&l

Communication Papers of the 20 Conference on Computer

DOI: 10.15439/2025F7149

Science and Intelligence Systems (FedCSIS) pp. 85-93 ISSN 2300-5963 ACSIS, Vol. 45

Towards OntoUML for Software Engineering:
Transformation of Constraints into Various
Relational Databases

Jakub Jabtirek, Zdenék Rybola and Petr Kroha
ORCID: 0009-0004-8212-2059, 0000-0001-9430-6921, 0000-0002-1658-3736
Faculty of Information Technology, Czech Technical University in Prague
Théakurova 9, 16000 Praha 6, Czech Republic
Email: {jakub.jaburek, zdenek.rybola, petr.kroha} @fit.cvut.cz

Abstract—OntoUML is an ontologically well-founded con-
ceptual modeling language that provides precise meaning to
modeled elements. As a result, its usage is beneficial in the
Model-Driven Development approach to software development.
Relational databases are commonly used for storage of appli-
cation data, and they offer support for the implementation of
custom data constraints. In this paper, we discuss the realization
of constraints that arise from OntoUML structural models in
PostgreSQL, Microsoft SQL Server and MySQL, and provide a
complete reference on how to implement these constraints so that
only data conforming to the OntoUML model can be stored.

Index Terms—Conceptual Modeling, Software Development,
Relational Database, Model Transformation, Constraints.

I. INTRODUCTION

OFTWARE engineering is a demanding discipline that

deals with complex systems. The goal of software en-
gineering is to ensure high quality of the implementation of
software systems. Various approaches to software development
exist to achieve this.

In this paper, we focus on the Model-Driven Development
(MDD) approach. It is based on the construction of models
of the software and their transformations. An established
practice within MDD is forward engineering — transformation
of abstract models into more concrete ones [1]. One of the
common use cases of such process is the transformation of a
conceptual data model into application source code or database
schema.

In MDD, the quality of the final implementation of the
system depends on the accuracy of the transformation process
as well as on the precision of the initial models. Therefore,
a conceptual data model should capture the necessary con-
straints, and the transformation should preserve them in the
transformed result.

For the conceptual data model, we use OntoUML — as it is
based on cognitive science and modal logic [2], we consider
it to be suitable for the development of highly expressive data
models. In comparison with other modeling languages, such
as the Entity-relationship model, OntoUML enforces stronger
semantic constraints, therefore resulting in models that more
closely follow reality.

©2025, PTI

85

For the implementation target, we focus on relational
database management systems (RDBMS), as they are one of
the most commonly used data persistence platforms [3]. As
different RDBMS implementations have varying levels of sup-
port for the definition and enforcement of data constraints, the
implementation is specific to the particular RDBMS product.

The existing literature describes the transformation process
of an OntoUML model into Oracle RDBMS [4]. This trans-
formation is divided into three successive steps:

1) First, the OntoUML model is transformed into a Unified
Modeling Language (UML) class model.

2) Second, the UML model is transformed into a relational
data model.

3) Finally, the relational data model is transformed to
an implementation in the Structured Query Language
(SQL) tailored to a specific RDBMS.

Our approach follows the aforementioned division and
reuses transformation steps 1-2. The original contribution
of this paper consists of novel implementation of the third
transformation step, which is RDBMS-vendor-specific. While
the transformation of a relational model to SQL is well-known,
our approach focuses on preserving the integrity constraints
defined by the original OntoUML model.

We elaborate implementations in MySQL, Microsoft SQL
Server and PostgreSQL, while the realization in Oracle is
described in existing literature [4].

This practically oriented paper is structured as follows: In
Section II, OntoUML concepts relevant to the transformation
are summarized, the features of SQL related to constraint
checking are summarized, and the existing transformation of
an OntoUML model to SQL is introduced. In Section III, we
discuss constraint checking features supported in the consid-
ered RDBMS. In Section IV, we elaborate the implementation
of constraints in SQL for each of the considered RDBMS. In
Section V, we discuss the limitations of our approach. Finally,
in Section VI, the results of this paper are summarized.

II. BACKGROUND AND RELATED WORK

In this section, OntoUML, being the language of the input
models of our transformation, is introduced. Then, SQL, the

Topical area: Software, System and Service Engineering

86

target language of the transformation, is discussed. Finally,
the existing transformation of OntoUML to relational schema,
which our transformation to SQL builds upon, is introduced.

A. OntoUML

OntoUML is a conceptual modeling language focused on
building ontologically well-founded structural models [5]. It is
a profile of the Unified Modeling Language (UML) Class Di-
agram that realizes the Unified Foundational Ontology (UFO)
theory formulated in G. Guizzardi’s Ph.D. thesis [6].

An OntoUML model defines universals —bundles of char-
acteristics shared among their instances. Universals are instan-
tiated by individuals. UFO differentiates between universals of
Sortal and Non-Sortal type. Sortals bear an identity principle
(either they provide it themselves or inherit it from a Sortal
supertype), which defines how individual instances of the
particular universal are distinguished [7].

A single individual may instantiate multiple universals, and
the set of universals instantiated by a particular individual
may change over time. Universal types that an individual must
instantiate during its entire lifetime (or not instantiate at all)
are classified as Rigid. Conversely, universal types that an
individual may start to instantiate later or cease to instantiate
prior to its own destruction are classified as Anti-Rigid [8].

UFO defines a taxonomy of universal types, with the
concrete types then being applied as stereotypes to classes in
an OntoUML model. In this section, we summarize a selection
of universal types that significantly contribute to the set of
constraints derived during the transformation of an OntoUML
model to a relational schema, as introduced in Section II-C.

The backbone of an OntoUML model consists of Kinds
and SubKinds—Rigid Sortals, with SubKinds inheriting the
identity principle from Kinds through the generalization rela-
tionship.

An example is provided in Fig. 1. The model describes Kind
Document with two SubKinds IdCard and Passport.
The generalization set is covering and disjoint— an instance of
Document must be at the same time an instance of exactly
one of the subclasses. A Person Kind is also modeled. It
can have any number of associated IdCard instances, but an
IdCard must always be associated with exactly one Person.
A Person must be associated with at least two but not
more than four Passport instances, while a Passport
must always be associated with exactly one Person. Also in
the example, a Brain Kind is present, whose instance must
always be associated with one Person instance (and vice
versa). The particular instances in the association relationship
may not change over time.

