
Static components dependency graph detection with

evaluation metrics in React.js projects

Łukasz Kurant

Department of Cyber Security and Computational Linguistics

University of Maria Curie-Sklodowska

Pl. M. Curie-Skłodowskiej 5, 20-031 Lublin, Poland

Email: lukasz.kurant@mail.umcs.pl

Abstract—The popularity of libraries and frameworks for
JavaScript and Typescript introduces completely new problems
and tasks that can be solved using code analysis. Static type
of this process has a plenty of applications, and despite of
dynamic or hybrid methods, it has the significant advantages
of simplicity, high performance and does not require a list
of tests to work properly. One of the frameworks for the
mentioned languages is React.js, which introduces a component-
based architecture that allows the creation of isolated parts of
the user interface in the form of functions or classes that meet
specific requirements. In this paper, we describe an algorithm
we have developed to detect relationships between components
and create a dependency graph. Its performance was validated by
comparison with a manually created graph, achieving an average
F1 value of 0,95. We also conducted a performance analysis of
the proposed solution. In order to correctly assess the impact of
a component on the rest of the system both locally and globally,
we have introduced five component evaluation metrics that
provide important information when designing and changing the
architecture of a front-end application. The developed algorithm
and metrics can be useful tools for software architects and
engineers, providing information about design interdependencies
and the influence of individual components on parts of the system.

I. INTRODUCTION

JAVASCRIPT is currently one of the most popular pro-

gramming languages [1]. Its popularity is due to its

usability and cross-platform nature – code written in JavaScript

can be run on a variety of devices including servers, rather

than exclusively in browsers as in the past. The popularity of

front-end frameworks and libraries such as [2], [3] or back-end

frameworks such as [4] enables the code to be synchronized

and easier to understand among software development teams.

Also, the popularity of running code on different platforms,

e.g. using frameworks such as [5], allows software production

costs to be optimized, making it a frequent choice not only

for smaller companies, but also for large corporations.

Because of the nature of the JavaScript language (its mech-

anisms that differ from most common languages and its mem-

ory management system, i.e. weak and dynamic typing), the

community has led to the creation of a number of languages

that are a superset of the language. An example is Typescript,

which has seen a huge surge in popularity in recent years [1],

or other languages compiled into JavaScript like CoffeeScript.

Static code analysis is challenging due to problems caused

by dynamic types or asynchronous mechanisms, which only

affect the real values in memory when the code is running.

Among the purposes of such analysis, we can mention the

detection of defects in code [6], automatic refactoring [7] or

the detection of security threats [8]. Among the tasks that

are useful to carry out such an analysis is the construction

of a call graph, which describes the connections between

different functions in a program. While the construction of

such structure in the case of strongly typed languages such

as Java is quite standardized and studied (due to the ease

of analyzing the inheritance chains of individual classes), in

the case of JavaScript [9], due to prototypical inheritance

and lexical or dynamic scope of visibility (depending on the

context), it is significantly difficult to construct such a graph

in a static way [10]. Alternatives may be to use dynamic

construction of such a graph or hybrid methods [6], which

requires running the code and performing in-memory address

analysis, which is sometimes difficult due to the need to build,

for example, tests that will offer high code coverage.

All of these issues also lead to problems with event-based

flow, i.e. HTML Document Object Model (DOM) operations

often require the use of event listeners on DOM tree nodes that

are reflected in the HTML document in the browser. Thanks

to the use of frameworks or libraries, developers are able to

create more clear code, and interfere more easily with the

DOM tree. The main concept behind the React library is use

of components, i.e. functions or classes that follow a certain

life cycle and can be used to generate a node in the DOM

tree. Components are independent parts of code that represent

a way to encapsulate client-side / UI-related logic, i.e. they

extract part of the code, but they work in an isolated way

and have to return code that enables the generation (called

rendering) of a certain part of the user interface. When we

use components, we work on them independently, and then

we can use them to create a more complex component, up to

a parent component that contains the whole user interface.

The appropriate design of such components therefore has an

impact on the performance and scalability of the entire system,

making it necessary to skilfully design the entire architecture

when working with them. However, due to the above properties

of the JavaScript language, this can often be a difficult process,

because of the possibility of dynamically changing the location

in memory of such a component definition or the ambiguity

of certain component names or properties. Hence, there is

Communication Papers of the 20th Conference on Computer
Science and Intelligence Systems (FedCSIS) pp. 127–134

DOI: 10.15439/2025F5264
ISSN 2300-5963 ACSIS, Vol. 45

©2025, PTI 127 Thematic Session: Advances in Programming Languages

a need to define the relationships between components in such

a way as to assess how they affect the rest of the system

and how potential changes carried out by the programmer will

have unintended consequences. A detailed description of the

applications and advantages of having component dependency

graph information is presented in the next chapter.

