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Abstract—The popularity of libraries and frameworks for
JavaScript and Typescript introduces completely new problems
and tasks that can be solved using code analysis. Static type
of this process has a plenty of applications, and despite of
dynamic or hybrid methods, it has the significant advantages
of simplicity, high performance and does not require a list
of tests to work properly. One of the frameworks for the
mentioned languages is React.js, which introduces a component-
based architecture that allows the creation of isolated parts of
the user interface in the form of functions or classes that meet
specific requirements. In this paper, we describe an algorithm
we have developed to detect relationships between components
and create a dependency graph. Its performance was validated by
comparison with a manually created graph, achieving an average
F1 value of 0,95. We also conducted a performance analysis of
the proposed solution. In order to correctly assess the impact of
a component on the rest of the system both locally and globally,
we have introduced five component evaluation metrics that
provide important information when designing and changing the
architecture of a front-end application. The developed algorithm
and metrics can be useful tools for software architects and
engineers, providing information about design interdependencies
and the influence of individual components on parts of the system.

I. INTRODUCTION

AVASCRIPT is currently one of the most popular pro-
J gramming languages [1]. Its popularity is due to its
usability and cross-platform nature — code written in JavaScript
can be run on a variety of devices including servers, rather
than exclusively in browsers as in the past. The popularity of
front-end frameworks and libraries such as [2], [3] or back-end
frameworks such as [4] enables the code to be synchronized
and easier to understand among software development teams.
Also, the popularity of running code on different platforms,
e.g. using frameworks such as [5], allows software production
costs to be optimized, making it a frequent choice not only
for smaller companies, but also for large corporations.

Because of the nature of the JavaScript language (its mech-
anisms that differ from most common languages and its mem-
ory management system, i.e. weak and dynamic typing), the
community has led to the creation of a number of languages
that are a superset of the language. An example is Typescript,
which has seen a huge surge in popularity in recent years [1],
or other languages compiled into JavaScript like CoffeeScript.

Static code analysis is challenging due to problems caused
by dynamic types or asynchronous mechanisms, which only
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affect the real values in memory when the code is running.
Among the purposes of such analysis, we can mention the
detection of defects in code [6], automatic refactoring [7] or
the detection of security threats [8]. Among the tasks that
are useful to carry out such an analysis is the construction
of a call graph, which describes the connections between
different functions in a program. While the construction of
such structure in the case of strongly typed languages such
as Java is quite standardized and studied (due to the ease
of analyzing the inheritance chains of individual classes), in
the case of JavaScript [9], due to prototypical inheritance
and lexical or dynamic scope of visibility (depending on the
context), it is significantly difficult to construct such a graph
in a static way [10]. Alternatives may be to use dynamic
construction of such a graph or hybrid methods [6], which
requires running the code and performing in-memory address
analysis, which is sometimes difficult due to the need to build,
for example, tests that will offer high code coverage.

All of these issues also lead to problems with event-based
flow, i.e. HTML Document Object Model (DOM) operations
often require the use of event listeners on DOM tree nodes that
are reflected in the HTML document in the browser. Thanks
to the use of frameworks or libraries, developers are able to
create more clear code, and interfere more easily with the
DOM tree. The main concept behind the React library is use
of components, i.e. functions or classes that follow a certain
life cycle and can be used to generate a node in the DOM
tree. Components are independent parts of code that represent
a way to encapsulate client-side / Ul-related logic, i.e. they
extract part of the code, but they work in an isolated way
and have to return code that enables the generation (called
rendering) of a certain part of the user interface. When we
use components, we work on them independently, and then
we can use them to create a more complex component, up to
a parent component that contains the whole user interface.

The appropriate design of such components therefore has an
impact on the performance and scalability of the entire system,
making it necessary to skilfully design the entire architecture
when working with them. However, due to the above properties
of the JavaScript language, this can often be a difficult process,
because of the possibility of dynamically changing the location
in memory of such a component definition or the ambiguity
of certain component names or properties. Hence, there is
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a need to define the relationships between components in such
a way as to assess how they affect the rest of the system
and how potential changes carried out by the programmer will
have unintended consequences. A detailed description of the
applications and advantages of having component dependency
graph information is presented in the next chapter.

