
Abstract—Gastrointestinal cancer exhibits the greatest mor-

tality rate among all cancers, at 35.4%. Endoscopy is one of the 

few methods for obtaining visuals of gastrointestinal tract le-

sions. Manual cancer detection is arduous. Deep learning can 

autonomously diagnose gastrointestinal tract lesions. Automa-

tion produces erroneous detection results. This study used the 

challenging Hyper-Kvasir dataset  for training and validation 

purposes.  The  dataset  undergoes  first  preprocessing  with 

Brightness  Preserving  Histogram Equalization.  Furthermore, 

processed datasets comprise training and validation sets.  For 

segmentation, pretrained backbone-based U-Net architecture is 

used. The U-Net backbones include EfficientNet-B0, Efficient-

Net-B7, and DenseNet201. The pre-trained models utilize Ima-

geNet, so Hyper-Kvasir is employed for the fine-tuning of gas-

trointestinal tract segmentation. The optimal Intersection over 

Union (IoU) is 85.2% for the EfficientNet-B7 backbone inside 

the  U-Net  design.  A custom convolutional  neural  network is 

employed to classify the hyper kvasir  dataset.  The suggested 

network derives profound features for classification using arti-

ficial  neural  networks.  The proposed methodology surpassed 

state-of-the-art (SOTA) methods.

Index Terms—Gastrointestinal Cancer, U-Net, CNNs, Deep 

learning, Classification, Segmentation.

I. INTRODUCTION

ASTROINTESTINAL (GI) cancer occurs when malig-

nant  cells  grow inside GI  tract  [1].  In  the  past  fifty 

years, GI cancer has had the second highest mortality rates 

among different types of cancers [2]. According to global 

cancer  index,  GI  cancer  has  the  mortality  rate  of  35.4% 

whereas 26.3% of all the cancers are diagnosed as GI tract 

cancers. Over the past few years, the performance of artifi-

cial  intelligence-driven  computer-aided  diagnosis  (CAD) 

tools in various medical fields has been greatly improved by 

deep  learning  algorithms  [3],  particularly  artificial  neural 

networks (ANNs) [4].  Identifying gastrointestinal  (GI)  ill-

nesses subjectively takes time and professional competence. 

By automating  the  detection  and  categorization  of  GI  ill-

nesses, computer-assisted diagnosis (CAD) technology may 

reduce these diagnostic obstacles. Such technologies might 

help doctors detect and cure serious medical diseases early 

G

on.  Medical  practitioners  benefit  from  CAD  technology's 

precise diagnosis and appropriate action [5]. Deep learning 

(DL) [6] are statistical based methodologies that authorize 

computer systems to sovereignly identify patterns and prop-

erties  from  unprocessed  data  inputs,  including  structured 

data, images, text, and audio. The substantial progress in ar-

tificial intelligence (AI) based on DL has had a profound im-

pact on numerous domains within clinical practice [7, 8].

In semantic segmentation, every pixel of an object is as-

signed  a  specific  label  corresponding  to  its  class.  This 

process involves categorizing each pixel  in an image into 

predetermined classes. Semantic segmentation relies on the 

concept of a mask that incorporates edge detection, which 

helps identify the connected regions in an image that belong 

to the same class [9]. For the purposes of semantic segmen-

tation, multiple architectures are being used by researchers. 

Recent studies shows that one of few most effective frame-

works for image segmentation in medical domain is U-Net 

[10]. 

However, using state-of-the-art pretrained models like U-

Net for semantic segmentation may provide considerable re-

sults. The design has two partitions: contraction (Encoder) 

and dilation (Decoder). To get image context, convolutional 

and pooling layers are used. While the latter half spreads the 

picture  utilizing  skip  connections  and  anti-convolution 

(transpose  convolution).  The segmented image is  the out-

come. U-Net is a semantic segmentation benchmark. It im-

proves outcomes with numerous fundamental  architectural 

modifications. Several pretrained networks compose the U-

Net architecture's backbone, improving performance. One of 

the best semantic segmentation designs is U-Net. This de-

sign is largely utilized in medical image segmentation. 