The objective of this article is to create a tool to stati-

cally detect components in JavaScript and TypeScript code,

thereby creating a dependency graph between the components

themselves. With the knowledge of such relationships, we are

able to introduce metrics for evaluating a component in terms

of its impact on other components. The detection algorithm

itself is based on a static analysis of the Abstract Syntax Tree

AST. The use of such a structure, due to the information on

the structure of the code, makes it easier to find the parts of

the code that allow components to be identified. However, by

also creating a plug-in for the IDE, we have the possibility

of graphically representing a related group of components,

which has a significant impact on the work of developers and

software architects.

II. MOTIVATION

When developing modern web or mobile projects in React,

especially large enterprise projects, understanding the structure

and interconnectedness of components becomes one of the

critical challenges that directly affects the work of developers

and software architects. As applications evolve, developers

often lose a complete overview of the dependencies between

components. Tools that offer component analysis of such

applications allow proactive detection of potential architecture

issues before they become costly to fix, enabling better plan-

ning of refactorings and code upgrades. In [11] the authors

analysed data from 43 developers showing that a significant

proportion of their wasted working time is spent managing

technical debt, and that the prevention of technical debt has a

direct impact on their morale. One method of preventing such

debt is refactoring and risk and impact analysis.

In [12], the positive impact of project technical documen-

tation on the error rate of developers was demonstrated. It

is, therefore, an important task to create technical project

documentation, and the use of any tools to facilitate this pro-

cess can significantly improve the process. Knowledge from

such documentation can be used by developers and architects

to identify sensitive parts of the system and make informed

decisions about breaking down or combining components at

the design stage, or evaluating the solution at a later stage,

e.g. during code review.

III. DEFINITIONS

A basic structure, commonly used by compilers and in-

terpreters and therefore having a strong influence on their

operation, is the Abstract Syntax Tree (AST), a data structure

representing the abstract structure of source code written in a

formal language, resulting from syntactic analysis of the text.

Each node of this tree represents a selected language con-

struct, and its descendants the components of such construct.

Unlike the language code itself, such trees do not contain less

important parts such as punctuation or delimiters. However,

they very often contain information about the position of

each element in the code, which has a positive effect on the

work of the compiler by allowing useful error messages to be

output [13].

A. Components

In the React library, a component is a function or class

that contains some part of code, and which returns some user

interface element. In JavaScript, classes are purely so-called

syntax sugar and are an overlay that works with prototypes and

functions, making it easier for developers. So we can reduce

a component K purely to a certain function K(P) → X ,

where P is a non-mutable set of component properties (also

abbreviated as props) and the return type X is a certain

interface element. The purpose of such a component is to allow

the simple creation of some reusable element that will be used

to render a node in the DOM tree.

To create a component, we can use the JSX syntax, which is

an extension of the JavaScript syntax with the ability to insert

markup code (this is the solution recommended by the React

library creators, although not the only one). JSX resembles

a template-based language, but it provides the full capabilities

of JavaScript itself. An example component is shown in Listing

1. This component is called Main and returns some JSX code,

using a dependency of another component. As components

can refer to other components when returning a result, this

allows the same component abstraction to be used at any level

of detail. Any component that has been rendered is subject

to certain component lifecycle mechanisms, i.e. we have the

possibility to detect and react to situations occurring in the

component, such as the moment after it has been mounted

(rendered), updated or before it has been unmounted.

B. Component dependency relationship

If the rendering of component K1 leads to the rendering

with its use in the DOM tree of component K2 (it is not

a matter of importing a function of the component or using

it in another context), then we can define that K1 ← K2,

and that means there is a relationship in which K1 is the

ancestor of K2. Let us call such a relationship as a component

dependency relationship. K2 can be rendered independently,

but rendering K1 in selected cases will lead to K2 being

rendered. Whether or not a component is rendered depends

1 import React from 'react';
2 import ChildComponent from './ChildComponent';

3

4 function Main(props) {

5 return (

6 <div>

7 <ChildComponent />

8 {props.name}

9 </div>

10);

11 }

Listing 1. Code for a sample component using JSX syntax

128 COMMUNICATION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

1 import React from 'react';
2 import ChildComponent from './ChildComponent';

3

4 function Main(props) {

5 if(props.shouldChildBeRendered) {

6 return <ChildComponent />

7 }

8

9 return <div />

10 }

Listing 2. Component code with rendering condition

on the logic in ancestor itself. Listing 2 shows an example –

component K2 will only be rendered if the value passed to

the component is true, but the usage relation is still fulfilled.

