gorical variables. This expert-driven segmentation allowed
Generalized Linear Models (GLMs) to better capture non-
linear effects and improve interpretability. We refined them
based on observed claim frequency trends. While segmentation
increases the number of levels and requires a sufficient sample
size [11], the size of our dataset allowed for stable estimates.
Final category definitions were chosen to balance homogeneity
within groups and predictive performance.

C. Used models

In this section, we revisit principles and usages of the
models applicable for claim frequency estimation. Models’

overview is in Table II. The models are compared against
a homogeneous benchmark that assigns each policyholder the
average annual claim frequency observed in the training data.

D. Homogeneous model

In this study, a homogeneous model is used as a bench-
mark to evaluate the performance of more complex predictive
models. This baseline approach assigns the same predicted
annual claim frequency to every policyholder, specifically the
average claim frequency observed in the training data. The
homogeneous model does not incorporate any individual-level
features or covariates, effectively treating all policyholders as
identical with respect to risk.

E. Generalized Linear Model (GLM)

A generalized linear model was developed in a Poisson
regression framework to model claim frequencies, incorporat-
ing an offset to adjust for different exposure periods between
policies. Predictor variables representing policyholder and risk
characteristics were standardised prior to modeling to improve
numerical stability and ensure comparability of coefficient
estimates. An intercept term was explicitly included to capture
the baseline level of risk. The model links the expected number
of claims to the linear predictor via a logarithmic link function,
which is consistent with the canonical specification for Poisson
results.

The fitting was performed using a maximum likelihood
method [1] assuming a Poisson distribution, where the log-
arithm of exposure was treated as an offset to normalize
the number of claims by exposure duration. The resulting
model estimates were then used to generate predictions on
both the training and validation datasets, resulting in exposure-
adjusted expected claim frequencies. This approach supports
transparent derivation of risk factors and is consistent with
established actuarial methodologies for modeling frequencies,
providing a sound basis for pricing and reserving tasks.

F. Neural Networks

Feedforward neural networks were selected for their ability
to model smooth nonlinear relationships and their previous
application in insurance frequency modeling. Two neural net-
work models have been developed to improve the prediction
of claim frequencies by capturing complex non-linear relation-
ships in the data that traditional GLMs may not adequately
model. Both models use a feedforward architecture with three
hidden layers that progressively reduce dimensionality from
20 to 10 neurons, each using ReLU activation to introduce
nonlinearity. Importantly, the logarithm of the exposure was
incorporated as an additional input via concatenation before
the final output layer, ensuring that different policy exposure
times were accounted for analogously to offsets in the GLM.
The output layer applies an exponential transformation to
ensure a strictly positive prediction of the number of claims,
which is consistent with the Poisson modeling framework.

Both neural networks were trained using feedforward ar-
chitectures with exponential activation in the output layer to
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TABLE II
OVERVIEW OF FREQUENCY MODELS

Model Formula Description Setting

Homogeneous model E[Yi] = ȳ Baseline model assigning each poli-
cyholder the same average claim fre-
quency from training data.

No covariates. No offset. Serves as
a naive benchmark for comparison.

Generalized linear model

(GLM)
log(E[Yi]) = β0 + x

⊤

i
β + log(ei) Standard Poisson regression with log

link and offset for exposure. Captures
additive effects of standardized covari-
ates on log-scale.

Fitted via MLE. Offset: log(ei).
Exposure-adjusted prediction.
Standardized inputs. Intercept included.

Neural Network (NN) ŷi = exp(f(xi, log(ei))) Feedforward network with 3 hidden
layers and ReLU activation. Exposure
included as input; exponential output
ensures positivity.

Two variants: one with repeated 5x10
CV and Nadam optimization over 200
epochs, the other trained once with
early stopping at 150 epochs. Both use
Poisson loss. The number of epochs
was determined based on convergence
diagnostics and validation loss.

Hurdle model with GLM
Hurdle_GLM

P(Yi > 0 | xi) · E[Yi | Yi > 0,xi] Two-part model: logistic regression for
probability of claims; Poisson GLM (on
Yi > 0) for positive counts. Decouples
occurrence and frequency.

Binary part: calibrated logistic regres-
sion (Platt). Count part: Poisson GLM
with offset. Standardized inputs. Ap-
plied to positive-claim subsample.

Hurdle model with XGBoost

Hurdle_XG
P(Yi > 0 | xi) · E[Yi | Yi > 0,xi] As above, but second part is a gradient-

boosted zero-truncated Poisson model
via XGBoost. Captures nonlinearity and
interactions.

Binary: logistic with Platt scaling.
Count: XGBoost with custom zero-
truncated Poisson loss. Hyperparameter
tuning, early stopping, offset included.

ensure non-negative predictions, appropriate for count data.
The Poisson loss function was applied throughout, reflecting
the underlying assumption that claim counts follow a Poisson
distribution. Optimization was performed using the Nadam
algorithm [12].

The first model employed 5-fold cross-validation, repeated
10 times, to robustly estimate predictive performance. The
model was trained for 200 epochs with a batch size of 256. The
best configuration was selected based on minimum Poisson
deviance on validation folds.

