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Abstract—This study presents a cost-effective tree crown
segmentation framework using a hybrid deep learning model
that combines a ResNet-34 encoder with a U-Net decoder. Our
approach operates on low-resolution RGB Digital Orthophotos
(DOPs) collected from urban and peri-urban areas in Bochum,
Germany, simulating real-world data constraints. We processed
450 orthophoto-mask pairs through a comprehensive preprocess-
ing pipeline including resizing (from 2000020000 to 256x256),
augmentation, and noise simulation. The model was trained
using 10-fold cross-validation, achieving a Dice coefficient of
0.8678, Intersection over Union (IoU) of 0.7754, precision of
0.8410, and recall of 0.9103. These results demonstrate that
even with downsampled imagery, reliable segmentation of tree
crowns is feasible, making our approach suitable for low-cost
forest inventory and precision agroforestry applications. Unlike
previous studies relying on high-resolution LiDAR, this work is
among the first to show robust tree crown segmentation using
low-resolution orthophotos, making it accessible for widespread
use in resource-constrained settings.

Index Terms—Tree segmentation, Digital Orthophotos, Remote
Sensing, Forest Monitoring, Forest 4.0, Deep Learning.

I. INTRODUCTION

OREST monitoring is essential for ensuring the sustain-

able management, conservation, and restoration of forest
ecosystems, which are critical to biodiversity, climate regu-
lation, and human well-being [1]. By continuously tracking
changes in forest cover, composition, and health, monitoring
efforts support early detection of deforestation, forest degra-
dation, pest outbreaks, and the impacts of climate change
[2], [3]. With the increasing complexity of environmental
challenges and the growing demand for data-driven decision-
making, traditional forest monitoring methods are evolving
toward more integrated, automated, and scalable solutions.
This transformation is embodied in the concept of Digital
Forestry, which leverages advanced technologies such as re-
mote sensing, artificial intelligence, Internet of Things (IoT),
and geospatial analytics to enhance forest observation and
analysis. Within this context, the emergence of Forest 4.0 that
integrates cyber-physical systems, real-time data processing,
and predictive analytics to enable proactive decision-making,
optimize resource use, and ensure ecological resilience [4].
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Recent advances in satellite imagery have created new op-
portunities for forest monitoring, including tree segmentation
on a large scale [5], [6]. Laser imaging, detection, and ranging
(LiDAR)-based high-resolution [7] satellite data can provide
detailed information on forest structure, including tree height,
tree trunk, and tree area; however, such data are not always
available and can be costly [6], [8]. Low-resolution Red-
Green-Blue (RGB) satellite imagery cannot provide detailed
forest information, such as forest structure and the area cov-
ered by the trees [9]. So, it is very challenging to get details
of tree structure from the low-resolution LiDAR-based RGB
satellite data due to mixed pixels, blurry images, shadows,
overlapping, and lack of spectral information [10]. Dataset pre-
processing is required to get the forest and tree structure details
from the RGB images [11]. These images estimate tree cover,
species, biomass, changes in forest characteristics, tree shapes,
wood calculations, trunk detections, and many others [12].

We propose a Deep Learning (DL)-based model for using
low-resolution RGB satellite imagery from the German forest
to segment the tree areas, which comprises of ResNet-34 and
U-Net models. The contributions of this study are as follows:

o« We introduce a custom hybrid model that integrates
a ResNet34 encoder with a U-Net decoder, combining
strong feature extraction capabilities with spatial recon-
struction suited for semantic segmentation tasks on low-
resolution imagery.

e The model is trained and validated on DOP and
nDOM datasets from the German federal state of North
Rhine-Westphalia, demonstrating the feasibility of using
256x256-pixel images for high-quality segmentation.

« A comprehensive data preprocessing framework is devel-
oped, including image resizing, augmentation, compres-
sion, and noise simulation, to enhance model robustness
and generalization across heterogeneous landscapes.

