
Abstract—With  growing  privacy  regulations,  removing 

user-related  information  from machine  learning  models  has 

become  essential.  Machine  unlearning  addresses  this  by  en-

abling selective removal of learned information, but most exist-

ing methods rely on deep learning models, which are computa-

tionally expensive and lack interpretability. To overcome these 

limitations,  we  propose  a  novel  machine  unlearning  frame-

work using selective knowledge distillation into a Soft Decision 

Tree (SDT). A convolutional neural network (ConvNet) is first 

trained to generate soft labels and intermediate features, which 

are transferred to the SDT. During distillation, an unlearning 

algorithm adjusts specific leaf node distributions and routing 

weights using soft  redistribution and path pruning. This en-

ables class-specific forgetting without retraining and preserves 

accuracy on non-target classes.  Experiments on MNIST and 

CIFAR-10  demonstrate  that  our  framework  effectively  re-

moves  class-specific  knowledge  while  maintaining  overall 

model performance. The interpretable SDT structure also al-

lows for clear visualization of model changes before and after 

unlearning.

Index Terms—Machine Unlearning, Knowledge Distillation, 

Convolutional Neural Network, Soft Decision Tree, Privacy.

I. INTRODUCTION

N RECENT years, data protection regulations aimed at 

protecting user privacy and increasing personal data con-

trol have been introduced and enforced around the world. 

For  example,  the  General  Data  Protection  Regulation 

(GDPR) in the European Union (EU) [1] and the California 

Consumer Privacy Act (CCPA) in the United States [2] im-

pose strict legal obligations on organizations to delete per-

sonal information when requested by users.  These regula-

tions demonstrate the growing social and legal recognition 

of the “right to be forgotten” and make it clear that individu-

als can demand the removal of their digital traces. Accord-

ingly, there is a growing need for a technical solution that 

can effectively reflect an individual's deletion request, even 

I

in already trained machine learning models. As a solution, 

machine unlearning is gaining much attention [3]. This tech-

nology enables  models  to  comply  with  the  latest  privacy 

regulations by selectively removing the impact of specific 

data that has already been learned.

Most  existing  machine  unlearning  approaches  have 

mainly focused on deep learning (DL) models and are typi-

cally implemented by retraining the entire model or mitigat-

ing the influence of specific data through methods such as 

gradient ascent or fine-tuning. However,  these approaches 

are costly in terms of computations, and there is a risk of in-

advertently affecting non-target data [4, 5]. In such cases, 

useful learned representations are unintentionally changed, 

resulting in a reduction of the model's stability and general-

izability.  In  addition,  these  limitations  are  further  exacer-

bated in DL models. It is difficult to selectively remove the 

influence of specific data from a deep learning model's com-

plex and distributed internal representation because even mi-

nor  adjustments  to  the  representation  can  unintentionally 

change the overall result of the model [6]. Furthermore, the 

opacity of the internal representation complicates the verifi-

cation of the removal of specific information.

Recently,  machine  unlearning  research  on  traditional 

machine learning models has also been actively conducted, 

especially for tree-based models such as gradient boosting 

decision tree (GBDT) [7, 8] and random forest (RF) [9, 10, 

11]. The advantage of these tree-based models is that the 

decision  process  is  clear  and  easy  to  interpret,  and  data 

deletion can be easily verified. However, since these mod-

els are primarily designed for discrete, low-dimensional in-

put data,  they are not effective for handling high-dimen-

sional  continuous data,  such as  images.  In  addition,  ma-

chine unlearning for the tree-based models requires the ex-

plicit  maintenance of instance-leaf mappings during both 

training and inference, which can lead to high memory and 

computational overhead. Furthermore, although tree-based
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models are effective for verifying instance-level deletion, 

they are less suitable for class-level unlearning, where an 

entire semantic category must be removed. In practical 

scenarios, such class-level deletion requests frequently occur 

due to policy revisions, semantic redefinitions, or ethical and 

legal considerations. Class-level unlearning is gaining 

attention as a necessary capability in modern machine 

learning systems, where models are expected to respond to 

changing category definitions and increasing regulatory 

demands [12]. 