The objective of this article is to create a tool to stati-
cally detect components in JavaScript and TypeScript code,
thereby creating a dependency graph between the components
themselves. With the knowledge of such relationships, we are
able to introduce metrics for evaluating a component in terms
of its impact on other components. The detection algorithm
itself is based on a static analysis of the Abstract Syntax Tree
AST. The use of such a structure, due to the information on
the structure of the code, makes it easier to find the parts of
the code that allow components to be identified. However, by
also creating a plug-in for the IDE, we have the possibility
of graphically representing a related group of components,
which has a significant impact on the work of developers and
software architects.

II. MOTIVATION

When developing modern web or mobile projects in React,
especially large enterprise projects, understanding the structure
and interconnectedness of components becomes one of the
critical challenges that directly affects the work of developers
and software architects. As applications evolve, developers
often lose a complete overview of the dependencies between
components. Tools that offer component analysis of such
applications allow proactive detection of potential architecture
issues before they become costly to fix, enabling better plan-
ning of refactorings and code upgrades. In [11] the authors
analysed data from 43 developers showing that a significant
proportion of their wasted working time is spent managing
technical debt, and that the prevention of technical debt has a
direct impact on their morale. One method of preventing such
debt is refactoring and risk and impact analysis.

In [12], the positive impact of project technical documen-
tation on the error rate of developers was demonstrated. It
is, therefore, an important task to create technical project
documentation, and the use of any tools to facilitate this pro-
cess can significantly improve the process. Knowledge from
such documentation can be used by developers and architects
to identify sensitive parts of the system and make informed
decisions about breaking down or combining components at
the design stage, or evaluating the solution at a later stage,
e.g. during code review.

III. DEFINITIONS

A basic structure, commonly used by compilers and in-
terpreters and therefore having a strong influence on their
operation, is the Abstract Syntax Tree (AST), a data structure
representing the abstract structure of source code written in a
formal language, resulting from syntactic analysis of the text.
Each node of this tree represents a selected language con-
struct, and its descendants the components of such construct.
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Unlike the language code itself, such trees do not contain less
important parts such as punctuation or delimiters. However,
they very often contain information about the position of
each element in the code, which has a positive effect on the
work of the compiler by allowing useful error messages to be
output [13].

A. Components

In the React library, a component is a function or class
that contains some part of code, and which returns some user
interface element. In JavaScript, classes are purely so-called
syntax sugar and are an overlay that works with prototypes and
functions, making it easier for developers. So we can reduce
a component K purely to a certain function K(P) — X,
where P is a non-mutable set of component properties (also
abbreviated as props) and the return type X is a certain
interface element. The purpose of such a component is to allow
the simple creation of some reusable element that will be used
to render a node in the DOM tree.

To create a component, we can use the JSX syntax, which is
an extension of the JavaScript syntax with the ability to insert
markup code (this is the solution recommended by the React
library creators, although not the only one). JSX resembles
a template-based language, but it provides the full capabilities
of JavaScript itself. An example component is shown in Listing
1. This component is called Main and returns some JSX code,
using a dependency of another component. As components
can refer to other components when returning a result, this
allows the same component abstraction to be used at any level
of detail. Any component that has been rendered is subject
to certain component lifecycle mechanisms, i.e. we have the
possibility to detect and react to situations occurring in the
component, such as the moment after it has been mounted
(rendered), updated or before it has been unmounted.

B. Component dependency relationship

If the rendering of component K leads to the rendering
with its use in the DOM tree of component Ky (it is not
a matter of importing a function of the component or using
it in another context), then we can define that K < Ko,
and that means there is a relationship in which K; is the
ancestor of K. Let us call such a relationship as a component
dependency relationship. Ko can be rendered independently,
but rendering K7 in selected cases will lead to Ko being
rendered. Whether or not a component is rendered depends

1 import React from 'react';
import ChildComponent from './ChildComponent';

3

4 function Main (props) {

5 return (

6 <div>

7 <ChildComponent />

8 <span>{props.name}</span>
9 </div>

10 )

1}

Listing 1. Code for a sample component using JSX syntax
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| import React from 'react';
import ChildComponent from './ChildComponent';

2
3
4 function Main (props) {

5 if (props.shouldChildBeRendered) {
6 return <ChildComponent />
7

8

9

}

return <div />

10 }

Listing 2. Component code with rendering condition

on the logic in ancestor itself. Listing 2 shows an example —
component K5 will only be rendered if the value passed to
the component is true, but the usage relation is still fulfilled.