II. RELATED WORK

Multiple models have been developed to segment individual
trees from forests and urban streets using high-resolution and
low-resolution LiDAR point clouds and RGB images, and
results have shown significant differences [12]. Few of these
developed methods use to detect and segment the tree tops
because these are the highest points in the RGB imagery and
LiDAR point cloud data. By identifying and detecting the tree
tops, the features of the trees are extracted and segmented. The
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[13] develops a YOLO-based CCD-YOLO model to segment
the individual tree using the LiDAR datasets collected from
Beijing and Henan Polytechnic University, China.

Study [14] proposed a Fuzzy Center Segmentation (FCS)
for ITS and used the ALS and TLS LiDAR-based datasets
collected from the Jasper National Park, Montane Cordillera
Ecozone, Canada, but did not segment the trees very well.

Study [15] used a watershed transformer based on U-
net to perform ITS on high-resolution data sets collected
from Bengaluru, India, and Gartow, Germany. The accuracy
achieved by the author is 46.3% and the IoU is 71.2%. For
the other dataset, the accuracy was 52% and the IoU was 72.
6%, which is better than on the other data set. The datasets
used in this research are also high-resolution-based.

In [16], the author developed a nonparametric approach for
ITS from LiDAR data, detecting dominant and co-dominant
trees for 94% and 62% for intermediate dead and overtopped
trees. The overall accuracy achieved by the author is 77%
which is not good for the high-resolution dataset. The author
proposed the 5-step approach to segment the trees, which is
time-consuming and did not provide good results. The perfor-
mance of this method was also affected by the complexity of
the forest terrain and the conditions of the vegetation.

In [17], the author uses a method to automate tree seg-
mentation for individual trees from complicated urban forests.
The developed method did not provide good accuracy, and
the accuracy matrices are not provided, but it recognizes the
difficulties of the urban areas. The suggested accuracy is lower
than the natural forest areas.

In [19], a custom Individual Tree Matching (ITM) algorithm
was used to compare LiDAR-detected trees with 284 field-
measured reference trees. For local maxima methods, a fixed
3 x 3m window applied to a non-smoothed canopy height
model (CHM) achieved an F-score of 0.65 with 86% of trees
are detected, while methods based on [21] achieved excellent
crown segmentation with mean crown radius < 0.5m of field-
measured crown radius. For non-local maxima methods, the
adaptive mean shift algorithm (AMS3D) performed well with
F score of 0.67 and a mean crown radius < 0.1m.

In [18], the author proposed an approach to extract, detect,
and segment individual crowns using multispectral airborne
LiDAR data. Trees crowns are initially segmented in the spa-
tial domain using the mean shift algorithm, under-segmented
crowns are identified using a Support Vector Machine (SVM)
classifier and geometric features, and the crowns identified
from classification are refined using mean shift in a joint fea-
ture space with spatial and multispectral data. The experiments
on a total of ten forest plots in Ontario, Canada, quantify the
differences in SVM’s multispectral space data, and improve
the detection rate of dominant trees from 82% to 88% while
having better accuracy for detection in dense and clumped
forests.

Table I highlights that while high-resolution LiDAR and
UAV-based imagery dominate the field, their effectiveness is
highly context-dependent. Methods such as the SVM com-
bined with Mean Shift and LiDAR demonstrated strong per-
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formance in complex forest environments, particularly for
clumped tree detection, achieving up to 84% segmentation
accuracy. Techniques like Fuzzy Center Segmentation and
the Watershed Transformer (U-Net) delivered inconsistent or
suboptimal results despite using high-resolution data, point-
ing to limitations in handling diverse terrain and canopy
structures. The Watershed Algorithm (WA), when applied to
UAV LiDAR data in Eucalyptus plantations, achieved the
highest F1-score (0.761), excelling particularly in low-density
plots. This underscores the suitability of classical segmentation
approaches in structured forest settings. Traditional methods
such as the nonparametric 5-step approach, though reason-
ably accurate (77%), were found to be time-consuming and
sensitive to terrain variations, limiting scalability. Urban ITS
models consistently underperformed, highlighting persistent
challenges in segmenting trees in built environments due to
occlusions and background complexity. Deep learning-based
methods like YOLO and U-Net offer promising segmentation
capabilities but show mixed outcomes depending on dataset
quality, annotation accuracy, and forest heterogeneity. The
analysis reveals that no single approach outperforms others;
instead, method effectiveness hinges on factors such as data
resolution, forest density, canopy complexity, and the inte-
gration of geometric and machine learning strategies. These
insights justify the development of hybrid models, such as
the proposed U-Net with ResNet34 encoder, which aim to
balance performance and generalizability, particularly when
working with low-resolution RGB imagery in urban-natural
mixed forest landscapes.