Next, an OntoUML model may define Roles and Phases,
which are classified as Anti-Rigid Sortals [8]. Roles are
relationally dependent and must be connected to at least
one Mediation relationship (with a Relator universal at the
other end) [9], while Phases are intrinsic and not relationally-
dependent. A Phase must always be a part of a phase partition
(a disjoint and covering generalization set) [10].

COMMUNICATION PAPERS OF THE FEDCSIS. KRAKOW, POLAND, 2025

In the example OntoUML model in Fig. 1, the Person
Kind has two Phases: Alive and Deceased, exactly one of
them must always be instantiated.

More universal and relationship types are defined in UFO;
their description is out of scope of this paper. For more detailed
definitions, the reader is referenced to literature covering the
UFO theory [6] [7] [8]. Thanks to the constraints placed by
UFO on the types and relationships in an OntoUML model,
OntoUML models are able to capture many domain constraints
natively, as opposed to other modeling languages, such as plain
UML, in which such constraints must be specified by other
means.

The example OntoUML model in Fig. 1 is used throughout
this paper to illustrate the realization of constraints in SQL.
The model is used as the input to the transformation introduced
in Section II-C, where the transformation result is also shown.

<<kind>>
Document

{complete, disjoint}

<<subkind>>

<<subkind>>

IdCard Passport 2.4
1 1 <<phase>>
) Alive
<<kind>> | fessential, <<kind>>
Brain inseparable} Person
<<phase>>
1 1 {complete,| Deceased
disjoint}

Fig. 1. OntoUML model of the running example

B. Structured Query Language

Structured Query Language (SQL) is a language used to
manage data in RDBMS. In this paper, we deal with two
commonly recognized parts of SQL [11]:

« Data Manipulation Language (DML) — querying, insert-

ing, modifying and deleting data in the database,

o Data Definition Language (DDL)— definition of tables

and integrity constraints.

In this paper, we focus on the realization of constraints,
which pertains to the DDL part of SQL. Although SQL
is defined by an ISO standard, not all SQL statements are
universally portable across different RDBMS vendors. While
SQL syntax is consistent across RDBMS, the set of supported
features for integrity constraint checking varies; therefore not
all DDL constructs defined in the SQL standard can be used
in every RDBMS implementation.

As described in existing literature and in the SQL standard,
the following mechanisms can be used to realize integrity con-
straints in a relational database (mechanisms not implemented
in any of the mainstream RDBMS are omitted) [12]:

o« PRIMARY KEY — column that contains a unique iden-

tifier for each row in a table,

o UNIQUE — column that must have a unique value across

all rows in a table,

e« FOREIGN KEY —column that references an existing

record in another table,

JAKUB JABUREK ET AL.: TOWARDS ONTOUML FOR SOFTWARE ENGINEERING

o CHECK — expression that realizes a row-level constraint,
o TRIGGER — procedure that runs before or after a DML
operation, and can change or block the statement.

Additionally, SQL defines two modes of constraint check-
ing: immediate and deferred. In immediate mode, a constraint
is checked at the end of each DML statement. In deferred
mode, the constraint is checked at the end of the SQL
transaction [12].

C. Transformation of OntoUML into SQL

The process of transforming an OntoUML into SQL has
been elaborated in the Ph.D. thesis of Z. Rybola [4], and was
further discussed in [13]. In this subsection, we offer a high-
level overview of their approach, which is divided into three
successive steps:

1) Transformation of OntoUML into UML. First, the On-
toUML model is transformed into UML with added conditions
written in the Object Constraint Language (OCL) to preserve
the constraints defined by the original OntoUML model [4].

2) Transformation of UML into a Relational Model. Second,
the UML model is transformed into a relational schema by
using well-known algorithms. In addition, the OCL constraints
from the previous step are transformed as well to preserve the
meaning of the original OntoUML model.

Concerning the transformation of the generalization rela-
tionship between classes into the relational model, various
approaches are described in the existing literature [14]. In this
paper, we focus on the related tables approach, where each
class in the hierarchy is transformed to a separate table.

To illustrate the realization of constraints in SQL in Sec-
tion IV, a relational model shown in Fig. 2 is used. This model
is the result of the aforementioned transformation applied to
the OntoUML model in Fig. 1. Due to limited space, the
derived OCL constraints are omitted.

DOCUMENT g8 PASSPORT [
«column» «column»
“PKID: INT 1 0.1 f+pfK ID:INT
DISCRIMINATOR: TEXT *FK PERSON_ID: INT

/F 1 2.4
0.1 1

ID.cARD B person O ALIVE E|
«column» «column»
“pfK ID: INT g 1 *;Kw'l;'."",'\]} 17 0.1 [+pK ID:INT
*FK PERSON_ID: INT : “FK PERSON_ID: INT

1 1
0.1

BRAIN g8 DECEASED [
«column» «column»
*PK_ ID: INT I “PK ID: INT
“FK PERSON_ID: INT *FK PERSON_ID: INT

Fig. 2. Running example transformed into a relational model

3) Transformation of the Relational Model into SQL. Fi-
nally, the relational model is transformed into SQL. While the
transformation of tables and columns alone is straightforward,
the implementation of OCL constraints from the previous step
is non-trivial. The existing literature describes the realization
in Oracle [4]. However, due to differences in constraint check-

TABLE I

CONSTRAINT CHECKING SUPPORT MATRIX
Constraint ‘ Oracle ‘ MySQL ‘ MSSQL ‘ PostgreSQL
FOREIGN KEY
deferrable ‘ imm. / defer. ‘ immediate ‘ immediate ‘ imm. / defer.
TRIGGER
of events multiple one multiple multiple
activation before/after | before/after after before / after
granularity | row/statem. row statement row / statem.

ing mechanisms (as discussed in Section III), a realization in
one RDBMS is generally not portable to another.

III. RELATIONAL DATABASE MANAGEMENT SYSTEMS

According to the DB-Engines Ranking of Relational DBMS,
the top four RDBMS (as of April 2025) are the following [15]:

1) Oracle

2) MySQL

3) Microsoft SQL Server (MSSQL)

4) PostgreSQL

As discussed in Section II-B, the support for integrity
constraint checking is not uniform across various RDBMS.
The four vendors listed above implement at least some forms
of PRIMARY KEY, UNIQUE, FOREIGN KEY, CHECK and
TRIGGER constraints.