C. Components dependency relations graph (CDG)

A component graph is a directed graph G = (V, E) that
represents a usage relationship between components, where
V is the set of vertices representing the components, e.g.
V ={C1,Cy,...,Cp} and E C V x V is the set of edges
representing the relationships between the components. The
edge (C;,C;) E exists if and only if component C; imports
and uses component C in its rendering structure. Any number
of edges can come out of each vertex, which symbolises the
connection of a component to another by being able to render
it when rendering its ancestor. An example of a graphical
representation of such a graph is shown in Figure 1.

In the case of projects that are a collection of independent
components (such as UI frameworks), very often such a graph
will consist of independent subgraphs not connected by any
usage relationship. It is also possible for cycles to occur in
specific cases — sometimes components have the ability to
render themselves or other components using that component.
Of course, cyclicity is not mentioned on the DOM tree,
but in the definition of the component function itself, under
appropriate conditions, such a situation can already occur.

IV. APPROACH

The basis of our proposed algorithm is an AST tree, which
we have used the @typescript-eslint/typescript-estree library to
generate. Going through the selected nodes of such a tree for
a given file, we have the possibility to search and mark certain
elements, which will be used to detect components and create
relations between them. Once an AST tree has been prepared
for a selected file (each such file is analysed only once), the
algorithm proceeds to analyse the code present in such a file,
detecting those elements that serve to identify the component
code. The algorithm then proceeds to analyse the code of
potential components detecting instances of other components
based on JSX tags. The final step is to go to files that contain

( Third

Fig. 1. Example graph of components dependency relations

Second ” Main

definitions of components whose use has been detected, but
whose definitions are missing from the file currently being
analysed.

A. AST tree analysis process

The main purpose of the AST tree analysis is to search
selected important structures from a problem-solving perspec-
tive. Among these, we can specify the analysis of imports,
exports, functions, classes, expressions and variable declara-
tions.

1) Imports: The algorithm processes all imported elements
into the file. An important element of such an analysis is the
support of both default and detailed imports, in addition to the
possibility of adding aliases. It is also important to provide
support for so-called path aliases provided by plug-ins for the
Babel (the JavaScript compiler to its other standards), which
are very common in projects to ensure code readability. Instead
of using a very deep relative path, we can create an alias to
a specific directory, which will be replaced at the compilation
stage by Babel.

2) Functions and classes: Any file-level function can be
treated as a potential component — it all depends on whether it
contains key elements about it (JSX tag syntax). In some cases,
anonymous functions or function expressions, such analysis is
more difficult due to the heavier linking to the label and to
another component. The same is true for classes. As the use of
classes is currently less common in the React library, however,
it is easier to detect that a class is a component due to the need
to inherit from a ReactComponent or ReactPureComponent
classes.

3) Expressions and variable declarations: In the case of
expression analysis, it is not necessary to process every ex-
pression that is available in JavaScript or Typescript. However,
many of them, such as function calls, conditional statements,
loops, object expressions and others must be analysed. Among
these are also markup expressions from JSX syntax, which
may (but need not) indicate that the function or class they are
in is actually used as a component. In addition, since certain
expressions including function expressions may be assigned
to variables, such analysis is also necessary.

4) Export expressions: As with import expressions, we
need to know which potential functions and classes are avail-
able externally in other files and how we can link them on
the component dependency graph. To this end, it is important
to detect such declarations and link them to the file in which
they are located.

B. Component detection

Detecting a potential descendant of a component, is notable
in that, in order to add such a connection, we need to check
whether the detected component in JSX syntax actually exists
at file level. To do this, the node in which the component
(parent) is located is first searched for elements whose name
(or alias) overlaps with the component used. When it is not
found, the other children of the file node are then checked,
and finally the imported elements. A detailed implementation
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(./Main.tsx)
<- Commonl (./Commonl.tsx)
Main (./Main.tsx)

1 Main
2
3
4 <- LocalComponent (./Main.tsx)
s
6

5 Commonl (./Commonl.tsx)

<- Common2 (./Common2.tsx)

Listing 3. Component code with rendering condition

of the algorithm has been made publicly available by us [14]
and can be used to verify our results.