I[II. METHODOLOGY

We propose a hybrid deep learning model that combines
the U-Net architecture with a ResNet34 encoder for tree
segmentation from the German urban area. The model uses
a U-Net architecture with the Resnet34 backbone and extracts
features from the RGB satellite images. The proposed model
use to train the dataset and applies the k-fold cross validation
for 10 folds with the learning rate of le-2 and patience of 10.
Each fold runs for 100 epochs, early stopping technique is
used to stop the training on the best Dice score. The proposed
model consists of the U-Net framework, Resnet34 encoder,
Decoder with skip connections, and output layer.

A. U-Net Framework

U-Net is a fully convolutional neural network developed
for pixel-wise segmentation tasks. A U-Net is structured in a
symmetric ”U” shape with a contracting path (an encoder) and
an expanding or decoding path with skip connections between
layers with the same index in the contraction and expansion
paths. The contracting path extracts contextual information
when downsampling the image and increasing the depth of
features, whereas the expanding or decoding path extracts
spatial information when upsampling the image.

B. ResNet34 Encoder

ResNet34 is a residual network with 34 layers that uses
residual blocks with skip connections that help to smooth the
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TABLE I
COMPARISON OF INDIVIDUAL TREE SEGMENTATION (ITS) METHODS
Ref. | Method/Model Dataset Resolution | Accuracy/Performance Notes
Location/Type
2009, | Tree top detection with | Forest & urban areas | High/Low | Varies significantly with resolution Tree tops used for segmenta-
[12] | RGB/LiDAR tion
2025,| CCD-YOLO (YOLO- | Beijing & Henan | High Accuracy not specified YOLO-based ITS with high-
[13] based) Univ., China res LIDAR
x2024] Fuzzy Center Segmenta- | Jasper Nat. Park, | High Poor segmentation Ineffective for high-res data
[14] | tion (FCS) Canada (ALS/TLS)
2024, Watershed Transformer | Bengaluru, India & | High India: Acc. 46.3%, IoU 71.2%; Germany: | Better in Germany
[15] (U-net) Gartow, Germany Acc. 52%, ToU 72.6%
2016, | Nonparametric 5-step Forest terrain High Overall 77%; Dom. 94%; Co-dom. 62% Time-consuming; terrain
[16] sensitive
2016,| Automated urban ITS Urban forests High Low accuracy; metrics not provided Urban segmentation issues
[17] noted
2025, SVM + Mean Shift + Li- | Ontario, Canada (10 | High Det. improved 82% — 88%, Segm. 84% Effective for clumped trees;
[18] DAR plots) limited spectral use
2024,| ITM, AMS3D, Local | Subtropical forests High Local Maxima: FI1=0.65, Det.=86%; | Limited by density (3
[19] Maxima AMS3D: F1=0.67, radius error < 0.1m pts/mQ), GPS errors
2024, WA, LMA, EDCA, LSA | Eucalyptus High WA: F1=0.761; CHM-based best Sensitive to canopy/density;
[20] (UAV LiDAR) plantations WA excels in low-density

gradient flow during training, as well as achieve a smooth
gradient descent in smaller, deeper networks while avoiding
the vanishing gradient dilemma in depth. The architecture
allows for the ability to learn more complex features and tends
to work better when lower-resolution imagery lacks fine detail.
The model processes the input RGB images in different steps.
In the first step, the model uses the 7x7 CNN layer, followed
by batch normalization and the ReLU activation method. After
that, a max pooling layer is used to minimize the spatial
dimensions for all images. In the last four stages, residual
blocks are applied to extract the high-level features. Every
stage consists of multiple 3x3 convolutions to identify the
shortcut, extract the best features, and repeat the process for
the next stage.