C. Components dependency relations graph (CDG)

A component graph is a directed graph G = (V,E) that

represents a usage relationship between components, where

V is the set of vertices representing the components, e.g.

V = {C1, C2, ..., Cn} and E ⊆ V × V is the set of edges

representing the relationships between the components. The

edge (Ci, Cj) E exists if and only if component Ci imports

and uses component Cj in its rendering structure. Any number

of edges can come out of each vertex, which symbolises the

connection of a component to another by being able to render

it when rendering its ancestor. An example of a graphical

representation of such a graph is shown in Figure 1.

In the case of projects that are a collection of independent

components (such as UI frameworks), very often such a graph

will consist of independent subgraphs not connected by any

usage relationship. It is also possible for cycles to occur in

specific cases – sometimes components have the ability to

render themselves or other components using that component.

Of course, cyclicity is not mentioned on the DOM tree,

but in the definition of the component function itself, under

appropriate conditions, such a situation can already occur.

IV. APPROACH

The basis of our proposed algorithm is an AST tree, which

we have used the @typescript-eslint/typescript-estree library to

generate. Going through the selected nodes of such a tree for

a given file, we have the possibility to search and mark certain

elements, which will be used to detect components and create

relations between them. Once an AST tree has been prepared

for a selected file (each such file is analysed only once), the

algorithm proceeds to analyse the code present in such a file,

detecting those elements that serve to identify the component

code. The algorithm then proceeds to analyse the code of

potential components detecting instances of other components

based on JSX tags. The final step is to go to files that contain

Fig. 1. Example graph of components dependency relations

definitions of components whose use has been detected, but

whose definitions are missing from the file currently being

analysed.

A. AST tree analysis process

The main purpose of the AST tree analysis is to search

selected important structures from a problem-solving perspec-

tive. Among these, we can specify the analysis of imports,

exports, functions, classes, expressions and variable declara-

tions.

1) Imports: The algorithm processes all imported elements

into the file. An important element of such an analysis is the

support of both default and detailed imports, in addition to the

possibility of adding aliases. It is also important to provide

support for so-called path aliases provided by plug-ins for the

Babel (the JavaScript compiler to its other standards), which

are very common in projects to ensure code readability. Instead

of using a very deep relative path, we can create an alias to

a specific directory, which will be replaced at the compilation

stage by Babel.

2) Functions and classes: Any file-level function can be

treated as a potential component – it all depends on whether it

contains key elements about it (JSX tag syntax). In some cases,

anonymous functions or function expressions, such analysis is

more difficult due to the heavier linking to the label and to

another component. The same is true for classes. As the use of

classes is currently less common in the React library, however,

it is easier to detect that a class is a component due to the need

to inherit from a ReactComponent or ReactPureComponent

classes.

3) Expressions and variable declarations: In the case of

expression analysis, it is not necessary to process every ex-

pression that is available in JavaScript or Typescript. However,

many of them, such as function calls, conditional statements,

loops, object expressions and others must be analysed. Among

these are also markup expressions from JSX syntax, which

may (but need not) indicate that the function or class they are

in is actually used as a component. In addition, since certain

expressions including function expressions may be assigned

to variables, such analysis is also necessary.

4) Export expressions: As with import expressions, we

need to know which potential functions and classes are avail-

able externally in other files and how we can link them on

the component dependency graph. To this end, it is important

to detect such declarations and link them to the file in which

they are located.

B. Component detection

Detecting a potential descendant of a component, is notable

in that, in order to add such a connection, we need to check

whether the detected component in JSX syntax actually exists

at file level. To do this, the node in which the component

(parent) is located is first searched for elements whose name

(or alias) overlaps with the component used. When it is not

found, the other children of the file node are then checked,

and finally the imported elements. A detailed implementation

ŁUKASZ KURANT: STATIC COMPONENTS DEPENDENCY GRAPH DETECTION WITH EVALUATION METRICS IN REACT.JS PROJECTS 129

1 Main (./Main.tsx)
2 <- Common1 (./Common1.tsx)

3 Main (./Main.tsx)

4 <- LocalComponent (./Main.tsx)

5 Common1 (./Common1.tsx)

6 <- Common2 (./Common2.tsx)

Listing 3. Component code with rendering condition

of the algorithm has been made publicly available by us [14]

and can be used to verify our results.