C. Mode of operation

The algorithm operates in two modes: file and directory
level. In the first, we start the analysis from a specific file,
moving on to other files when necessary, i.e. when an imported
element has been marked as a component. The choice of start
file depends on the user’s own choice of where to start the
analysis. The second type detects all files in a given directory
and subdirectories and performs a full analysis of all such
files — this means that we can find such dependency graphs
that are not related to each other. The choice of starting point
is irrelevant here, as the algorithm will go through all the files
in the selected directory anyway.

The result of the algorithm is a set of relations in a format
resembling the DOT format, but also allowing the identifi-
cation of nodes with the same names by additionally adding
information about the file in which the component is located.
An example of such a result is available in Listing 3.

V. METRICS

In the React library, the creation of versatile, scalable and
reusable components is an important part of the developers’
work and affects the entire application design. Each com-
ponent should therefore follow certain rules and implement
good practices of code writing. In order to make it possible to
evaluate such portions of code in terms of their impact on parts
of the system, we propose metrics that allow us to evaluate
such parts of the system, based on the component dependency
graph. Such information is extremely useful for the design of
the architecture of the whole application and allows us to find
fragile of the systems, the modification of which may cause
unforeseen effects in different parts of the application, often
separated from each other.

A. Component evaluation measures

For any component K, which is a node Vi in the com-
ponent dependency graph, we can introduce the following
metrics to assess its dependency:

1) Local component complexity, LLC(K) — We can
define as the number of external components that have
been used directly in the K component, which is the
same as the number of edges starting from the Vi vertex
of the graph.

2) Cluster component complexity, CCC(K) — We can
define as the number of independent components that
will be rendered when component K is rendered, the
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same as the number of vertices we can reach in the
subgraph starting from vertex Vi .

3) Local component dependence, LC' D(K) — The num-
ber of external components that use the K component
directly, the same as the number of edges entering the
Vi vertex.

4) Cluster component dependence, CCD(K) - The
number of external components that use the component
directly or indirectly, which is the same as the number
of vertices from which we can go to vertex Vi in the
dependency graph.

5) Component dependency cyclicity, C DC(K) - The
length of the smallest cycle in the graph of components
from vertex V. For example, a value of 0, is a com-
ponent that never renders itself when rendering, 1 when
the component directly renders itself, 2 when another
component whose component K uses renders it, etc.

Each of the metrics given will be used to individually assess
the impact of the component on the system.

B. Results evaluation measures

Among the experiment proposed next, in order to compare
the performance of the algorithm with a dataset prepared
manually, let’s also introduce standard metrics for evaluating
the results:

1) Precision — Ratio of correctly classified elements to all

positively classified elements:

TP
TP+ FP
where T'P means True Positive samples, while F'P
means False Positives.

2) Recall — Ratio of elements correctly recognized to all
that should be classified as correct:

TP
TP+ FN
where F'N means False Negatives samples.

3) F1 — The harmonic mean of precision and recall, ex-
pressed by the formula:

Precision =

Recall =

Precisi
Pl 9y recision x Recall

Precision + Recall

VI. EXPERIMENTS

To test the functioning of the algorithm, we prepared a set
of experiments comparing the result obtained by manual
code review to the results returned by the algorithm. Ten
different open source projects from Github with different
dependencies were used for this purpose, both in terms of
language (JavaScript or TypeScript) and purpose (Web or
Mobile). A detailed list of projects and information about
them is presented in Table I. The projects have been chosen
to provide real examples of projects developed in industry,
incorporating different versions of the React or React Native
library.Note that the Number of JS/TS Files (NoF) or number
of associated Lines of Code (LoC) is not correlated with the
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TABLE I
LIST OF PROJECTS USED TO TEST THE ALGORITHM

Name Link Description Libs versions Stars | NoF | LoC

Ant design https://github.com/ant-design/ant-design component library React 18.3.1 91.2k | 3589 | 215020

Prismane https://github.com/prismaneui/prismane component library React 18.2.0 335 603 20984

Whisper client https://github.com/Dun-sin/Whisper/ chat app React 18.2.0 354 60 11340

Noteslify (web) https://github.com/bytemakers/Noteslify digital note app React 17.0.1 + React | 125 120 56932
Native 0.64.3

DeveloperFolio https://github.com/saadpasta/developerFolio portfolio template React 16.10.2 5.2k 105 23415

