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Abstract—With growing privacy regulations, removing
user-related information from machine learning models has
become essential. Machine unlearning addresses this by en-
abling selective removal of learned information, but most exist-
ing methods rely on deep learning models, which are computa-
tionally expensive and lack interpretability. To overcome these
limitations, we propose a novel machine unlearning frame-
work using selective knowledge distillation into a Soft Decision
Tree (SDT). A convolutional neural network (ConvNet) is first
trained to generate soft labels and intermediate features, which
are transferred to the SDT. During distillation, an unlearning
algorithm adjusts specific leaf node distributions and routing
weights using soft redistribution and path pruning. This en-
ables class-specific forgetting without retraining and preserves
accuracy on non-target classes. Experiments on MNIST and
CIFAR-10 demonstrate that our framework effectively re-
moves class-specific knowledge while maintaining overall
model performance. The interpretable SDT structure also al-
lows for clear visualization of model changes before and after
unlearning.

Index Terms—Machine Unlearning, Knowledge Distillation,
Convolutional Neural Network, Soft Decision Tree, Privacy.

I. INTRODUCTION

N RECENT years, data protection regulations aimed at

protecting user privacy and increasing personal data con-
trol have been introduced and enforced around the world.
For example, the General Data Protection Regulation
(GDPR) in the European Union (EU) [1] and the California
Consumer Privacy Act (CCPA) in the United States [2] im-
pose strict legal obligations on organizations to delete per-
sonal information when requested by users. These regula-
tions demonstrate the growing social and legal recognition
of the “right to be forgotten” and make it clear that individu-
als can demand the removal of their digital traces. Accord-
ingly, there is a growing need for a technical solution that
can effectively reflect an individual's deletion request, even
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in already trained machine learning models. As a solution,
machine unlearning is gaining much attention [3]. This tech-
nology enables models to comply with the latest privacy
regulations by selectively removing the impact of specific
data that has already been learned.

Most existing machine unlearning approaches have
mainly focused on deep learning (DL) models and are typi-
cally implemented by retraining the entire model or mitigat-
ing the influence of specific data through methods such as
gradient ascent or fine-tuning. However, these approaches
are costly in terms of computations, and there is a risk of in-
advertently affecting non-target data [4, 5]. In such cases,
useful learned representations are unintentionally changed,
resulting in a reduction of the model's stability and general-
izability. In addition, these limitations are further exacer-
bated in DL models. It is difficult to selectively remove the
influence of specific data from a deep learning model's com-
plex and distributed internal representation because even mi-
nor adjustments to the representation can unintentionally
change the overall result of the model [6]. Furthermore, the
opacity of the internal representation complicates the verifi-
cation of the removal of specific information.

Recently, machine unlearning research on traditional
machine learning models has also been actively conducted,
especially for tree-based models such as gradient boosting
decision tree (GBDT) [7, 8] and random forest (RF) [9, 10,
11]. The advantage of these tree-based models is that the
decision process is clear and easy to interpret, and data
deletion can be easily verified. However, since these mod-
els are primarily designed for discrete, low-dimensional in-
put data, they are not effective for handling high-dimen-
sional continuous data, such as images. In addition, ma-
chine unlearning for the tree-based models requires the ex-
plicit maintenance of instance-leaf mappings during both
training and inference, which can lead to high memory and
computational overhead. Furthermore, although tree-based
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models are effective for verifying instance-level deletion,
they are less suitable for class-level unlearning, where an
entire semantic category must be removed. In practical
scenarios, such class-level deletion requests frequently occur
due to policy revisions, semantic redefinitions, or ethical and
legal considerations. Class-level unlearning is gaining
attention as a necessary capability in modern machine
learning systems, where models are expected to respond to
changing category definitions and increasing regulatory
demands [12].