To address these limitations, we propose a machine 

unlearning framework using selective knowledge distillation 

that can preserve the generalization performance of the 

original DL model. In the proposed framework, knowledge 

containing soft labels and intermediate features is extracted 

from a high-performing convolutional neural network 

(ConvNet) and transferred to a soft decision tree (SDT). In 

addition, the proposed unlearning algorithm adjusts the 

routing probabilities and class distributions of leaf nodes in 

SDT to selectively suppress information related to the target 

class while preserving overall model accuracy. The main 

contributions of this study are as follows: 

• Instead of retraining the entire model, we propose an 
efficient machine unlearning framework that 
selectively adjusts only routing probabilities and class 
distributions of specific leaf nodes in SDT. This 
enables the selective removal of information on target 
classes while maintaining stable classification 
performance on non-target classes. 

• By utilizing the tree-based structure in which both the 
branching decisions and leaf node class distributions 
are explicitly interpretable, the proposed framework 
enables visual analysis of model changes before and 
after unlearning. 

• The proposed framework was evaluated using multiple 
image benchmark datasets MNIST and CiFAR-10, and 
the results showed robust unlearning effectiveness and 
generalization performance. 

 

II. PRELIMINARIES 

A. Machine Unlearning 

Machine unlearning refers to the process of removing or 

weakening the influence of specific training data within a 

trained model. A learning algorithm is formally defined as a 

function A: D→ H, where D is a dataset and H is a hypothesis 

space. In summary, the algorithm A returns a model A(D) ∈ 

H, which is trained on the dataset D. Unlearning is performed 

through a removal R: (A(D), D, (x, y)) → H, which takes as 

inputs the trained model A(D), the original dataset D, and a 

data instance (x, y) to remove. Exact machine unlearning 

refers to the ideal scenario in which the resulting model is 

indistinguishable from one trained from scratch on the dataset 

with (x, y) removed [13]. This condition is formally expressed 

as: 

,(ܦ)ܣ)ܴ  ,ܦ ,ݔ) ((ݕ = ,ݔ)}\ ܦ)ܣ  (1) ({(ݕ

 

B. Knowledge Distillation 

Knowledge distillation is a technique for model 

compression and optimization that transfers the knowledge 

learned by a large and complex teacher model to a small and 

simple student model so that the student model performs as 

well as the teacher model [14, 15]. Typically, knowledge 

distillation utilizes soft labels (probability distributions for 

each class) produced by the teacher model to train the student 

model. Soft labels contain more information than hard labels 

(1 for the correct class and 0 for the rest), such as similarity 

relationships and uncertainty between classes. In order to 

leverage additional information from the output distribution 

of the teacher model, a temperature parameter T is 

incorporated into the softmax function to smooth the output 

distribution and emphasize class similarity. The smoothed 

probability for class ݅, denoted as ݍ௜, is calculated as follows: 

௜ݍ  =  exp (௭೔/்)∑ exp (௭ೕ/ ்ೕ ) (2) 

where ݖ௜  is the logit for class ݅ , and T controls the 

smoothness of the distribution. A higher temperature leads to 

softer probability outputs, allowing the student to capture the 

teacher’s nuanced generalization behavior. 

 

III. METHODOLOGY 

A. Datasets 

In this study, we utilize two widely used benchmark image 

classification datasets, MNIST [16] and CIFAR-10 [17], in 

our experiment. The MNIST dataset consists of grayscale 

images, while CIFAR-10 dataset is composed of color 

images. Each dataset is divided into train, validation, and test 

sets to facilitate both model training and evaluation. The 

number of samples in each subset is summarized in Table I 

and an example of each dataset is shown in Fig. 1. 

 

 
Datasets 

MNIST CIFAR-10 

Train 50,000 40,000 

Validation 10,000 10,000 

Test 10,000 10,000 

MNIST

CIFAR-10

Fig 1. Example of MNIST and CIFAR-10 dataset. 

TABLE I 

CONSTRUCTION OF DATASETS 
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To ensure consistent input scaling and improve training 

stability, we apply different preprocessing strategies for each 

dataset. For the MNIST dataset, we apply Min-Max 

normalization to scale pixel values to the [0, 1] range. For the 

CIFAR-10 dataset, we perform Z-score normalization by 

subtracting the mean and dividing by the standard deviation 

of each RGB channel. As a final preprocessing step, all target 

labels are converted into one-hot encoded vectors to support 

the use of the cross-entropy loss function and enable soft label 

distillation in subsequent stages. 

 

B. Model Design 

This section presents the architecture and training 

procedures of the two main components in our framework: a 

ConvNet that acts as the teacher model and SDT is trained as 

a student model through knowledge distillation. 

a) ConvNet: To generate soft labels for knowledge 

distillation, we design two ConvNet architectures optimized 

respectively for the MNIST dataset and the CIFAR-10 

dataset. 