We surveyed the features supported by the top four RDBMS
important for the realization of constraints derived from an
OntoUML model — the results are presented in table I.

Oracle 23ai and PostgreSQL 17 offer complete support
for all surveyed constraint types. MySQL 9.3 supports only
one activation event per trigger, the expressiveness is however
equivalent to RDBMS that support any number of triggering
events. Also, MySQL supports only row-level triggers. Con-
versely, MSSQL 2022 implements only statement-level trig-
gers, and they can be executed only after the DML statement.

MySQL and MSSQL offer immediate constraint checking
only. For the FOREIGN KEY constraint, both RDBMS offer
mechanisms to temporarily disable integrity checks. MySQL
however does not check existing data for consistency when
the constraint is re-enabled, therefore referential integrity may
be broken indefinitely.

IV. IMPLEMENTATION OF CONSTRAINTS IN SQL

In this section, we present the main contributions of our
paper: the implementation of constraints derived during the
transformation of an OntoUML model to a relational schema
in SQL for MySQL, Microsoft SQL Server and PostgreSQL.

In our approach, an OntoUML model is not transformed to
SQL directly. Instead, we rely on the existing transformation
of an OntoUML model to a relational data model, as discussed
in Subsection II-C:

1) First, the OntoUML model is transformed into UML.
Additional constraints are derived so the semantics of
the original model are preserved where the UML class
model alone is not sufficient.

87

88

2) Second, the UML model is transformed into a relational
data model. The derived constraints are transformed as
well to apply to the relational model.

3) Finally, the relational model is transformed into SQL,
including the derived constraints. Based on the trans-
formed constraints, the RDBMS prevents the creation
of data that do not conform to the original OntoUML
model.

The existing literature provides the implementation of con-
straints in Oracle [4]. As surveyed in Section III, the top
four RDBMS implement varying features related to constraint
checking. Therefore, the realization of constraints in SQL is
dependent on the particular RDBMS product.

In this section, we thoroughly elaborate the realization of all
constraints that can be derived from an OntoUML model in
MySQL, Microsoft SQL Server (MSSQL) and PostgreSQL.
The section is structured as follows: in Subsection IV-A,
we first discuss a common approach to the realization of
association-related constraints, then, in the remaining subsec-
tion, we discuss the realization of individual constraints. We
illustrate the implementation by SQL listings applicable to the
relational model in Fig. 2. The model was produced by the
transformation introduced in Section II-C from the OntoUML
model presented in Fig. 1.

A. Associations

In this subsection, we introduce the common approach for
the implementation of constraints related to associations that
is used throughout the entire Section IV.

For constraints involving associations, we often need to
ensure that a referencing record exists. In OCL, this require-
ment is expressed as an invariant on the referenced table. The
only invariant-like generic constraint implemented by RDBMS
is the CHECK constraint, which cannot contain subqueries,
therefore it cannot be used to implement this requirement in
SQL. Instead, a set of triggers must be introduced, which are
executed on all DML operations that may cause the invariant
to not hold.

Notably, an INSERT operation on the referenced table
without a corresponding INSERT operation on the referencing
table would produce a non-referenced record. With triggers,
this can be prevented only by checking the existence of the
referencing record at the time of the insertion of the referenced
record. Therefore, an additional restriction is placed on the
order of DML operations: the referencing record must be
inserted before the referenced record.

For PostgreSQL, the implication is that the FOREIGN
KEY constraint in the referencing table must be checked
in deferred mode. MySQL and MSSQL do not implement
deferred constraint checking. In our approach, for MSSQL, we
propose temporarily disabling the FOREIGN KEY constraint
and re-enabling it after both records are inserted. MySQL
however does not check the integrity of existing data when
the constraint is re-enabled. To not break referential integrity,
we present a different approach, where the client is required to

COMMUNICATION PAPERS OF THE FEDCSIS. KRAKOW, POLAND, 2025

manually execute a stored procedure that checks the existence
of the referencing record once both sides are inserted.

In similar fashion, the order of DELETE operations is
enforced to be either (a) the referenced record before the
referencing record in PostgreSQL and MSSQL, or (b) the
referencing record before the referenced record in MySQL.

B. Immutability

In OntoUML models, immutability constraints commonly
emerge from relationships between a Sortal that provides an
identity principle and its subtypes. In SQL, the implementation
depends on whether an entire association or only a single
column needs to be guarded by such constraint, as discussed
in this subsection.

1) Immutable Column. To ensure that the value in a column
remains unchanged, a BEFORE UPDATE row-level trigger
must be defined in MySQL and PostgreSQL that blocks the
operation if the old and new column values are different. An
example trigger that prevent the change of the PERSON_ID
column in the BRAIN table is implemented for MySQL in
Listing 1, implementation in PostgreSQL is similar.

Listing 1 Realization of the immutability constraint in MySQL

CREATE TRIGGER ~IM_BRAIN_PERSON_ID_UPD"
BEFORE UPDATE ON "BRAIN® FOR EACH ROW BEGIN
IF OLD. PERSON_ID" <> NEW. PERSON_ID THEN
SIGNAL SQLSTATE '45000' SET MESSAGE_TEXT = "...";
END IF; END;

As MSSQL does not support row-level triggers, a different
approach needs to be employed. The statement-level trigger
in Listing 2 uses the UPDATE function to short-circuit the
condition in case the guarded column was not a part of
the UPDATE operation. However, the function returns TRUE
when updating to the same value. Therefore, the trigger
needs to query inserted and deleted special tables,
which contain the new and old values, respectively (w.r.t. the
UPDATE operation). To determine whether the value of the
guarded column actually changed, the two tables are joined on
the PRIMARY KEY column and then the new and old values
of the column are compared. Note that the lack of row-level
triggers in MSSQL makes it impossible to detect a change in
the PRIMARY KEY column, also such a change breaks the
change detection for other columns in the table as well.

Listing 2 Realization of the immutability constraint in MSSQL

CREATE TRIGGER [IM_BRAIN_PERSON_ID_UPD]
ON [BRAIN] AFTER UPDATE AS BEGIN
IF UPDATE ([PERSON_ID]) AND EXISTS (
SELECT 1 FROM inserted i
JOIN deleted d ON i.[BRAIN_ID]
WHERE i.[PERSON_ID] <> d.[PERSON_ID])
THROW 50000, '...', 1; END; END;

= d. [BRAIN_ID]
BEGIN

2) Immutable Association. When the referenced side (i.e.,
opposite the table containing the FOREIGN KEY) is marked
as immutable, the realization in SQL is the same as the previ-
ously discussed immutable column constraint. The constraint

JAKUB JABUREK ET AL.: TOWARDS ONTOUML FOR SOFTWARE ENGINEERING 89

is applied to the column in the referencing table that bears
the FOREIGN KEY constraint. The deletion of the referenced
record is prevented by the FOREIGN KEY constraint itself.

