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Abstract—Gastrointestinal cancer exhibits the greatest mor-
tality rate among all cancers, at 35.4%. Endoscopy is one of the
few methods for obtaining visuals of gastrointestinal tract le-
sions. Manual cancer detection is arduous. Deep learning can
autonomously diagnose gastrointestinal tract lesions. Automa-
tion produces erroneous detection results. This study used the
challenging Hyper-Kvasir dataset for training and validation
purposes. The dataset undergoes first preprocessing with
Brightness Preserving Histogram Equalization. Furthermore,
processed datasets comprise training and validation sets. For
segmentation, pretrained backbone-based U-Net architecture is
used. The U-Net backbones include EfficientNet-B0, Efficient-
Net-B7, and DenseNet201. The pre-trained models utilize Ima-
geNet, so Hyper-Kvasir is employed for the fine-tuning of gas-
trointestinal tract segmentation. The optimal Intersection over
Union (IoU) is 85.2% for the EfficientNet-B7 backbone inside
the U-Net design. A custom convolutional neural network is
employed to classify the hyper kvasir dataset. The suggested
network derives profound features for classification using arti-
ficial neural networks. The proposed methodology surpassed
state-of-the-art (SOTA) methods.

Index Terms—Gastrointestinal Cancer, U-Net, CNNs, Deep
learning, Classification, Segmentation.

1. INTRODUCTION

GASTROINTESTINAL (GI) cancer occurs when malig-
nant cells grow inside GI tract [1]. In the past fifty
years, GI cancer has had the second highest mortality rates
among different types of cancers [2]. According to global
cancer index, GI cancer has the mortality rate of 35.4%
whereas 26.3% of all the cancers are diagnosed as GI tract
cancers. Over the past few years, the performance of artifi-
cial intelligence-driven computer-aided diagnosis (CAD)
tools in various medical fields has been greatly improved by
deep learning algorithms [3], particularly artificial neural
networks (ANNs) [4]. Identifying gastrointestinal (GI) ill-
nesses subjectively takes time and professional competence.
By automating the detection and categorization of GI ill-
nesses, computer-assisted diagnosis (CAD) technology may
reduce these diagnostic obstacles. Such technologies might
help doctors detect and cure serious medical diseases early
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on. Medical practitioners benefit from CAD technology's
precise diagnosis and appropriate action [5]. Deep learning
(DL) [6] are statistical based methodologies that authorize
computer systems to sovereignly identify patterns and prop-
erties from unprocessed data inputs, including structured
data, images, text, and audio. The substantial progress in ar-
tificial intelligence (AI) based on DL has had a profound im-
pact on numerous domains within clinical practice [7, 8].

In semantic segmentation, every pixel of an object is as-
signed a specific label corresponding to its class. This
process involves categorizing each pixel in an image into
predetermined classes. Semantic segmentation relies on the
concept of a mask that incorporates edge detection, which
helps identify the connected regions in an image that belong
to the same class [9]. For the purposes of semantic segmen-
tation, multiple architectures are being used by researchers.
Recent studies shows that one of few most effective frame-
works for image segmentation in medical domain is U-Net
[10].

However, using state-of-the-art pretrained models like U-
Net for semantic segmentation may provide considerable re-
sults. The design has two partitions: contraction (Encoder)
and dilation (Decoder). To get image context, convolutional
and pooling layers are used. While the latter half spreads the
picture utilizing skip connections and anti-convolution
(transpose convolution). The segmented image is the out-
come. U-Net is a semantic segmentation benchmark. It im-
proves outcomes with numerous fundamental architectural
modifications. Several pretrained networks compose the U-
Net architecture's backbone, improving performance. One of
the best semantic segmentation designs is U-Net. This de-
sign is largely utilized in medical image segmentation.