ResNet-34-Block (Stages)

Tnput Layer

==

Fig. 1. The Input layer and stages of ResNet34 for Conv 7x7 layers,
BatchNorm and ReLU

Addition RelU Output

Input Images -

Figure 1 illustrates the architecture of a single ResNet-34
block, which serves as the encoder backbone within the hybrid
deep learning model. The block operates on input RGB images
and is composed of a series of convolutional, normalization,
and activation layers structured around the concept of residual
learning—a technique that enables the network to train effec-
tively even as the number of layers increases, by preserving
gradient flow and mitigating vanishing gradients. The process
begins with the Input Layer, where the incoming image
is passed through an initial Convolutional Neural Network
(CNN) layer. This layer extracts low-level spatial features such
as edges, color gradients, and textures. The resulting feature

maps are passed through a Batch Normalization (BN) layer,
which normalizes the outputs across the batch dimension. This
step stabilizes and accelerates the training process by reducing
internal covariate shift. Next, the normalized feature maps
are passed through a ReLU (Rectified Linear Unit) activation
function, which introduces non-linearity and allows the model
to learn complex representations. The output from ReLU
then flows into another CNN layer, which further refines the
extracted features. Again, a batch normalization step follows to
maintain consistent learning dynamics. ResNet has the shortcut
connection (or identity mapping), which allows the input to
bypass one or more convolutional layers and be directly added
to the output of those layers. The original input image is routed
directly to the Addition block, where it is combined with the
output from the second batch normalization layer. This residual
connection helps preserve the identity function and ensures
that the model can learn effectively even when deeper layers
are less informative. After addition, another ReLLU activation
is applied to the combined feature map, and the result is
passed to the output of the ResNet block. This output can
then be forwarded to the next block in the encoder or to
downstream modules, depending on the architecture. Stacked
ResNet blocks across multiple stages enable the encoder to
extract increasingly abstract and hierarchical features, making
it effective for complex tasks like tree crown segmentation
from low-resolution satellite imagery. This structure allows the
model to efficiently learn both fine details and broader spatial
context, which is critical for accurately delineating individual
trees in heterogeneous landscapes.

C. Decoder with Skip Connections

The decoder output of the U-Net reconstructs the spatial
dimensions of the image progressively with the help of decon-
volutions or upsampling layers. At each deconvolution step,
the encoder feature maps are connected to the corresponding
decoder layer with skip connections. These skip connections



help to safeguard fine-scale spatial information that may have
been lost when downsampling, and they help the model
demarcate individual tree tops, particularly when they are
closely spaced together in dense forest areas. The decoder
consists of different blocks, and each block consists of 2x2
transposed convolution, concatenation with the corresponding
encoder, and two 3x3 convolutional layers followed by batch
normalization and ReLU activation.

D. Output Layer

The last layer of the model is a 1x1 convolution to map from
feature maps to a single-channel binary mask representing the
probability that a pixel belongs to an individual tree crown.
The output is produced using a sigmoid activation function,
providing output values within the range [0,1]. During post-
processing, the values can be threshold to get binary segmen-
tation maps.

E. Full Architecture

Figure 2 illustrates the complete architecture of the proposed
hybrid deep learning model for individual tree segmentation,
which combines a ResNet-34-based encoder with a U-Net-
style decoder. This encoder-decoder framework is specifically
designed for semantic segmentation tasks using low-resolution
RGB aerial images, and it extracts both spatial and contextual
features to generate pixel-level binary masks of tree crowns.

The architecture begins with the Input Layer, which receives
preprocessed aerial images of size 256x256 pixels. These
images are passed into Encoder Path, where they are pro-
cessed through four sequential ResNet34-Blocks (Stage-1 to
Stage-4). Each block has multiple convolutional layers, batch
normalization, ReLU activations, and residual connections,
enabling the network to learn hierarchical features while main-
taining gradient stability. As the data flows deeper through
the encoder stages, the spatial dimensions are progressively
reduced while feature depth increases, capturing increasingly
abstract and high-level semantic information. Skip connections
are established from each ResNet stage to its corresponding
decoder block, preserving fine-grained spatial features that
might otherwise be lost during downsampling.