This  study introduces  a  deep learning methodology for 

segmenting gastrointestinal (GI) tract lesions in endoscopic 

images,  employing a  U-Net  architecture  with  several  pre-

trained  models  (EfficientNet-B0,  EfficientNet-B7,  and 

DenseNet201)  utilized  as  fixed  encoders.  The  decoding 

component  employs  the  encoded  information  for  precise 

segmentation. Brightness Preserving Histogram Equalization 
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(BPHE) is utilized as a preprocessing technique to improve 

image quality. A unique convolutional neural network is em-

ployed for feature extraction and classification utilizing the 

Hyper-Kvasir  dataset.  The  efficacy  of  each  model  is  as-

sessed by several criteria and juxtaposed with one another 

and contemporary state-of-the-art techniques. The document 

is  organized  to  encompass  background,  relevant  research, 

methods, findings, and conclusions with prospective direc-

tions.

II. LITERATURE REVIEW

This section describes the recent advancements in GI tract 

segmentation.  Researchers  achieved  significant  results  for 

GI cancer segmentation. In [11], authors used U-Net model 

with depth of five to perform semantic segmentation on hy-

per  Kvasir  dataset.  Moreover,  researchers  used  the  image 

size of 96×96 at the start of the model. Additionally, in the 

encoder part the gradual decrease in size is observed till the 

size of the image becomes 6×6. Furthermore, convolutional 

layers with filter size of 3×3 is used whereas filter size for 

pooling layers is 2×2. Authors used loss score as evaluation 

parameter for results and obtained value of 0.69 for loss. A 

new pipeline for unsupervised domain adaptation (UDA) for 

the purpose of semantic segmentation is introduced in [12], 

that  combines  feature-level  adaptation  with  image-level 

adaption. To address domain shifts at the image-level, the 

proposed approach includes a global photometric alignment 

and global texture alignment modules that are used to align 

images from the source domains and target domains based 

on their image-level properties. A global manifold alignment 

approach is used for feature-level domain change by map-

ping pixel features from the two domains onto the source 

domain's  feature  manifold.  Additionally,  desired  domain 

consistency regularization is carried out on enhanced target 

domain images, and category centers in the source domain 

are regularized using a class-oriented triplet loss. On hyper 

kvasir dataset authors achieved 81.5% mean IoU. 

As described by Nguyen Thanh Duc et al. [13], polyps in 

the colorectal region can be detected rapidly and accurately 

using novel deep learning algorithms. To recognize lesions 

in colonoscopy images, the authors proposed Colon-Former, 

a deep learning architecture employing an encoder-decoder 

architecture. The encoder is a lightweight and efficient mod-

eling  framework  for  multi-scale  global  semantic  connec-

tions. The decoder is a representation of visual data gener-

ated by a hierarchical network that has been enhanced. Five 

distinct  reference datasets  were used to construct  the pro-

posed system. This paradigm describes multiscale function-

alities  via transformers and convolutional neural  networks 

(CNNs). It only supports one architecture and utilizes data 

from five unique collections. In addition, we observed that it 

produced the finest results compared to other methods, lead-

ing us to conclude that it is a cutting-edge method.

Experts in the field of colonoscopy image analysis em-

phasized the importance of image segmentation for the de-

tection of lesions caused by colorectal cancer [14]. For im-

age  segmentation,  regional  dense-pixel  classification  and 

boundary-based  polygon  algorithms  have  previously  been 

established. Using a graphical neural network (GNN) that is 

based on a  deep neural  network,  the authors  developed a 

novel polyp detection methodology. This technique identi-

fies the polyp area using an attention-enhancement module 

(AEM). Using the AEM, border and area characteristics of 

polyps  can  be  extracted.  Each  plot  is  data-driven,  so  the 

GNN, which functions as a weighted link between the nodes 

of various domains, preserves the global and local connec-

tions between the nodes. It focuses on the demographics and 

geographic boundaries of the region. The GNN outperforms 

competing methods and accurately detects malignant lesions 

in colonoscopy-acquired biomedical images.  However,  the 

complexity of the system makes it challenging to precisely 

Figure 1: System Model for semantic segmentation of GI tract lesions.
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identify the polyp region. Based on comparisons to other in-

novative methods, this GNN system is the superior model. 

The polyps could only be identified using specialized equip-

ment.

III. METHODOLOGY

The proposed methodology comprised of multiple steps. 

