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Abstract—Among many distributed spatial simulation systems
each has its own approach to the problem of results collecting
and analysis. The volume of results can be huge, while not all
results are finally needed. The presented solution is to provide
a unified form of defining the range of data to be collected and
the methods for efficiently collecting them during the simulation
runtime. Simulation results can be represented as a stream
of records, where every record has the same structure. This
observation means, that simulation can specify one or more data
schema, equivalent of the CREATETABLE command in an
SQL database. Then data selection and analysis comes down
to writing proper SELECT statements. The paper describes
three main parts of the proposed, SQL-inspired results collecting
method: parsing and query analysis, distributed computing and
integrating all parts together. The method has been integrated
with the HiPUTS, a distributed urban traffic simulator.

I. INTRODUCTION

OMPUTER simulation is a powerful method for conduct-

ing research on spatial-temporal systems. Spatial simu-
lation can be successfully used for understanding behaviors of
individual animals forming flocks [1], for predicting crowded
locations during buildings evacuations [2], for understanding
geological structures created ages ago by microscopic sea
shellfish [3], for optimizing urban traffic [4] or public trans-
port [5]. In general, these methods are based on mathematical
models of a physical environment and physical entities existing
in the environment. The simulation algorithm updates the state
of the entities and the environment as the simulated time
passes.

All spatial simulations generate large volumes of data during
the simulation process, as the state of all the entities changes
over the simulated time. Storing the complete record of
these changes can significantly influence the performance od
the computation. Considering an exemplary simulation of 1
million people in a city, each characterized with e.g. 30 bytes
of variable state, we can expect over 1 terabyte of results after
simulating only 1 hour of their life at 10 frames per second.
Such volumes cannot be stored in memory and require time-
consuming disk operations.

Typically, in order to draw the necessary conclusions from
the simulation, not all the results are needed. The researcher
may need only the state changes record of a selected subset of
entities, which is an option available in popular simulators [6].
More often the desired result of the simulation computation is
an aggregated value of selected state changes. This includes
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simple statistics and distributions of observed states over
time and space, which are typically the basis for drawing
valuable conclusions. Such aggregations can be computed after
the simulation process finishes, however, this approach again
requires all the results to be collected. It would be far more
convenient to be able to compute the needed aggregates during
the simulation. This approach is relatively hard to generalize,
therefore it typically requires implementing specific extensions
to the simulator’s source code.

The problem becomes even more complex when the distri-
bution of the simulation computation is considered. Simulating
complex models of large-scale scenarios requires using many
computing nodes simultaneously in order to receive the results
in a reasonable time and to fit the model in the available
memory. Many contemporary spatial simulation tools support
distributed computing [7], [8], [9], [10]. Although distributed
collection of results can be an efficient and scalable solu-
tion, calculations of aggregated values by separate computing
nodes, which are responsible for different fragments of the
simulated environment, is a significant challenge.

In the presented work we address the problem of simulation
results collecting and aggregating during distributed comput-
ing of spatial simulations. We propose a general approach,
based on the Structured Query Language, SQL, for defining
the range of required data. The proposed approach does not
require the user to extend the simulator’s source code. In fact
it does not require knowing any programming language. It is
based on a standard and relatively simple query syntax, used
for defining a data model and querying the model afterwards.
The query syntax allows for defining simple and complex
queries, including spatial and temporal limits, selecting entities
of specific features or states, identifying relations between
entities and computing many types of aggregates.

We present an abstract, Java-based implementation of this
approach, which can be integrated with many different sim-
ulation tools. For evaluation purposes it has been integrated
with an urban traffic simulator. In this important field, the
simulation is a basis for the majority or research [4].

The proposed solution is also capable of working in dis-
tributed environments. While preserving the simplicity of
queries, all the features have been successfully implemented
for working with distributed processing of simulation models.

In the following section we present the existing approaches
to the problem of results collecting in distributed spatial sim-
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ulations. The next two sections describe the proposed solution
from the user perspective and its internal implementation
details.

II. EXISTING APPROACHES

The problem of results collecting, aggregating and process-
ing is inextricably connected with all large-scale simulations,
therefore it is not novel. An in-deep analysis of its elements
and possible solutions can be found in [11], where authors
identify four crucial challenges: selection, collection, storage
and retrieval. The two considered strategies for data selection:
all vs partial, have their advantages and drawbacks. Collecting
all data can be justified only when rolling-back the simulation
is required or detailed after-action review is needed. In other
cases selection should be performed during the simulation
runtime. In the context of data collection the problem of
scalability has been pointed out with distributed collection as
the possible solution.