Following the encoder, the data is passed into the Decoder
Path, which consists of four Decoder Blocks arranged in re-
verse order to the encoder stages. Each decoder block performs
a combination of upsampling (via transposed convolutions or
bilinear interpolation), concatenation with the corresponding
encoder features (via skip connections), and convolutional
layers to refine the upsampled feature maps. This path helps
reconstruct the original image resolution while selectively
enhancing regions corresponding to individual tree crowns.
The decoder progressively restores the spatial structure of the
image, integrating detailed edge information with high-level
semantic understanding.

At the final stage of the architecture, the processed feature
map is passed through a Final Convolutional Layer followed
by a Sigmoid Activation Function, which transforms the output
into a binary probability map. Each pixel in this output
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represents the probability of belonging to a tree crown. A
threshold (typically 0.5) is applied during post-processing to
generate the final binary segmentation mask. These masks, as
shown on the right side of the figure, effectively highlight tree
structures within the urban or semi-natural landscape, with
white or red representing detected tree areas and black for
non-tree background.

This encoder-decoder model employs the powerful feature
extraction capabilities of ResNet-34 alongside the spatial re-
construction strengths of U-Net, making it highly suitable for
complex segmentation tasks on low-resolution imagery. The
integration of skip connections is particularly important for
maintaining localization accuracy in dense or heterogeneous
forest and urban regions, leading to high-performance results
across various segmentation metrics such as Dice coefficient,
IoU, and precision-recall.

FE. Performance Matrices

The following evaluation matrices are used to evaluate the
performance of the proposed model:

The Intersection-over-Union-(IoU) is used for measuring
the overlapping between mask images and the predicted mask:

[Predicted Mask N Ground Truth (Mask)|
[Predicted Mask U Ground Truth (Mask)|
where M represents the intersection and U represents the union
between predicted segmentation and ground truth (Mask).
The Dice Coefficient is used for measuring the similarities
between both predicted masks and ground truth:

2 x |Predicted Mask N Ground Truth|
|[Predicted Mask| + |Ground Truth|
where N represents the intersection between the predicted

segmentation and the ground truth.

Precision is used to compare the actual tree area and
predicted tree area:

IoU =

)]

@)

Dice =

.. TP
Precision = — 3)
TP + FP

where TP (True Positives) represents the number of correctly
predicted positive samples, and FP (False Positives) represents
the number of incorrectly predicted positive samples.

Recall is used to evaluate the actual tree area that is
correctly detected:

TP
TP + FN
IV. DATASET AND SETUP

Recall = “4)

A. Data site

The data set is collected from the eastern area of Bochum,
a city located in the federal state of North Rhine-Westphalia,
Germany. Bochum is located in the Ruhr metropolitan area and
has a strong industrial history and a diverse urban landscape.
The eastern Bochum region, where the data is collected,
consists of a wide range of residential areas, commercial
areas, and greenery, providing a wonderful and representative
sample of the region. The Ruhr area is highly urbanized but
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Fig. 2. A proposed hybrid model combines U-Net and Resnet34

quite dense. It consists of buildings, agricultural land, forests,
and water areas. In recent decades, the region has changed
significantly structurally. Heavy industries, such as coal and
steel, have been replaced by other industries, causing serious
changes in the landscape. This area has been affected by the
closure of the Opel factory, which was driven by economic
globalization in this city.

A study site is shown in Figure 3, which provides a
multi-scale geographic overview of the study area, illustrat-
ing the location of Bochum city within the federal state of
North Rhine-Westphalia, Germany. The rightmost panel (A)
highlights North Rhine-Westphalia on the map of Germany,
marking Bochum in red. Panel (B) shows a broader satellite
view of the state with Bochum outlined, while panel (C) zooms
into a high-resolution satellite image of Bochum, delineating
its administrative boundaries in red. The study site is situated
within the urban-natural landscape where the tree segmentation
analysis was conducted.