React-play https://github.com/reactplay/react-play learning to program | React 18.2.0 1.3k 909 78208

Feelio https://github.com/baqx/feelio/ digital diary React 18.2.0 + React | 32 48 17614
Native 0.74.3

Linky https://github.com/kwsong01 13/imagine gesture-based React 18.2.0 + React | 165 186 10647

launcher Native 0.71.4

Peyara mouse https://github.com/ayonshafiul/peyara-mouse-client | remote mouse React 18.2.0 + React | 6 83 3756
Native 0.74.3

Chain React https://github.com/infinitered/ChainReactApp2023 | event app React 18.2.0 108 126 11729
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Fig. 2. Number of components in ant-design based on groups of metric values

number of components, as there may also be other files in the
project, such as documentation or tests.

The projects were marked up by us manually and then
a verification was performed. The data prepared in this way
was saved in exactly the same format as the returned algorithm
format described earlier. The algorithm was then run on the
projects in directory mode and the results were compared with
those done manually.

A. Performance measurement

In parallel, in order to measure the memory usage and
execution time of the algorithm, three different designs were
generated that contain a medium, large and very large num-
ber of components, so as to investigate how the resource
requirements will increase as a function of the number of
components, which are the same as the number of files (each
file contains only one component, using a random number
of other components). Details of the designs are described in
Table III. The tools were run on a MacBook Pro with an 8-
core Intel Core i9 processor (2.3GHz) and 16GB RAM. To
measure the execution time of the algorithm, we used the
recommended performance.now() function, and to measure the

memory usage process.memoryUsage(), which allows us to not
only examine the amount of memory used by the execution of
the process, but also the memory heap and external memory
usage of the JavaScript engine.

B. Results

The results of the experiments, together with the values of
the main metrics for the open source projects, are presented in
Table IV. The first columns compare the values of the number
of manually marked components (MC) to the number detected
by the algorithm (AC). As we can see, the precision (P) is in
most cases always equal to 1, but the recall (R) counts drop in
a size that depends on the selected project (thus also affecting
the F1 metric). This is important as it indicates problems with
the capture of certain groups of relations by the algorithm itself
(described below). As we can see, the precision and recall
results are very good, and most of the relationships from the
manual tagging were included in the algorithm results.

Additional results for component measurement metrics are
shown in Table II. These results were divided for each metric
into three values: the arithmetic mean of the metric (avg), the
median (med) and the maximum value (max). As can be seen,
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TABLE 1I
RESULTS OF COMPONENTS METRICS FOR PROJECTS
Name LLC cce LCD CcCD cDC
avg med | max | avg med | max | avg med | max | avg med | max | avg med | max
ant-design 125 | 1 13 452 | 1 51 125 | 1 13 452 | 1 47 002 | 0 2
prismane 1.39 | 1 7 341 | 2 18 1.39 | O 42 341 | 0 108 0.00 | O 0
whisper 1.14 | 0 13 354 | 0 56 1.14 | 1 3 354 | 3 7 0.00 | O 0
noteslify 1.84 | 1 17 2.61 1 35 1.84 | 1 9 2.61 1 17 0.00 | O 0
developer-folio | 1.54 | 1 18 344 | 1 38 1.54 | 1 14 344 | 2 18 0.00 | O 0
react-play 131 | O 19 415 | 0 132 1.31 1 11 415 | 4 19 0.00 | O 0
feelio 253 | 2 11 2.86 | 2 13 253 |1 19 2.86 | 1 19 0.00 | O 0
linky 3.16 | 2 15 774 | 3 37 316 | 1 31 774 | 2 52 0.01 | O 1
peyara-mouse 1.89 | 1 12 215 | 1 17 1.89 | 1 19 215 | 1 19 0.00 | O 0
chain-react 240 | 2 7 6.37 | 4 28 240 | 1 38 6.37 | 2 54 0.02 | 0 1
TABLE III In addition, we carried out a detailed analysis for the
LIST OF GENERATED PROJECTS largest library ant-design used. The graphs in Figure 2 show
Name NoF | LoC the number of corpponents in groups for the LLC, CCC,
LCD, CCD metrics. As we can see, the largest group are
medium-sized-project 181 | 3003 components having 0-5 descendants, and components having
large-sized-project 431 | 116 16 and more are a smaller percentage. Such components
extra-large-sized-project | 1141 | 26885 are much more complex and have higher dependencies so

in special cases a component can be related to up to dozens of
other components. Also worth adding is the value of the CDC'
metric, which only in two projects has a value greater than 0.
From this it follows that cycles at the component level are very
rare. Also an important finding is that the average number of
components used directly or indirectly by a component (CCC'
metric) is equal to the average number of components that have
a relationship with one of their ancestors (C'C'D metric) — this
follows directly from the graph structure itself.