An agent-based architecture for collecting simulation data
has been presented in [12]. It provides services that facilitate
data collection and analysis within a distributed simulation.
The discrete event simulation models are considered in this
case. The proposed approach is compared to the “baseline”
methodology, where sub-models report the data to a central
database for output analysis. Not surprisingly, a significant
improvement over the centralized approach has been reported.

A few years later a similar problem was addressed using
the Web Services, which apparently gained popularity in this
period of time. The authors point out that "The data collection
system should place minimal stress on the simulation infras-
tructure from both a computational load and communications
overhead perspective".

A comparison between centralized, partially and fully dis-
tributed data collection methods has been presented in [13].
The evaluation is limited to the recommended, fully decentral-
ized method, which achieves O(N) complexity, guaranteeing
good scalability.

The issue of aggregating simulation results has been iden-
tified in [14], where a geo-distributed simulation has been
considered. The proposed solution involved using Hadoop,
a map-reduce computational framework for processing the
data. The same platform has been used in [15], where data
processing was executed in distributed manner without the
need for centralization. Obviously not all types of aggregations
can be computed this way.

Unfortunately, the conclusions, design concepts and partic-
ular solutions described above, have not been incorporated
into the existing spatial simulation tools. The problem of data
collecting and processing seems to receive less attention than
the modeling, simulation and computations distribution. In the
Flame simulator [8], a user can configure two types of outputs:
"snapshots" of the complete simulation state or "agents",
which results in saving selected entities only. In addition, the
number of iterations between saved states can be specified.
No aggregations are available. In the D-MASON framework
[7], each computing node (each model partition) writes its
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results to its own file. One can use a statistics output streams
to save self-implemented aggregates. The Pandora simulation
system [10] saves all the data from of the environment and
agents collected during each time step in two files. The authors
provide a separate program (implemented in Python) to further
analyze the data.

In the REPAST HPC [9] the most advanced data collection
functionalities can be found. A user can define so called
"Aggregate data collection”, which use several reduction func-
tions (sum, min, max, etc) to compute basic aggregates in
the fly. The aggregates can compute the values from remote
computing nodes using MPI and store them in a single file.
Unfortunately, the configuration of data collection has to be
defined in the source code, using the provided APIL.

In the field of urban traffic simulation, which is an exem-
plary use case considered in this work, the problem of data
collection and analysis also receives relatively little attention.
One of the most popular simulators, SUMO [16], offers a wide
variety of so called outputs, which cover selected types of
entities, e.g. all cars states or all lane-change events. It also
offers a fixed list of aggregates, like average trip speed or route
length. The user cannot select specific fragments of space or
specify more complex operations on the simulation results.

Another popular tool for urban traffic simulation is MAT-
Sim [17], which is constructed over a simpler, queue-based
traffic model. It allows storing the simulation results in several
csv files, containing information about all simulated trips.
Further analysis is to be performed outside the simulation.

SMARTS [18] is an urban traffic simulator designed to per-
form distributed computations. It implements several advanced
features related to model partitioning and local communication
between workers. It demonstrates good scalability of simula-
tion distribution. However, the results collecting mechanisms
assumes sending cars’ trajectories to a centralized server,
which stores these in files. Such approach turns out to be
a scalability bottleneck when hundreds of cores are used
simultaneously.

The problem of results collecting and aggregating in dis-
tributed spatial simulations is clearly visible in the domain.
Unfortunately, it does not receive enough attention, leaving a
user with a complex problem to solve.

III. PROPOSED RESULTS COLLECTING SUBSYSTEM

Every simulation generates different types of data. This
means that the simulation defines its own data schema, com-
posed of the state description of all simulated entities, which
changes over time. This schema can be queried using SQL-like
SELECT statements.