For the MNIST dataset, we implement a compact ConvNet 

composed of two convolutional blocks. Each block consists 

of two 3×3 convolutional layers with ReLU activation and the 

same padding, followed by 2×2 max pooling and dropout. The 

extracted features are then flattened and passed through a 

fully connected layer with 512 units, followed by a softmax 

output layer. The model is trained using the Adam optimizer 

with a learning rate of 3×10−4, and categorical cross-entropy 

is used as the loss function. 

For the CIFAR-10 dataset, we adopt a deeper ConvNet 

consisting of three convolutional blocks. Each block contains 

two 3×3 convolutional layers with ReLU activation, batch 

normalization, L2 regularization, max pooling, and dropout. 

The number of filters increases with depth to capture complex 

spatial features. The final feature map is flattened and passed 

through a dense layer with 128 units and dropout, followed by 

a softmax classification layer. The model is trained using the 

Adam optimizer with an initial learning rate of 1×10−3, along 

with learning rate scheduling and data augmentation via the 

ImageDataGenerator framework to enhance generalization. 

b) SDT: The SDT is designed to replicate the predictive 

behavior of a ConvNet trained within this framework while 

offering a transparent decision-making process based on 

explicit branching rules [18]. The operational structure of the 

SDT is illustrated in Fig. 2, which depicts a simple 

configuration consisting of one internal node and two leaf 

nodes.  

We design two SDT configurations optimized respectively 

for the MNIST and CIFAR-10 datasets. For the MNIST 

dataset, which consists of grayscale images, the output from 

the final convolutional layer of the ConvNet is flattened and 

used as input to the SDT. In contrast, for the CIFAR-10 

dataset, which contains color images, simple flattening may 

lead to loss of spatial information. To address this, the output 

of the final max-pooling layer is passed through global 

average pooling to produce a semantically meaningful one-

dimensional feature vector. These feature vectors, along with 

soft labels generated by the ConvNet, are used to train the 

SDT. To further enhance representational capacity and 

training stability, we introduce four key hyperparameters: 

• Penalty strength: Controls the strength of a 
regularization term that prevents internal nodes from 
consistently branching in the same direction. Higher 
values promote more balanced left-right splits, which 
increases structural diversity and tree utilization. 

• Penalty decay: Gradually reduces the influence of the 
regularization term as the node depth increases. This 
allows shallow nodes to learn general decision rules, 
while deeper nodes specialize in more fine-grained 
distinctions. 

• Exponential moving average (EMA) window size: The 
branching direction of internal nodes may fluctuate 
across mini-batches, which can potentially destabilize 
learning. We apply an EMA to smooth routing 
behavior over time. A larger window emphasizes long-
term stability, while a smaller window allows quicker 
adaptation at the cost of higher variance. 

• Inverse temperature (β): Adjusts the sharpness of the 
sigmoid function used at internal nodes to make 
branching decisions more decisive. A higher β makes 
splits more decisive, with probabilities closer to 0 or 1, 
making the model behave more like a hard decision 
tree. 

Given the sensitivity of these hyperparameters to model 

performance, we use the Optuna framework for 

hyperparameter optimization [19]. The search space includes 

tree depths and learning rate in addition to the four parameters 

above. The optimal configuration is selected based on  

Fig 2. Simple configuration of SDT. 
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validation accuracy. As a result, the SDT trained under this 

framework successfully emulates the predictions of the 

teacher model while maintaining interpretability through its 

hierarchical and transparent decision structure. 

 

C. Unlearning Algorithm 

In this study, we propose a novel unlearning algorithm 

designed to selectively remove knowledge relevant to a 

particular class from a trained SDT model. The method 

utilizes two primary mechanisms, soft redistribution and path 

pruning, to locally adjust a subset of model parameters, 

enabling class-level forgetting while preserving the overall 

structure and performance of the model. The proposed 

unlearning algorithm is presented in Algorithm 1.  

The process of the algorithm is described as follows: 

• 1) Identify the target leaf node: Find leaf nodes whose 
predicted class distribution is dominated by the target 
class c to be forgotten. 

• 2) Redistribute class probabilities: Take a fraction (α) 
of the class c probability of the target leaf node and 
distribute it to the top k leaf nodes with high cosine 
similarity. The proportion of the distribution is 
proportional to the similarity and is only distributed to 
leaves that do not strongly predict the target class. 

• 3) Soft Pruning: The internal node weights of the 
decision path to each target leaf are attenuated 
according to the remaining class c probability (ω) and 
pruning ratio (γ). 

