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Abstract—This study presents a cost-effective tree crown
segmentation framework using a hybrid deep learning model
that combines a ResNet-34 encoder with a U-Net decoder. Our
approach operates on low-resolution RGB Digital Orthophotos
(DOPs) collected from urban and peri-urban areas in Bochum,
Germany, simulating real-world data constraints. We processed
450 orthophoto–mask pairs through a comprehensive preprocess-
ing pipeline including resizing (from 20000×20000 to 256×256),
augmentation, and noise simulation. The model was trained
using 10-fold cross-validation, achieving a Dice coefficient of
0.8678, Intersection over Union (IoU) of 0.7754, precision of
0.8410, and recall of 0.9103. These results demonstrate that
even with downsampled imagery, reliable segmentation of tree
crowns is feasible, making our approach suitable for low-cost
forest inventory and precision agroforestry applications. Unlike
previous studies relying on high-resolution LiDAR, this work is
among the first to show robust tree crown segmentation using
low-resolution orthophotos, making it accessible for widespread
use in resource-constrained settings.

Index Terms—Tree segmentation, Digital Orthophotos, Remote
Sensing, Forest Monitoring, Forest 4.0, Deep Learning.

I. INTRODUCTION

FOREST monitoring is essential for ensuring the sustain-

able management, conservation, and restoration of forest

ecosystems, which are critical to biodiversity, climate regu-

lation, and human well-being [1]. By continuously tracking

changes in forest cover, composition, and health, monitoring

efforts support early detection of deforestation, forest degra-

dation, pest outbreaks, and the impacts of climate change

[2], [3]. With the increasing complexity of environmental

challenges and the growing demand for data-driven decision-

making, traditional forest monitoring methods are evolving

toward more integrated, automated, and scalable solutions.

This transformation is embodied in the concept of Digital

Forestry, which leverages advanced technologies such as re-

mote sensing, artificial intelligence, Internet of Things (IoT),

and geospatial analytics to enhance forest observation and

analysis. Within this context, the emergence of Forest 4.0 that

integrates cyber-physical systems, real-time data processing,

and predictive analytics to enable proactive decision-making,

optimize resource use, and ensure ecological resilience [4].

This research paper has received funding from Horizon Europe Framework
Programme (HORIZON), call Teaming for Excellence (HORIZON-WIDERA-
2022-ACCESS-01-two-stage) - Creation of the centre of excellence in smart
forestry “Forest 4.0” No. 101059985. This research has been co-funded by
the European Union under the project ”FOREST 4.0 - Ekscelencijos centras
tvariai miško bioekonomikai vystyti” (Nr. 10-042-P-0002).

Recent advances in satellite imagery have created new op-

portunities for forest monitoring, including tree segmentation

on a large scale [5], [6]. Laser imaging, detection, and ranging

(LiDAR)-based high-resolution [7] satellite data can provide

detailed information on forest structure, including tree height,

tree trunk, and tree area; however, such data are not always

available and can be costly [6], [8]. Low-resolution Red-

Green-Blue (RGB) satellite imagery cannot provide detailed

forest information, such as forest structure and the area cov-

ered by the trees [9]. So, it is very challenging to get details

of tree structure from the low-resolution LiDAR-based RGB

satellite data due to mixed pixels, blurry images, shadows,

overlapping, and lack of spectral information [10]. Dataset pre-

processing is required to get the forest and tree structure details

from the RGB images [11]. These images estimate tree cover,

species, biomass, changes in forest characteristics, tree shapes,

wood calculations, trunk detections, and many others [12].

We propose a Deep Learning (DL)-based model for using

low-resolution RGB satellite imagery from the German forest

to segment the tree areas, which comprises of ResNet-34 and

U-Net models. The contributions of this study are as follows:

• We introduce a custom hybrid model that integrates

a ResNet34 encoder with a U-Net decoder, combining

strong feature extraction capabilities with spatial recon-

struction suited for semantic segmentation tasks on low-

resolution imagery.

• The model is trained and validated on DOP and

nDOM datasets from the German federal state of North

Rhine-Westphalia, demonstrating the feasibility of using

256×256-pixel images for high-quality segmentation.