C. Mode of operation

The algorithm operates in two modes: file and directory

level. In the first, we start the analysis from a specific file,

moving on to other files when necessary, i.e. when an imported

element has been marked as a component. The choice of start

file depends on the user’s own choice of where to start the

analysis. The second type detects all files in a given directory

and subdirectories and performs a full analysis of all such

files – this means that we can find such dependency graphs

that are not related to each other. The choice of starting point

is irrelevant here, as the algorithm will go through all the files

in the selected directory anyway.

The result of the algorithm is a set of relations in a format

resembling the DOT format, but also allowing the identifi-

cation of nodes with the same names by additionally adding

information about the file in which the component is located.

An example of such a result is available in Listing 3.

V. METRICS

In the React library, the creation of versatile, scalable and

reusable components is an important part of the developers’

work and affects the entire application design. Each com-

ponent should therefore follow certain rules and implement

good practices of code writing. In order to make it possible to

evaluate such portions of code in terms of their impact on parts

of the system, we propose metrics that allow us to evaluate

such parts of the system, based on the component dependency

graph. Such information is extremely useful for the design of

the architecture of the whole application and allows us to find

fragile of the systems, the modification of which may cause

unforeseen effects in different parts of the application, often

separated from each other.

A. Component evaluation measures

For any component K, which is a node VK in the com-

ponent dependency graph, we can introduce the following

metrics to assess its dependency:

1) Local component complexity, LLC(K) – We can

define as the number of external components that have

been used directly in the K component, which is the

same as the number of edges starting from the VK vertex

of the graph.

2) Cluster component complexity, CCC(K) – We can

define as the number of independent components that

will be rendered when component K is rendered, the

same as the number of vertices we can reach in the

subgraph starting from vertex VK .

3) Local component dependence, LCD(K) – The num-

ber of external components that use the K component

directly, the same as the number of edges entering the

VK vertex.

4) Cluster component dependence, CCD(K) – The

number of external components that use the component

directly or indirectly, which is the same as the number

of vertices from which we can go to vertex VK in the

dependency graph.

5) Component dependency cyclicity, CDC(K) – The

length of the smallest cycle in the graph of components

from vertex VK . For example, a value of 0, is a com-

ponent that never renders itself when rendering, 1 when

the component directly renders itself, 2 when another

component whose component K uses renders it, etc.

Each of the metrics given will be used to individually assess

the impact of the component on the system.

B. Results evaluation measures

Among the experiment proposed next, in order to compare

the performance of the algorithm with a dataset prepared

manually, let’s also introduce standard metrics for evaluating

the results:

1) Precision – Ratio of correctly classified elements to all

positively classified elements:

Precision =
TP

TP + FP

where TP means True Positive samples, while FP

means False Positives.

2) Recall – Ratio of elements correctly recognized to all

that should be classified as correct:

Recall =
TP

TP + FN

where FN means False Negatives samples.

3) F1 – The harmonic mean of precision and recall, ex-

pressed by the formula:

F1 = 2 ∗
Precision ∗Recall

Precision+Recall

VI. EXPERIMENTS

To test the functioning of the algorithm, we prepared a set

of experiments comparing the result obtained by manual

code review to the results returned by the algorithm. Ten

different open source projects from Github with different

dependencies were used for this purpose, both in terms of

language (JavaScript or TypeScript) and purpose (Web or

Mobile). A detailed list of projects and information about

them is presented in Table I. The projects have been chosen

to provide real examples of projects developed in industry,

incorporating different versions of the React or React Native

library.Note that the Number of JS/TS Files (NoF) or number

of associated Lines of Code (LoC) is not correlated with the

130 COMMUNICATION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

TABLE I
LIST OF PROJECTS USED TO TEST THE ALGORITHM

Name Link Description Libs versions Stars NoF LoC

Ant design https://github.com/ant-design/ant-design component library React 18.3.1 91.2k 3589 215020

Prismane https://github.com/prismaneui/prismane component library React 18.2.0 335 603 20984