B. Data Pre-processing

Data pre-processing is performed on 450 Digitale Or-
thophotos (DOP) images and 450 corresponding normiertes
Digitales Orthophoto Modell (nDOM) images, collected from
the GeoData Portal for the year 2023. Digitale Orthophotos
is a German term meaning Digital Orthophotos, which are
georeferenced aerial or satellite images that can be read
and displayed using Geographic Information Systems (GIS)
software. Both 450 DOP and 450 nDOM images are originally
sized 20000x20000 pixels and converted into 256x256 pixels,
with some noise added to create a blurring effect. An algorithm
is proposed to convert all DOP and nDOM images into
RGB format using Glymur and the Python Imaging Library
(PIL/Pillow). The algorithm developed takes each image indi-
vidually, processes it by converting it into Joint Photographic
Experts Group (JPEG) format at 256x256 pixels, and stores it
in a separate folder for further model implementation. After
that, all DOPs and nDOMs are manually compared, and each
DOP is renamed to match its corresponding nDOM for further
tree area segmentation.

Figure 4 illustrates the data preprocessing workflow applied
to DOPs and nDOMs, which are the primary input sources
for the tree segmentation model. The preprocessing pipeline
begins with the ingestion of raw high-resolution input im-
ages—each originally sized at 20,000 x 20,000 pixels. These
inputs undergo several transformation steps to ensure compat-
ibility with the deep learning model, improve computational
efficiency, and simulate real-world data imperfections. The
first stage, labeled “Get the Input,” retrieves and parses the
raw DOP and nDOM files, which are typically stored in JPEG
2000 (JP2) format. These files are then passed through a series
of preprocessing operations. The raw images are resized from
their original resolution to 256 x 256 pixels, significantly
reducing memory load and speeding up training while main-
taining sufficient detail for segmentation tasks. Additionally,
image rotations are applied to introduce data augmentation,
which enhances model generalization by exposing it to various
spatial orientations of tree structures. Compression is another
vital transformation step used to mimic the quality degradation
commonly encountered in operational remote sensing data.
This is followed by a format conversion process, where the
images are transformed from JP2 to standard JPEG using the
Python Imaging Library (PIL). PIL serves as the central pro-
cessing engine in this pipeline, enabling all format handling,
resizing, and augmentation operations. Once the core trans-
formations are completed, the images are further processed by
artificially introducing noise to simulate blurriness. This step is
critical in emulating real-world conditions such as motion blur,
atmospheric disturbances, or sensor imperfections, making the
model more robust against such variations during inference.
The final output of the pipeline consists of preprocessed JPEG
and TIFF images that are uniformly scaled, augmented, and
formatted. These prepared datasets serve as inputs to the
hybrid deep learning segmentation model, enabling efficient
training and evaluation under controlled yet realistic scenarios.
The structured pipeline ensures data quality, uniformity, and
robustness, all of which are crucial for achieving reliable
performance in tree crown segmentation tasks using low-
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Fig. 4. Data pre-processing workflow using the PIL

resolution remote sensing imagery.

C. Experimental Setup

This experiment uses a DOPs- and nDOMs-based dataset
for tree crown segmentation in a natural environment, aiming
to evaluate the validity and effectiveness of the model’s gener-
alizability. The model was trained using hyperparameters given
in Table II. The hardware specification for the experimental
setup is shown in Table III

TABLE II
TRAINING HYPERPARAMETERS FOR MODEL DEVELOPMENT
Hyperparameter Value
Learning Rate le-2 (with ReduceLROnPlateau)
Batch Size 16
Optimizer Adam
Epochs Up to 100 (early stopping on Dice score)
Validation Strategy 10-fold cross-validation

V. RESULTS AND DISCUSSIONS

This section presents and discusses the experimental results
in detail. The data set is trained using the proposed model with
10-fold cross-validation. Each fold runs for up to 100 epochs,
with early stopping applied to retain the best-performing
model. The performance of the model is evaluated using