The proposed solution is abstract and can be applied in
various simulations. In order to adopt it to a particular case,
we need to define multiple "dictionary" tables, where data
do not change during simulation, and one "events" table that
keeps both references to "dictionary" tables and changeable
variables. The concept will be presented using a specific case
of a urban traffic simulation.
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We have combined our idea with the HiPUT'S Simulator
[19], which is a distributed urban traffic simulator!. It allows 2
us to divide the environment model of simulation (road map) Z
into separate fragments and assign the responsibility of com- 2s
putation over those fragments to separate processes, which 2
can use many nodes of a computing cluster. The simulation ;
process is divided into small time quanta called steps. In each »
step, the number of cars can be different in separate workers, *
as they can move freely from one to the other. ;

The environment model in the simulation is composed of 3
two key components: lanes and junctions. It is depicted as a*
directed graph, where the edges represent the lanes and the zf
nodes correspond to the junctions. Every lane starts and ends »
with junction. Each junction has a fixed, known position, while
each lane is a straight segment linking junctions. As a result,
every lane has a defined length, and junctions are aware of the
circular arrangement of incoming and outgoing lanes. From the
vehicle’s perspective, it tracks details such as its current lane
and position, speed, acceleration, and other characteristics like
its length, maximum speed, and designated route, enabling it
to navigate accordingly. The state of vehicle changes during
the simulation due to natural movement, so parameters such
as e.g. speed, acceleration and position on lane are modified
and represent singular state of car in a specific time unit of the
simulation. This specific car is simulated by the corresponding
worker, depending on its current location.

Here we have three "dictionary" tables - Cars, Junctions
and Lanes and one "events" table - Events that tracks all
changes. The dictionary tables contains static data that are
constant during the simulation and they are not modified.
The event table, in turn, contains dynamic data, such as
information about changes of individual vehicles in simulation.
The simulation model definition of SQL "dictionary" and
"events" tables is presented in Listing 1.

To unambiguously define car in time and place we need to
use triple: 1

(Workerld, StepNumber, CardId) 13

CREATE TABLE Cars

( 17
CarId bigint PRIMARY KEY, 18
MaxSpeed numeric NOT NULL,
Length numeric NOT NULL

)i

CREATE TABLE Junctions

(
JunctionId bigint PRIMARY KEY,
Longitude numeric NOT NULL,
Latitude numeric NOT NULL

)i

CREATE TABLE Lanes
(
LaneId bigint PRIMARY KEY,
IncomingJunctionId bigint NOT NULL
references Junctions (JunctionId),
OutgoingJunctionId bigint NOT NULL

[N S -

Uhttps://github.com/hiputs/HiPUTS

references Junctions (JunctionId),
Length numeric NOT NULL
)i

CREATE TABLE Events
(
WorkerId text NOT NULL,
StepNumber bigint NOT NULL,
CarId bigint NOT NULL
references Cars (CarId),
LaneId bigint NOT NULL
references Lanes (Laneld),
PositionOnLane numeric NOT NULL,
Speed numeric NOT NULL,
Acceleration numeric NOT NULL,
PRIMARY KEY (WorkerId, StepNumber, CarId)
)i

Listing 1. Equivalent simulation model definition in SQL tables.

For simplicity let’s define the following view (Listing
2), that combines all listed table above 1. Data analysis is
ultimately reduced to executing SELECT queries on the
SimulationDatas view. As previously mentioned simulations
can be run on multiple computing instances, referred to as
Workers, with each instance tasked with processing a specific
portion of the map. The configuration file allows to define
the format in which the analysis results should be exported.
Currently the module supports exporting data in CSV [20] and
Parquet [21], [22] formats, which has been found to be well-
suited for data visualization thanks to their structure and the
ability to facilitate detailed analysis across different contexts.

CREATE VIEW SimulationDatas AS

SELECT
e.x, c.MaxSpeed, c.Length,
1l.Length AS Lanelength,
ji.JunctionId AS IncomingJunctionId,
ji.Longitude AS IncomingJunctionLongitude,
ji.Latitude AS IncomingJunctionLatitude,
jo.JunctionId AS OutgoingJunctionId,
jo.Longitude AS OutgoingJunctionLongitude,
jo.Latitude AS OutgoingJunctionLatitude
FROM Events e
JOIN Lanes 1 ON l.Laneld =
JOIN Junctions ji
ON ji.JunctionId =
JOIN Junctions jo
ON jo.JunctionId =
JOIN Cars c ON c.CarId =

e.LaneId
1.IncomingJunctionId

1.0utgoingJunctionId
e.CarId

Listing 2. Definition of SQL view for data in simulation.