Whisper client https://github.com/Dun-sin/Whisper/ chat app React 18.2.0 354 60 11340

Noteslify (web) https://github.com/bytemakers/Noteslify digital note app React 17.0.1 + React
Native 0.64.3

125 120 56932

DeveloperFolio https://github.com/saadpasta/developerFolio portfolio template React 16.10.2 5.2k 105 23415

React-play https://github.com/reactplay/react-play learning to program React 18.2.0 1.3k 909 78208

Feelio https://github.com/baqx/feelio/ digital diary React 18.2.0 + React
Native 0.74.3

32 48 17614

Linky https://github.com/kwsong0113/imagine gesture-based
launcher

React 18.2.0 + React
Native 0.71.4

165 186 10647

Peyara mouse https://github.com/ayonshafiul/peyara-mouse-client remote mouse React 18.2.0 + React
Native 0.74.3

6 83 3756

Chain React https://github.com/infinitered/ChainReactApp2023 event app React 18.2.0 108 126 11729

Fig. 2. Number of components in ant-design based on groups of metric values

number of components, as there may also be other files in the

project, such as documentation or tests.

The projects were marked up by us manually and then

a verification was performed. The data prepared in this way

was saved in exactly the same format as the returned algorithm

format described earlier. The algorithm was then run on the

projects in directory mode and the results were compared with

those done manually.

A. Performance measurement

In parallel, in order to measure the memory usage and

execution time of the algorithm, three different designs were

generated that contain a medium, large and very large num-

ber of components, so as to investigate how the resource

requirements will increase as a function of the number of

components, which are the same as the number of files (each

file contains only one component, using a random number

of other components). Details of the designs are described in

Table III. The tools were run on a MacBook Pro with an 8-

core Intel Core i9 processor (2.3GHz) and 16GB RAM. To

measure the execution time of the algorithm, we used the

recommended performance.now() function, and to measure the

memory usage process.memoryUsage(), which allows us to not

only examine the amount of memory used by the execution of

the process, but also the memory heap and external memory

usage of the JavaScript engine.

B. Results

The results of the experiments, together with the values of

the main metrics for the open source projects, are presented in

Table IV. The first columns compare the values of the number

of manually marked components (MC) to the number detected

by the algorithm (AC). As we can see, the precision (P) is in

most cases always equal to 1, but the recall (R) counts drop in

a size that depends on the selected project (thus also affecting

the F1 metric). This is important as it indicates problems with

the capture of certain groups of relations by the algorithm itself

(described below). As we can see, the precision and recall

results are very good, and most of the relationships from the

manual tagging were included in the algorithm results.

Additional results for component measurement metrics are

shown in Table II. These results were divided for each metric

into three values: the arithmetic mean of the metric (avg), the

median (med) and the maximum value (max). As can be seen,

ŁUKASZ KURANT: STATIC COMPONENTS DEPENDENCY GRAPH DETECTION WITH EVALUATION METRICS IN REACT.JS PROJECTS 131

TABLE II
RESULTS OF COMPONENTS METRICS FOR PROJECTS

Name
LLC CCC LCD CCD CDC

avg med max avg med max avg med max avg med max avg med max

ant-design 1.25 1 13 4.52 1 51 1.25 1 13 4.52 1 47 0.02 0 2

prismane 1.39 1 7 3.41 2 18 1.39 0 42 3.41 0 108 0.00 0 0

whisper 1.14 0 13 3.54 0 56 1.14 1 3 3.54 3 7 0.00 0 0

noteslify 1.84 1 17 2.61 1 35 1.84 1 9 2.61 1 17 0.00 0 0

developer-folio 1.54 1 18 3.44 1 38 1.54 1 14 3.44 2 18 0.00 0 0

react-play 1.31 0 19 4.15 0 132 1.31 1 11 4.15 4 19 0.00 0 0

feelio 2.53 2 11 2.86 2 13 2.53 1 19 2.86 1 19 0.00 0 0

linky 3.16 2 15 7.74 3 37 3.16 1 31 7.74 2 52 0.01 0 1

peyara-mouse 1.89 1 12 2.15 1 17 1.89 1 19 2.15 1 19 0.00 0 0

chain-react 2.40 2 7 6.37 4 28 2.40 1 38 6.37 2 54 0.02 0 1

TABLE III
LIST OF GENERATED PROJECTS

Name NoF LoC

medium-sized-project 181 3003

large-sized-project 431 7916

extra-large-sized-project 1141 26885

in special cases a component can be related to up to dozens of

other components. Also worth adding is the value of the CDC

metric, which only in two projects has a value greater than 0.