• A comprehensive data preprocessing framework is devel-

oped, including image resizing, augmentation, compres-

sion, and noise simulation, to enhance model robustness

and generalization across heterogeneous landscapes.

II. RELATED WORK

Multiple models have been developed to segment individual

trees from forests and urban streets using high-resolution and

low-resolution LiDAR point clouds and RGB images, and

results have shown significant differences [12]. Few of these

developed methods use to detect and segment the tree tops

because these are the highest points in the RGB imagery and

LiDAR point cloud data. By identifying and detecting the tree

tops, the features of the trees are extracted and segmented. The
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[13] develops a YOLO-based CCD-YOLO model to segment

the individual tree using the LiDAR datasets collected from

Beijing and Henan Polytechnic University, China.

Study [14] proposed a Fuzzy Center Segmentation (FCS)

for ITS and used the ALS and TLS LiDAR-based datasets

collected from the Jasper National Park, Montane Cordillera

Ecozone, Canada, but did not segment the trees very well.

Study [15] used a watershed transformer based on U-

net to perform ITS on high-resolution data sets collected

from Bengaluru, India, and Gartow, Germany. The accuracy

achieved by the author is 46.3% and the IoU is 71.2%. For

the other dataset, the accuracy was 52% and the IoU was 72.

6%, which is better than on the other data set. The datasets

used in this research are also high-resolution-based.

In [16], the author developed a nonparametric approach for

ITS from LiDAR data, detecting dominant and co-dominant

trees for 94% and 62% for intermediate dead and overtopped

trees. The overall accuracy achieved by the author is 77%

which is not good for the high-resolution dataset. The author

proposed the 5-step approach to segment the trees, which is

time-consuming and did not provide good results. The perfor-

mance of this method was also affected by the complexity of

the forest terrain and the conditions of the vegetation.

In [17], the author uses a method to automate tree seg-

mentation for individual trees from complicated urban forests.

The developed method did not provide good accuracy, and

the accuracy matrices are not provided, but it recognizes the

difficulties of the urban areas. The suggested accuracy is lower

than the natural forest areas.

In [19], a custom Individual Tree Matching (ITM) algorithm

was used to compare LiDAR-detected trees with 284 field-

measured reference trees. For local maxima methods, a fixed

3 x 3m window applied to a non-smoothed canopy height

model (CHM) achieved an F1-score of 0.65 with 86% of trees

are detected, while methods based on [21] achieved excellent

crown segmentation with mean crown radius < 0.5m of field-

measured crown radius. For non-local maxima methods, the

adaptive mean shift algorithm (AMS3D) performed well with

F1 score of 0.67 and a mean crown radius < 0.1m.

In [18], the author proposed an approach to extract, detect,

and segment individual crowns using multispectral airborne

LiDAR data. Trees crowns are initially segmented in the spa-

tial domain using the mean shift algorithm, under-segmented

crowns are identified using a Support Vector Machine (SVM)

classifier and geometric features, and the crowns identified

from classification are refined using mean shift in a joint fea-

ture space with spatial and multispectral data. The experiments

on a total of ten forest plots in Ontario, Canada, quantify the

differences in SVM’s multispectral space data, and improve

the detection rate of dominant trees from 82% to 88% while

having better accuracy for detection in dense and clumped

forests.

Table I highlights that while high-resolution LiDAR and

UAV-based imagery dominate the field, their effectiveness is

highly context-dependent. Methods such as the SVM com-

bined with Mean Shift and LiDAR demonstrated strong per-

formance in complex forest environments, particularly for

clumped tree detection, achieving up to 84% segmentation

accuracy. Techniques like Fuzzy Center Segmentation and

the Watershed Transformer (U-Net) delivered inconsistent or

suboptimal results despite using high-resolution data, point-

ing to limitations in handling diverse terrain and canopy

structures. The Watershed Algorithm (WA), when applied to

UAV LiDAR data in Eucalyptus plantations, achieved the

highest F1-score (0.761), excelling particularly in low-density

plots. This underscores the suitability of classical segmentation

approaches in structured forest settings. Traditional methods

such as the nonparametric 5-step approach, though reason-

ably accurate (77%), were found to be time-consuming and

sensitive to terrain variations, limiting scalability. Urban ITS

models consistently underperformed, highlighting persistent

challenges in segmenting trees in built environments due to

occlusions and background complexity. Deep learning-based

methods like YOLO and U-Net offer promising segmentation

capabilities but show mixed outcomes depending on dataset

quality, annotation accuracy, and forest heterogeneity. The

analysis reveals that no single approach outperforms others;