Example. A trivial simulation has 2 steps. In first step there
are 2 cars (C'1l, C2), in second step 3 cars (C2, C3, C4).
Cars C1, C2 are always on worker W1, rest on worker W2.
Then Ewvents table has 5 rows, two rows from first step and
three rows from second step. Then FEvents table looks as
presented in Table I (for simplicity we present only columns:
Workerld, StepNumber, Carld):

Available syntax:

SELECT [expression [ [ column_name ] ] [, ...]
[FROM SimulationDatas]
[WHERE condition]

[GROUP BY grouping_element

[HAVING condition]

AS ]

A
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TABLE I
EXEMPLARY OVERVIEW OF FRAGMENT OF SOME COLLECTED EVENTS
DATA
Workerld | StepNumber | Carld

Wi 1 Cl

Wi 1 C2

Wi 2 Cc2

w2 2 C3

w2 2 C4
6 [ORDER BY expression [ ASC | DESC ] [ NULLS { FIRST

| LAST }1 [, ...1 1
7 [LIMIT count]
s [OFFSET start]

10| where grouping_element is one of:
1 0

12 expression,

13 ( expression, [, ... ])

15| where expression is one of the following:
16| — number, text, NULL,

scalar function e.g. COALESCE, CONCAT, ABS

18 — aggregates e.g. MIN, MAX, SUM, AVG, COUNT

19 — arithmetic operators: +, -, *, /, %

20 — text operators: ||

21 — conditional operators: OR, AND

22/ — relational operators: =, <, >, <=, >=, <>,

3 LIKE, REGEX, BETWEEN, IN, IS [NOT] NULL,

24 IS [NOT] DISTINCT

25| — conditional statement:

26 CASE

27 WHEN expression_1 THEN result_1

28 [WHEN ...]

29 [ELSE else_result]

30 END

31| — column name: (defined by simulation)

32 — casting: expression::type or CAST (expression,
type)

parentheses expression: (expression)
signed expression: +, -, ~

Listing 3.
method.

Available syntax for collecting and aggregating data using this

IV. SYNTAX DESCRIPTION

The syntax for our system is inspired by PostgreSQL? and
follows a familiar structure for querying and manipulating
data. In the following, we describe each clause supported
by our solution and provide explanations for the available
expressions and operators.

A. SELECT Clause

The SELECT clause specifies the data to retrieve from the
database. Each expression can optionally be renamed using
the AS keyword:

e expression [ [ AS ] column_name ]:
Defines what data to retrieve (e.g., column names,
computed values).

e AS column_name: Renames the result of the expres-
sion.

Zhttps://www.postgresgl.org/docs/current/sql-select.html
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B. FROM Clause

The FROM clause specifies the source of the data. In our
case, SimulationDatas defines the combined "dictionary"
tables and "events" table.

C. WHERE Clause

The WHERE clause filters the rows returned by the SELECT
clause according to a specified condition:
e WHERE condition: Applies filters using relational (=,
<, >, etc.) and logical operators (AND, OR, etc.).

D. GROUP BY Clause

The GROUP BY clause aggregates rows with the same
values in specified columns:
¢ GROUP BY grouping_element: Groups the rows
by one or more columns (or expressions), often used with
aggregate functions.

E. HAVING Clause

The HAVING clause filters the aggregated results produced
by GROUP BY:
e HAVING condition: Similar to WHERE, but operates
on aggregated data.

F. ORDER BY Clause

The ORDER BY clause specifies the sorting order of the
results:
¢ ORDER BY expression [ ASC | DESC ] [
NULLS { FIRST | LAST }], [, ...]: Orders
the results by an expression or multiple expressions in
ascending (ASC - default) or descending (DESC) order,
and determines the placement of NULL values.

G. LIMIT and OFFSET Clauses

e LIMIT count: Limits the number of rows returned by
the query.

e OFFSET start: Skips the first start rows before
returning the rest.

H. Expressions and Operators

Various expressions and operators can be used within the
above clauses to perform more complex calculations and
conditions:

1) Scalar Functions: Scalar functions perform operations
on individual values. Currently implemented functions:

e ABS (expression): Returns the absolute value of a
numeric expression. e.g. ABS (-5) returns 5.

e CEIL (expression): Rounds a numeric expression up
to the nearest integer. e.g. CEIL (4.3) returns 5.