In the first step the dataset is pre-processed to enhance the 

image quality. To achieve this purpose, histogram equaliza-

tion technique is used to improve the spatial quality of im-

age. The second step of the methodology is to feed these im-

ages  with  their  corresponding  masks  to  multiple  U-Net 

based on different backbones.  Evaluation of the system is 

completed using different evaluation parameters. In the last 

step the system is tested and obtained the visual representa-

tion of segmented region of GI tract cancer. Fig. 1 shows the 

methodology for the segmentation of GI tract lesion.

A. Dataset

Segmentation  Dataset: This  study  explores  with  hyper 

kvasir segmentation dataset [19]. The collection comprises 

1000 endoscopic images and masks from various GI tract lo-

cations from numerous people. Due of the dataset's inconsis-

tent image sizes,  images and masks are resized. The final 

size is 256x256 after resizing. Additionally, the dataset has 

two subgroups. Subset one has training images and subset 

two testing images. The training subset includes 80% of the 

data and the testing subset 20%. Randomization is consid-

ered while splitting data. Fig. 2 shows dataset examples of 

images and masks. 

Classification Dataset: Additionally, hyper Kvasir classi-

fication dataset with 23 classes is utilized for classification. 

Due to class imbalance in dataset, dataset is enhanced with 

images to address this issue. These methods modify the spa-

tial features of dataset images without changing their orien-

tation. Dataset has training, validation, and testing subsets.

Figure 2: Hyper-Kvasir dataset sample images and masks

B. Data Pre-Processing

To achieve better results, one of the most common phe-

nomena used is pre-processing. Brightness Preserving His-

togram Equalization (BPHE) [15] is one of the efficient his-

togram equalizations to enhance the images. In the discipline 

of image processing, contrast is enhanced using brightness-

preserving  histogram  equalization.  Adjusting  the  image's 

histogram so that  the intensity levels are distributed more 

equitably is one method to improve the image's perceived 

quality.  In contrast to conventional histogram equalization 

techniques,  preserving  bi-histogram equalization  considers 

both the light and dark regions of an input image. It adjusts 

the histograms of each separately to increase contrast while 

preserving detail in the highlights and shadows. This method 

excels  in  situations  where,  maintaining  the  detail  in  both 

lighter and darker areas is essential, such as medical imag-

ing. Preprocessing is applied only to classification dataset.

C. Convolutional Neural Networks

CNNs have emerged as a useful instrument for analyzing 

medical images in recent years [16]. If a neural network has 

at least one convolutional layer, we refer to it as a convolu-

tional neural network (CNN). A convolution operation uses 

a sliding window technique to apply a fixed-size filter with 

multiple parameters to an input image. When a layer is com-

plete,  the resulting image is  sent  to  the subsequent  layer. 

Here is the mathematical expression for this process:

FM out {H out×V out }=(FM inp∗Filterop ) (1 )

The output  matrix  FM out comprises  the rows and col-

umns designated  H out and  V out as shown in equation  (1 ). 
Using the rectified linear unit function, the value of a nega-

tive feature is set to zero, as shown in the following equa-

tion.

ActiveReLu=Maxof (0 , k ) , k∈FM out (2 )
In addition, an aggregating technique is employed to re-

duce  computational  complexity  and  accelerate  processing 

time. This procedure involves exchanging the input value at 

the center with the utmost or average value in a particular re-

gion. Using an entirely linked layer,  the features are then 

transformed into a one-dimensional vector. In mathematical 

notation, it appears as follows:

(Vect flat )0
out=FM out {H out×V out } (3 )

(Vect flat )i
i n=(Vect flat )i−1

out∗M i+Vert i (4 )

(Vect flat )i
out=∆i ( (Vect flat )i

i n ) (5 )

In above equations,  (Vect flat )0
out

 is flattened final one-di-

mensional vector, i is the layer number. Moreover, ∆ shows 

the activation function used in the operation.

D. U-Net Architecture

U-Net architecture [10] is a popular CNN for image seg-

mentation. U-Net was named because it resembles the letter 

U when diagrammed. The network's architecture may gain 

local  and global  context  due to  its  encoding (contracting) 

and decoding (expanding) paths. The U-Net design excels in 

organ and tumor segmentation in biomedical imaging [17]. 