TABLE III
THE SPECIFICATIONS OF EXPERIMENTAL SETUP

System Configuration
Programming Language
Development Environment

Hardware Specification
Python
Visual Studio

GPU NVIDIA GEForce RTX 3080
CUDA Version 11.8
RAM 10 GB
Operating System CentOS

key metrics: Dice coefficient, Intersection over Union (IoU),
Accuracy, Precision, and Recall. The model achieves its best
results with a Dice score of 0.8678, an IoU of 0.7754, an
accuracy of 0.8180, a precision of 0.8410, and a recall of
0.9103. With comparison of baseline values, the proposed
model consistently improves the results in training and in the
validation process. The results show that the proposed model
performs very well. Table IV summarizes the performance
of cross-validation using the same matrices as the developed
model. Using a 10-fold cross-validation approach, the model’s
ability to generalize across different subsets of the data set is
evaluated. During the training, the dice-coefficient and IoU
are the most critical metrics in this situation because they
quantify spatial overlap between predicted tree regions and
hand-annotated tree crowns. A high Dice value indicates that
the model has accurately segmented the tree areas with little
over- and/or under-segmentation. The best Dice Coefficient
(0.8585) and IoU (0.7598) scored in Fold 10 suggests that
this instance the model is able to produce such accurate
tree segmentation despite the difficulties associated with low-
resolution input data.

Accuracy measures the total number of correctly classified
pixels (trees and background) as a proportion. Although accu-
racy is not important, it can be informative and less sensitive
when using skewed data. The Fold 10 again has the highest
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TABLE IV
THE TRAINING AND VALIDATION RESULTS FOR EACH FOLD
Folds Dice Co- IoU Accuracy | Precision | Recall
efficient
Fold 1 0.7937 0.6613 0.7473 0.6928 0.9438
Fold 2 | 0.8133 0.7094 0.7571 0.7938 0.8949
Fold 3 | 0.8445 0.7322 0.7820 0.7847 0.9231
Fold 4 | 0.8448 0.7383 0.7729 0.7597 0.9667
Fold 5 | 0.7895 0.6799 0.7575 0.7716 0.8523
Fold 6 | 0.7895 0.6573 0.7260 0.6770 0.9547
Fold 7 | 0.8294 0.7102 0.7658 0.7560 0.9255
Fold 8 | 0.8363 0.7243 0.7834 0.7831 09118
Fold 9 | 0.7823 0.6459 0.7415 0.6736 0.9417
Fold 10 | 0.8585 0.7598 0.8091 0.8150 0.9169

accuracy (0.8091) supporting the model performance. The
precision value measures the numbers of the predicted pixels
for trees that were correct, so this is key in minimizing false
positives, for example, with roads or shadows on trees. The
model also achieved its highest precision (0.8150) in Fold 10,
demonstrating that it accurately differentiates trees from other
land features: houses, land area, roads, and other objects.

In recall, the false negative refers to the correctly detected
number of tree pixels, as this is relevant in ecological or
forestry applications when missing tree areas could affect the
estimation of canopy coverage. Fold 4 had the best recall
(0.9667), which means that the model detected nearly every
actual tree pixel in Fold 4, although it was possible to add false
positives. Although Fold 10 consistently produced the highest
in all metrics used in this study, Fold 3 and Fold 4 consistently
perform well after Fold 10 and gain the second highest results.
Fold 9 had the lowest results for Dice (0.7823) and IoU
(0.6459); it is probable that Fold 9 had more challenging
image conditions, such as shadowing, overlapping trees, and/or
poorer annotation quality. In the same vein, precision was at its
lowest in Fold 9 (0.6736), which may indicate more confusion
with non-tree elements.

The proposed hybrid model demonstrates solid and steady
performance through every fold, with some minor variations
that may be explained by the natural variance of low-resolution
orthophoto imagery. The consistently high Dice and IoU scores
indicate that the hybrid deep learning model is well-tailored for
tree crown segmentation tasks with the inevitable constraints
of resolution and noise in the input data. These results un-
derscore the viability of deep learning models, particularly
ResNet34 with a U-Net decoder, to use low-resolution, remote
sensing data to extract important spatial features for forestry
and ecological monitoring.