• 4) Residual Suppression: If class c still has the highest 
probability in all leaves, set its probability to zero and 
re-normalize the distribution. 

 

IV. EXPERIMENT 

This section presents the empirical evaluation of the 

proposed framework. For each dataset, we present the 

classification performance when performing general 

knowledge distillation and the performance of the proposed 

framework. 

A. Experiment Setup 

All experiments were conducted on a system running 

Windows 11, equipped with an Intel Core i7-12700K CPU, 

an NVIDIA GeForce RTX 4080 GPU (16GB), and 64 GB 

RAM. Python 3.7 was used as the development environment. 

We evaluated the proposed framework on two benchmark 

image classification datasets: MNIST and CIFAR-10. As 

described in Section 3, each dataset was preprocessed using 

standard procedures. Both ConvNet and SDT model were 

trained and evaluated based on accuracy, precision, recall, and 

F1-score. To ensure fair and stable comparisons, all training 

processes incorporated early stopping to prevent overfitting 

and reduce unnecessary training time. For SDT models after 

unlearning, we conducted a focused evaluation comparing the  

Algorithm 1 Target Class Unlearning 
Require: Trained tree model T, session S, target class c, top-k, 

redistribution rate α, pruning rate γ 

Ensure: Modified tree with target class c forgotten 

1: Retrieve all leaf nodes L and obtain ϕℓ ← S(ϕℓ) for each ℓ ∈ L 

2: Ltarget ← {ℓ ∈ L | argmax(ϕℓ) = c} 

3: for all ℓt ∈ Ltarget do 

4:       Find top-k most similar leaves N(ℓt) using cosine 

similarity 

5: δ ← ϕℓt[c] · α 

6: ϕℓt[c] ← ϕℓt[c] · (1 − α) 

7: for all ℓj ∈ N(ℓt) do 

8: ϕℓj[c] ← ϕℓj[c] + δ · sim(ℓt,ℓj) 

9: Normalize ϕℓj and update in session 

10: end for 

11: Normalize ϕℓt and update in session 

12: Compute importance ω ← ϕℓt[c] 

13: Compute pruning factor ρ ← 1 − γ · ω 

14: Identify internal nodes P on the path to ℓt 

15: for all n ∈ P do 

16: Weaken weight: wn ← ρ · wn 

17: end for 

18: end for 

19: for all ℓ ∈ L do 

20:           if ϕℓ[c] > ϵ then      ▷ if target class remains dominant 

21: Set ϕℓ[c] ← 0, normalize, and update in session 

22: end if 

23: end for 

Fig 3. Performance of ConvNet and SDT. 
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baseline approach of retraining after removing the target 

class with the proposed framework. In both cases, we 

analyzed the accuracy of target and non-target classes to 

assess the effectiveness of selective forgetting. 

 

B. Performance Evaluation of Knowledge Distillation 

To verify the suitability of ConvNet as the teacher model 

and to assess the effectiveness of knowledge distillation to the 

student model (SDT), we compared the classification 

performance of both models on MNIST and CIFAR-10 using 

four metrics: accuracy, precision, recall, and F1-score. 

Detailed metric comparisons for each dataset are visualized in 

Fig. 3. As shown in Fig. 3, the ConvNet achieved very high 

performance, with accuracy, precision, recall, and F1-score 

all exceeding 99% on MNIST and over 90% on CIFAR-10, 

confirming its appropriateness as a teacher model. In 

comparison, the SDT showed a consistent performance gap, 

with accuracy and other metrics approximately 8% lower than 

Datasets Method 
Test 

Accuracy 

Target 

Accuracy 

Non-Target 

Accuracy 
Time 

MNIST 
Proposed Framework 80.74% 

0% 
89.81% 33m 

Retrain 80.62% 89.68% 51m 15s 

CiFAR-10 
Proposed Framework 71.12% 

0% 
79.02% 44m 23s 

Retrain 71.51% 79.46% 96m 20s 

TABLE II 

PERFORMANCE AND TRAINING TIME COMPARISON BETWEEN PROPOSED FRAMEWORK AND RETRAINING 

Fig 4. SDT after unlearning: (Top) MNIST dataset (target class 3), (Bottom) CIFAR-10 dataset (target class 0). 
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those  of  ConvNet  on  both  datasets.  While  this  indicates 

some loss in predictive power due to the simpler and more 

interpretable  structure  of  the  SDT,  the  results  still 

demonstrate that SDT can inherit a significant portion of the 

teacher model's knowledge through distillation.