TABLE IV
RESULTS OF KEY METRICS FOR PROJECTS

Name MC | AC | P R F1

ant-design 470 | 427 | 0.944 | 0.886 | 0914
prismane 228 | 188 | 1.000 | 0.825 | 0.904
whisper 76 65 1.000 | 0.878 | 0.935
noteslify 71 70 1.000 | 0.986 | 0.993
developer-folio 65 63 1.000 | 0.969 | 0.984
react-play 204 | 197 | 1.000 | 0.975 | 0.987
feelio 100 | 91 1.000 | 0.910 | 0.953
linky 335 | 307 | 1.000 | 0.927 | 0.962
peyara-mouse-client | 148 123 | 1.000 | 0.837 | 0911
chain-react-app 231 197 | 1.000 | 0.864 | 0.927
Average 193 | 173 | 0994 | 0.906 | 0.947

changing them in the future may cause more problems — this
is important information on which components or parts of the
system should receive more attention in regression testing.

For performance tests, the results look as in Table V. To
describe memory consumption, the following four measures
were introduced: resident set size (RSS) — the total memory
allocated to process execution; total allocated heap size (SAH);
actual memory used during execution (AME) and V8 external
memory (EM) - the memory used by the JavaScript Engine. As
can be seen, the algorithm works efficiently even with large
projects. This is a definite advantage of static solutions, as
it allows real-time monitoring of changes in the component
relationship graph even during the code development process.
The memory consumption is also not excessive, as the main
purpose of the memory is to keep the graph modelling
structures on the heap. Loading the files themselves, once
the analysis is complete, is not necessary and the resources
reserved for processing them can be released.

VII. LIMITATIONS

Based on the results presented, we can conclude that the
algorithm is performing well enough. However, it encountered
some problems in its effects, resulting in an inability to
recognise the correct relationship between components.

1) Assigning a component to another memory location:
The biggest problem with component detection is assigning
a definition to a different location in memory, whether using
a variable or an object. For example, if we have code that
looks like below. This is a rather simplified example, but it
is nevertheless very difficult to statically check what New-
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TABLE V
PERFORMANCE TEST RESULTS

Name Time (ms) | RSS SAH AME EM

medium-sized-project 241 122.14 MB | 73.69 MB 47.64 MB | 1.92 MB
large-sized-project 456 137.46 MB | 82.94 MB 56.44 MB | 1.94 MB
extra-large-sized-project | 740 174.04 MB | 119.69 MB | 88.42 MB | 1.95 MB

NameOfComponent actually points to in memory, due to the
dynamic properties of JavaScript.
1 const NewNameOfComponent =

2 const Component = () =>
3 <NewNameOfComponent />;

OldComponent;

Listing 4. Example of different memory location

2) Compbound components: A very popular design pattern
used in the design of component architectures is the so-called
compbound components. Using this design pattern, we create
a single shared state that is made available to all components
that require it in order to work together to achieve a specific
result. Since in JavaScript a function is also an object, we have
the possibility of assigning another component to a selected
field, which also makes it difficult to find the right link.
const Select () => <div />;

const Option () => <span />;
Select.Option = Option;

const Component = () => (
<Select>
<Select.Option />
</Select>
)i

B - NV R S SO

Listing 5. Example of compbound component pattern

3) Parts of the code rendered natively: In the case of
React Native applications, components are transformed to
their native counterparts, so that the use of certain native
components can result in a lack of relationship detection if
the rendering process is behind a JavaScript thread. This is
particularly evident when creating navigation using the react-
navigation library.

4) Component factories: Another quite common pattern
used in React.js is the factory, allowing a component to be
built based on an additional function that returns a component
definition. In this case, it is difficult to define such a link
between components if its definition is somewhere deeper in
the code block.