This study introduces a deep learning methodology for
segmenting gastrointestinal (GI) tract lesions in endoscopic
images, employing a U-Net architecture with several pre-
trained models (EfficientNet-B0, EfficientNet-B7, and
DenseNet201) utilized as fixed encoders. The decoding
component employs the encoded information for precise
segmentation. Brightness Preserving Histogram Equalization
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(BPHE) is utilized as a preprocessing technique to improve
image quality. A unique convolutional neural network is em-
ployed for feature extraction and classification utilizing the
Hyper-Kvasir dataset. The efficacy of each model is as-
sessed by several criteria and juxtaposed with one another
and contemporary state-of-the-art techniques. The document
is organized to encompass background, relevant research,
methods, findings, and conclusions with prospective direc-
tions.

II. LiteraTURE REVIEW

This section describes the recent advancements in GI tract
segmentation. Researchers achieved significant results for
GI cancer segmentation. In [11], authors used U-Net model
with depth of five to perform semantic segmentation on hy-
per Kvasir dataset. Moreover, researchers used the image
size of 96%96 at the start of the model. Additionally, in the
encoder part the gradual decrease in size is observed till the
size of the image becomes 6x6. Furthermore, convolutional
layers with filter size of 3x3 is used whereas filter size for
pooling layers is 2x2. Authors used loss score as evaluation
parameter for results and obtained value of 0.69 for loss. A
new pipeline for unsupervised domain adaptation (UDA) for
the purpose of semantic segmentation is introduced in [12],
that combines feature-level adaptation with image-level
adaption. To address domain shifts at the image-level, the
proposed approach includes a global photometric alignment
and global texture alignment modules that are used to align
images from the source domains and target domains based
on their image-level properties. A global manifold alignment
approach is used for feature-level domain change by map-
ping pixel features from the two domains onto the source
domain's feature manifold. Additionally, desired domain
consistency regularization is carried out on enhanced target
domain images, and category centers in the source domain
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are regularized using a class-oriented triplet loss. On hyper
kvasir dataset authors achieved 81.5% mean IoU.

As described by Nguyen Thanh Duc et al. [13], polyps in
the colorectal region can be detected rapidly and accurately
using novel deep learning algorithms. To recognize lesions
in colonoscopy images, the authors proposed Colon-Former,
a deep learning architecture employing an encoder-decoder
architecture. The encoder is a lightweight and efficient mod-
eling framework for multi-scale global semantic connec-
tions. The decoder is a representation of visual data gener-
ated by a hierarchical network that has been enhanced. Five
distinct reference datasets were used to construct the pro-
posed system. This paradigm describes multiscale function-
alities via transformers and convolutional neural networks
(CNNs). It only supports one architecture and utilizes data
from five unique collections. In addition, we observed that it
produced the finest results compared to other methods, lead-
ing us to conclude that it is a cutting-edge method.

Experts in the field of colonoscopy image analysis em-
phasized the importance of image segmentation for the de-
tection of lesions caused by colorectal cancer [14]. For im-
age segmentation, regional dense-pixel classification and
boundary-based polygon algorithms have previously been
established. Using a graphical neural network (GNN) that is
based on a deep neural network, the authors developed a
novel polyp detection methodology. This technique identi-
fies the polyp area using an attention-enhancement module
(AEM). Using the AEM, border and area characteristics of
polyps can be extracted. Each plot is data-driven, so the
GNN, which functions as a weighted link between the nodes
of various domains, preserves the global and local connec-
tions between the nodes. It focuses on the demographics and
geographic boundaries of the region. The GNN outperforms
competing methods and accurately detects malignant lesions
in colonoscopy-acquired biomedical images. However, the
complexity of the system makes it challenging to precisely
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Figure 1: System Model for semantic segmentation of GI tract lesions.
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identify the polyp region. Based on comparisons to other in-
novative methods, this GNN system is the superior model.
The polyps could only be identified using specialized equip-
ment.