instead, method effectiveness hinges on factors such as data

resolution, forest density, canopy complexity, and the inte-

gration of geometric and machine learning strategies. These

insights justify the development of hybrid models, such as

the proposed U-Net with ResNet34 encoder, which aim to

balance performance and generalizability, particularly when

working with low-resolution RGB imagery in urban-natural

mixed forest landscapes.

III. METHODOLOGY

We propose a hybrid deep learning model that combines

the U-Net architecture with a ResNet34 encoder for tree

segmentation from the German urban area. The model uses

a U-Net architecture with the Resnet34 backbone and extracts

features from the RGB satellite images. The proposed model

use to train the dataset and applies the k-fold cross validation

for 10 folds with the learning rate of le-2 and patience of 10.

Each fold runs for 100 epochs, early stopping technique is

used to stop the training on the best Dice score. The proposed

model consists of the U-Net framework, Resnet34 encoder,

Decoder with skip connections, and output layer.

A. U-Net Framework

U-Net is a fully convolutional neural network developed

for pixel-wise segmentation tasks. A U-Net is structured in a

symmetric ”U” shape with a contracting path (an encoder) and

an expanding or decoding path with skip connections between

layers with the same index in the contraction and expansion

paths. The contracting path extracts contextual information

when downsampling the image and increasing the depth of

features, whereas the expanding or decoding path extracts

spatial information when upsampling the image.

B. ResNet34 Encoder

ResNet34 is a residual network with 34 layers that uses

residual blocks with skip connections that help to smooth the
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TABLE I
COMPARISON OF INDIVIDUAL TREE SEGMENTATION (ITS) METHODS

Ref. Method/Model Dataset
Location/Type

Resolution Accuracy/Performance Notes

2009,
[12]

Tree top detection with
RGB/LiDAR

Forest & urban areas High/Low Varies significantly with resolution Tree tops used for segmenta-
tion

2025,
[13]

CCD-YOLO (YOLO-
based)

Beijing & Henan
Univ., China

High Accuracy not specified YOLO-based ITS with high-
res LiDAR

x2024,
[14]

Fuzzy Center Segmenta-
tion (FCS)

Jasper Nat. Park,
Canada (ALS/TLS)

High Poor segmentation Ineffective for high-res data

2024,
[15]

Watershed Transformer
(U-net)

Bengaluru, India &
Gartow, Germany

High India: Acc. 46.3%, IoU 71.2%; Germany:
Acc. 52%, IoU 72.6%

Better in Germany

2016,
[16]

Nonparametric 5-step Forest terrain High Overall 77%; Dom. 94%; Co-dom. 62% Time-consuming; terrain
sensitive

2016,
[17]

Automated urban ITS Urban forests High Low accuracy; metrics not provided Urban segmentation issues
noted

2025,
[18]

SVM + Mean Shift + Li-
DAR

Ontario, Canada (10
plots)

High Det. improved 82% → 88%, Segm. 84% Effective for clumped trees;
limited spectral use

2024,
[19]

ITM, AMS3D, Local
Maxima

Subtropical forests High Local Maxima: F1=0.65, Det.=86%;
AMS3D: F1=0.67, radius error < 0.1m

Limited by density (3
pts/m2), GPS errors

2024,
[20]

WA, LMA, EDCA, LSA
(UAV LiDAR)

Eucalyptus
plantations

High WA: F1=0.761; CHM-based best Sensitive to canopy/density;
WA excels in low-density

gradient flow during training, as well as achieve a smooth

gradient descent in smaller, deeper networks while avoiding

the vanishing gradient dilemma in depth. The architecture

allows for the ability to learn more complex features and tends

to work better when lower-resolution imagery lacks fine detail.

The model processes the input RGB images in different steps.