From this it follows that cycles at the component level are very

rare. Also an important finding is that the average number of

components used directly or indirectly by a component (CCC

metric) is equal to the average number of components that have

a relationship with one of their ancestors (CCD metric) – this

follows directly from the graph structure itself.

TABLE IV
RESULTS OF KEY METRICS FOR PROJECTS

Name MC AC P R F1

ant-design 470 427 0.944 0.886 0.914

prismane 228 188 1.000 0.825 0.904

whisper 76 65 1.000 0.878 0.935

noteslify 71 70 1.000 0.986 0.993

developer-folio 65 63 1.000 0.969 0.984

react-play 204 197 1.000 0.975 0.987

feelio 100 91 1.000 0.910 0.953

linky 335 307 1.000 0.927 0.962

peyara-mouse-client 148 123 1.000 0.837 0.911

chain-react-app 231 197 1.000 0.864 0.927

Average 193 173 0.994 0.906 0.947

In addition, we carried out a detailed analysis for the

largest library ant-design used. The graphs in Figure 2 show

the number of components in groups for the LLC, CCC,

LCD, CCD metrics. As we can see, the largest group are

components having 0-5 descendants, and components having

16 and more are a smaller percentage. Such components

are much more complex and have higher dependencies so

changing them in the future may cause more problems – this

is important information on which components or parts of the

system should receive more attention in regression testing.

For performance tests, the results look as in Table V. To

describe memory consumption, the following four measures

were introduced: resident set size (RSS) – the total memory

allocated to process execution; total allocated heap size (SAH);

actual memory used during execution (AME) and V8 external

memory (EM) - the memory used by the JavaScript Engine. As

can be seen, the algorithm works efficiently even with large

projects. This is a definite advantage of static solutions, as

it allows real-time monitoring of changes in the component

relationship graph even during the code development process.

The memory consumption is also not excessive, as the main

purpose of the memory is to keep the graph modelling

structures on the heap. Loading the files themselves, once

the analysis is complete, is not necessary and the resources

reserved for processing them can be released.

VII. LIMITATIONS

Based on the results presented, we can conclude that the

algorithm is performing well enough. However, it encountered

some problems in its effects, resulting in an inability to

recognise the correct relationship between components.

1) Assigning a component to another memory location:

The biggest problem with component detection is assigning

a definition to a different location in memory, whether using

a variable or an object. For example, if we have code that

looks like below. This is a rather simplified example, but it

is nevertheless very difficult to statically check what New-

132 COMMUNICATION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

TABLE V
PERFORMANCE TEST RESULTS

Name Time (ms) RSS SAH AME EM

medium-sized-project 241 122.14 MB 73.69 MB 47.64 MB 1.92 MB

large-sized-project 456 137.46 MB 82.94 MB 56.44 MB 1.94 MB

extra-large-sized-project 740 174.04 MB 119.69 MB 88.42 MB 1.95 MB

NameOfComponent actually points to in memory, due to the

dynamic properties of JavaScript.

1 const NewNameOfComponent = OldComponent;
2 const Component = () =>

3 <NewNameOfComponent />;

Listing 4. Example of different memory location

2) Compbound components: A very popular design pattern

used in the design of component architectures is the so-called

compbound components. Using this design pattern, we create

a single shared state that is made available to all components

that require it in order to work together to achieve a specific

result. Since in JavaScript a function is also an object, we have

the possibility of assigning another component to a selected

field, which also makes it difficult to find the right link.

1 const Select = () => <div />;
2 const Option = () => ;

3 Select.Option = Option;

4

5 const Component = () => (

6 <Select>

7 <Select.Option />

8 </Select>

9);

Listing 5. Example of compbound component pattern

3) Parts of the code rendered natively: In the case of

React Native applications, components are transformed to

their native counterparts, so that the use of certain native

components can result in a lack of relationship detection if

the rendering process is behind a JavaScript thread. This is

particularly evident when creating navigation using the react-

navigation library.

4) Component factories: Another quite common pattern

used in React.js is the factory, allowing a component to be

built based on an additional function that returns a component

definition. In this case, it is difficult to define such a link

between components if its definition is somewhere deeper in

the code block.

1 const componentFactory(params) = () => {
2 // ...

3 function newComponent(props) {

4 return <div />;

5 }

6 // ...