C. Performance Evaluation of Proposed Framework

To evaluate the effectiveness of the proposed unlearning 

framework, we applied the algorithm described in Section 3 

to SDT models distilled from teacher models trained on each 

dataset. For each dataset, a specific target class was selected 

for removal, and we assessed how effectively the SDT could 

forget  the  target  class  while  preserving  predictive  perfor-

mance on non-target classes. As a baseline for comparison, 

we  adopted  a  conventional  retraining  approach  where  all 

training samples of the target class were removed from the 

dataset, and then both the teacher and student models were 

fully retrained from scratch. The evaluation was based on 

three key metrics: (1) overall classification accuracy on the 

test  set,  (2)  accuracy  on  samples  belonging  to  the  target 

class, and (3) accuracy on samples from non-target classes. 

As summarized in Table II, both methods successfully re-

moved the model’s ability to predict the target class, achiev-

ing 0% accuracy in all cases. However, the proposed method 

consistently retained comparable or higher accuracy on non-

target classes, demonstrating its effectiveness in preserving 

useful knowledge.

In addition to predictive performance, our framework of-

fers a substantial advantage in training efficiency. Unlike the 

baseline, which involves retraining the entire pipeline, our 

method applies unlearning directly to the distilled student 

model without reinitializing the teacher. Although the total 

training time from teacher to student is comparable across 

some  datasets,  omitting  the  costly  teacher  retraining  step 

significantly reduces overall computational overhead. This 

makes the proposed framework a practical and efficient so-

lution,  particularly  in  resource-constrained  environments. 

Fig. 4 shows the structural changes in the SDT after unlearn-

ing the target classes. The top section presents an MNIST 

example where digit 3 was selected for removal. After un-

learning, the SDT adjusts its internal decision paths, rerout-

ing inputs that were previously associated with digit 3 to-

ward alterative classes. In the visualization, the leaf nodes 

that initially had high confidence for class 3 now show re-

distributed  probabilities  favoring  digits  such  as  4  and  6. 

Similarly, the bottom section shows a CIFAR-10 case where 

the airplane (class 0) class was removed. The SDT modifies 

its  structure  to  suppress  branches  linked  to  the  removed 

class  and  shifts  decision confidence  toward other  classes. 

These  structural  adjustments  both  in  internal  routing  and 

leaf-level  distributions  demonstrate  how the  SDT reflects 

the unlearning objective at the model level. 

II.  CONCLUSIONS

This  study proposed  an  interpretable  and selective  ma-

chine unlearning framework based on knowledge distillation 

from a ConvNet to an SDT. The SDT is trained using soft  

labels and intermediate features extracted from the teacher 

model, providing critical advantages in interpretability and 

modularity  essential  for  efficient  unlearning.  To  facilitate 

class-level forgetting, we propose an unlearning algorithm 

that integrates soft redistribution and path pruning, enabling 

targeted  suppression  of  class-specific  information.  Unlike 

conventional retraining-based methods, our framework ap-

plies unlearning directly to the distilled student model with-

out retraining the teacher model, providing a more efficient 

and practical alternative.

Experimental results on two benchmark image classifica-

tion datasets, MNIST and CIFAR-10, demonstrate that the 

proposed framework maintains high classification accuracy 

while effectively removing the influence of the designated 

target class. After unlearning, target class accuracy dropped 

as  intended,  while  performance  on  non-target  classes  re-

mained stable, validating the framework’s selective forget-

ting capability. Furthermore, visualizations of the SDT be-

fore and after unlearning confirmed structural changes, in-

cluding rerouted decision paths and updated leaf node distri-

butions that reduced the model’s reliance on the target class. 

By presenting an interpretable unlearning framework appli-

cable to high-dimensional input data, this study contributes 

to the field of machine unlearning. Future research will fo-

cus on expanding the proposed framework in two main di-

rections. First, we aim to extend the current class-level un-

learning approach to support instance-level unlearning, en-

abling  more  granular  control  over  the  forgetting  process. 

This will require developing fine-tuned strategies for identi-

fying and suppressing the influence of  individual  training 

samples within the trees structure. Second, we plan to evalu-

ate the scalability and robustness of the framework on more 

complex  and  high-resolution  image  datasets,  such  as 

STL-10 or ImageNet. These experiments will test whether 

the selective forgetting and interpretability properties of the 

SDT-based student model are preserved under more chal-

lenging data conditions. Consequently, these directions aim 

to  enhance  the  generalizability  and  practicality  of  inter-

pretable machine unlearning.
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