In addition to semantic and instance segmentation, this ap-

proach  has  been  used  for  many  additional  segmentation 

tasks.  U-Net  may segment  using low-level  and high-level 

characteristics  due  to  skip  connections.  Keep  fine-grained 
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information while collecting context for more accurate seg-

mentation. This article uses three pretrained networks as U-

Net  backbones  for  segmentation.  The  study  uses 

Densenet201  [18],  Efficientnetb0  [19],  and  Efficient-

netb7 [20].

E. Backbones Used for U-Net Architecture

U-Net architecture is a widely used framework for seman-

tic segmentation. U-Net uses encoder and decoder structures 

to perform semantic segmentation. On the other hand, the 

Efficientnet models are some of the best models that is been 

used by researchers in different domains. Combining both 

networks can be robust and accurate in terms of results. In 

this  paper,  Efficientnet-B0,  Efficientnet-B7  and 

Densenet201 are used as backbones. Pre-trained weights of 

ImageNet dataset are used as weights for encoder part. Skip 

connections  are  used  from encoder  part  to  decoder  path. 

These skips connections combine the features from encoder 

part with the decoder part features. This increases the accu-

racy of segmentation by preserving the spatial information.

The most important concept that is used in U-Net archi-

tecture is deconvolution. The purpose of deconvolution is to 

find a specific solution for any convolution. This is achieved 

by using the following equation.

H sol=(FM inp∗Filterop )+∈ (6 )

In  above  equation,  FM inp is  the  input  image  while 

Filterop is the filter used for convolution. Moreover, ∈ is 

the noise that is added due to convolution operation and ∗ is 

used for convolution operation.

F. Proposed 24 Layered Architecture

To obtain the classification results pre-trained models are 

often  used  by  implementing  transfer  learning  techniques. 

Pre-trained models are trained on “ImageNet” dataset having 

millions of images categorized in 1000 classes. To achieve 

results, pre-trained models are fine-tuned on target dataset 

using transfer learning. The technique freezes the weights of 

all layers except the last few layers. Transfer learning is used 

to solve a wide range of problems in deep learning domain. 

However, there is major drawback in transfer learning tech-

nique which is referred to as domain mismatch problem. To 

resolve this, custom deep architectures are developed by re-

searchers. However, the results with custom models are not 

up to the mark. In this article a custom model with 24 layers 

is proposed through which features are extracted. Moreover, 

these features are used as input for artificial neural networks 

for classification.

Custom designed model consists of 24 layers combining 

12  convolutional  layers,  5  max_pooling  layers,  5  aver-

age_pooling layers and 2 dense layers. 5 residual blocks are 

used in the architecture having one convolutional layer and 

one average pooling layer each. Similarly, linear blocks con-

sist of one convolutional layer and one max pooling layer. 

Fig. 3 shows the model architecture diagram. Each convolu-

tional layer is activated using relu activation function. How-

ever,  the last  convolutional layer is  activated through soft 

plus function. Both linear and residual blocks are combined 

using addition operation. Network also have one input layer 

which takes the images having the dimension 224×224×3 as 

input. Furthermore, a classification output layer is also in-

cluded at the end of the network.

G. Training and validation

Hyper-kvasir classification dataset containing 24000 im-

ages is used for the training and validation of the proposed 

network. Dataset is divided into training and validation sets 

with 70% training and 30% validation data. Training is per-

formed on the system having windows 10 and Nvidia RTX 

3060 GPU. MATLAB R2022A is used as a programming 

platform. The hyper parameters used for training are “Learn-

ing  Rate  =  0.0001”,  “Batch  Size  =  16”,  “Optimizer  = 

Adam”.

IV. RESULTS AND DISCUSSION

In this section the results achieved through the several ex-

periments for segmentation and classification purposes are 

described. To achieve this Densenet201, Efficientnet-b0 and 

Efficientnet-b7 are used as backbone in application of U-Net 

architecture for semantic segmentation. Furthermore, bound-

ary box for affected area is created to identify the lesion in 

endoscopy images of GI tract. Moreover, for classification 

custom network is designed and obtained the results.