To address these limitations, we propose a machine
unlearning framework using selective knowledge distillation
that can preserve the generalization performance of the
original DL model. In the proposed framework, knowledge
containing soft labels and intermediate features is extracted
from a high-performing convolutional neural network
(ConvNet) and transferred to a soft decision tree (SDT). In
addition, the proposed unlearning algorithm adjusts the
routing probabilities and class distributions of leaf nodes in
SDT to selectively suppress information related to the target
class while preserving overall model accuracy. The main
contributions of this study are as follows:

o Instead of retraining the entire model, we propose an
efficient machine wunlearning framework that
selectively adjusts only routing probabilities and class
distributions of specific leaf nodes in SDT. This
enables the selective removal of information on target
classes while maintaining stable classification
performance on non-target classes.

e By utilizing the tree-based structure in which both the
branching decisions and leaf node class distributions
are explicitly interpretable, the proposed framework
enables visual analysis of model changes before and
after unlearning.

e The proposed framework was evaluated using multiple
image benchmark datasets MNIST and CiFAR-10, and
the results showed robust unlearning effectiveness and
generalization performance.

II. PRELIMINARIES

A. Machine Unlearning

Machine unlearning refers to the process of removing or
weakening the influence of specific training data within a
trained model. A learning algorithm is formally defined as a

function A: D— H, where D is a dataset and H is a hypothesis
space. In summary, the algorithm A returns a model A(D) €
H, which is trained on the dataset D. Unlearning is performed
through a removal R: (A(D), D, (x, y)) — H, which takes as

inputs the trained model A(D), the original dataset D, and a
data instance (x, y) to remove. Exact machine unlearning
refers to the ideal scenario in which the resulting model is
indistinguishable from one trained from scratch on the dataset
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with (x, y) removed [13]. This condition is formally expressed
as:

R(A(D), D, (x,)) = A(D \{(x, )} M
B. Knowledge Distillation
Knowledge distillation is a technique for model

compression and optimization that transfers the knowledge
learned by a large and complex teacher model to a small and
simple student model so that the student model performs as
well as the teacher model [14, 15]. Typically, knowledge
distillation utilizes soft labels (probability distributions for
each class) produced by the teacher model to train the student
model. Soft labels contain more information than hard labels
(1 for the correct class and 0 for the rest), such as similarity
relationships and uncertainty between classes. In order to
leverage additional information from the output distribution
of the teacher model, a temperature parameter T is
incorporated into the softmax function to smooth the output
distribution and emphasize class similarity. The smoothed
probability for class i, denoted as g;, is calculated as follows:
q = exp (zi/T)

= 2
Zjexp (zj/T) @)

where z; is the logit for class i, and T controls the
smoothness of the distribution. A higher temperature leads to
softer probability outputs, allowing the student to capture the
teacher’s nuanced generalization behavior.

III. METHODOLOGY

A. Datasets

In this study, we utilize two widely used benchmark image
classification datasets, MNIST [16] and CIFAR-10 [17], in
our experiment. The MNIST dataset consists of grayscale
images, while CIFAR-10 dataset is composed of color
images. Each dataset is divided into train, validation, and test
sets to facilitate both model training and evaluation. The
number of samples in each subset is summarized in Table I
and an example of each dataset is shown in Fig. 1.

TABLE I
CONSTRUCTION OF DATASETS

Datasets
MNIST CIFAR-10
Train 50,000 40,000
Validation 10,000 10,000
Test 10,000 10,000

MNIST EB
CIFAR-10 @ y @&Lﬁﬁ

Fig 1. Example of MNIST and CIFAR-10 dataset.
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To ensure consistent input scaling and improve training
stability, we apply different preprocessing strategies for each
dataset. For the MNIST dataset, we apply Min-Max
normalization to scale pixel values to the [0, 1] range. For the
CIFAR-10 dataset, we perform Z-score normalization by
subtracting the mean and dividing by the standard deviation
of each RGB channel. As a final preprocessing step, all target
labels are converted into one-hot encoded vectors to support
the use of the cross-entropy loss function and enable soft label
distillation in subsequent stages.

B. Model Design

This section presents the architecture and training
procedures of the two main components in our framework: a
ConvNet that acts as the teacher model and SDT is trained as
a student model through knowledge distillation.

a) ConvNet: To generate soft labels for knowledge
distillation, we design two ConvNet architectures optimized
respectively for the MNIST dataset and the CIFAR-10
dataset.

For the MNIST dataset, we implement a compact ConvNet
composed of two convolutional blocks. Each block consists
of two 3x3 convolutional layers with ReLU activation and the
same padding, followed by 2x2 max pooling and dropout. The
extracted features are then flattened and passed through a
fully connected layer with 512 units, followed by a softmax
output layer. The model is trained using the Adam optimizer
with a learning rate of 3x107*%, and categorical cross-entropy
is used as the loss function.