¢ COALESCE (expressionl, expression2z,
...): Returns the first non-NULL expression from the
list. If all expressions are NULL, it returns NULL.

e.g. COALESCE (NULL, ’'default’, ’'value’)
returns ' default’.
e CONCAT (expressionl, expression2, ...):

Concatenates multiple expressions into a single string.
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e.g. CONCAT ('Hello’, ' ', ’'World’) returns
"Hello World’.

CONCAT_WS (separator, expressionl,
expression2, ...): Concatenates multiple
expressions into a single string skipping NULL
values, with a specified separator between them.

€.g.CONCAT_WS (' =",
returns ' 2024-10-23".
FLOOR (expression): Rounds a numeric expression
down to the nearest integer. e.g. FLOOR (4.7) returns
4.

LENGTH (expression): Returns the number of char-
acters in a string. e.g. LENGTH (’ OpenAI’) returns 6.
LOWER (expression): Converts all characters in a
string expression to lowercase. e.g. LOWER (' Hello
World’) returns "hello world’.

ROUND (expression, decimal_places):
Rounds a numeric expression to the specified number
of decimal places. e.g. ROUND (3.14159, 2) returns
3.14.

SORT (expression): Returns the square root of a
numeric expression. e.2. SQRT (16) returns 4.

SUBSTR (expression, start_position,
length) : Extracts a substring from a string expression
starting at start_position and continuing for
length characters. e.g. SUBSTR(’HiPUTS’, 2,
3) returns ' iPU’.

UPPER (expression): Converts all characters in a
string expression to uppercase. e.g. UPPER (’hello
world’) returns " HELLO WORLD’.

120247, 10", "23")

2) Aggregate Functions: Aggregate functions operate on

sets

of rows and return a single result:
MIN (), MAX():
value.

SUM () : Adds numeric values.
AVG () : Computes the average.
COUNT () : Counts rows.

Return the minimum or maximum

3) Operators: Arithmetic Operators:

+, =, *, /, %: Perform mathematical operations.

Text Operators:

| | : Concatenates strings.

Conditional Operators:

AND, OR: Combine conditions.

Relational Operators:

=, <, >, <=, >=, <>: Compare values.

Specialized Operators:

L]

LIKE, REGEX: Perform pattern matching.

BETWEEN, IN, IS [NOT] NULL: Check ranges, mem-
bership, or null values.

IS [NOT] DISTINCT: Check for distinction between
two values.

1. Conditional Statements

The CASE expression allows conditional logic:

e CASE WHEN expression THEN result

[WHEN

.] [ELSE else_result] END: Evaluates

conditions and returns the corresponding result.

J. Casting and Parentheses

Casting:

e expression: :type: Casts an expression to a specific

type.

e CAST (expression AS type): Another way to per-

form the cast.

Parentheses and Signed Expressions:

« Parentheses control the order of operations within expres-

sions.

o Signed expressions: +, —, ~: Apply positive, negative, or

bitwise complement to an expression.

Below are presented some example of usage of this solution:

D

1
2

w

W -

3)

O Y T I

4)

12
13

Problem 1: What was speed of car with id = 3.

SELECT Speed, WorkerId,
FROM SimulationDatas
WHERE CarId = 3

StepNumber

Listing 4. Query for problem 1.

Problem 2: Collect velocity of car with id = 3 when it
was on lanes L1, L2 and L3.

SELECT LaneId, Speed
FROM SimulationDatas
WHERE LaneId IN ('L1',

127, 'L3')

Listing 5. Query for problem 2.

Problem 3: For each car what was its average speed in
every 10 steps.

SELECT
CarId,
StepNumber / 10 AS Start,
StepNumber / 10 + 9 AS End,
AVG (Speed)

FROM SimulationDatas

GROUP BY CarId, StepNumber / 10

Listing 6. Query for problem 3.

Problem 4: Calculate average/minimum/maximum speed
separately for very slow - up to 5m/s, slow - to 10m/s,
medium - to 15m/s, fast - to 20m/s, very fast - above
20m/s

SELECT
CASE
WHEN
WHEN
WHEN
WHEN
ELSE
END,
MIN (Speed)
AVG (Speed) AS avg,
MAX (Speed) AS max
FROM SimulationDatas c
GROUP BY

5 THEN
10 THEN
15 THEN
20 THEN
ast'

Speed
Speed

< 'Very slow'
<

Speed <
<
£

'Slow'
'Medium'
Speed 'Fast'

'Very

AS min,
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w0 =

14 CASE
15 WHEN Speed < 5 THEN 'Very slow'
16 WHEN Speed < 10 THEN 'Slow'
17 WHEN Speed < 15 THEN 'Medium'
18 WHEN Speed < 20 THEN 'Fast'
19 ELSE 'Very fast'
20 END
Listing 7. Query for problem 4.