In the first step, the model uses the 7x7 CNN layer, followed

by batch normalization and the ReLU activation method. After

that, a max pooling layer is used to minimize the spatial

dimensions for all images. In the last four stages, residual

blocks are applied to extract the high-level features. Every

stage consists of multiple 3x3 convolutions to identify the

shortcut, extract the best features, and repeat the process for

the next stage.

Fig. 1. The Input layer and stages of ResNet34 for Conv 7x7 layers,
BatchNorm and ReLU

Figure 1 illustrates the architecture of a single ResNet-34

block, which serves as the encoder backbone within the hybrid

deep learning model. The block operates on input RGB images

and is composed of a series of convolutional, normalization,

and activation layers structured around the concept of residual

learning—a technique that enables the network to train effec-

tively even as the number of layers increases, by preserving

gradient flow and mitigating vanishing gradients. The process

begins with the Input Layer, where the incoming image

is passed through an initial Convolutional Neural Network

(CNN) layer. This layer extracts low-level spatial features such

as edges, color gradients, and textures. The resulting feature

maps are passed through a Batch Normalization (BN) layer,

which normalizes the outputs across the batch dimension. This

step stabilizes and accelerates the training process by reducing

internal covariate shift. Next, the normalized feature maps

are passed through a ReLU (Rectified Linear Unit) activation

function, which introduces non-linearity and allows the model

to learn complex representations. The output from ReLU

then flows into another CNN layer, which further refines the

extracted features. Again, a batch normalization step follows to

maintain consistent learning dynamics. ResNet has the shortcut

connection (or identity mapping), which allows the input to

bypass one or more convolutional layers and be directly added

to the output of those layers. The original input image is routed

directly to the Addition block, where it is combined with the

output from the second batch normalization layer. This residual

connection helps preserve the identity function and ensures

that the model can learn effectively even when deeper layers

are less informative. After addition, another ReLU activation

is applied to the combined feature map, and the result is

passed to the output of the ResNet block. This output can

then be forwarded to the next block in the encoder or to

downstream modules, depending on the architecture. Stacked

ResNet blocks across multiple stages enable the encoder to

extract increasingly abstract and hierarchical features, making

it effective for complex tasks like tree crown segmentation

from low-resolution satellite imagery. This structure allows the

model to efficiently learn both fine details and broader spatial

context, which is critical for accurately delineating individual

trees in heterogeneous landscapes.

C. Decoder with Skip Connections

The decoder output of the U-Net reconstructs the spatial

dimensions of the image progressively with the help of decon-

volutions or upsampling layers. At each deconvolution step,

the encoder feature maps are connected to the corresponding

decoder layer with skip connections. These skip connections
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help to safeguard fine-scale spatial information that may have

been lost when downsampling, and they help the model

demarcate individual tree tops, particularly when they are

closely spaced together in dense forest areas. The decoder

consists of different blocks, and each block consists of 2x2

transposed convolution, concatenation with the corresponding

encoder, and two 3x3 convolutional layers followed by batch

normalization and ReLU activation.

D. Output Layer

The last layer of the model is a 1x1 convolution to map from

feature maps to a single-channel binary mask representing the

probability that a pixel belongs to an individual tree crown.

The output is produced using a sigmoid activation function,

providing output values within the range [0,1]. During post-

processing, the values can be threshold to get binary segmen-

tation maps.

E. Full Architecture

Figure 2 illustrates the complete architecture of the proposed

hybrid deep learning model for individual tree segmentation,

which combines a ResNet-34-based encoder with a U-Net-

style decoder. This encoder-decoder framework is specifically

designed for semantic segmentation tasks using low-resolution

RGB aerial images, and it extracts both spatial and contextual

features to generate pixel-level binary masks of tree crowns.

The architecture begins with the Input Layer, which receives

preprocessed aerial images of size 256×256 pixels. These

images are passed into Encoder Path, where they are pro-

cessed through four sequential ResNet34-Blocks (Stage-1 to

Stage-4). Each block has multiple convolutional layers, batch

normalization, ReLU activations, and residual connections,

enabling the network to learn hierarchical features while main-

taining gradient stability. As the data flows deeper through

the encoder stages, the spatial dimensions are progressively

reduced while feature depth increases, capturing increasingly

abstract and high-level semantic information. Skip connections

are established from each ResNet stage to its corresponding

decoder block, preserving fine-grained spatial features that

might otherwise be lost during downsampling.