In case the referencing side is marked as immutable, the
FOREIGN KEY column is immutable with the same real-
ization as in the previous case. Additionally, the deletion of
the referencing record must be prevented. In MySQL and
PostgreSQL, this is realized by BEFORE DELETE row-level
triggers that block the operation when an existing record
is referenced by the referencing record (see Listing 3 for
MySQL, implementation in PostgreSQL is similar). Again, in
MSSQL, the trigger must be statement-level and it must query
the deleted special table (see Listing 4).

Listing 3 Trigger preventing the deletion of a referencing
record in MySQL

CREATE TRIGGER " IM_BRAIN_PERSON_ID_DEL"
BEFORE DELETE ON “BRAIN™ FOR EACH ROW BEGIN
IF OLD. PERSON_ID IS NOT NULL AND EXISTS (
SELECT 1 FROM "PERSON™ “p°
WHERE “p . ID = OLD. PERSON_ID) THEN
SIGNAL SQLSTATE '45000' SET MESSAGE_TEXT = "...";
END IF; END;

Listing 4 Trigger preventing the deletion of a referencing
record in MSSQL
CREATE TRIGGER

[IM_BRAIN_PERSON_ID_DEL]

ON [BRAIN] AFTER DELETE AS BEGIN
IF EXISTS (SELECT 1 FROM deleted d
JOIN [PERSON] p ON d.[PERSON_ID] = p.[ID]) BEGIN
THROW 50000, '...', 2;
END; END;

C. Exclusive Associations

The exclusive associations constraint is derived from On-
toUML phase partitions [16]. It guards a set of referencing
tables where a record in only one of the referencing tables
can refer a record in the referenced table. It follows that the
following five DML operations may violate the constraint:

1) INSERT or UPDATE on the referenced table— the
number of referencing records is not exactly one,

2) INSERT to any of the referencing tables—the refer-
enced record is already referenced,

3) UPDATE on any referencing table —the referencing
record may get de-associated or attached to a record
that already has an association,

4) DELETE from any referencing table—an orphan may
be created in the referenced table.

To ensure exactly one referencing record exists when the
referenced record is being inserted, a BEFORE INSERT/UP-
DATE trigger is employed. An example trigger that guards
the PERSON referenced table and ALIVE and DECEASED
referencing tables is provided in Listings 5 and 6 for Post-
greSQL and MSSQL, respectively. As MSSQL does not
support BEFORE nor row-level triggers, an AFTER trigger
that queries the inserted special table is used instead.

Listing 5 INSERT/UPDATE trigger on the referenced table
realizing an exclusive associations constraint in PostgreSQL

CREATE FUNCTION ex_person_phase ()
RETURNS TRIGGER AS $$ BEGIN

IF NOT (

(EXISTS (SELECT 1 FROM "ALIVE" a
WHERE a."PERSON_ID" = NEW."ID")

AND NOT EXISTS (SELECT 1 FROM "DECEASED" d
WHERE d."PERSON_ID" = NEW."ID")) OR

(NOT EXISTS (SELECT 1 FROM "ALIVE" a
WHERE a."PERSON_ID" = NEW."ID")

AND EXISTS (SELECT 1 FROM "DECEASED" d
WHERE d."PERSON_ID" = NEW."ID"))) THEN

RAISE EXCEPTION '...';
END IF; RETURN NEW; END; $$ LANGUAGE plpgsqgl;
CREATE TRIGGER ex_person_phase
BEFORE INSERT OR UPDATE ON "PERSON"
EXECUTE FUNCTION ex_person_phase();

FOR EACH ROW

Listing 6 INSERT/UPDATE trigger on the referenced table
realizing an exclusive associations constraint in MSSQL

CREATE TRIGGER [EX_PERSON_PHASE]
ON [PERSON] AFTER INSERT, UPDATE AS BEGIN

IF EXISTS (SELECT 1 FROM inserted i WHERE NOT (
(EXISTS (SELECT 1 FROM [ALIVE] a
WHERE a.[PERSON_ID] = i.[ID])

AND NOT EXISTS (SELECT 1 FROM [DECEASED] d
WHERE d.[PERSON_ID] = i.[ID])) OR
(NOT EXISTS (SELECT 1 FROM [ALIVE] a
WHERE a.[PERSON_ID] = i.[ID])
AND EXISTS (SELECT 1 FROM [DECEASED] d
WHERE d.[PERSON_ID] = i.[ID])))) BEGIN
THROW 50000, '...', 1; END; END;

As discussed in Subsection IV-A, a manually invoked pro-
cedure must be used in MySQL. The procedure, as illustrated
in Listing 7, needs to be executed by the client after inserting
or updating a record in the referenced table, but only after
the referencing record is inserted (if applicable). The ID input
parameter shall contain the primary key of the inserted record.

Listing 7 Procedure on the referenced table realizing an
exclusive associations constraint in MySQL

CREATE PROCEDURE "EX_PERSON_PHASE™ (IN “ID" INT)
BEGIN
IF NOT (
(EXISTS (SELECT 1 FROM "ALIVE" a
WHERE a. PERSON_ID" = "ID")
AND NOT EXISTS (SELECT 1 FROM "DECEASED™ d
WHERE d. PERSON_ID" = "ID")) OR
(NOT EXISTS (SELECT 1 FROM "ALIVE™ a
WHERE a. PERSON_ID™ = "ID")

AND EXISTS (SELECT 1 FROM "DECEASED"™ d
WHERE d. PERSON_ID" = "ID"))) THEN
SIGNAL SQLSTATE '45000' SET MESSAGE_TEXT = "...";

END IF; END;

Furthermore, the constraint may get violated when a record
is inserted into a table that belongs to the mutually exclusive
set. Therefore, a BEFORE INSERT trigger is in place for
all tables in the set that prevents the operation if a matching
referencing record already exists in any of the other tables. An
example of such trigger is provided in Listing 8 for MySQL,
implementation in PostgreSQL is similar.