A. System Setup

The  experiments  are  performed  using  a  system  having 

core i7 processor with four cores and eight threads and 16 

GB of RAM. Moreover, the Nvidia GTX 950M graphical 

Figure 3: Custom 24 layered proposed architecture for hyper kvasir classification
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processing unit with 4 GB of VRAM is used for training 

purposes.  All  the  experiments  for  segmentation  are  per-

formed using Python 3.10 and TensorFlow. For training pur-

poses, initial learning rate is set to the value of 0.0001, max 

epochs are set to 50 whereas batch size is set to the value 

of 8.

B. Results for Segmentation

Numerical Results are provided through multiple perfor-

mance measures implemented. Table I shows the gradual de-

piction of results during the validation of the framework. To 

obtain the results  Efficientnet-B7 is  used as backbone for 

segmentation. IoU is the most important performance mea-

sure for semantic segmentation. Results shows that using Ef-

ficientnet-B7, the best validation IoU value of 0.85 is ob-

tained while 96% validation accuracy is achieved. Addition-

ally, the table shows gradual increase in validation accuracy, 

validation dice coefficient, validation precision and valida-

tion recall. Moreover, the loss is at lowest as the epochs in-

crease. It is observed that from epoch 1 to 10 the increase in 

validation accuracy, dice coefficient, IoU, precision and re-

call values increase significantly whereas the validation loss 

decreases abruptly. However, the change in the evaluation 

parameters is less for over 10 epochs as compared to the val-

ues before 10 epochs. Another discrepancy is observed dur-

ing the epochs 30 to 40 which is the sudden decrease in vali-

dation accuracy. Moreover, the improvement in evaluation 

parameters is significant between epoch number 40 to 50. 

The best  values  achieved at  the end of  the validation are 

0.96 for accuracy, 0.91 for dice coefficient,  0.85 for IoU, 

0.92 for precision and 0.88 for recall. Additionally, the best 

loss value at the end of the validation is 0.14.

Table  II  demonstrates  Densenet201-segmented  GI  tract 

lesions. Densenet201's maximum validation IoU is 0.82 and 

accuracy is 96%. Dice coefficient for validation data is 0.90. 

Increased epochs cause some disruption in steady evolution 

of  outcomes.  Compared  to  Efficientnet,  Dense-net201 did 

not  produce  smooth  results.  Analyzing  the  evaluation  pa-

rameters shows that the values vary exponentially in the first 

10  epochs  and  less  after  10  epochs.  Densenet201-based 

framework training and validation showed considerable in-

consistency  between  epochs  30  and  35.  Best  values  after 

validation are 0.96 accuracy, 0.90 dice coefficient, 0.82 IoU, 

0.90  precision,  and  0.87  recall.  However,  validation  loss 

is 0.

Additionally, Efficientnet-B0 is also used in the study for 

experiments to segment GI lesion detection.  Table III  de-

scribes  that  the  highest  value  of  validation  IoU  obtained 

through Efficientnet-B0 is 0.78 whereas the value of valida-

tion accuracy achieved by the framework is 95%. By analyz-

ing the values, it is assessed that the highest validation accu-

racy achieved at the end of validation process is 0.95. More-

over,  for  dice coefficient  the value is  0.87.  Similarly,  the 

value of validation IoU is 0.78. Also, the achieved value for 

validation precision is 0.93 and the value for validation re-

call  is  0.81.  In case of Efficientnet-B0 it  is  observed that 

TABLE I.

EVALUATIONS FOR GI TRACT SEGMENTATION USING EFFICIENTNET-B7

Epoch
Validation 

Accuracy

Validation 

Dice Coef

Validation 

IoU

Validation 

Loss

Validation 

Precision

Validation 

Recall

1 0.885135 0.471594 0.313928 0.46715 0.610926 0.916307

10 0.958906 0.83735 0.721798 0.101103 0.911861 0.86235

20 0.962712 0.891788 0.806815 0.109419 0.924289 0.868229

30 0.964142 0.90777 0.834153 0.121391 0.924001 0.877824

40 0.963541 0.909911 0.837617 0.125882 0.918826 0.883313

50 0.96515 0.918313 0.852109 0.140427 0.924259 0.889357

TABLE II.