For the CIFAR-10 dataset, we adopt a deeper ConvNet
consisting of three convolutional blocks. Each block contains
two 3x3 convolutional layers with ReLU activation, batch
normalization, L2 regularization, max pooling, and dropout.
The number of filters increases with depth to capture complex
spatial features. The final feature map is flattened and passed
through a dense layer with 128 units and dropout, followed by
a softmax classification layer. The model is trained using the
Adam optimizer with an initial learning rate of 1x1073, along
with learning rate scheduling and data augmentation via the
ImageDataGenerator framework to enhance generalization.

b) SDT: The SDT is designed to replicate the predictive
behavior of a ConvNet trained within this framework while
offering a transparent decision-making process based on
explicit branching rules [18]. The operational structure of the
SDT is illustrated in Fig. 2, which depicts a simple
configuration consisting of one internal node and two leaf
nodes.

We design two SDT configurations optimized respectively
for the MNIST and CIFAR-10 datasets. For the MNIST
dataset, which consists of grayscale images, the output from
the final convolutional layer of the ConvNet is flattened and
used as input to the SDT. In contrast, for the CIFAR-10
dataset, which contains color images, simple flattening may

Input: x

Inner Node
p= alxw + b)

filter: w, bias: b

Leaf Node
Distribution @,

Leaf Node
Distribution Q.

oo0l

lead to loss of spatial information. To address this, the output
of the final max-pooling layer is passed through global
average pooling to produce a semantically meaningful one-
dimensional feature vector. These feature vectors, along with
soft labels generated by the ConvNet, are used to train the
SDT. To further enhance representational capacity and
training stability, we introduce four key hyperparameters:

Q;if o(xw + b) < 0.5
Qutput
Q, otherwise

Fig 2. Simple configuration of SDT.

e Penalty strength: Controls the strength of a
regularization term that prevents internal nodes from
consistently branching in the same direction. Higher
values promote more balanced left-right splits, which
increases structural diversity and tree utilization.

e Penalty decay: Gradually reduces the influence of the
regularization term as the node depth increases. This
allows shallow nodes to learn general decision rules,
while deeper nodes specialize in more fine-grained
distinctions.

e Exponential moving average (EMA) window size: The
branching direction of internal nodes may fluctuate
across mini-batches, which can potentially destabilize
learning. We apply an EMA to smooth routing
behavior over time. A larger window emphasizes long-
term stability, while a smaller window allows quicker
adaptation at the cost of higher variance.

e Inverse temperature (3): Adjusts the sharpness of the
sigmoid function used at internal nodes to make
branching decisions more decisive. A higher 8 makes
splits more decisive, with probabilities closer to 0 or 1,
making the model behave more like a hard decision
tree.

Given the sensitivity of these hyperparameters to model
performance, we wuse the Optuna framework for
hyperparameter optimization [19]. The search space includes
tree depths and learning rate in addition to the four parameters
above. The optimal configuration is selected based on
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validation accuracy. As a result, the SDT trained under this
framework successfully emulates the predictions of the
teacher model while maintaining interpretability through its
hierarchical and transparent decision structure.

C. Unlearning Algorithm

In this study, we propose a novel unlearning algorithm
designed to selectively remove knowledge relevant to a
particular class from a trained SDT model. The method
utilizes two primary mechanisms, soft redistribution and path
pruning, to locally adjust a subset of model parameters,
enabling class-level forgetting while preserving the overall
structure and performance of the model. The proposed
unlearning algorithm is presented in Algorithm 1.

The process of the algorithm is described as follows:

e 1) Identify the target leaf node: Find leaf nodes whose
predicted class distribution is dominated by the target
class ¢ to be forgotten.

e 2) Redistribute class probabilities: Take a fraction (a)
of the class ¢ probability of the target leaf node and
distribute it to the top k leaf nodes with high cosine
similarity. The proportion of the distribution is
proportional to the similarity and is only distributed to
leaves that do not strongly predict the target class.

e 3) Soft Pruning: The internal node weights of the
decision path to each target leaf are attenuated
according to the remaining class ¢ probability (®) and
pruning ratio ().

e 4) Residual Suppression: If class c still has the highest
probability in all leaves, set its probability to zero and
re-normalize the distribution.