We tested our part of the dataset on the trained model
and visualized the results including the original image, mask
image, predicted mask, and overlapped image. The results
for each sample are also measured with the in performance
matrices. The results for the 15 samples are given in Table V.
The model performs very well on sample 8 and achieved the
highest Dice coefficient of 0.8995, IoU of 0.8174, accuracy
of 0.8558, and precision of 0.8655, but sample 5 achieves the
highest recall. During testing, the second sample produces the
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Fig. 5. Borplot visualization of model training and validation segmentation
performance Metrics (Dice Coefficient, IoU, Accuracy, Precision, and Recall)
across 10 folds

second largest results with a Dice coefficient of 0.8812, and
an IoU of 0.7877.

TABLE V
THE TESTING RESULTS FOR 15 DIFFERENT SAMPLES
Samples Dice Co- IoU Accuracy | Precision | Recall
efficient
Sample 1 | 0.7220 0.5650 0.6410 0.5681 0.9903
Sample 2 | 0.6393 0.4693 0.5780 0.4732 0.9850
Sample 3 | 0.7328 0.5783 0.5942 0.5860 0.9777
Sample 4 | 0.7268 0.5709 0.6609 0.5798 0.9854
Sample 5 | 0.8812 0.7877 0.8009 0.7903 0.9958
Sample 6 | 0.7162 0.5579 0.5734 0.5594 0.9952
Sample 7 | 0.8328 0.7135 0.7645 0.7638 0.9155
Sample 8 | 0.8995 0.8174 0.8558 0.8655 0.9362
Sample 9 | 0.8600 0.7544 0.8464 0.8052 0.9228
Sample 10 | 0.7705 0.6266 0.7006 0.6332 0.9837
Sample 11 | 0.7901 0.6531 0.6609 0.6571 0.9906
Sample 12 | 0.7707 0.6269 0.6332 0.6325 0.9862
Sample 13 | 0.8588 0.7525 0.7890 0.7600 0.9871
Sample 14 | 0.8047 0.6733 0.7294 0.6836 0.9780
Sample 15 | 0.7380 0.5833 0.6977 0.5867 0.9900

The results are summarized visually in Figure 6. The model
achieves high recall, meaning it is very sensitive to identifying
tree regions, though at the cost of reduced precision. The
Dice Coefficient and Accuracy metrics confirm its overall
reliability in segmentation tasks, while the IoU values reflect
room for improvement in terms of spatial precision, especially
under complex visual conditions. These results validate the
effectiveness of the hybrid ResNet34-U-Net architecture in
tree segmentation from low-resolution aerial images, while
also suggesting directions for refinement—particularly in im-
proving boundary sharpness and reducing false positives.

VI. CONCLUSIONS

We proposed a hybrid deep learning model that combines
the ResNet34 encoder with a U-Net decoder architecture to
segment individual trees from low-resolution RGB orthophoto
images (DOPs) over the German urban and semi-urban land-
scape. Despite the limitations of low-resolution imagery, the
model demonstrated high segmentation performance, achiev-
ing a Dice coefficient of 0.8678, IoU of 0.7754, accuracy
of 0.8180, precision of 0.8410, and an exceptional recall of
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Fig. 6. Boxplot visualization of segmentation performance metrics (Dice
Coefficient, IoU, Accuracy, Precision, and Recall)

0.9103. These results confirm the model’s strong ability to
detect and delineate tree crowns across diverse environments,
including dense forest patches and complex urban settings.
The preprocessing pipeline—consisting of format conversion,
resizing, augmentation, and noise injection—played a critical
role in preparing the dataset and enhancing model general-
izability. Visualizations of predicted masks and overlay com-
parisons further validated the model’s effectiveness, showing
a high degree of alignment with ground truth annotations,
particularly in structured and less cluttered regions.

Comparative analysis with existing state-of-the-art indi-
vidual tree segmentation (ITS) methods revealed that our
approach is competitive even against models relying on high-
resolution LiDAR or UAV data, making it a cost-effective
alternative for large-scale forest monitoring in data-limited
regions. The model performed well overall, but challenges
remain in improving segmentation precision and handling
complex urban-object boundaries, suggesting opportunities for
future work on post-processing refinement and attention-based
enhancements.

DATA AVAILABILITY

The data set is collected from the GeoData Portal of the
Federal State of North Rhine-Westphalia under the data license
“Deutschland - Zero - Version 2.0” for the year 2023.
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