Following the encoder, the data is passed into the Decoder

Path, which consists of four Decoder Blocks arranged in re-

verse order to the encoder stages. Each decoder block performs

a combination of upsampling (via transposed convolutions or

bilinear interpolation), concatenation with the corresponding

encoder features (via skip connections), and convolutional

layers to refine the upsampled feature maps. This path helps

reconstruct the original image resolution while selectively

enhancing regions corresponding to individual tree crowns.

The decoder progressively restores the spatial structure of the

image, integrating detailed edge information with high-level

semantic understanding.

At the final stage of the architecture, the processed feature

map is passed through a Final Convolutional Layer followed

by a Sigmoid Activation Function, which transforms the output

into a binary probability map. Each pixel in this output

represents the probability of belonging to a tree crown. A

threshold (typically 0.5) is applied during post-processing to

generate the final binary segmentation mask. These masks, as

shown on the right side of the figure, effectively highlight tree

structures within the urban or semi-natural landscape, with

white or red representing detected tree areas and black for

non-tree background.

This encoder-decoder model employs the powerful feature

extraction capabilities of ResNet-34 alongside the spatial re-

construction strengths of U-Net, making it highly suitable for

complex segmentation tasks on low-resolution imagery. The

integration of skip connections is particularly important for

maintaining localization accuracy in dense or heterogeneous

forest and urban regions, leading to high-performance results

across various segmentation metrics such as Dice coefficient,

IoU, and precision-recall.

F. Performance Matrices

The following evaluation matrices are used to evaluate the

performance of the proposed model:

The Intersection-over-Union-(IoU) is used for measuring

the overlapping between mask images and the predicted mask:

IoU =
|Predicted Mask ∩ Ground Truth (Mask)|

|Predicted Mask ∪ Ground Truth (Mask)|
(1)

where ∩ represents the intersection and ∪ represents the union

between predicted segmentation and ground truth (Mask).

The Dice Coefficient is used for measuring the similarities

between both predicted masks and ground truth:

Dice =
2× |Predicted Mask ∩ Ground Truth|

|Predicted Mask|+ |Ground Truth|
(2)

where ∩ represents the intersection between the predicted

segmentation and the ground truth.

Precision is used to compare the actual tree area and

predicted tree area:

Precision =
TP

TP + FP
(3)

where TP (True Positives) represents the number of correctly

predicted positive samples, and FP (False Positives) represents

the number of incorrectly predicted positive samples.

Recall is used to evaluate the actual tree area that is

correctly detected:

Recall =
TP

TP + FN
(4)

IV. DATASET AND SETUP

A. Data site

The data set is collected from the eastern area of Bochum,

a city located in the federal state of North Rhine-Westphalia,

Germany. Bochum is located in the Ruhr metropolitan area and

has a strong industrial history and a diverse urban landscape.

The eastern Bochum region, where the data is collected,

consists of a wide range of residential areas, commercial

areas, and greenery, providing a wonderful and representative

sample of the region. The Ruhr area is highly urbanized but
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Fig. 2. A proposed hybrid model combines U-Net and Resnet34

quite dense. It consists of buildings, agricultural land, forests,

and water areas. In recent decades, the region has changed

significantly structurally. Heavy industries, such as coal and

steel, have been replaced by other industries, causing serious

changes in the landscape. This area has been affected by the

closure of the Opel factory, which was driven by economic

globalization in this city.

A study site is shown in Figure 3, which provides a

multi-scale geographic overview of the study area, illustrat-

ing the location of Bochum city within the federal state of

North Rhine-Westphalia, Germany. The rightmost panel (A)

highlights North Rhine-Westphalia on the map of Germany,

marking Bochum in red. Panel (B) shows a broader satellite

view of the state with Bochum outlined, while panel (C) zooms

into a high-resolution satellite image of Bochum, delineating

its administrative boundaries in red. The study site is situated

within the urban-natural landscape where the tree segmentation

analysis was conducted.