90

COMMUNICATION PAPERS OF THE FEDCSIS. KRAKOW, POLAND, 2025

Listing 8 INSERT trigger on a referencing table realizing an
exclusive associations constraint in MySQL

Listing 11 UPDATE trigger on a referencing table realizing
an exclusive association constraint in MySQL

CREATE TRIGGER "EX_PERSON_PHASE_ALIVE_INS®
BEFORE INSERT ON "ALIVE" FOR EACH ROW BEGIN
IF EXISTS (SELECT 1 FROM "DECEASED™ d
WHERE d. PERSON_ID" = NEW. ID) THEN
SIGNAL SQLSTATE '45000' SET MESSAGE_TEXT = "...";
END IF; END;

As MSSQL does not support BEFORE nor row-level trig-
gers, an AFTER trigger that queries the inserted special
table is used instead, as illustrated in Listing 9.

Listing 9 INSERT trigger on a referencing table realizing an
exclusive associations constraint in MSSQL

CREATE TRIGGER [EX_PERSON_PHASE_ALIVE_INS]
ON [ALIVE] AFTER INSERT AS BEGIN
IF EXISTS (SELECT 1 FROM inserted i
JOIN [DECEASED] d ON d.[PERSON_ID] =
BEGIN
THROW 50000, '...', 2;

i.[ID])

END; END;

Finally, the exclusive association constraint may get violated
when a record in the referencing tables is updated or deleted.
In PostgreSQL and MSSQL, an AFTER UPDATE/DELETE
trigger on all referencing tables is used. The trigger checks
that after the operation finishes, all records in the referenced
table have exactly one counterpart across all referencing tables;
see Listing 10 for an example in MSSQL, implementation in
PostgreSQL is similar.

Listing 10 UPDATE/DELETE trigger on a referencing table
realizing an exclusive association constraint in MSSQL

CREATE TRIGGER [EX_PERSON_PHASE_ALIVE_UPD_DEL]
ON [ALIVE] AFTER UPDATE, DELETE AS BEGIN

IF EXISTS (SELECT 1 FROM [PERSON] p WHERE NOT (

(EXISTS (SELECT 1 FROM [ALIVE] a
WHERE a.[PERSON_ID] = p.[ID])

AND NOT EXISTS (SELECT 1 FROM [DECEASED] d
WHERE d.[PERSON_ID] = p.[ID])) OR

(NOT EXISTS (SELECT 1 FROM [ALIVE] a
WHERE a.[PERSON_ID] = p.[ID])

AND EXISTS (SELECT 1 FROM [DECEASED] d
WHERE d. [PERSON_ID] = p.[ID])))) BEGIN

THROW 50000, '...', 3; END; END;

MySQL (i) does not support triggers with multiple trig-
gering events, (ii) does not support statement-level triggers.
Therefore, a different implementation must be used. To avoid
the mutating table error in a row-level trigger, it must not
access the table on which it was fired. Additionally, the trigger
must be split up to an UPDATE and a separate DELETE
trigger. The UPDATE trigger must check whether the reference
has been changed to a different record, if so, it must check
whether the sum of records referencing the previous record
across all the other referencing tables is one and whether no
record that references the currently referenced record exists
among all the other referencing tables; see Listing 11. The
DELETE trigger works in a similar fashion while omitting
the check of the currently referenced record; see Listing 12.

CREATE TRIGGER "EX_PERSON_PHASE_ALIVE_UPD"
AFTER UPDATE ON “PERSON" FOR EACH ROW BEGIN
IF OLD. PERSON_ID" <> NEW. PERSON_ID THEN
SET @o_count := SELECT COUNT (+) FROM ~DECEASED" d
WHERE d. PERSON_ID = OLD. PERSON_ID";
IF @o_count <> 1 OR EXISTS (
SELECT 1 FROM "DECEASED" d
WHERE d. PERSON_ID = NEW. PERSON_ID")
SIGNAL SQLSTATE '45000°'
SET MESSAGE_TEXT = "...";
END IF; END IF; END;

THEN

Listing 12 DELETE trigger on a referencing table realizing
an exclusive association constraint in MySQL

CREATE TRIGGER "EX_PERSON_PHASE_ALIVE_DEL"
AFTER DELETE ON "ALIVE®™ FOR EACH ROW BEGIN
SET (o_count := SELECT COUNT (x) FROM "DECEASED" d
WHERE d. PERSON_ID" = OLD. PERSON_ID";
IF (@o_count <> 1 THEN
SIGNAL SQLSTATE '45000'
END IF; END;

SET MESSAGE_TEXT = "...";

D. Generalization Set

For generalization sets, the constraint must guarantee a
valid value in the discriminator column and a correct set of
referencing records [14]. We argue there are five kinds of DML
operations that may violate the constraint:

1) INSERT and UPDATE on the superclass table — may
insert an invalid value in the discriminator column or
the correct subclass records do not exist,

2) INSERT to any subclass table—an incorrect subclass
record may be added,

3) DELETE from any subclass table —a required subclass
record may be removed,

4) UPDATE on any subclass table—the reference to a
superclass record may be changed incorrectly.

Thus, insertions and updates to the table representing the
superclass must be checked. An example of such trigger for
PostgreSQL is provided in Listing 13.

Listing 13 INSERT/UPDATE trigger on the superclass table
realizing a generalization set constraint in PostgreSQL

CREATE FUNCTION gs_document_type ()
RETURNS TRIGGER AS $$ BEGIN
IF NOT ((
NEW."DISCRIMINATOR" = 'IdCard' AND
NOT EXISTS (SELECT 1 FROM "PASSPORT" p
WHERE p."ID" = NEW."ID") AND
EXISTS (SELECT 1 FROM "ID_CARD" i
WHERE i."ID" = NEW."ID")) OR
(NEW."DISCRIMINATOR" = 'Passport' AND
EXISTS (SELECT 1 FROM "PASSPORT" p
WHERE p."ID" = NEW."ID") AND
NOT EXISTS (SELECT 1 FROM "ID_CARD" i
WHERE i."ID" = NEW."ID"))) THEN
RAISE EXCEPTION '...';
END IF; RETURN NEW; END; $$ LANGUAGE plpgsql;
CREATE TRIGGER gs_document_type
BEFORE INSERT OR UPDATE ON "DOCUMENT"
EXECUTE FUNCTION gs_document_type();

FOR EACH ROW

JAKUB JABUREK ET AL.: TOWARDS ONTOUML FOR SOFTWARE ENGINEERING

As MSSQL does not support row-level triggers, in this case
the trigger must be adjusted to check all inserted or updated
records by querying the inserted table; see Listing 14.