7 return newComponent;

8 }

Listing 6. Example of component factory

5) Components created without JSX: Since JSX is currently

the most popular solution for creating projects, we omitted

from the algorithm support for creating components using the

createElement function built into React.js. This is a very rare

solution, used only in special cases in commercial projects.

6) Other import mechanisms: JavaScript prior to ES6 mod-

ules using the import keyword, made it possible to create

modules and import them in other ways, such as using

the require keyword, which is now widely used in Node.js

libraries. However, due to React.js, and the practical lack of

use of such a method in projects, we skipped support for this

type of syntax.

VIII. RELATED RESEARCH

In the literature, we can find many examples of the use of

static code analysis to detect various elements in JavaScript

and TypeScript code, but due to the specific nature of the

language and its dynamic behaviour, they differ significantly

from examples for other languages, especially strongly typed

languages such as Java or C++. Among the many applications

of such analysis, we can mention the detection of bugs [6],

dead code [15] (code not used in the project) or security

vulnerabilities [16]. Often, in combination with dynamic meth-

ods, they give significantly better results [6]. Due to the large

number of libraries and frameworks for JavaScript, there are

many problems that need to be solved.

Among the problems that still have not been fully solved is,

for example, call graph detection, i.e. the creation of relations

between functions - due to the nature of the language, this is

still a very difficult process, for which static [17], dynamic,

hybrid [6] and even machine learning methods are used [18].

As JavaScript often works with other technologies, it is also

a challenge to create multilingual links between programs

using other solutions [19].

Missing from these problems, there are considerations for

building component graphs and analysing their results. This

is important because React.js is currently the most popular

front-end library [20], so optimising the architecture process

is an important and highly relevant task for later development.

Among the solutions to this problem, one [21] library can

currently be found, but it is not supported and offers a limited

ability to build links based on a single file only. It also lacks

support for class components and other expressions, making

it difficult to build a sufficiently accurate relationship graph

between components. Thus, it is not sufficient to take a holistic

view of the architecture of the entire application. In [22],

the authors have proposed a Component Graph (CoG), which

ŁUKASZ KURANT: STATIC COMPONENTS DEPENDENCY GRAPH DETECTION WITH EVALUATION METRICS IN REACT.JS PROJECTS 133

allows the creation of a graph of the data flow in a React

component, but it is a graph that shows the processes in

a single component based on the component’s life cycle, rather

than the relations between components.

IX. FUTURE WORK

Potential further developments include the use of dynamic

or hybrid (static together with dynamic) methods to detect

relationships between components. This has the potential

to partially solve the problems mentioned in the previous

sections. Another potential tool to verify in the future could

be the use of [23] to extract relevant information from the

component code and compare it with the solution used.

Another direction is the combination of methods to detect

component usage between different technologies, e.g. React

Native allows components to be rendered on the native side,

making the detection of connections between JavaScript and

Typescript code and native code, for example in Java and

Kotlin on Android or Objective C and Swift on iOS, also

a very challenging task. When developing code, tools such

as [24] are often used to dynamically check the relationships

between components in the component tree, but this does not

give full information about the conditional relationships that

we can learn about when statically analysing the code, but

using this method in practice could also be a good direction

for research.

X. CONCLUSIONS

In this article, we presented a method for component

detection using a proprietary algorithm analysing JavaScript

and TypeScript code to detect potential component candidates

and then marking connections between them based on an AST

tree analysis. We compared the results of the algorithm with

the analysis performed manually by a human. In addition, we

introduced metrics for assessing component complexity and

dependencies, thus introducing the possibility of evaluating

a component in terms of its impact on other parts of the

system. The code of our algorithm is available on a public

repository [14]. In addition, in order to verify its use in

practical applications, we have created a plug-in for Visual

Studio Code [25], which allows simple use of the program for

practical purposes.