B. Data Pre-processing

Data pre-processing is performed on 450 Digitale Or-

thophotos (DOP) images and 450 corresponding normiertes

Digitales Orthophoto Modell (nDOM) images, collected from

the GeoData Portal for the year 2023. Digitale Orthophotos

is a German term meaning Digital Orthophotos, which are

georeferenced aerial or satellite images that can be read

and displayed using Geographic Information Systems (GIS)

software. Both 450 DOP and 450 nDOM images are originally

sized 20000x20000 pixels and converted into 256x256 pixels,

with some noise added to create a blurring effect. An algorithm

is proposed to convert all DOP and nDOM images into

RGB format using Glymur and the Python Imaging Library

(PIL/Pillow). The algorithm developed takes each image indi-

vidually, processes it by converting it into Joint Photographic

Experts Group (JPEG) format at 256x256 pixels, and stores it

in a separate folder for further model implementation. After

that, all DOPs and nDOMs are manually compared, and each

DOP is renamed to match its corresponding nDOM for further

tree area segmentation.

Figure 4 illustrates the data preprocessing workflow applied

to DOPs and nDOMs, which are the primary input sources

for the tree segmentation model. The preprocessing pipeline

begins with the ingestion of raw high-resolution input im-

ages—each originally sized at 20,000 × 20,000 pixels. These

inputs undergo several transformation steps to ensure compat-

ibility with the deep learning model, improve computational

efficiency, and simulate real-world data imperfections. The

first stage, labeled ”Get the Input,” retrieves and parses the

raw DOP and nDOM files, which are typically stored in JPEG

2000 (JP2) format. These files are then passed through a series

of preprocessing operations. The raw images are resized from

their original resolution to 256 × 256 pixels, significantly

reducing memory load and speeding up training while main-

taining sufficient detail for segmentation tasks. Additionally,

image rotations are applied to introduce data augmentation,

which enhances model generalization by exposing it to various

spatial orientations of tree structures. Compression is another

vital transformation step used to mimic the quality degradation

commonly encountered in operational remote sensing data.

This is followed by a format conversion process, where the

images are transformed from JP2 to standard JPEG using the

Python Imaging Library (PIL). PIL serves as the central pro-

cessing engine in this pipeline, enabling all format handling,

resizing, and augmentation operations. Once the core trans-

formations are completed, the images are further processed by

artificially introducing noise to simulate blurriness. This step is

critical in emulating real-world conditions such as motion blur,

atmospheric disturbances, or sensor imperfections, making the

model more robust against such variations during inference.

The final output of the pipeline consists of preprocessed JPEG

and TIFF images that are uniformly scaled, augmented, and

formatted. These prepared datasets serve as inputs to the

hybrid deep learning segmentation model, enabling efficient

training and evaluation under controlled yet realistic scenarios.

The structured pipeline ensures data quality, uniformity, and

robustness, all of which are crucial for achieving reliable

performance in tree crown segmentation tasks using low-
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Fig. 3. (A): Indicate the study area in red color from the German Map, (B): Indicate the study area from the North Rhine-Westphalia state (C): The whole
study area is located in the eastern part of Bochum

Fig. 4. Data pre-processing workflow using the PIL

resolution remote sensing imagery.

C. Experimental Setup

This experiment uses a DOPs- and nDOMs-based dataset

for tree crown segmentation in a natural environment, aiming

to evaluate the validity and effectiveness of the model’s gener-

alizability. The model was trained using hyperparameters given

in Table II. The hardware specification for the experimental

setup is shown in Table III

TABLE II
TRAINING HYPERPARAMETERS FOR MODEL DEVELOPMENT

Hyperparameter Value

Learning Rate 1e-2 (with ReduceLROnPlateau)

Batch Size 16

Optimizer Adam

Epochs Up to 100 (early stopping on Dice score)