Listing 14 INSERT/UPDATE trigger on the superclass table
realizing a generalization set constraint in MSSQL

CREATE TRIGGER [GS_DOCUMENT_TYPE]
ON [DOCUMENT] AFTER INSERT, UPDATE AS BEGIN
IF EXISTS (SELECT 1 FROM inserted i WHERE NOT ((
i.[DISCRIMINATOR] = 'IdCard' AND
NOT EXISTS (SELECT 1 FROM [PASSPORT] p
WHERE p.[ID] = i.[ID]) AND
EXISTS (SELECT 1 FROM [ID_CARD] i2
WHERE i2.[ID] = i.[ID])) OR
(i.[DISCRIMINATOR] = 'Passport' AND
EXISTS (SELECT 1 FROM [PASSPORT] p
WHERE p.[ID] = i.[ID]) AND
NOT EXISTS (SELECT 1 FROM [ID_CARD] i2
WHERE i2.[ID] = i.[ID])))) BEGIN
THROW 50000, '...', 1; END; END;

As discussed in Subsection IV-A, the prevention of orphan
records requires inserting the referencing record first. How-
ever, as MySQL does not support deferrable constraint check-
ing, a stored procedure that the user must execute manually
has to be used instead. The procedure is executed after the
INSERT and UPDATE operations on the superclass table, but
only after the referencing record is inserted (if applicable);
see Listing 15 (where the ID input parameter shall contain
the primary key of the inserted or updated record).

Listing 15 Procedure for checking the INSERT/UPDATE op-
eration that realizes a generalization set constraint in MySQL

CREATE PROCEDURE °GS_DOCUMENT_TYPE™ (IN "ID" INT)
BEGIN
SET (@discr = (SELECT "DISCRIMINATOR"
FROM "DOCUMENT™ d WHERE d. ID" = "ID");
IF NOT ((
@discr =

'IdCard' AND

NOT EXISTS (SELECT 1 FROM "PASSPORT™ p
WHERE p. ID° = "ID") AND

EXISTS (SELECT 1 FROM "ID_CARD™ i
WHERE i. ID° = "ID")) OR

(@discr = 'Passport' AND

EXISTS (SELECT 1 FROM "PASSPORT™ p
WHERE p. ID" = "ID") AND

NOT EXISTS (SELECT 1 FROM “ID_CARD™ i
WHERE i. ID° = “ID"))) THEN

SIGNAL SQLSTATE '45000' SET MESSAGE_TEXT = "...";
END IF; END;

Next, we argue that for PostgreSQL and MSSQL, the
insertion or deletion of a record that references an existing
record in the superclass table in any subclass table breaks
the generalization set constraint, since the subclass record is
inserted before the superclass record and deleted after the
superclass record. Therefore, INSERT and DELETE triggers
must be employed that prevent the operation if the inserted or
deleted record references an existing record in the superclass
table. Examples of the INSERT and DELETE triggers for
PostgreSQL are provided in Listings 16 and 17, respectively.
Again, in MSSQL, due to the lack of support for row-level
triggers, the inserted and deleted special tables must
be queried.

Listing 16 INSERT trigger on a subclass table realizing a
generalization set constraint in PostgreSQL

CREATE FUNCTION gs_document_type_passport_ins ()
RETURNS TRIGGER AS $$ BEGIN
IF EXISTS (SELECT 1 FROM "DOCUMENT" d
WHERE d."ID" = NEW."ID") THEN

RAISE EXCEPTION '...';
END IF; RETURN NEW; END; $$ LANGUAGE plpgsql;
CREATE TRIGGER gs_document_type_passport_ins
BEFORE INSERT ON "PASSPORT" FOR EACH ROW
EXECUTE FUNCTION gs_document_type_passport_ins();

Listing 17 DELETE trigger on a subclass table realizing a
generalization set constraint in PostgreSQL

CREATE FUNCTION gs_document_type_passport_del ()
RETURNS TRIGGER AS $$ BEGIN
IF EXISTS (SELECT 1 FROM "DOCUMENT" d
WHERE d."ID" = OLD."ID") THEN

RAISE EXCEPTION '...';
END IF; RETURN OLD; END; $$ LANGUAGE plpgsqgl;
CREATE TRIGGER gs_document_type_passport_del
BEFORE DELETE ON "PASSPORT" FOR EACH ROW
EXECUTE FUNCTION gs_document_type_passport_del ();

In MySQL, as discussed in Subsection IV-A, the order of
insertion is reversed. Thus, the check for the existence of
the correct subclass records is performed in the superclass
INSERT trigger, and the subclass INSERT trigger needs to
check only if the discriminator value corresponds to the
subclass table that is being inserted to. It is not necessary
to check that no other record in the same table references the
same superclass record, as that is prevented by the PRIMARY
KEY constraint on the referencing column.

Concerning the DELETE operation on subclass tables, due
to the lack of support for deferrable constraints in MySQL, a
subclass record must be deleted before the superclass one. The
possibility of leaving a superclass record without a subclass
record is impossible to prevent automatically via triggers in
MySQL, and can only be checked manually by executing a
stored procedure after the subclass and superclass (if applica-
ble) records are deleted; see Listing 18 (where the ID column
shall contain the primary key of the deleted record).

Listing 18 Procedure after DELETE on a subclass table
realizing a generalization set constraint in MySQL

CREATE PROCEDURE °GS_DOCUMENT_TYPE_DEL® (IN “ID~ INT)
BEGIN
IF EXISTS (SELECT 1 FROM "DOCUMENT" d
WHERE d. ID" = "ID") THEN
SIGNAL SQLSTATE '45000' SET MESSAGE_TEXT = "...";

END IF; END;

Finally, the UPDATE operation on the subclass table must
not de-associate the record from an existing superclass record,
nor associate it with another existing record. In MySQL and
PostgreSQL, this can be ensured by an UPDATE trigger on the
subclass tables; see Listing 19 for MySQL, implementation in
PostgreSQL is similar.