EVALUATIONS FOR GI TRACT SEGMENTATION USING DENSENET201

Epoch
Validation 

Accuracy

Validation 

Dice Coef

Validation 

IoU

Validation 

Loss

Validation 

Precision

Validation 

Recall

1 0.776002 0.403931 0.257738 0.647087 0.419642 0.943514

10 0.957872 0.82911 0.71018 0.122115 0.930014 0.828044

20 0.958587 0.871834 0.774337 0.137972 0.939886 0.820215

30 0.957271 0.884891 0.796025 0.160757 0.911674 0.843068

40 0.961018 0.894244 0.810935 0.118371 0.921321 0.853872

50 0.96024 0.901343 0.823115 0.140625 0.909625 0.870043
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there is slight gradual decrease in the value of accuracy, dice 

coefficient, IoU, precision and recall after the 30th epoch. 

The validation loss also increased after the 30th epoch and 

achieved the lowest value of 0.17 at the end of the validation 

process.

Visualization  of  segmented  areas  and  corresponding 

bounding boxes are shown in Fig. 4. The first image shows 

the  original  image  from  hyper-kvasir  dataset  (Validation 

Data) whereas the second image shows the original masks 

given with the hyper-kvasir dataset. In the third image, the 

mask predicted by the Efficientnet-B7 is depicted. Finally, 

the image with bounding box (corresponds to the predicted 

mask)  is  achieved.  The figure  illustrates  that  the  network 

predicted the GI tract lesions with phenomenal accuracy.

In table IV proposed system’s results are compared with 

the  state-of-the-art  (SOTA)  previous  works.  Researchers 

used  different  techniques  including  U-Net,  DeeplabV3+, 

Transformers etc. to segment the GI tract lesion segmenta-

tion. It is analyzed that the proposed system outperforms the 

previous techniques.

Figure 4:Visualizations of segmentation using U-Net with Ef-

ficientnet-B7 backbone: left to right: original image, original 

annotation, predicted annotation and bounding box around pre-

dicted lesions

TABLE IV.

COMPARISON OF SEGMENTATION RESULTS FOR PROPOSED METHODOLOGY WITH 

STATE-OF-THE-ART (SOTA)

Reference Dataset Technique Results

[11] Hyper-Kvasir U-Net Loss = 0.69

[12]
Hyper-Kvasir 

+ Piccolo
DeeplabV3+ IoU = 0.84

[13] Kvasir
ColonFormer-L 

(Transformers)
IoU = 0.87

[21]

Endocv2022 

+ CVC-

Clinics

Improved-

STCN Network
Dice = 0.76

[22] Hyper-Kvasir MSACL IoU = 0.40

Proposed
Hyper-

Kvasir
- IoU = 0.85

C. Result for Classification

Custom network design for feature extraction purpose is 

used to extract the features from test dataset. The extracted 

feature  vector  is  further  fed  to  multiple  Artificial  Neural 

Network (ANNs) classifiers to achieve the best results for 

classification. Table V comprises accuracies, precisions, re-

calls and F1-Scores for all classifiers used in experiments. 

By analyzing the table,  it  is  clear that the Narrow Neural 

Network classifier gives the best overall results with 92.70% 

accuracy. The values for precision, recall and F1-score are 

92.87,92.78 and 92.80 respectively. On the other hand, Tri-

layered Neural Network has given the worst overall perfor-

mance with 89.00% accuracy. Fig. 5 depicts the confusion 

matrix for classification of hyper-kvasir dataset using Nar-

row Neural  Network classifier.  Generally,  the  model  per-

formed exceptionally well. Yet some classes still have low 

classification accuracies which shows that class imbalance 

problem can alter the model’s result  drastically in clinical 

TABLE III.

EVALUATIONS FOR GI TRACT SEGMENTATION USING EFFICIENTNET-B0

Epoch Validation 

Accuracy

Validation 

Dice Coef

Validation 

IoU

Validation 

Loss

Validation 

Precision

Validation 

Recall

1 0.776002 0.403931 0.257738 0.647087 0.419642 0.943514

10 0.957872 0.82911 0.71018 0.122115 0.930014 0.828044

20 0.958587 0.871834 0.774337 0.137972 0.939886 0.820215

30 0.957271 0.884891 0.796025 0.160757 0.911674 0.843068

40 0.961018 0.894244 0.810935 0.118371 0.921321 0.853872

50 0.96024 0.901343 0.823115 0.140625 0.909625 0.870043
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environment. Moreover, noisy data can also be a hurdle in 

acquiring the accurate results in clinical experimentations.