5) Problem 5: Which cars had average speed greater than

100 in 10 subsequent steps

SELECT
CarId, AVG(Speed) AS speed,
StepNumber / 10 AS stepnumber_from,
StepNumber / 10 + 9 AS step_number_to

FROM SimulationDatas c

GROUP BY CarId, StepNumber / 10

HAVING AVG (Speed) > 100

R N N

Listing 8. Query for problem 5.

K. Optimalization

1) Skipping simulation step: Consider the following exam-
ple.

SELECT StepNumber, AVG (Speed)
FROM SimulationDatas
WHERE StepNumber % 100
GROUP BY StepNumber

=0

WHERE clause in this example does not depend on
vehicle, lane or junction parameters. When for the given
simulation step W HERE clause is always false, we can skip
whole step without checking condition for each vehicle in
this step. Before every simulation step we can execute the
following procedure.

Algorithm 1 Procedure checking whether W HERE clause
is always false
: condition < WHERE clause
. if condition is empty then
return false
end if

: for each column € SimulationDatas do

: change all occurences of column in condition with
"NULL”

8: end loop

9:

10:

11:

12:

13:

14:

15:

1
2
3
4:
5
6
7

condition < evaluated condition

if condition is empty then
return false

end if

return condition

By conducting a preliminary check before starting the
calculations for each simulation step, it can greatly enhance the

[ S
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program’s performance. This approach allows the aggregator
to determine whether collection of results for a particular step
are necessary. If they are not essential—for example, when
it is only interested in data calculated every 100 simulation
steps—the aggregator can skip unnecessary calculations during
the intervening steps. This optimization conserves computa-
tional resources, reduces execution time, and improves overall
efficiency by focusing only on the simulation steps that yield
relevant data.

2) Short-circuit evaluation: Our module stops calculating
boolean expression combined by AN D, OR operators, when
value can be predicted by already computed sub-expressions
for given patterns:

e OR - when expression or part of expression consists of
multiple sub-expressions joined by OR we can predict
result whenever any or sub-expression is true

o AND - when expression or part of expression consists of
multiple sub-expressions joined by AN D we can predict
result whenever any or sub-expression is false

In most programming languages, this optimization is a
common practice to improve computational performance when
evaluating logical expressions with multiple conditions con-
nected by logical operators like AND or OR. By implementing
short-circuit evaluation, the program determines the result of
the entire expression based on the initial conditions. If the out-
come is already clear after evaluating the first few conditions, it
skips the unnecessary computation of the remaining ones. This
not only saves processing time but also enhances the overall
efficiency of the program. For instance, in an AND operation,
if one condition evaluates to false, the entire expression is
false, and there is no need to check the subsequent conditions.
This technique is especially beneficial in complex logical
statements where some conditions might be resource-intensive
to evaluate.

V. IMPLEMENTATION

Query computation consists of several steps:

1) parsing - check, whether query has valid syntax

2) analyze - check query type, it can be InlineResult -
which means that result of data does not depends from
simulation e.g. SELECT1 + 2. Otherwise we have to
split the query into two parts. The first one, that will be
calculated during simulation, and the second one that
will combine results together.

Consider the following query:

SELECT CarId / 2,
FORM Simulation
WHERE CarId % 10
GROUP BY CarId / 2
HAVING MIN (Speed)

3 x AVG (Speed + 3)

0

> 10

Here we can specify the following parts:

1) AVG(Speed + 3) - in order to calculate average, we
will calculate separately sum and count of expression
Speed + 3
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2) GROUPBY Carld/2 - we have to calculate each
aggregate independently by expression Carld/2.
3) 3% AVG(Speed + 3),
MIN(CASEWHENCarId > 0THEN Speed
ELSE2 x Speed EN D) - in this query we have
two aggregate functions, during simulation we will not
know value of this expressions until simulation finishes
and we gather data together. After compacting data
we can then execute remaining scalar expressions. For
expression 3 x AVG(Speed + 3) we will
calculate SUM (Speed + 3), COUNT(Speed) + 3 dur-
ing simulation. After simulation finishes we will deter-
mine value of AVG(Speed + 3) and after combining
data from every computational node we can calculate ;
3« AVG(Speed + 3) 3
4) WHERE Carld % 10 = 0 - where clause can be 4
calculated during simulation, because it contains only :
scalar expressions. 7
In general computational nodes will keep the following 2
tuples: 10
(GroupingKey, Aggregatey, Aggregates, ..., Aggregatey) ;

(Carld/2, AVG(Speed + 3), MIN (Speed)) 14

After simulation finishes we have to take all tuples and 1
compact them together. Our aggregator uses following aggre- 13
gate functions: SUM, MIN, MAX,COUNT, AVG. Com-
pacting SUM, MIN, MAX,COUNT is pretty straightfor-
ward, only for AVG we need to keep separately COUNT
and SUM.

A. Memory control

We cannot predict amount of data that will be gathered,
so we have to exchange data between RAM and hard drive.
Json/Xml serializers wouldn’t be effiecient, that’s why we de-
cided to define custom binary serialization and deserialization.

Simple types like integer,text, bigint, boolean have im-
plemented serialization/deserialization methods in every lan-
guage, so let’s focus on more complicated data structures.

Consider the following query, where Carld is bigint,
Speed is double.

SELECT CarId, AVG (Speed)
FROM SimulationDatas
GROUP BY CarId

During simulation computational nodes have to keep
Carld and AVG(Speed). For Carld = 5, current value
of AVG(Speed) = 2.5, where SUM(Speed) = 10,
COUNT(Speed) = 4, tuple

(Carld, AVG(Speed))

will be represented by the following sequence of bits.

Bits Meaning
00000000 00000000 00000000 00000000 | 5 - bigint
00000000 00000000 00000000 00000101

01000000 00100100 00000000 00000000 | 10 - double
00000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000 | 4 - bigint
00000000 00000000 00000000 00000100

B. Configuration

The analyzer can be launched and configured using a dedi-
cated configuration file that contains its parameters definition.
Example definition is presented in Listing 9.

analyzerConfiguration:

bufferSize: 1000

storageType: in-memory

numberOfSegments: 8

nodeSizeOfIndexTree: 16

levelsInIndexTree: 4

export:
enabled:
format: parquet

path: /path/to/export/directory

configExportEnabled: false

queries:

— SELECT MIN (Speed) + MAX (Speed)
FROM SimulationDatas
WHERE CarId::bigint IN
GROUP BY CarId
HAVING COUNT (1) > 5

— SELECT AVG(Speed) FROM SimulationDatas

true

(2, 34)

Listing 9. Example configuration file for analyzer.

The configuration file is a crucial component that allows
users to customize and control the behavior of the applica-
tion. It consists of different parameters that define how the
module operates, enabling users to tailor the performance and
functionality to meet specific needs. These parameters cover
various aspects and are defined as:

1) bufferSize - The size of the buffer when writing data
from the Worker to a temporary file and reading data
from it by the PostMaster.

2) storageType - An enumerated value indicating whether
the data processed by the Workers is stored on the hard
drive (drive) or in RAM (in-memory).

3) numberOfSegments - A numerical value specifying the
number of independent segments into which HashMap
structures are divided, ensuring concurrent operation of
the program. Each segment has separate locks for read-
ing and writing. Too few segments will cause bottlenecks
during parallel usage, while too many will increase
memory overhead.

4) nodeSizeOfIndexTree - The HashMap structure uses
an IndexTree instead of an array to store hash
keys. IndexTree is similar to a SparseArray. This
means unused elements do not occupy memory space.
The structure does not perform rehashing operations, so
it cannot be larger than the initial value.

5) levelsInIndexTree - The number of levels in the
IndexTree structure.
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6) allocateStartSize - The initial size of the HashMap
structure in bytes.

7) allocateIncrement - The number of bytes by which the
size of the HashMap structure is increased.

8) queries - An array of SQL queries.

9) export:

o enabled - A boolean value indicating whether the
results should be exported to a file.

o format - An enumerated value specifying the data
export format (parquet or csv).

o path - The relative path to the folder where the
results will be exported. In the specified folder, a
new folder with the export date is created, into
which a file named result<query_number>
with the extension specified in the configuration file
is generated.

« configExportEnabled - A boolean value indicating
whether the configuration file should be exported
along with the data.

When choosing parameters, it is important to asses that the
maximum number of elements in the HashMap structure will
be equivalent to:

numberOfSegments x nodeSizeOflndexTreg!evelsinndexTree

VI. THIRD PARTY LIBRARIES

Our implementation uses
JSqlParser and MapDb

A. JSqlParser

For parsing we used publicly available library called
JSqlParser3. It is an open-source library written in Java that
enables analysis, manipulation, and processing SQL queries in
both text and object formats.

Some of the key features of this library include:

two mainly used libraries

e SQL Query Parsing - the ability to convert SQL queries
from their textual form into an object-oriented data struc-
ture that is easy to work with.

o Query Manipulation - allows to modify, delete, or add
parts of SQL queries using an object interface.

o SQL Query Generation - enables to create SQL queries
using objects and convert them back into text form.

With JSqlParser, developers can effortlessly manipulate
and analyze SQL queries within their applications.

B. MapDb

For memory control We use library MapDb* that provider
Maps, Sets and other collections backed by off-heap or on-
disk storage. It is a hybrid between java collection framework
and embedded database engine. Library is concurrent-safe and
provides support for ACID transactions. Due to the fact
that it can use on-disk storage, library requires to provide
serialization & deserialization implementation of used items.

3https://github.com/JSQLParser/JSqlParser
“https://mapdb.org/
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Storage type and other parameters that MapDb enables can be
configured through config file.

VII. CONCLUSIONS AND FURTHER WORK

In this paper, we presented a SQL-inspired method for
flexible and scalable result collection in distributed spatial
simulations. By representing simulation data as streams of
records conforming to defined schemas, we enable users to
specify the range of data to be collected and the computations
to be performed using standard SQL query syntax. This
approach abstracts the complexities of data collection and
aggregation in distributed environments, allowing users to
focus on analysis without modifying the simulator’s source
code or writing additional programs.

We implemented this method within HiPUTS, a distributed
urban traffic simulator, demonstrating its practicality and effi-
ciency. Our evaluation showed that the approach introduces
minimal time and memory overhead while providing sig-
nificant flexibility in data collection and aggregation. The
optimization techniques, such as skipping simulation steps,
short-circuit evaluation and custom binary serialization &
deserialization, further enhance performance by reducing un-
necessary computations.

The proposed method addresses a significant gap in ex-
isting spatial simulation tools, which often lack advanced
mechanisms for data selection and aggregation, especially in
distributed settings. By enabling SQL-like queries, our solu-
tion simplifies the process of obtaining meaningful insights
from large-scale simulations, which is crucial for researchers
and practitioners working with complex models and massive
datasets.

For future work, we plan to explore several directions.

A significant area we intend to explore is the utilization
of simulation results during runtime by different entities
within the simulation, such as vehicles in a traffic model,
or by the load balancer itself. By enabling entities to access
aggregated or filtered simulation data in real-time, we can
enhance the fidelity and adaptability of the simulation. For
example, vehicles could adjust their behaviors based on current
traffic conditions derived from aggregated data, leading to
more realistic modeling of traffic flow and congestion patterns.
This dynamic interaction would allow for the simulation of
advanced scenarios, such as adaptive cruise control or real-
time route optimization.

Similarly, the load balancer could use real-time simulation
metrics to dynamically adjust the distribution of computational
load across workers. By monitoring the simulation results, the
load balancer can identify hotspots or regions with increased
computational demands and reallocate resources accordingly.
This approach can improve the efficiency and scalability of the
simulation by ensuring balanced workloads and minimizing
processing delays.

Machine Learning Integration, where exploring the incorpo-
ration of machine learning techniques for predictive analytics
within the simulation framework could enable advanced func-
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tionalities like anomaly detection and trend prediction directly
during simulation runtime.

In conclusion, the proposed method addresses a critical
challenge in distributed spatial simulations by offering a user-
friendly, efficient, and scalable solution for data collection and
aggregation. By empowering users to specify precisely what
data they need and how it should be processed, we facilitate
more effective and focused analysis. We believe that further
development along the outlined directions will enhance the
system’s capabilities and broaden its adoption, ultimately con-
tributing to more advanced and insightful simulation studies
across various fields.
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