MSSQL does not support row-level triggers, and changes
to individual records may only be inferred by comparing

91

92

Listing 19 UPDATE trigger on a subclass table realizing a
generalization set constraint in MySQL

CREATE TRIGGER ~GS_DOCUMENT_TYPE_PASSPORT_UPD"™
BEFORE UPDATE ON "PASSPORT™ FOR EACH ROW BEGIN

IF OLD. ID" <> NEW. ID" AND EXISTS (
SELECT 1 FROM "DOCUMENT ™ d
WHERE d. ID° = OLD. ID"
OR d. ID" = NEW. ID") THEN

SIGNAL SQLSTATE
END IF; END;

'45000' SET MESSAGE_TEXT = "...";

the records in the inserted and deleted special tables.
However, these tables do not contain a column that would
make detecting the change of the primary key possible. As a
result, in MSSQL, the UPDATE operation on subclass tables
can only be checked manually by executing a stored procedure
after updating the subclass record; see Listing 20 (where
the QOLD_ID and @NEW_ID input parameters contain the
previous and new values of the primary key, respectively).

Listing 20 Procedure after UPDATE on a subclass table
realizing a generalization set constraint in MSSQL

CREATE PROCEDURE [GS_DOCUMENT_TYPE_PASSPORT_UPD]
(GOLD_ID INT, @NEW_ID INT) AS BEGIN

IF @OLD_ID <> @GNEW_ID AND EXISTS (

SELECT 1 FROM [DOCUMENT] d
WHERE d.[ID] = @OLD_ID
OR d.[ID] = @NEW_ID) BEGIN
THROW 50000, '...', 3;
END; END;

E. Mandatory and Special Multiplicity

The mandatory multiplicity and special multiplicity con-
straints impose a restriction on the number of referencing
records for a particular referenced record. It follows that five
DML operations that may violate the constraint exist:

1) INSERT to the referenced table—an orphaned record
may be inserted,

2) UPDATE on the referenced table—an incorrect num-
ber of references may point to a record with changed
primary key,

3) INSERT or DELETE on the referencing table—an
incorrect number of records may point to the referenced
record,

4) UPDATE on the referencing table—an incorrect num-
ber of record may reference the previous and current
referenced record.

In MySQL, the referenced record must be inserted first.
Therefore, there always exists a possibility of creating an or-
phan record that may violate the constraint. As a consequence,
the constraint may only be checked manually by executing a
stored procedure. Furthermore, as MySQL does not support
statement-level triggers, all triggers on the referencing table
would produce a mutating table error. Consequently, a stored
procedure must be used in place of triggers as well. Collec-
tively, a single stored procedure needs to be executed (i) after
inserting to the referenced table, but only after the referencing

COMMUNICATION PAPERS OF THE FEDCSIS. KRAKOW, POLAND, 2025

record is inserted (if applicable), (ii) after updating or deleting
from the referenced table, (iii) after inserting, updating or
deleting from the referencing table; see Listing 21.

Listing 21 Procedure realizing a special multiplicity constraint
in MySQL

CREATE PROCEDURE MUL_PASSP_PERSON_ID" () BEGIN
IF EXISTS (SELECT 1 FROM "PERSON" p WHERE NOT (
SELECT COUNT (1) FROM ~PASSPORT™ p2
WHERE p2. PERSON_ID" = p. ID"
) BETWEEN 2 AND 4) THEN
SIGNAL SQLSTATE '45000' SET MESSAGE_TEXT = "...";
END IF; END;

In the case of PostgreSQL and MSSQL, automatic checking
via triggers can be implemented. A trigger on the INSERT
and UPDATE operations on the referenced table prevents the
operation if an incorrect number of referencing records is
detected for the affected records; see Listings 22 and 23 for
PostgreSQL and MSSQL, respectively.

Listing 22 INSERT/UPDATE trigger on the referenced table
realizing a special multiplicity constraint in PostgreSQL

CREATE FUNCTION mul_passp_person_id()
RETURNS TRIGGER AS $$ BEGIN

IF NOT ((
SELECT COUNT (1) FROM "PASSPORT" p
WHERE p."ID" = NEW."ID"
) BETWEEN 2 AND 4) THEN

RAISE EXCEPTION '...';
END IF; RETURN NEW; END; $$ LANGUAGE plpgsql;
CREATE TRIGGER mul_passp_person_id
BEFORE INSERT OR UPDATE ON "PERSON" FOR EACH ROW
EXECUTE FUNCTION mul_passp_person_id();

Listing 23 INSERT/UPDATE trigger on the referenced table
realizing a special multiplicity constraint in MSSQL

CREATE TRIGGER [MUL_PASSP_PERSON_ID]
ON [PERSON] AFTER INSERT, UPDATE AS BEGIN
IF EXISTS (SELECT 1 FROM inserted i WHERE NOT ((
SELECT COUNT (1) FROM [PASSPORT] p
WHERE p.[ID] = i.[ID]
) BETWEEN 2 AND 4)) BEGIN
THROW 50000, '...', 1; END; END;

The INSERT, UPDATE and DELETE operations are
checked by a second trigger that prevents the operation if after
the operation is executed a record with an incorrect number
of referencing records exists. See Listing 24 for an example
in MSSQL, implementation in PostgreSQL is similar.

Listing 24 INSERT/UPDATE/DELETE trigger on the ref-
erencing table realizing a special multiplicity constraint in
MSSQL

CREATE TRIGGER [MUL_PASSP_PERSON_ID_REL]
ON [PASSPORT] AFTER INSERT, UPDATE, DELETE AS BEGIN

IF EXISTS (SELECT 1 FROM [PERSON] p WHERE NOT ((
SELECT COUNT (1) FROM [PASSPORT] p2
WHERE p2.[ID] = p.[ID]
) BETWEEN 2 AND 4)) BEGIN
THROW 50000, '...', 2; END; END;

JAKUB JABUREK ET AL.: TOWARDS ONTOUML FOR SOFTWARE ENGINEERING

In Listings 21-24, we presented the realization of a special
multiplicity of [2..4]. For constraints where the lower or
upper bound is unrestricted, a <= or >= operator is used
instead of the BETWEEN operator.

The mandatory multiplicity constraint is a special case of
the special multiplicity constraint, where the lower bound is 1
and the upper bound is unrestricted. Therefore, its realization
is the same as of the special multiplicity constraint, possibly
with the EXISTS predicate instead of >= and the COUNT
function for improved performance.