The second model used the full training set and internal
validation split for early monitoring, trained over 150 epochs.
Both models integrated exposure as an input feature rather
than as an offset, ensuring compatibility across model classes.

G. Hurdle models

Hurdle modeling was implemented as a two-part approach
to effectively address the zero-inflation commonly observed
in claim frequency data. The first part consisted of a binary
classification model predicting the probability of a positive
number of claims versus zero claims. This classification was
primarily performed using logistic regression, enhanced with
calibration techniques such as Platt scaling [13] to improve
probabilistic accuracy. The model was trained on normalized
features and used to estimate the hurdle probability, i.e., the
probability that the policyholder reports at least one claim.

The second part modeled positive numbers of claims con-
ditional on non-zero occurrences. Initially, a classical Poisson
GLM was applied to a subset of the data with positive
counts, including exposure as an offset, to account for different
risk durations. Subsequently, more advanced Poisson models
with truncated zeros were explored using gradient boosting
machines (GBMs) implemented via XGBoost, which allow for
flexible nonlinear effects and complex interactions between

predictors. Extensive tuning of hyperparameters (gradient
boosting) - adjusting learning rate, tree depth, penalization,
undersampling frequency, and early stopping – was performed
to optimize predictive performance and avoid overfitting. GBM
models used truncated Poisson likelihood to correctly handle
the absence of zeros in the frequency component.

Predictions from the hurdle model combined the probability
of a positive count from the calibrated binary classifier with the
expected number of claims conditional on positivity from the
Poisson or zero truncation Poisson models. This product pro-
vided an overall frequency estimate that explicitly accounted
for zero inflation and heterogeneity in the incidence and sever-
ity of claims. Performance metrics, such as Poisson deviance
(defined in the following section), were calculated on both
training and test samples to evaluate fit and generalization.

The hurdle modeling approach employed combines a bi-
nary component modeling the probability of positive claim
counts with a zero-truncated count component predicting the
frequency given a claim occurs. The binary component used
logistic regression with Platt’s scaling calibration to accu-
rately estimate the probability of non-zero insurance claims,
effectively addressing zero inflation in the data. For positive
counts, both classical Poisson regressions and gradient boosted
Poisson models with zero truncation (via XGBoost) were used,
incorporating exposure as offset and using careful tuning of
hyperparameters to balance bias and variance. The final hurdle
prediction is the result of multiplying the predicted probabil-
ity of a claim occurrence by the expected claim frequency
conditional on positivity, allowing flexible and interpretable
modeling of claim frequency that decouples the occurrence
and severity processes while accounting for complex nonlinear
relationships and regularization to avoid overfitting.
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TABLE III
COMPARISON OF MODEL PERFORMANCE METRICS

Model In-sample Poisson Deviance Out-sample Poisson Deviance Average frequency

Homogeneous model 22.1 22.2 0.0354
NN_cat 19.6 20.2 0.0362
NN_nocat 19.5 19.9 0.0364
GLM 19.9 19.6 0.0362
Hurdle_cat_GLM 20.0 19.7 0.0329
Hurdle_cat_XG 20.3 20.1 0.0358
Hurdle_nocat_GLM 20.9 20.9 0.0338
Hurdle_nocat_XG 20.9 20.9 0.0333

H. Model validation

Model validation was conducted on an independent dataset
comprising approximately 39,176 contracts that were not used
during training, ensuring an unbiased evaluation of predictive
performance. Model accuracy was assessed using the Poisson
deviance metric, defined as

Poisson Deviance =
200

n

n
∑

i=1

(

ŷi − yi + yi log

(

yi

ŷi

))

, (6)

where yi are observed claim counts and ŷi are predicted
values. This measure is commonly used in actuarial science
and generalized linear modeling to quantify goodness-of-fit
for count data models under the Poisson assumption [2]. The
lower Poisson deviance is, the better predictive performance
a model does reach.

III. RESULTS

Based on the Poisson deviation, the homogeneous bench-
mark model performed worst, as expected – see Table III. It
predicted the same expected claim count for all policies, equal
to individual exposure times the average annual frequency in
training data (0.0354). Its out-of-sample Poisson deviation was
22.2, exceeding all other models.

In contrast, all other models — including GLM, neural
networks, and hurdle models — achieved lower deviance
values (⟨19, 21⟩) and better in-sample fit, with consistent av-
erage frequency on validation data (0.0355), indicating robust
training.

GLM and NN_cat, both using discretized inputs, produced
similar results and effectively modeled typical risk thresh-
olds. However, GLM proved more stable in low-frequency
segments, benefiting from regularization and pooling.

NN_nocat, trained on raw inputs, better captured smooth
trends but missed local discontinuities, such as a frequency
spike for drivers aged 40–50. This highlights the trade-off
between flexibility and the ability to model structural effects.

The hurdle models (hurdle_no_cat_GLM, hur-

dle_no_cat_XG) used categorised data and combined
a logistic part (claim occurrence) with a count part
(conditional frequency). This dual structure is standard for
handling excess zeros in insurance data, as mentioned before.