1 const componentFactory (params) = () => {
Jél/mction newComponent (props) {

return <div />;
I

return newComponent;

® 9 v B W

Listing 6. Example of component factory

5) Components created without JSX: Since JSX is currently
the most popular solution for creating projects, we omitted
from the algorithm support for creating components using the
createElement function built into React.js. This is a very rare
solution, used only in special cases in commercial projects.

6) Other import mechanisms: JavaScript prior to ES6 mod-
ules using the import keyword, made it possible to create
modules and import them in other ways, such as using
the require keyword, which is now widely used in Node.js
libraries. However, due to React.js, and the practical lack of
use of such a method in projects, we skipped support for this
type of syntax.

VIII. RELATED RESEARCH

In the literature, we can find many examples of the use of
static code analysis to detect various elements in JavaScript
and TypeScript code, but due to the specific nature of the
language and its dynamic behaviour, they differ significantly
from examples for other languages, especially strongly typed
languages such as Java or C++. Among the many applications
of such analysis, we can mention the detection of bugs [6],
dead code [15] (code not used in the project) or security
vulnerabilities [16]. Often, in combination with dynamic meth-
ods, they give significantly better results [6]. Due to the large
number of libraries and frameworks for JavaScript, there are
many problems that need to be solved.

Among the problems that still have not been fully solved is,
for example, call graph detection, i.e. the creation of relations
between functions - due to the nature of the language, this is
still a very difficult process, for which static [17], dynamic,
hybrid [6] and even machine learning methods are used [18].
As JavaScript often works with other technologies, it is also
a challenge to create multilingual links between programs
using other solutions [19].

Missing from these problems, there are considerations for
building component graphs and analysing their results. This
is important because React.js is currently the most popular
front-end library [20], so optimising the architecture process
is an important and highly relevant task for later development.
Among the solutions to this problem, one [21] library can
currently be found, but it is not supported and offers a limited
ability to build links based on a single file only. It also lacks
support for class components and other expressions, making
it difficult to build a sufficiently accurate relationship graph
between components. Thus, it is not sufficient to take a holistic
view of the architecture of the entire application. In [22],
the authors have proposed a Component Graph (CoG), which
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allows the creation of a graph of the data flow in a React
component, but it is a graph that shows the processes in
a single component based on the component’s life cycle, rather
than the relations between components.

IX. FUTURE WORK

Potential further developments include the use of dynamic
or hybrid (static together with dynamic) methods to detect
relationships between components. This has the potential
to partially solve the problems mentioned in the previous
sections. Another potential tool to verify in the future could
be the use of [23] to extract relevant information from the
component code and compare it with the solution used.
Another direction is the combination of methods to detect
component usage between different technologies, e.g. React
Native allows components to be rendered on the native side,
making the detection of connections between JavaScript and
Typescript code and native code, for example in Java and
Kotlin on Android or Objective C and Swift on iOS, also
a very challenging task. When developing code, tools such
as [24] are often used to dynamically check the relationships
between components in the component tree, but this does not
give full information about the conditional relationships that
we can learn about when statically analysing the code, but
using this method in practice could also be a good direction
for research.

X. CONCLUSIONS

In this article, we presented a method for component
detection using a proprietary algorithm analysing JavaScript
and TypeScript code to detect potential component candidates
and then marking connections between them based on an AST
tree analysis. We compared the results of the algorithm with
the analysis performed manually by a human. In addition, we
introduced metrics for assessing component complexity and
dependencies, thus introducing the possibility of evaluating
a component in terms of its impact on other parts of the
system. The code of our algorithm is available on a public
repository [14]. In addition, in order to verify its use in
practical applications, we have created a plug-in for Visual
Studio Code [25], which allows simple use of the program for
practical purposes.

REFERENCES

[1] “Octoverse: The top programming languages:
https://octoverse.github.com/2022/top-programming-languages,”
2023. [Online]. Available: https://octoverse.github.com/2022/top-
programming-languages

[2] “React, the library for web and native user interfaces: https://react.dev.”
[Online]. Available: https://react.dev

[3] “Angular framework website: https://angular.dev.” [Online]. Available:
https://angular.dev

[4] “Node.js website.” [Online]. Available: https://nodejs.org/en

[S] “React native website: https://reactnative.dev.” [Online]. Available:
https://reactnative.dev

[6]

[7

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

[25]