REFERENCES

[1] “Octoverse: The top programming languages:
https://octoverse.github.com/2022/top-programming-languages,”
2023. [Online]. Available: https://octoverse.github.com/2022/top-
programming-languages

[2] “React, the library for web and native user interfaces: https://react.dev.”
[Online]. Available: https://react.dev

[3] “Angular framework website: https://angular.dev.” [Online]. Available:
https://angular.dev

[4] “Node.js website.” [Online]. Available: https://nodejs.org/en

[5] “React native website: https://reactnative.dev.” [Online]. Available:
https://reactnative.dev

[6] G. Antal, Z. Tóth, P. Hegedűs, and R. Ferenc, “Enhanced bug prediction
in javascript programs with hybrid call-graph based invocation metrics,”
2024. [Online]. Available: https://arxiv.org/abs/2405.07244

[7] A. Feldthaus, T. Millstein, A. Møller, M. Schäfer, and
F. Tip, “Tool-supported refactoring for javascript,” SIGPLAN Not.,
vol. 46, no. 10, p. 119–138, oct 2011. [Online]. Available:
https://doi.org/10.1145/2076021.2048078

[8] V. Haratian, P. Derakhshanfar, V. Kovalenko, and E. Tüzün,
“Refexpo: Unveiling software project structures through advanced
dependency graph extraction,” 2024. [Online]. Available:
https://arxiv.org/abs/2407.02620

[9] M. Chakraborty, R. Olivares, M. Sridharan, and B. Hassanshahi,
“Automatic root cause quantification for missing edges in
javascript call graphs (extended version),” 2022. [Online]. Available:
https://arxiv.org/abs/2205.06780

[10] A. Feldthaus, M. Schäfer, M. Sridharan, J. Dolby, and F. Tip, “Efficient
construction of approximate call graphs for javascript ide services,” in
2013 35th International Conference on Software Engineering (ICSE),
2013, pp. 752–761.

[11] T. Besker, H. Ghanbari, A. Martini, and J. Bosch, “The influence
of technical debt on software developer morale,” Journal of Systems

and Software, vol. 167, p. 110586, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121220300674

[12] D. Che, “Automatic documentation generation from source code,” Ph.D.
dissertation, 01 2016.

[13] J. Jones, “Abstract syntax tree implementation idioms,” Pattern

Languages of Program Design, 2003, proceedings of the 10th
Conference on Pattern Languages of Programs (PLoP2003)
http://hillside.net/plop/plop2003/papers.html. [Online]. Available:
http://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf

[14] L. Kurant, “Component dependency graph.” [Online]. Available:
https://github.com/lukaszkurantdev/components-dependency-graph

[15] I. Malavolta, K. Nirghin, G. L. Scoccia, S. Romano, S. Lombardi,
G. Scanniello, and P. Lago, “Javascript dead code identification, elim-
ination, and empirical assessment,” IEEE Transactions on Software

Engineering, vol. 49, no. 7, pp. 3692–3714, 2023.
[16] A. Møller and M. Schwarz, “Automated detection of client-state ma-

nipulation vulnerabilities,” in 2012 34th International Conference on

Software Engineering (ICSE), 2012, pp. 749–759.
[17] G. Antal, P. Hegedűs, Z. Tóth, R. Ferenc, and T. Gyimóthy, “Static

javascript call graphs: A comparative study,” 2024. [Online]. Available:
https://arxiv.org/abs/2405.07206

[18] A. M. Mir, M. Keshani, and S. Proksch, “On the effectiveness of
machine learning-based call graph pruning: An empirical study,” 2024.
[Online]. Available: https://arxiv.org/abs/2402.07294

[19] A. M. Bogar, D. M. Lyons, and D. Baird, “Lightweight call-graph
construction for multilingual software analysis,” 2018. [Online].
Available: https://arxiv.org/abs/1808.01213

[20] “Developer ecosystem javascript survey,” 2023. [Online]. Available:
https://www.jetbrains.com/lp/devecosystem-2023/javascript/

[21] “React component analyzer library: https://github.com/activeguild/react-
component-analyzer.” [Online]. Available:
https://github.com/activeguild/react-component-analyzer

[22] Z. Guo, M. Kang, V. Venkatakrishnan, R. Gjomemo, and Y. Cao,
“Reactappscan: Mining react application vulnerabilities via component
graph,” in Proceedings of the 2024 on ACM SIGSAC Conference on

Computer and Communications Security, ser. CCS ’24. New York,
NY, USA: Association for Computing Machinery, 2024, p. 585–599.
[Online]. Available: https://doi.org/10.1145/3658644.3670331

[23] “Codeql: https://codeql.github.com.” [Online]. Available:
https://codeql.github.com

[24] “React developer tools: https://react.dev/learn/react-developer-tools.”
[Online]. Available: https://react.dev/learn/react-developer-tools

[25] L. Kurant, “Component dependency graph vscode plugin.” [Online].
Available: https://github.com/lukaszkurantdev/components-dependency-
graph-vscode

134 COMMUNICATION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025