IV. EXPERIMENT

This section presents the empirical evaluation of the
proposed framework. For each dataset, we present the
classification performance when performing general
knowledge distillation and the performance of the proposed
framework.

MNIST
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Algorithm 1 Target Class Unlearning

Require: Trained tree model 7, session S, target class c, top-«,
redistribution rate o, pruning rate y

Ensure: Modified tree with target class ¢ forgotten

1: Retrieve all leaf nodes L and obtain ¢¢ < S(¢¢) for each £ € L
2: Liarget < {€ € L | argmax(¢¢) = c}

3: for all £t € Ltarget do

4: Find top-k most similar leaves N(¢) using cosine
similarity

5: 0« ¢ulc] - a

6: du[c] — pafc] - (1 —a)

7: for all £; € N(¢£,) do

8: polc] — pole] +6 - sim(4 b))

9: Normalize ¢ and update in session
10: end for

11: Normalize ¢ and update in session

12: Compute importance <« @ec]

13: Compute pruning factorp «— 1 —y - @
14: Identify internal nodes P on the path to ¢
15: for alln € P do

16: Weaken weight: wn<«—p - wa

17: end for

18: end for

19: for all £ € L do

20: if g[c] > cthen D> if target class remains dominant
21: Set ¢¢[c] < 0, normalize, and update in session
22: end if

23: end for

A. Experiment Setup

All experiments were conducted on a system running
Windows 11, equipped with an Intel Core i7-12700K CPU,
an NVIDIA GeForce RTX 4080 GPU (16GB), and 64 GB
RAM. Python 3.7 was used as the development environment.

We evaluated the proposed framework on two benchmark
image classification datasets: MNIST and CIFAR-10. As
described in Section 3, each dataset was preprocessed using
standard procedures. Both ConvNet and SDT model were
trained and evaluated based on accuracy, precision, recall, and
Fl-score. To ensure fair and stable comparisons, all training
processes incorporated early stopping to prevent overfitting
and reduce unnecessary training time. For SDT models after
unlearning, we conducted a focused evaluation comparing the

CIFAR-10

90.09%

I 81.27%

89.17%

II134/-

Precision

89.09%

I 81.25%

Recall

88.97%

I 81.09%

F1-score

u ConvNet
(Teacher Model)

uSDT
(Student Model)

Accuracy

Fig 3. Performance of ConvNet and SDT.
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TABLE II
PERFORMANCE AND TRAINING TIME COMPARISON BETWEEN PROPOSED FRAMEWORK AND RETRAINING
Datasets Method Test Target Non-Target Time
Accuracy Accuracy Accuracy
Proposed Framework 80.74% o 89.81% 33m
MNIST Retrain 80.62% 0% 89.68% 51m 15s
. Proposed Framework 71.12% o 79.02% 44m 23s
CiFAR-10 Retrain 71.51% 0% 79.46% 96m 20s
input 0,1,2,4,5,6,7,89
> <
0,2,4,5,6,7,8 0.1,4,56,7,8,9
" i _:.3 ]
1 w b
——

134589 —

- 2,3,45,6,7

I]JIUIQUM U]I]]]IDIIIJlL]IlIJ[IL]IIIIIIIILl]lLIJI[IlIIIIIIIlIIIIIIIIII

Fig 4. SDT after unlearning: (Top) MNIST dataset (target class 3), (Bottom) CIFAR-10 dataset (target class 0).

baseline approach of retraining after removing the target
class with the proposed framework. In both cases, we
analyzed the accuracy of target and non-target classes to
assess the effectiveness of selective forgetting.

B. Performance Evaluation of Knowledge Distillation

To verify the suitability of ConvNet as the teacher model
and to assess the effectiveness of knowledge distillation to the

student model (SDT), we compared the -classification
performance of both models on MNIST and CIFAR-10 using
four metrics: accuracy, precision, recall, and F1-score.
Detailed metric comparisons for each dataset are visualized in
Fig. 3. As shown in Fig. 3, the ConvNet achieved very high

performance, with accuracy, precision, recall, and F1-score
all exceeding 99% on MNIST and over 90% on CIFAR-10,
confirming its appropriateness as a teacher model. In
comparison, the SDT showed a consistent performance gap,
with accuracy and other metrics approximately 8% lower than

99
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those of ConvNet on both datasets. While this indicates
some loss in predictive power due to the simpler and more
interpretable structure of the SDT, the results still
demonstrate that SDT can inherit a significant portion of the
teacher model's knowledge through distillation.