Validation Strategy 10-fold cross-validation

V. RESULTS AND DISCUSSIONS

This section presents and discusses the experimental results

in detail. The data set is trained using the proposed model with

10-fold cross-validation. Each fold runs for up to 100 epochs,

with early stopping applied to retain the best-performing

model. The performance of the model is evaluated using

TABLE III
THE SPECIFICATIONS OF EXPERIMENTAL SETUP

System Configuration Hardware Specification

Programming Language Python

Development Environment Visual Studio

GPU NVIDIA GEForce RTX 3080

CUDA Version 11.8

RAM 10 GB

Operating System CentOS

key metrics: Dice coefficient, Intersection over Union (IoU),

Accuracy, Precision, and Recall. The model achieves its best

results with a Dice score of 0.8678, an IoU of 0.7754, an

accuracy of 0.8180, a precision of 0.8410, and a recall of

0.9103. With comparison of baseline values, the proposed

model consistently improves the results in training and in the

validation process. The results show that the proposed model

performs very well. Table IV summarizes the performance

of cross-validation using the same matrices as the developed

model. Using a 10-fold cross-validation approach, the model’s

ability to generalize across different subsets of the data set is

evaluated. During the training, the dice-coefficient and IoU

are the most critical metrics in this situation because they

quantify spatial overlap between predicted tree regions and

hand-annotated tree crowns. A high Dice value indicates that

the model has accurately segmented the tree areas with little

over- and/or under-segmentation. The best Dice Coefficient

(0.8585) and IoU (0.7598) scored in Fold 10 suggests that

this instance the model is able to produce such accurate

tree segmentation despite the difficulties associated with low-

resolution input data.

Accuracy measures the total number of correctly classified

pixels (trees and background) as a proportion. Although accu-

racy is not important, it can be informative and less sensitive

when using skewed data. The Fold 10 again has the highest

6 COMMUNICATION PAPERS OF THE FEDCSIS. KRAKÓW, POLAND, 2025



TABLE IV
THE TRAINING AND VALIDATION RESULTS FOR EACH FOLD

Folds Dice Co-
efficient

IoU Accuracy Precision Recall

Fold 1 0.7937 0.6613 0.7473 0.6928 0.9438

Fold 2 0.8133 0.7094 0.7577 0.7938 0.8949

Fold 3 0.8445 0.7322 0.7820 0.7847 0.9231

Fold 4 0.8448 0.7383 0.7729 0.7597 0.9667

Fold 5 0.7895 0.6799 0.7575 0.7716 0.8523

Fold 6 0.7895 0.6573 0.7260 0.6770 0.9547

Fold 7 0.8294 0.7102 0.7658 0.7560 0.9255

Fold 8 0.8363 0.7243 0.7834 0.7831 0.9118

Fold 9 0.7823 0.6459 0.7415 0.6736 0.9417

Fold 10 0.8585 0.7598 0.8091 0.8150 0.9169

accuracy (0.8091) supporting the model performance. The

precision value measures the numbers of the predicted pixels

for trees that were correct, so this is key in minimizing false

positives, for example, with roads or shadows on trees. The

model also achieved its highest precision (0.8150) in Fold 10,

demonstrating that it accurately differentiates trees from other

land features: houses, land area, roads, and other objects.

In recall, the false negative refers to the correctly detected

number of tree pixels, as this is relevant in ecological or

forestry applications when missing tree areas could affect the

estimation of canopy coverage. Fold 4 had the best recall

(0.9667), which means that the model detected nearly every

actual tree pixel in Fold 4, although it was possible to add false

positives. Although Fold 10 consistently produced the highest

in all metrics used in this study, Fold 3 and Fold 4 consistently

perform well after Fold 10 and gain the second highest results.

Fold 9 had the lowest results for Dice (0.7823) and IoU

(0.6459); it is probable that Fold 9 had more challenging

image conditions, such as shadowing, overlapping trees, and/or

poorer annotation quality. In the same vein, precision was at its

lowest in Fold 9 (0.6736), which may indicate more confusion

with non-tree elements.

The proposed hybrid model demonstrates solid and steady

performance through every fold, with some minor variations

that may be explained by the natural variance of low-resolution

orthophoto imagery. The consistently high Dice and IoU scores

indicate that the hybrid deep learning model is well-tailored for

tree crown segmentation tasks with the inevitable constraints

of resolution and noise in the input data. These results un-

derscore the viability of deep learning models, particularly

ResNet34 with a U-Net decoder, to use low-resolution, remote

sensing data to extract important spatial features for forestry

and ecological monitoring.

We tested our part of the dataset on the trained model

and visualized the results including the original image, mask

image, predicted mask, and overlapped image. The results

for each sample are also measured with the in performance

matrices. The results for the 15 samples are given in Table V.