Both hurdle models reduced average predicted frequency
to match the validation set more closely, addressing the
tendency of other models to overestimate. Using domain-
informed segmentation, they responded well to risk changes.
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Fig. 1. Bonus segmentation: Models’ claim frequency predictions (coloured
lines) and segment exposures (grey bars).

The GLM-based hurdle model gave lower estimates than
XGBoost, suggesting a more conservative bias.

The Fig. 1 shows model predictions (lines) and relative
exposure sizes (bars) for each bonus-malus segment. Y-axis
represents claim frequency, and X-axis bonus level from 0
to 10. GLM closely tracked the observed trend, especially in
sparse segments like bonus 0 and 10. Neural networks slightly
underestimated in extreme segments and overestimated in mid-
range, reflecting sensitivity to data distribution.

Neural networks (models denoted as NN_cat and NN_nocat)
tend to slightly overestimate in segments with medium bonus
and slightly underestimate in very risky segments (especially
segment 0). For example, NN_cat predicts only 0.127 in
segment 0, which is clearly an underestimate relative to reality.
In contrast, in the middle segments 2-6, the predictions of
these models approximate the observed frequencies very well,
sometimes more accurately than the GLM. The accuracy in
the most overlapping segment of the bonus 10, for which it
predicts 0.170, is important. The model NN_nocat, working
with bonuses as numbers rather than as categorical categories,
was better able to estimate bonus zero and on average pre-
dicted 0.240, but worse for bonus 10 (0.207). It also failed to
capture non-monotonic fluctuations for bonus 8, for example.

Similarly, other models using numerical variables with-
out categorization, namely hurdle_nocat_XG and hur-

dle_nocat_GLM, failed to capture the bias in bonus 8. Models
using boosting stay relatively close to the other models in
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most segments, but systematically underestimate frequencies
in higher bonuses (lower risk). This was not the case for hur-

dle_nocat_GLM and both models significantly underestimated
the 0 bonus. In particular, the poor performance for bonus
0 highlighted a key weakness of hurdle models in sparsely
represented segments, where the two-stage structure increases
the risk of error.

Models based on the hurdle approach with categorical
numerical variables show higher variability. For the hur-

dle_cat_GLM or hurdle_cat_XG variants, there is a more
pronounced overestimation of atypical bonuses. The better
predictor of bonus damage frequency 0 was the hurdle_cat_XG

model, which estimated 0.214, while hurdle_cat_GLM also
underestimated with a prediction of 0.152. As a result, hur-

dle_cat_XG most closely resembled GLM in its predictions,
while hurdle_cat_GLM, often underestimated.

IV. DISCUSSION

The results show that traditional GLMs remain competitive
with more complex machine learning models when expert
knowledge is embedded in data preprocessing. In particular,
GLMs demonstrated strong performance in low-frequency
segments, where neural networks (NNs) often struggled due
to insufficient training data. GLMs benefit from coefficient
regularization and data pooling, which enhance extrapolation
in underrepresented segments and provide robustness against
overfitting.

In contrast, neural networks captured nonlinear trends in
better-populated regions of the feature space, but their predic-
tions were unstable in sparse areas.

A key observation is the trade-off between modeling smooth
relationships and preserving discontinuities. Models using raw
numerical inputs, such as NN_nocat or hurdle models with
continuous features, offered smooth approximations but failed
to capture local structural effects—like the spike in claim
frequency for policyholders aged 40–50 or bonus-specific
discontinuities.

Hurdle models, particularly those with gradient boosting
components (Hurdle_cat_XG), effectively addressed excess
zeros by separating claim occurrence from frequency. The
hurdle models generally provided lower average predicted
frequencies, aligning more closely with the validation set and
mitigating the tendency of other models to overestimate.

These findings reinforce the importance of domain-informed
feature engineering. Categorical transformations allowed mod-
els to capture nonlinearities more effectively and to respond
to behavioral thresholds commonly observed in actuarial data.
At the same time, the gap in performance between classical
and modern models suggests that complexity alone does not
guarantee better results. Interpretability, especially in regulated
environments, remains a crucial advantage of traditional mod-
els.

Future work may investigate ensemble approaches, inter-
pretability tools for neural networks, or applications of ex-
plainable AI techniques to bridge the gap between predictive
power and transparency in complex models.

V. CONCLUSION

This study compared classical and modern approaches for
claim frequency estimation in MTPL insurance using real-
world Czech data. The results show that Generalized Linear
Models, supported by domain-informed preprocessing, remain
strong contenders in predictive tasks, particularly in sparse or
regulated segments.

While neural networks and hurdle models offer greater
flexibility and potential in modeling complex patterns, they
are more sensitive to data sparsity and less transparent. The
experiments demonstrate that modeling success depends not
only on algorithmic complexity but also on careful feature
engineering and understanding of the domain.

Future research should explore hybrid or interpretable ma-
chine learning models that can combine the predictive power
of modern methods with the robustness and clarity required in
actuarial practice.
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