C. Performance Evaluation of Proposed Framework

To evaluate the effectiveness of the proposed unlearning
framework, we applied the algorithm described in Section 3
to SDT models distilled from teacher models trained on each
dataset. For each dataset, a specific target class was selected
for removal, and we assessed how effectively the SDT could
forget the target class while preserving predictive perfor-
mance on non-target classes. As a baseline for comparison,
we adopted a conventional retraining approach where all
training samples of the target class were removed from the
dataset, and then both the teacher and student models were
fully retrained from scratch. The evaluation was based on
three key metrics: (1) overall classification accuracy on the
test set, (2) accuracy on samples belonging to the target
class, and (3) accuracy on samples from non-target classes.
As summarized in Table II, both methods successfully re-
moved the model’s ability to predict the target class, achiev-
ing 0% accuracy in all cases. However, the proposed method
consistently retained comparable or higher accuracy on non-
target classes, demonstrating its effectiveness in preserving
useful knowledge.

In addition to predictive performance, our framework of-
fers a substantial advantage in training efficiency. Unlike the
baseline, which involves retraining the entire pipeline, our
method applies unlearning directly to the distilled student
model without reinitializing the teacher. Although the total
training time from teacher to student is comparable across
some datasets, omitting the costly teacher retraining step
significantly reduces overall computational overhead. This
makes the proposed framework a practical and efficient so-
lution, particularly in resource-constrained environments.
Fig. 4 shows the structural changes in the SDT after unlearn-
ing the target classes. The top section presents an MNIST
example where digit 3 was selected for removal. After un-
learning, the SDT adjusts its internal decision paths, rerout-
ing inputs that were previously associated with digit 3 to-
ward alterative classes. In the visualization, the leaf nodes
that initially had high confidence for class 3 now show re-
distributed probabilities favoring digits such as 4 and 6.
Similarly, the bottom section shows a CIFAR-10 case where
the airplane (class 0) class was removed. The SDT modifies
its structure to suppress branches linked to the removed
class and shifts decision confidence toward other classes.
These structural adjustments both in internal routing and
leaf-level distributions demonstrate how the SDT reflects
the unlearning objective at the model level.

II. CoNcLusioNs

This study proposed an interpretable and selective ma-
chine unlearning framework based on knowledge distillation
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from a ConvNet to an SDT. The SDT is trained using soft
labels and intermediate features extracted from the teacher
model, providing critical advantages in interpretability and
modularity essential for efficient unlearning. To facilitate
class-level forgetting, we propose an unlearning algorithm
that integrates soft redistribution and path pruning, enabling
targeted suppression of class-specific information. Unlike
conventional retraining-based methods, our framework ap-
plies unlearning directly to the distilled student model with-
out retraining the teacher model, providing a more efficient
and practical alternative.

Experimental results on two benchmark image classifica-
tion datasets, MNIST and CIFAR-10, demonstrate that the
proposed framework maintains high classification accuracy
while effectively removing the influence of the designated
target class. After unlearning, target class accuracy dropped
as intended, while performance on non-target classes re-
mained stable, validating the framework’s selective forget-
ting capability. Furthermore, visualizations of the SDT be-
fore and after unlearning confirmed structural changes, in-
cluding rerouted decision paths and updated leaf node distri-
butions that reduced the model’s reliance on the target class.
By presenting an interpretable unlearning framework appli-
cable to high-dimensional input data, this study contributes
to the field of machine unlearning. Future research will fo-
cus on expanding the proposed framework in two main di-
rections. First, we aim to extend the current class-level un-
learning approach to support instance-level unlearning, en-
abling more granular control over the forgetting process.
This will require developing fine-tuned strategies for identi-
fying and suppressing the influence of individual training
samples within the trees structure. Second, we plan to evalu-
ate the scalability and robustness of the framework on more
complex and high-resolution image datasets, such as
STL-10 or ImageNet. These experiments will test whether
the selective forgetting and interpretability properties of the
SDT-based student model are preserved under more chal-
lenging data conditions. Consequently, these directions aim
to enhance the generalizability and practicality of inter-
pretable machine unlearning.
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