TABLE V

CLASSIFICATION RESULTS FOR ARTIFICIAL NEURAL NETWORK CLASSIFIERS FOR 

HYPER-KVASIR CLASSIFICATION

Classifier Accuracy Precision Recall
F1 

Score
Time

Narrow Neu-

ral Network
92.70 92.87 92.78 92.80 39.50

Medium 

Neural Net-

work

91.50 92.20 91.64 91.90 39.80

Wide Neural 

Network
92.30 92.56 92.36 92.45 87.27

Bilayered 

Neural Net-

work

89.20 89.67 89.30 89.48 43.27

Trilayered 

Neural Net-

work

89.00 89.53 89.13 89.32 51.70

Custom  network  design  for  feature  extraction  purpose  is 

used to extract the features from test dataset. The extracted 

feature  vector  is  further  fed  to  multiple  Artificial  Neural 

Network (ANNs) classifiers to achieve the best results for 

classification.  Table  V  comprises  accuracies,  precisions, 

recalls and F1-Scores for all classifiers used in experiments. 

By analyzing the table,  it  is  clear that the Narrow Neural 

Network classifier gives the best overall results with 92.70% 

accuracy. The values for precision, recall and F1-score are 

92.87,92.78  and  92.80  respectively.  On  the  other  hand, 

Trilayered  Neural  Network  has  given  the  worst  overall 

performance  with  89.00%  accuracy.  Fig.  5  depicts  the 

confusion matrix  for  classification of  hyper-kvasir  dataset 

using  Narrow  Neural  Network  classifier.  Generally,  the 

model performed exceptionally well. Yet some classes still 

have low classification accuracies  which shows that  class 

imbalance problem can alter the model’s result drastically in 

clinical  environment.  Moreover,  noisy  data  can  also  be  a 

hurdle  in  acquiring  the  accurate  results  in  clinical 

experimentations.

TABLE VI

CLASSIFICATION RESULTS FOR ARTIFICIAL NEURAL NETWORK CLASSIFIERS FOR 

HYPER-KVASIR CLASSIFICATION

Classifier Accuracy Precision Recall
F1 

Score
Time

Narrow Neu-

ral Network
92.70 92.87 92.78 92.80 39.50

Medium 

Neural Net-

work

91.50 92.20 91.64 91.90 39.80

Wide Neural 

Network
92.30 92.56 92.36 92.45 87.27

Bilayered 

Neural Net-

work

89.20 89.67 89.30 89.48 43.27

Trilayered 

Neural Net-

work

89.00 89.53 89.13 89.32 51.70

Table VI exhibits the comparison of the proposed tech-

nique with recent literature. By analyzing the results,  it  is 

clear that the proposed method outperforms the state-of-the-

art (SOTA) with significant margins.

V. CONCLUSION

World-wide, GI tract cancer is frequent.  This study intro-

duces U-Net topologies with Efficientnet-B0, B7, and Den-

snet201 backbones to identify GI lesions.  Model training 

Figure 5: Confusion matrix of narrow neural network for hyper-kvasir dataset classification
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and validation employ Hyper-Kvasir segmentation dataset. 

Endoscopic photos of malignant regions are labeled by med-

ical professionals in the collection.  Brightness Preserving 

Histogram Equalization improves photos.  To train models, 

the  proposed  U-Net  with  Efficientnet-B0,  B7,  and 

Densenet201  backbones  receives  enhanced  pictures  and 

masks.  Custom deep models are used to classify and extract 

features.  These characteristics also feed artificial neural net-

works for categorization.  The paper also discusses valida-

tion  data  outcomes.   The  suggested  strategy  outperforms 

state-of-the-art methods.  Visual differences in photos pre-

vented certain models from performing as expected.
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[23] Hyper-

Kvasir

6 2023 87.45

[24] Hyper-

Kvasir

14 2020 73.66

[25] Kvasir 5 2021 97.00

[26] Hyper-

Kvasir

23 2020 63.00  for 

macro

Proposed Hyper-

Kvasir

23 - 92.87
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