III. METHODOLOGY

The proposed methodology comprised of multiple steps.
In the first step the dataset is pre-processed to enhance the
image quality. To achieve this purpose, histogram equaliza-
tion technique is used to improve the spatial quality of im-
age. The second step of the methodology is to feed these im-
ages with their corresponding masks to multiple U-Net
based on different backbones. Evaluation of the system is
completed using different evaluation parameters. In the last
step the system is tested and obtained the visual representa-
tion of segmented region of GI tract cancer. Fig. 1 shows the
methodology for the segmentation of GI tract lesion.

A. Dataset

Segmentation Dataset: This study explores with hyper
kvasir segmentation dataset [19]. The collection comprises
1000 endoscopic images and masks from various GI tract lo-
cations from numerous people. Due of the dataset's inconsis-
tent image sizes, images and masks are resized. The final
size is 256x256 after resizing. Additionally, the dataset has
two subgroups. Subset one has training images and subset
two testing images. The training subset includes 80% of the
data and the testing subset 20%. Randomization is consid-
ered while splitting data. Fig. 2 shows dataset examples of
images and masks.

Classification Dataset: Additionally, hyper Kvasir classi-
fication dataset with 23 classes is utilized for classification.
Due to class imbalance in dataset, dataset is enhanced with
images to address this issue. These methods modify the spa-
tial features of dataset images without changing their orien-
tation. Dataset has training, validation, and testing subsets.
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Figure 2: Hyper-Kvasir dataset sample images and masks

B. Data Pre-Processing

To achieve better results, one of the most common phe-
nomena used is pre-processing. Brightness Preserving His-
togram Equalization (BPHE) [15] is one of the efficient his-
togram equalizations to enhance the images. In the discipline
of image processing, contrast is enhanced using brightness-
preserving histogram equalization. Adjusting the image's
histogram so that the intensity levels are distributed more

equitably is one method to improve the image's perceived
quality. In contrast to conventional histogram equalization
techniques, preserving bi-histogram equalization considers
both the light and dark regions of an input image. It adjusts
the histograms of each separately to increase contrast while
preserving detail in the highlights and shadows. This method
excels in situations where, maintaining the detail in both
lighter and darker areas is essential, such as medical imag-
ing. Preprocessing is applied only to classification dataset.

C. Convolutional Neural Networks

CNNs have emerged as a useful instrument for analyzing
medical images in recent years [16]. If a neural network has
at least one convolutional layer, we refer to it as a convolu-
tional neural network (CNN). A convolution operation uses
a sliding window technique to apply a fixed-size filter with
multiple parameters to an input image. When a layer is com-
plete, the resulting image is sent to the subsequent layer.
Here is the mathematical expression for this process:

FM ,, |H %V o |=|FM,, % Filter,,| (1]

out
The output matrix M, comprises the rows and col-

umns designated H ,, and V. as shown in equation (1)

Using the rectified linear unit function, the value of a nega-
tive feature is set to zero, as shown in the following equa-
tion.

Activey,,=Maxof (0,k|,k € FM,, (2|

In addition, an aggregating technique is employed to re-
duce computational complexity and accelerate processing
time. This procedure involves exchanging the input value at
the center with the utmost or average value in a particular re-
gion. Using an entirely linked layer, the features are then
transformed into a one-dimensional vector. In mathematical
notation, it appears as follows:

(VeCtﬂat gm:FMout {Hout X Vout} (3)
| Vect g |\ = Vect o |, % M+ Vert, 4]
(Vectﬂm)f“t:Ai((VeCtﬂat)jn) 5]

In above equations, (Vectﬂm)g”t is flattened final one-di-

mensional vector, | is the layer number. Moreover, A shows
the activation function used in the operation.

D. U-Net Architecture

U-Net architecture [10] is a popular CNN for image seg-
mentation. U-Net was named because it resembles the letter
U when diagrammed. The network's architecture may gain
local and global context due to its encoding (contracting)
and decoding (expanding) paths. The U-Net design excels in
organ and tumor segmentation in biomedical imaging [17].
In addition to semantic and instance segmentation, this ap-
proach has been used for many additional segmentation
tasks. U-Net may segment using low-level and high-level
characteristics due to skip connections. Keep fine-grained
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Figure 3: Custom 24 layered proposed architecture for hyper kvasir classification

information while collecting context for more accurate seg-
mentation. This article uses three pretrained networks as U-

Net backbones for segmentation. The study uses
Densenet201 [18], EfficientnetbO0 [19], and Efficient-
netb7 [20].

E. Backbones Used for U-Net Architecture

U-Net architecture is a widely used framework for seman-
tic segmentation. U-Net uses encoder and decoder structures
to perform semantic segmentation. On the other hand, the
Efficientnet models are some of the best models that is been
used by researchers in different domains. Combining both
networks can be robust and accurate in terms of results. In
this  paper, Efficientnet-BO,  Efficientnet-B7  and
Densenet201 are used as backbones. Pre-trained weights of
ImageNet dataset are used as weights for encoder part. Skip
connections are used from encoder part to decoder path.
These skips connections combine the features from encoder
part with the decoder part features. This increases the accu-
racy of segmentation by preserving the spatial information.

The most important concept that is used in U-Net archi-
tecture is deconvolution. The purpose of deconvolution is to
find a specific solution for any convolution. This is achieved
by using the following equation.

H,,=|FM,, xFilter |+ € 6]

In above equation, FM inp 18 the input image while

F ilterop is the filter used for convolution. Moreover, € is

the noise that is added due to convolution operation and * is
used for convolution operation.

F. Proposed 24 Layered Architecture

To obtain the classification results pre-trained models are
often used by implementing transfer learning techniques.
Pre-trained models are trained on “ImageNet” dataset having
millions of images categorized in 1000 classes. To achieve
results, pre-trained models are fine-tuned on target dataset
using transfer learning. The technique freezes the weights of
all layers except the last few layers. Transfer learning is used
to solve a wide range of problems in deep learning domain.
However, there is major drawback in transfer learning tech-
nique which is referred to as domain mismatch problem. To
resolve this, custom deep architectures are developed by re-
searchers. However, the results with custom models are not

up to the mark. In this article a custom model with 24 layers
is proposed through which features are extracted. Moreover,
these features are used as input for artificial neural networks
for classification.

Custom designed model consists of 24 layers combining
12 convolutional layers, 5 max pooling layers, 5 aver-
age pooling layers and 2 dense layers. 5 residual blocks are
used in the architecture having one convolutional layer and
one average pooling layer each. Similarly, linear blocks con-
sist of one convolutional layer and one max pooling layer.
Fig. 3 shows the model architecture diagram. Each convolu-
tional layer is activated using relu activation function. How-
ever, the last convolutional layer is activated through soft
plus function. Both linear and residual blocks are combined
using addition operation. Network also have one input layer
which takes the images having the dimension 224x224x3 as
input. Furthermore, a classification output layer is also in-
cluded at the end of the network.

G. Training and validation

Hyper-kvasir classification dataset containing 24000 im-
ages is used for the training and validation of the proposed
network. Dataset is divided into training and validation sets
with 70% training and 30% validation data. Training is per-
formed on the system having windows 10 and Nvidia RTX
3060 GPU. MATLAB R2022A is used as a programming
platform. The hyper parameters used for training are “Learn-
ing Rate = 0.0001”, “Batch Size = 167, “Optimizer =
Adam”.

IV. Resurrs anp Discussion

In this section the results achieved through the several ex-
periments for segmentation and classification purposes are
described. To achieve this Densenet201, Efficientnet-b0 and
Efficientnet-b7 are used as backbone in application of U-Net
architecture for semantic segmentation. Furthermore, bound-
ary box for affected area is created to identify the lesion in
endoscopy images of GI tract. Moreover, for classification
custom network is designed and obtained the results.

A. System Setup

The experiments are performed using a system having
core 17 processor with four cores and eight threads and 16
GB of RAM. Moreover, the Nvidia GTX 950M graphical
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TasLE 1.

EvaLuaTioNs FOR GI TRACT SEGMENTATION USING EFFICIENTNET-B7

Epoch Validation Vfllidation Validation | Validation Vali(‘la.tion Validation
Accuracy Dice Coef IoU Loss Precision Recall
1 0.885135 0.471594 0.313928 0.46715 0.610926 0.916307
10 0.958906 0.83735 0.721798 0.101103 0.911861 0.86235
20 0.962712 0.891788 0.806815 0.109419 0.924289 0.868229
30 0.964142 0.90777 0.834153 0.121391 0.924001 0.877824
40 0.963541 0.909911 0.837617 0.125882 0.918826 0.883313
50 0.96515 0.918313 0.852109 0.140427 0.924259 0.889357
Tagee II.
EvaLuATIONS FOR GI TRACT SEGMENTATION USING DENSENET20 1
Epoch Validation Vftlidation Validation Validation Valic'la'tion Validation
Accuracy Dice Coef IoU Loss Precision Recall

1 0.776002 0.403931 0.257738 0.647087 0.419642 0.943514

10 0.957872 0.82911 0.71018 0.122115 0.930014 0.828044

20 0.958587 0.871834 0.774337 0.137972 0.939886 0.820215

30 0.957271 0.884891 0.796025 0.160757 0.911674 0.843068

40 0.961018 0.894244 0.810935 0.118371 0.921321 0.853872

50 0.96024 0.901343 0.823115 0.140625 0.909625 0.870043

processing unit with 4 GB of VRAM is used for training
purposes. All the experiments for segmentation are per-
formed using Python 3.10 and TensorFlow. For training pur-
poses, initial learning rate is set to the value of 0.0001, max
epochs are set to 50 whereas batch size is set to the value
of 8.

B. Results for Segmentation

Numerical Results are provided through multiple perfor-
mance measures implemented. Table I shows the gradual de-
piction of results during the validation of the framework. To
obtain the results Efficientnet-B7 is used as backbone for
segmentation. IoU is the most important performance mea-
sure for semantic segmentation. Results shows that using Ef-
ficientnet-B7, the best validation IoU value of 0.85 is ob-
tained while 96% validation accuracy is achieved. Addition-
ally, the table shows gradual increase in validation accuracy,
validation dice coefficient, validation precision and valida-
tion recall. Moreover, the loss is at lowest as the epochs in-
crease. It is observed that from epoch 1 to 10 the increase in
validation accuracy, dice coefficient, IoU, precision and re-
call values increase significantly whereas the validation loss
decreases abruptly. However, the change in the evaluation
parameters is less for over 10 epochs as compared to the val-
ues before 10 epochs. Another discrepancy is observed dur-
ing the epochs 30 to 40 which is the sudden decrease in vali-
dation accuracy. Moreover, the improvement in evaluation
parameters is significant between epoch number 40 to 50.

The best values achieved at the end of the validation are
0.96 for accuracy, 0.91 for dice coefficient, 0.85 for IoU,
0.92 for precision and 0.88 for recall. Additionally, the best
loss value at the end of the validation is 0.14.

Table II demonstrates Densenet201-segmented GI tract
lesions. Densenet201's maximum validation IoU is 0.82 and
accuracy is 96%. Dice coefficient for validation data is 0.90.
Increased epochs cause some disruption in steady evolution
of outcomes. Compared to Efficientnet, Dense-net201 did
not produce smooth results. Analyzing the evaluation pa-
rameters shows that the values vary exponentially in the first
10 epochs and less after 10 epochs. Densenet201-based
framework training and validation showed considerable in-
consistency between epochs 30 and 35. Best values after
validation are 0.96 accuracy, 0.90 dice coefficient, 0.82 IoU,
0.90 precision, and 0.87 recall. However, validation loss
is 0.

Additionally, Efficientnet-B0 is also used in the study for
experiments to segment GI lesion detection. Table III de-
scribes that the highest value of validation IoU obtained
through Efficientnet-B0 is 0.78 whereas the value of valida-
tion accuracy achieved by the framework is 95%. By analyz-
ing the values, it is assessed that the highest validation accu-
racy achieved at the end of validation process is 0.95. More-
over, for dice coefficient the value is 0.87. Similarly, the
value of validation IoU is 0.78. Also, the achieved value for
validation precision is 0.93 and the value for validation re-
call is 0.81. In case of Efficientnet-BO it is observed that

81
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TasLe 111
EvaLUATIONS FOR GI TRACT SEGMENTATION USING EFFICIENTNET-BO
Epoch | Validation Validation Validation Validation Validation Validation
Accuracy Dice Coef IoU Loss Precision Recall
1 0.776002 0.403931 0.257738 0.647087 0.419642 0.943514
10 0.957872 0.82911 0.71018 0.122115 0.930014 0.828044
20 0.958587 0.871834 0.774337 0.137972 0.939886 0.820215
30 0.957271 0.884891 0.796025 0.160757 0911674 0.843068
40 0.961018 0.894244 0.810935 0.118371 0.921321 0.853872
50 0.96024 0.901343 0.823115 0.140625 0.909625 0.870043
TaBLE IV.

there is slight gradual decrease in the value of accuracy, dice
coefficient, IoU, precision and recall after the 30th epoch.
The validation loss also increased after the 30th epoch and
achieved the lowest value of 0.17 at the end of the validation
process.

Visualization of segmented areas and corresponding
bounding boxes are shown in Fig. 4. The first image shows
the original image from hyper-kvasir dataset (Validation
Data) whereas the second image shows the original masks
given with the hyper-kvasir dataset. In the third image, the
mask predicted by the Efficientnet-B7 is depicted. Finally,
the image with bounding box (corresponds to the predicted
mask) is achieved. The figure illustrates that the network
predicted the GI tract lesions with phenomenal accuracy.

In table IV proposed system’s results are compared with
the state-of-the-art (SOTA) previous works. Researchers
used different techniques including U-Net, DeeplabV3+,
Transformers etc. to segment the GI tract lesion segmenta-
tion. It is analyzed that the proposed system outperforms the
previous techniques.

Figure 4:Visualizations of segmentation using U-Net with Ef-
ficientnet-B7 backbone: left to right: original image, original
annotation, predicted annotation and bounding box around pre-
dicted lesions

COMPARISON OF SEGMENTATION RESULTS FOR PROPOSED METHODOLOGY WITH
STATE-OF-THE-ART (SOTA)

Reference Dataset Technique Results
[11] Hyper-Kvasir U-Net Loss =0.69
Hyper-Kvasir _
[12] "+ Piccolo DeeplabV3+ IoU =0.84
. ColonFormer-L _
[13] Kvasir (Transformers) IoU =0.87
Endocv2022 fmproved-
(21] TCVC T STON Network | D¢ =076
Clinics
[22] Hyper-Kvasir MSACL IoU =0.40
Hyper- _
Proposed Kvasir - IoU = 0.85

C. Result for Classification

Custom network design for feature extraction purpose is
used to extract the features from test dataset. The extracted
feature vector is further fed to multiple Artificial Neural
Network (ANNSs) classifiers to achieve the best results for
classification. Table V comprises accuracies, precisions, re-
calls and F1-Scores for all classifiers used in experiments.
By analyzing the table, it is clear that the Narrow Neural
Network classifier gives the best overall results with 92.70%
accuracy. The values for precision, recall and Fl-score are
92.87,92.78 and 92.80 respectively. On the other hand, Tri-
layered Neural Network has given the worst overall perfor-
mance with 89.00% accuracy. Fig. 5 depicts the confusion
matrix for classification of hyper-kvasir dataset using Nar-
row Neural Network classifier. Generally, the model per-
formed exceptionally well. Yet some classes still have low
classification accuracies which shows that class imbalance
problem can alter the model’s result drastically in clinical
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Figure 5: Confusion matrix of narrow neural network for hyper-kvasir dataset classification

environment. Moreover, noisy data can also be a hurdle in
acquiring the accurate results in clinical experimentations.
TaBLE V

CLASSIFICATION RESULTS FOR ARTIFICIAL NEURAL NETWORK CLASSIFIERS FOR
HYPER-KVASIR CLASSIFICATION

Classifier Accuracy Precision | Recall Fl Time
Score

Narrow Neu- | g, ¢ 92.87 92.78 | 92.80 | 39.50
ral Network

Medium

Neural Net- 91.50 92.20 91.64 91.90 | 39.80
work

Wide Neural |, 5, 92.56 9236 | 9245 | 87.27
Network

Bilayered

Neural Net- 89.20 89.67 89.30 89.48 | 43.27
work

Trilayered

Neural Net- 89.00 89.53 89.13 89.32 | 51.70
work

Custom network design for feature extraction purpose is
used to extract the features from test dataset. The extracted
feature vector is further fed to multiple Artificial Neural
Network (ANNs) classifiers to achieve the best results for
classification. Table V comprises accuracies, precisions,
recalls and F1-Scores for all classifiers used in experiments.
By analyzing the table, it is clear that the Narrow Neural
Network classifier gives the best overall results with 92.70%
accuracy. The values for precision, recall and Fl-score are
92.87,92.78 and 92.80 respectively. On the other hand,
Trilayered Neural Network has given the worst overall
performance with 89.00% accuracy. Fig. 5 depicts the
confusion matrix for classification of hyper-kvasir dataset
using Narrow Neural Network classifier. Generally, the

model performed exceptionally well. Yet some classes still
have low classification accuracies which shows that class
imbalance problem can alter the model’s result drastically in
clinical environment. Moreover, noisy data can also be a
hurdle in acquiring the accurate results in clinical
experimentations.

TasLe VI
CLASSIFICATION RESULTS FOR ARTIFICIAL NEURAL NETWORK CLASSIFIERS FOR
HYPER-KVASIR CLASSIFICATION

Classifier Accuracy Precision Recall ¥ Time
Score

Narrow Neu- | g, 7 92.87 92.78 | 92.80 | 39.50
ral Network

Medium

Neural Net- 91.50 92.20 91.64 91.90 | 39.80
work

Wide Neural | o, 3, 92.56 9236 | 9245 | 87.27
Network

Bilayered

Neural Net- 89.20 89.67 89.30 89.48 | 43.27
work

Trilayered

Neural Net- 89.00 89.53 89.13 89.32 | 51.70
work

Table VI exhibits the comparison of the proposed tech-
nique with recent literature. By analyzing the results, it is
clear that the proposed method outperforms the state-of-the-
art (SOTA) with significant margins.

V. CoNcLUSION

World-wide, GI tract cancer is frequent. This study intro-
duces U-Net topologies with Efficientnet-B0O, B7, and Den-
snet201 backbones to identify GI lesions. Model training
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TasLE VII

COMPARISON OF RESULTS WITH STATE-OF-THE-ART (SOTA)

Reference Dataset Classes Year Accuracy (%)

[23] Hyper- 6 2023 87.45
Kvasir

[24] Hyper- 14 2020 73.66
Kvasir

[25] Kvasir 5 2021 97.00

[26] Hyper- 23 2020 63.00 for
Kvasir macro

Proposed Hyper- 23 - 92.87
Kvasir

and validation employ Hyper-Kvasir segmentation dataset.
Endoscopic photos of malignant regions are labeled by med-
ical professionals in the collection. Brightness Preserving
Histogram Equalization improves photos. To train models,
the proposed U-Net with Efficientnet-BO, B7, and
Densenet201 backbones receives enhanced pictures and
masks. Custom deep models are used to classify and extract
features. These characteristics also feed artificial neural net-
works for categorization. The paper also discusses valida-
tion data outcomes. The suggested strategy outperforms
state-of-the-art methods. Visual differences in photos pre-
vented certain models from performing as expected.
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