V. DISCUSSION

In this paper, we presented our approach to the enforcement
of integrity constraints of an OntoUML model in relational
databases, in particular PostgreSQL, Microsoft SQL Server
and MySQL.

Our research appears to suggest that among the three
considered RDBMS, PostgreSQL is the most suitable for the
implementation of constraints of an OntoUML model. Due to
the lack of support for certain features concerning triggers and
the absence of deferrable constraint checking, the realization
in MSSQL and MySQL at times falls back to user-executed
validation procedures.

Furthermore, due to triggers being processed after each
DML operation, the implementation of constraints that validate
data across multiple tables is difficult. In our approach, we
work around these shortcomings by (i) requiring all FOREIGN
KEY constraints to be deferred in PostgreSQL and inserting
the referencing record prior to the referenced record, (ii) in
MSSQL, due to lack of support for deferrable constraints,
temporarily disabling FOREIGN KEY constraints and re-
enabling them after both records are inserted, (iii) as MySQL
does not re-check referential integrity when constraints are
re-enabled, we opted to prioritize referential integrity and
implemented many of the constraints as user-executed vali-
dation procedures instead of automatically executed triggers.
As the implementation in PostgreSQL and MSSQL requires a
referencing record to be inserted before the referenced record,
automatically generated primary keys cannot be used in the
referenced table. On the other hand, as the implementation in
MySQL relies heavily on manually-executed procedures, the
enforcement of constraints is not guaranteed.

VI. CONCLUSIONS

In this paper, we introduced our approach to the trans-
formation of an OntoUML model to a relational database,
with focus on the preservation of integrity constraints defined
by the OntoUML model. We discussed the realization in the
following RDBMS:

e Microsoft SQL Server

o PostgreSQL

We drew on existing research that divides the transformation
into three separate steps, as listed below. The original contri-
bution of our paper lies in the third step, which elaborates the
implementation in the aforementioned RDBMS.

1) First, the source OntoUML model is transformed to an
UML model.

2) Then, the intermediate UML model is transformed to a
platform-independent model of a relational database.

3) Finally, the relational model is transformed to a vendor-
specific realization in SQL.

We showed the transformation of all possible constraints
defined by the constructs used in OntoUML models. We
demonstrated the differences between the three considered
RDBMS and discussed the limitations of each one w.r.t.
the implementation of constraints. The results indicate that
PostgreSQL allows implementing complete and automatic
constraint enforcement, while MySQL lacks certain needed
features and many constraints need to be checked manually.

REFERENCES

[11 M. Fowler, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd ed. Boston: Addison-Wesley, Sep. 2003. ISBN
978-0-321-19368-1

[2] G. Guizzardi, A. Botti Benevides, C. Morais Fonseca, D. Porello,
J. P. A. Almeida, and T. Prince Sales, “UFO: Unified Foundational
Ontology,” Applied Ontology, vol. 17, no. 1, pp. 167-210, Mar. 2022.
doi: 10.3233/A0-210256

[3] DB-Engines. Ranking per database model category. Accessed Apr.
2025. [Online]. Available: https://db-engines.com/en/ranking_categories

[4] Z. Rybola, “Towards OntoUML for Software Engineering: Transforma-
tion of OntoUML into Relational Databases,” Ph.D. dissertation, Czech
Technical University in Prague, Prague, Aug. 2017.

[5] G. Guizzardi, G. Wagner, J. P. A. Almeida, and R. S. Guizzardi, “To-
wards Ontological Foundations for Conceptual Modeling: The Unified
Foundational Ontology (UFO) Story,” Applied Ontology, vol. 10, no.
3-4, pp. 259-271, Dec. 2015. doi: 10.3233/A0-150157

[6] G. Guizzardi, “Ontological Foundations for Structural Conceptual Mod-
els,” Ph.D. dissertation, University of Twente, Enschede, 2005.

[7]1 G. Guizzardi, C. Morais Fonseca, A. B. Benevides, J. P. A. Almeida,
D. Porello, and T. P. Sales, “Endurant Types in Ontology-Driven Con-
ceptual Modeling: Towards OntoUML 2.0,” in Conceptual Modeling.
Cham: Springer, 2018, vol. 11157, pp. 136-150.

[8] G. Guizzardi, C. Morais Fonseca, J. P. A. Almeida, T. P. Sales,
A. B. Benevides, and D. Porello, “Types and Taxonomic Structures in
Conceptual Modeling: A Novel Ontological Theory and Engineering
Support,” Data & Knowledge Engineering, vol. 134, p. 101891, Jul.
2021. doi: 10.1016/j.datak.2021.101891

[9] G. Guizzardi and G. Wagner, “What’s in a Relationship: An Ontological
Analysis,” in Conceptual Modeling - ER 2008. Berlin: Springer, 2008,
vol. 5231, pp. 83-97. ISBN 978-3-540-87877-3

[10] G. Guizzardi, T. P. Sales, J. P. A. Almeida, and G. Poels, “Automated
Conceptual Model Clustering: A Relator-Centric Approach,” Software
and Systems Modeling, vol. 21, no. 4, pp. 1363-1387, Aug. 2022. doi:
10.1007/s10270-021-00919-5

[11] L. Liu and M. T. Ozsu, Encyclopedia of Database Systems. New York:
Springer, 2018. ISBN 978-1-4614-8265-9

[12] I. O. for Standardization, “Database Language SQL — Part 1: Frame-
work,” Geneva, Jun. 2023.

[13] J. Jabirek, “Implementation of the Transformation of an OntoUML
Model in OpenPonk into Its Realization in a Relational Database,”
Master’s thesis, Czech Technical University in Prague, Prague, May
2024.

[14] Z. Rybola and R. Pergl, “Towards OntoUML for Software Engineering:
Transformation of Kinds and Subkinds into Relational Databases,”
Computer Science and Information Systems, vol. 14, no. 3, pp. 913-937,
2017. doi: 10.2298/CSIS170109035R

[15] DB-Engines. Ranking of Relational DBMS. Accessed Apr. 2025.
[Online]. Available: https://db-engines.com/en/ranking/relational+dbms

[16] Z. Rybola and R. Pergl, “Towards OntoUML for Software Engineering:
Transformation of Anti-Rigid Sortal Types into Relational Databases,”
in Model and Data Engineering. Cham: Springer, 2016, vol. 9893, pp.
1-15. ISBN 978-3-319-45547-1

93