The model performs very well on sample 8 and achieved the

highest Dice coefficient of 0.8995, IoU of 0.8174, accuracy

of 0.8558, and precision of 0.8655, but sample 5 achieves the

highest recall. During testing, the second sample produces the

Fig. 5. Borplot visualization of model training and validation segmentation
performance Metrics (Dice Coefficient, IoU, Accuracy, Precision, and Recall)
across 10 folds

second largest results with a Dice coefficient of 0.8812, and

an IoU of 0.7877.

TABLE V
THE TESTING RESULTS FOR 15 DIFFERENT SAMPLES

Samples Dice Co-

efficient

IoU Accuracy Precision Recall

Sample 1 0.7220 0.5650 0.6410 0.5681 0.9903

Sample 2 0.6393 0.4693 0.5780 0.4732 0.9850

Sample 3 0.7328 0.5783 0.5942 0.5860 0.9777

Sample 4 0.7268 0.5709 0.6609 0.5798 0.9854

Sample 5 0.8812 0.7877 0.8009 0.7903 0.9958

Sample 6 0.7162 0.5579 0.5734 0.5594 0.9952

Sample 7 0.8328 0.7135 0.7645 0.7638 0.9155

Sample 8 0.8995 0.8174 0.8558 0.8655 0.9362

Sample 9 0.8600 0.7544 0.8464 0.8052 0.9228

Sample 10 0.7705 0.6266 0.7006 0.6332 0.9837

Sample 11 0.7901 0.6531 0.6609 0.6571 0.9906

Sample 12 0.7707 0.6269 0.6332 0.6325 0.9862

Sample 13 0.8588 0.7525 0.7890 0.7600 0.9871

Sample 14 0.8047 0.6733 0.7294 0.6836 0.9780

Sample 15 0.7380 0.5833 0.6977 0.5867 0.9900

The results are summarized visually in Figure 6. The model

achieves high recall, meaning it is very sensitive to identifying

tree regions, though at the cost of reduced precision. The

Dice Coefficient and Accuracy metrics confirm its overall

reliability in segmentation tasks, while the IoU values reflect

room for improvement in terms of spatial precision, especially

under complex visual conditions. These results validate the

effectiveness of the hybrid ResNet34–U-Net architecture in

tree segmentation from low-resolution aerial images, while

also suggesting directions for refinement—particularly in im-

proving boundary sharpness and reducing false positives.

VI. CONCLUSIONS

We proposed a hybrid deep learning model that combines

the ResNet34 encoder with a U-Net decoder architecture to

segment individual trees from low-resolution RGB orthophoto

images (DOPs) over the German urban and semi-urban land-

scape. Despite the limitations of low-resolution imagery, the

model demonstrated high segmentation performance, achiev-

ing a Dice coefficient of 0.8678, IoU of 0.7754, accuracy

of 0.8180, precision of 0.8410, and an exceptional recall of
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Fig. 6. Boxplot visualization of segmentation performance metrics (Dice
Coefficient, IoU, Accuracy, Precision, and Recall)

0.9103. These results confirm the model’s strong ability to

detect and delineate tree crowns across diverse environments,

including dense forest patches and complex urban settings.

The preprocessing pipeline—consisting of format conversion,

resizing, augmentation, and noise injection—played a critical

role in preparing the dataset and enhancing model general-

izability. Visualizations of predicted masks and overlay com-

parisons further validated the model’s effectiveness, showing

a high degree of alignment with ground truth annotations,

particularly in structured and less cluttered regions.

Comparative analysis with existing state-of-the-art indi-

vidual tree segmentation (ITS) methods revealed that our

approach is competitive even against models relying on high-

resolution LiDAR or UAV data, making it a cost-effective

alternative for large-scale forest monitoring in data-limited

regions. The model performed well overall, but challenges

remain in improving segmentation precision and handling

complex urban-object boundaries, suggesting opportunities for

future work on post-processing refinement and attention-based

enhancements.

DATA AVAILABILITY

The data set is collected from the GeoData Portal of the

Federal State of North Rhine-Westphalia under the data license

”Deutschland - Zero - Version 2.0” for the year 2023.
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