COMMUNICATION PAPERS OF THE FEDCSIS. KRAKOW, POLAND, 2025

G. Antal, Z. Téth, P. Heged(s, and R. Ferenc, “Enhanced bug prediction
in javascript programs with hybrid call-graph based invocation metrics,”
2024. [Online]. Available: https://arxiv.org/abs/2405.07244

A. Feldthaus, T. Millstein, A. Mgller, M. Schifer, and
F. Tip, “Tool-supported refactoring for javascript,” SIGPLAN Not.,
vol. 46, no. 10, p. 119-138, oct 2011. [Online]. Available:
https://doi.org/10.1145/2076021.2048078
V. Haratian, P. Derakhshanfar, V. Kovalenko, and E. Tiiziin,
“Refexpo: Unveiling software project structures through advanced
dependency  graph  extraction,”  2024.  [Online].  Available:
https://arxiv.org/abs/2407.02620

M. Chakraborty, R. Olivares, M. Sridharan, and B. Hassanshahi,
“Automatic root cause quantification for missing edges in
javascript call graphs (extended version),” 2022. [Online]. Available:
https://arxiv.org/abs/2205.06780

A. Feldthaus, M. Schifer, M. Sridharan, J. Dolby, and F. Tip, “Efficient
construction of approximate call graphs for javascript ide services,” in
2013 35th International Conference on Software Engineering (ICSE),
2013, pp. 752-761.

T. Besker, H. Ghanbari, A. Martini, and J. Bosch, “The influence
of technical debt on software developer morale,” Journal of Systems
and Software, vol. 167, p. 110586, 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121220300674
D. Che, “Automatic documentation generation from source code,” Ph.D.
dissertation, 01 2016.

J. Jones, “Abstract syntax tree implementation idioms,” Pattern

Languages of Program Design, 2003, proceedings of the 10th
Conference on Pattern Languages of Programs (PLoP2003)
http://hillside.net/plop/plop2003/papers.html. [Online].  Available:

http://hillside.net/plop/plop2003/Papers/Jones-Implementing ASTs.pdf
L. Kurant, “Component dependency graph.” [Online]. Available:
https://github.com/lukaszkurantdev/components-dependency-graph

I. Malavolta, K. Nirghin, G. L. Scoccia, S. Romano, S. Lombardi,
G. Scanniello, and P. Lago, “Javascript dead code identification, elim-
ination, and empirical assessment,” IEEE Transactions on Software
Engineering, vol. 49, no. 7, pp. 3692-3714, 2023.

A. Mgller and M. Schwarz, “Automated detection of client-state ma-
nipulation vulnerabilities,” in 2012 34th International Conference on
Software Engineering (ICSE), 2012, pp. 749-759.

G. Antal, P. Hegedtis, Z. Téth, R. Ferenc, and T. Gyiméthy, “Static
javascript call graphs: A comparative study,” 2024. [Online]. Available:
https://arxiv.org/abs/2405.07206

A. M. Mir, M. Keshani, and S. Proksch, “On the effectiveness of
machine learning-based call graph pruning: An empirical study,” 2024.
[Online]. Available: https://arxiv.org/abs/2402.07294

A. M. Bogar, D. M. Lyons, and D. Baird, “Lightweight call-graph
construction for multilingual software analysis,” 2018. [Online].
Available: https://arxiv.org/abs/1808.01213

“Developer ecosystem javascript survey,” 2023. [Online]. Available:
https://www.jetbrains.com/lp/devecosystem-2023/javascript/

“React component analyzer library: https://github.com/activeguild/react-
component-analyzer.” [Online]. Available:
https://github.com/activeguild/react-component-analyzer

Z. Guo, M. Kang, V. Venkatakrishnan, R. Gjomemo, and Y. Cao,
“Reactappscan: Mining react application vulnerabilities via component
graph,” in Proceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’24. New York,
NY, USA: Association for Computing Machinery, 2024, p. 585-599.
[Online]. Available: https://doi.org/10.1145/3658644.3670331
“Codeql: https://codeql.github.com.” [Online].
https://codeql.github.com

“React developer tools: https://react.dev/learn/react-developer-tools.”
[Online]. Available: https://react.dev/learn/react-developer-tools

L. Kurant, “Component dependency graph vscode plugin.” [Online].
Available: https://github.com/lukaszkurantdev/components-dependency-
graph-vscode

Available:



