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Abstract—We address the optimization of drone trajectories in
urban environments. We introduce a Constraint Programming
formulation for a version of the problem where the vehicles
are at the same flight level and their path to fly by is known.
We show that, compared to an approach based on a Mixed-
integer Linear Optimization model introduced previously, the
Constraint Programming approach allows better performances
to be achieved in the solution of the problem for a specific instance
structure.

I. INTRODUCTION

THE growing use of drone delivery in urban environments

requires safe and efficient low-altitude trajectory planning

and optimization [4]. We address the problem of optimizing

drone trajectories by adjusting ground delays and cruise speeds

for flights operating along fixed horizontal paths at a common

flight level. The main constraints come from a key operational

requirement, and consists in maintaining a sufficient separation

between pairs of drones at each time along their trajectories.

Although the general problem of optimizing drone trajectories

involves deciding horizontal paths and flight-levels too for

the considered vehicles, the version addressed in this paper

is worth exploring as it may be exploited in decomposition

approaches for solving large-scale drone trajectory optimiza-

tion problems.

In [2], a mixed-integer linear optimization model is intro-

duced for drone trajectory optimization in urban environments,

where the selection of horizontal paths, flight-levels, and

ground delays are used as optimization levers. The Urban

Drone Trajectory Model (UDTM) introduced in [1] extends

this by also incorporating cruise speed decisions. In [8],

optimization is based on adjusting cruise speeds and ground

delays, with additional considerations for flight priorities. This

is extended in [9], where scheduled take-off uncertainty is

addressed too. In that work, the problem is solved using the

adversarial Benders decomposition. The subproblem, formu-

lated as a constraint programming model, which retains the

same optimization levers as in [8], is solved by three different

heuristics.

In this paper, we introduce a Contraint Programming (CP)

formulation for the considered problem, as an alternative to

the mixed-integer linear optimization model (MILP) from our

earlier work [1]. Two optimization criteria are considered.

The first minimizes the total deviation, defined as the sum of

differences between actual and scheduled landing times across

all flights. It reflects a system-level efficiency objective. The

second minimizes the maximum individual deviation, aiming

to limit the worst-case deviation. This criterion is relevant

when coordination between multiple agents is limited [3]. We

show that the CP formulation performs better than the MILP

formulation on a specific instance structure, particularly when

minimizing the maximum deviation.

The remainder of the paper is organized as follows. Sec-

tion II presents the problem, recalls the MILP model from

earlier work, and introduces the CP model. Section III presents

and discusses numerical results. Section IV concludes the

paper and discusses possible directions for future research.

II. CP AND MILP FORMULATIONS

This section defines the problem under consideration, recalls

the MILP model previously introduced in [1], and presents the

CP model proposed in this study.

A. Problem statement

We consider a set of flight intentions, each defined by a

departure point, an arrival point, a scheduled take-off time, a

horizontal path, and an authorized cruise speed range, bounded

between a minimum and a maximum value for each segment of

the path. All flights operate at a single cruising flight-level and

follow fixed horizontal paths in an urban environment modeled

as a directed graph, as proposed in [2], where arcs represent

street segments and nodes represent their intersections. Drones

are assumed to be of the same type.

This study focuses on optimizing drone trajectories while

avoiding Potential Loss of Separation (PLoS) during the cruise

phase. A PLoS is defined as a situation in which the time

difference between the arrivals of two drones at the same

node is less than the minimum separation time. In this work,

the minimum separation time is considered node-specific. It

is derived from the minimum required separation distance and

the minimal authorized cruise speed on the arcs leading to that

node.

The goal is to determine, for each drone, a ground delay

before takeoff and a cruising speed for each arc of its path,

such that all separation between pairs of drones during the

cruise phase are satisfied.

B. Model parameters

The main parameters used in both the MILP and CP

formulations are summarized below.
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Flight parameters

F set of all flights.

Tf scheduled take-off time of flight f ∈ F .

δmax ∈ R
+ maximum ground delay before take-off.

Horizontal path parameters

kf horizontal path assigned to flight f ∈ F .

K =
⋃

f∈F
{kf} set of all horizontal paths.

fk flight of path k ∈ K.

Nk set of nodes visited along path k ∈ K.

nd
k departure node of path k ∈ K.

na
k arrival node of path k ∈ K.

pk,n predecessor of node n ∈ Nk \ {nd
k} on path

k ∈ K.

dmin
k,n , d

max
k,n minimum and maximum travel time along arc

(pk,n, n), based on speed bounds.

Γk nominal landing time for path k ∈ K.

N =
⋃

k∈K
Nk set of all nodes visited by at least one flight.

For each pair of departure and arrival nodes associated with

flight f ∈ F , the horizontal path kf is either selected from

a predefined set of available paths (see Section III-B1), or

computed using the A* algorithm (see Section III-B2). Note

that, for each flight, the nominal landing time corresponds to

the landing time obtained without ground delay and assuming

the maximum allowed speed on all arcs.

Potential loss of separation parameters

P set of PLoS.

k1
i , k

2
i ∈ K the two paths involved into the PLoS i ∈ P .

f1
i , f

2
i ∈ F the two flights involved into the PLoS i ∈ P .

ni ∈ Nf1

i
∩Nf2

i
PLoS point where the paths k1

i and k2
i intersect

within the PLoS i ∈ P .

M12
i ,M21

i ≥ 0 big-M constants used to linearize the separation
constraints for PLoS i ∈ P .

sn ≥ 0 minimum separation time at node n ∈ N .

Vn set of all paths involved in a PLoS at node n ∈ N .

The set P includes all PLoS, identified by detecting inter-

secting nodes between the horizontal paths of different flights.

Further details on how PLoS are identified, and on how the

Big-M constants are computed, can be found in [1]. These

constants are computable since all flight times are bounded

by the earliest and latest possible arrival times at each node.

Note that in some cases, a pair of flight path share multiple

consecutive nodes, giving rise to several detected PLoS. These

PLoS are referred to as correlated PLoS. In such situation, the

order of passage must be maintained across all involved nodes

to ensure separation.

Correlated PLoS parameters

O set of all correlated PLoS.

i∗o ∈ P first (reference) PLoS in correlated PLoS o ∈ O.

Lo ⊂ P set of remaining PLoS for o ∈ O.

k1
o, k

2
o ∈ K the two paths involved into the correlated PLoS

o ∈ O.

C. MILP model

The MILP formulation introduced in our previous work [1],

corresponding to the UDTM-FPFL variant with a single cruis-

ing flight level, is recalled below. Two optimization criteria are

considered: (i) minimizing the sum of deviations (referred to

as the SumDev criterion), and (ii) minimizing the maximum

individual deviation (denoted as MaxDev). Both formulations

share variables and constraints and differ in the objective

function.

The decision variable of the SumDev-MILP models are the

following.

tk,n, ∀k ∈ K, ∀n ∈ NK continuous variable representing the
arrival time of flight fk at node n.

ui ∈ {0, 1}, ∀i ∈ P binary variable equal to 1 if f1
i passes

before f2
i at node ni, 0 otherwise.

The SumDev-MILP formulation aims at minimizing the

total deviation. For each path k ∈ K, the deviation is defined

as the difference between the arrival time at the final node,

tk,na
k
, and its nominal landing time Γk. Since Γk is a fixed

value for each flight, this objective corresponds to minimizing

the sum of individual delays. The formulation is defined as

follows:

min
∑

k∈K

(

tk,na
k
− Γk

)

[SumDev-MILP]

s.t. tk,nd
k
≥ Tfk , ∀k ∈ K (1)

tk,nd
k
≤ Tfk + δmax, ∀k ∈ K (2)

tk,n − tk,pk,n
≥ dmin

k,n , ∀k ∈ K, ∀n ∈ Nk \ {nd
k} (3)

tk,n − tk,pk,n
≤ dmax

k,n , ∀k ∈ K, ∀n ∈ Nk \ {nd
k} (4)

tk2

i
,ni

− tk1

i
,ni

≥ sni
−M12

i (1− ui), ∀i ∈ P (5)

tk1

i
,ni

− tk2

i
,ni

≥ sni
−M21

i ui, ∀i ∈ P (6)

ui∗o
= ui, ∀o ∈ O, ∀i ∈ Lo (7)

tk,n ∈ R
+, ∀k ∈ K, ∀n ∈ Nk

ui ∈ {0, 1}, ∀i ∈ P.

Constraints (1)–(2) define the feasible time window for the

start of the cruise phase, taking into account a ground delay

before take-off bounded between 0 and δmax. Constraints (3)-

(4) make sure the travel time along each arc to remain within

admissible bounds. For any node n (excluding the departure

node) on a path k, the arrival time tk,n depends on the arrival
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time at the preceding node pk,n and the time required to

traverse the arc (pk,n, n). The minimum and maximum travel

times, denoted respectively by dmin
k,n and dmax

k,n , are derived

from the maximum and minimum authorized cruise speeds

on that arc and arc length. Constraints (5)-(6) ensure that a

minimum time separation sni
is maintained between the two

flights involved in each PLoS i ∈ P . These constraints model

a disjunctive condition: either flight f1
i passes before flight

f2
i at node ni, or the inverse. This disjunction is handled by

introducing a binary variable ui, which determines the order of

passage, and big-M contraints. Finally, Constraint (7) ensures

that for each correlated PLoS, the order of passage is same

across all associated nodes.

The MaxDev-MILP formulation aims at minimizing the

maximum individual deviation across all flights. To this end,

an additional continuous variable ∆ = maxk∈K

(

tk,na
k
− Γk

)

is introduced representing the maximum deviation, and it is

modeled with Constraint (8). The formulation is defined as

follows:

min ∆ [MaxDev-MILP]

s.t. ∆ ≥ tk,na
k
− Γk, ∀k ∈ K (8)

Constraints (1) to (7)

tk,n ∈ R
+, ∀k ∈ K, ∀n ∈ Nk

ui ∈ {0, 1}, ∀i ∈ P

∆ ∈ R
+.

D. CP model

An alternative formulation of the SumDev-MILP and

MaxDev-MILP is proposed using CP formalism. Unlike the

MILP formulation, which combines continuous and binary

variables with linear constraints, the CP model is based on

interval and integer variables and supports global constraints

and logical operators.

a) Decision variables:

Interval variables. One fixed-duration interval variable,

denoted taskk,n, defined for each path k ∈ K and each

visited node n ∈ Nk, models the occupancy of node n by

flight fk for a duration sn, corresponding to the minimum

separation time required at that location. The start of this

interval, StartOf(taskk,n), represents the arrival time of flight

fk at node n, and is equivalent to the continuous variable tk,n
in the MILP formulation.

Integer variable. A single integer variable ∆ is introduced

to represent the maximum deviation. It is used only in the

MaxDev version to express the upper bound over all devia-

tions.

b) Constraints:

Each CP constraint corresponds to a MILP counterpart and

captures the same temporal or logical relationship.

Precedence and speed limit constraints:

StartOf(taskk,nd
k
) ≥ Tfk , ∀k ∈ K (9)

StartOf(taskk,nd
k
) ≤ Tfk + δmax, ∀k ∈ K (10)

EndBeforeStart(taskk,pk,n
, taskk,n, dmin

k,n − spk,n
),

∀k ∈ K,n ∈ Nk \ {nd
k} (11)

StartBeforeEnd(taskk,n, taskk,pk,n
, spk,n

− dmax
k,n ),

∀k ∈ K,n ∈ Nk \ {nd
k}. (12)

Constraints (9) and (10) ensure that the cruise phase starts

within an admissible time window. These constraints are

equivalent to the MILP Constraints (1) and (2). Con-

straints (11) and (12) impose time bounds on the travel

between two consecutive nodes. They rely on the following

global constraints, defined for two interval variables task1
and task2:

• Constraint (11) ensures that

StartOf(taskk,n) ≥ EndOf(taskk,pk,n
)− spk,n

+ dmin
k,n

• Constraint (12) ensures that

StartOf(taskk,n) ≤ EndOf(taskk,pk,n
)− spk,n

+ dmax
k,n

Since EndOf(taskk,pk,n
) = StartOf(taskk,pk,n

) + spk,n
,

Constraints (11) and (12) together imply that the time between

the start of two consecutive tasks lies within [dmin
k,n , dmax

k,n ].
They are thus equivalent to constraints (3) and (4) in the MILP

formulation.

Separation constraints:

NoOverlap (SequenceVar([taskk,n], ∀k ∈ Vn)) ,

∀n ∈ N. (13)

Constraint (13) uses the global constraint NoOverlap to en-

force time-based separation at each PLoS point. It is ap-

plied to the sequence variable SequenceVar([taskk,n]k ∈ Vn),
constructed from the set of interval variables {taskk,n}k∈Vn

,

where each interval models the presence of a flight at node n
for a fixed duration sn. The SequenceVar structure allows the

solver to reason globally about the ordering of intervals on a

shared unary resource. Combined with NoOverlap, it ensures

that no two intervals in the set overlap in time, thereby pre-

venting simultaneous occupancy of the node. This constraint

is equivalent to the disjunctive separation Constraints (5)–

(6) in the MILP formulation, but provides a more compact

representation.

Order preservation constraint in correlated PLoS:

SameSequence
(

SequenceVar([taskk1
o,ni∗o

, taskk2
o,ni∗o

]),

SequenceVar([taskk1
o,ni

, taskk2
o,ni

])
)

,

∀o ∈ O, ∀i ∈ Lo. (14)

Constraint (14) ensures that the relative order in which two

flights cross a sequence of PLoS points remains consistent
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when these nodes are part of the same correlated PLoS.

This consistency is enforced by the global constraint SameSe-

quence, which compares two ordered lists of interval variables,

each representing the presence of the same pair of flights

(paths) at different nodes. The first list defines the reference

order at node ni∗o
, while the second list corresponds to any

other node ni, ∀i ∈ Lo involved in the same correlated PLoS

set. The constraint guarantees that if one flight precedes the

other at the reference node, the same order is maintained at

all other nodes. This constraint plays the same role as MILP

Constraint (7).

Maximal deviation constraints:

∆ ≥ StartOf(taskk,na
k
)− Γk, ∀k ∈ K. (15)

Constraint (15) defines an upper bound ∆ on the individual

deviations from nominal values. It plays the same role as MILP

constraint (8) in the MaxDev objective.

c) Model formulations:

The SumDev-CP formulation which minimizes the total

deviation, is given by:

min
∑

k∈K

(

StartOf(taskk,na
k
)− Γk

)

[SumDev-CP]

s.t. Constraints (9) to (14).

The MaxDev-CP formulation which minimizes the maxi-

mum individual deviation, is given by:

min ∆ [MaxDev-CP]

s.t. Constraints (9) to (15).

III. EXPERIMENTAL RESULTS

This section presents the numerical results obtained for

the MILP and CP formulations introduced in Sections II-C

and II-D.

A. Experimental setup

All experiments were conducted using the Gurobi [5] solver

for the MILP model and the IBM CP Optimizer [6] (via

Docplex) for the CP model. For MILP formulations, Gurobi

applies a Branch-and-Bound algorithm combined with cutting

planes and presolve routines to explore the search space. For

the CP model, the IBM CP Optimizer employs a depth-first

search strategy enhanced by constraint propagation, domain

reduction, and dynamic variable ordering. Default solver pa-

rameters were used in all cases. A single thread was enforced

with a time limit of one hour. All runs were executed on a

high-performance computing system equipped with 80 cores

running at 2.10 GHz and 1 TB of memory.

Each experiment uses a set of generated flight intentions,

as detailed in Section III-B. Each flight intention includes a

departure and arrival node, a fixed horizontal path, a scheduled

take-off time, and a cruise speed range between 4 m/s and

10 m/s.

Departure node Arrival node Arc

1

2

3

4

5

6

7

8

9

10

12

3

4

56

7

8

9

10

Fig. 1. Grid graph showing fixed departure (green) and arrival (red) node
pairs.

B. Test instances

Two types of test instances are considered to evaluate the

models. The first type is based on synthetic grids specifically

designed to induce a high density of interconnected PLoS. By

interconnected PLoS, we refer to situations where resolving

one PLoS directly activate another. The second type consists

of Vienna instances built on the urban network of the city of

Vienna.

1) Instances with high density of interconnected PLoS:

These instances are built on a synthetic grid graph, designed

to define the structure of flight interactions.

The graph consists of 72 nodes and 254 arcs, with a fixed

arc length per instance. Five arc lengths are considered: 60

meters, 250 meters, 500 meters, 1000 meters, and 2000 meters.

To control traffic density, 10 representative flights have been

designed. Their departure and arrival nodes are illustrated in

Fig.1, and their scheduled take-off times (in seconds) are

provided in TABLE I. These 10 representative flights are

replicated to generate instances with 20, 30, 40, 50, and 60

flight intentions. Each additional group of 10 flights differs by

a 4-second shift in the scheduled take-off time. A maximum

ground delay δmax of 60 seconds (1 minute) is allowed for all

flights.

TABLE I
SCHEDULED TAKE-OFF TIMES (IN SECONDS) FOR THE FIRST 10 FLIGHTS,

RELATIVE TO THAT OF THE FIRST FLIGHT.

Pair 1 2 3 4 5 6 7 8 9 10

Scheduled take-off time (s) 0 6 13 7 8 12 12 16 31 32

For each number of flights and arc length, five instances are

generated by randomly selecting, for each flight, a horizontal

path from a predefined set of available paths. This results

in a total of 25 Grid-based instances for each number of

flights. The instance generation process is computationally

inexpensive, with an average time of less than one second

per instance.

2) Vienna instances: These instances are based on the

urban network of the city of Vienna. The graph contains 4,441

nodes and 7,287 arcs, and spans a metropolitan area approxi-

mately 12 kilometers in diameter (see Fig. 2). Departure and
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arrival nodes are selected randomly, with the aim of producing

flight paths that are spatially dispersed across the network.

Fig. 2. Vienna city graph.

We consider test sets with 50, 100, 150, 200, 250, and 300

flights. For each flight, the shortest horizontal path between

a selected departure/arrival nodes is computed using the A*

algorithm. Fifty representative instances are generated per

number of flights. Each instance is produced in less than two

seconds on average.

C. Results on instances with high density of interconnected

PLoS

The results obtained on the considered Grid-based instances

highlight clear differences in performance between models as

the number of flights increases.

For the MaxDev objective, the CP formulation maintains

consistent performance across all traffic levels and arc lengths,

as shown in TABLE II, which presents the average solving

time (in seconds) for each combination of arc length and

number of flights. All instances are solved except for a single

case with 60 flights. The only unresolved instance corresponds

to the most constrained configuration, involving 60 flights and

an arc length of 60 meters. In contrast, the number of instances

solved to the optimality by the MaxDev-MILP decreases

with increasing number of flights. As shown in TABLE III,

which reports the number of optimally solved instances for

each combination of number of flights and arc length, the

MILP model solves only 21 out of 25 instances at 40 flights,

14 at 50 flights, and 4 at 60 flights. The most significant

computational difficulties are observed for short arc lengths,

particularly 60 meters. In such cases, the limited traversal time

induces narrow feasible domains for the temporal variables.

This considerably restricts the range of possible time shifts

available to satisfy separation constraints, especially since a

minimum separation distance of 32 meters—adopted from the

work of [7]—is imposed between drones. In contrast, the

CP model handles these tightly-constrained instances more

efficiently. This behavior is clearly reflected in the solving

times reported in TABLE II. For instance, at 50 flights with

60-meter arcs, MaxDev-CP solves all five instances in under

360 seconds on average, while MaxDev-MILP exceeds 3400

seconds.

TABLE II
AVERAGE SOLVING TIME (IN SECONDS) FOR CP AND MILP MODELS ON

GRID-BASED INSTANCES, FOR DIFFERENT NUMBERS OF FLIGHTS AND

ARC LENGTHS, WITH A ONE-HOUR TIME LIMIT.

20 flights

Arc length (meters) 60 250 500 1000 2000

MaxDev-MILP 0.74 0.06 0.04 0.04 0.05

MaxDev-CP 2.81 0.09 0.06 0.06 0.07

SumDev-MILP 3600.0 0.34 0.35 0.35 0.38

SumDev-CP 3600.0 13.52 13.33 13.26 13.67

30 flights

Arc length (meters) 60 250 500 1000 2000

MaxDev-MILP 203.74 0.88 0.84 0.83 0.93

MaxDev-CP 7.18 1.52 1.50 1.50 1.60

SumDev-MILP 3600.0 2966.43 3150.54 3020.26 2928.27

SumDev-CP 3600.0 3600.0 3600.0 3600.0 3600.0

40 flights

Arc length (meters) 60 250 500 1000 2000

MaxDev-MILP 3596.55 5.03 4.94 4.95 5.14

MaxDev-CP 20.52 2.94 2.96 2.94 2.94

SumDev-MILP 3600.0 3600.0 3600.0 3600.0 3600.0

SumDev-CP 3600.0 3600.0 3600.0 3600.0 3600.0

50 flights

Arc length (meters) 60 250 500 1000 2000

MaxDev-MILP 3439.21 1484.84 1509.12 1527.03 1533.80

MaxDev-CP 356.58 18.11 17.60 17.32 26.75

SumDev-MILP 3600.0 3600.0 3600.0 3600.0 3600.0

SumDev-CP 3600.0 3600.0 3600.0 3600.0 3600.0

60 flights

Arc length (meters) 60 250 500 1000 2000

MaxDev-MILP 3600.0 3002.21 3055.06 3011.09 2996.38

MaxDev-CP 1031.30 212.06 236.13 287.37 299.82

SumDev-MILP 3600.0 3600.0 3600.0 3600.0 3600.0

SumDev-CP 3600.0 3600.0 3600.0 3600.0 3600.0

Fig. 3 provides a detailed comparative analysis of the

objective values and lower bounds obtained by the MaxDev-

MILP and MaxDev-CP across Grid-based instances. Fig. 3a

reports the differences in objective values (MaxDev-MILP

minus MaxDev-CP) for each arc length and number of flights,

while Fig. 3b displays the corresponding differences in lower

bounds. Each color encodes a specific arc length category, and

for each number of flights (40, 50, and 60), five instances are

considered per arc length.

As shown in Fig. 3a, for 40 and 50 flights, the objective

values returned by MaxDev-MILP and MaxDev-CP are iden-

tical across all instances when the arc length is 250 meters

or greater. However, at 60 flights, deviations appear even
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Fig. 3. Analysis of the MaxDev objective and lower bound values obtained by MaxDev-MILP and MaxDev-CP across Grid-based instances with a one-hour
time limit.

TABLE III
NUMBER OF GRID-BASED INSTANCES SOLVED TO OPTIMALITY WITHIN THE ONE-HOUR TIME LIMIT, FOR VARYING NUMBERS OF FLIGHTS AND ARC

LENGTHS.

Number of flights 20 30 40 50 60

Arc length (meters) 60 250 500 1000 2000 60 250 500 1000 2000 60 250 500 1000 2000 60 250 500 1000 2000 60 250 500 1000 2000

MaxDev-MILP 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 1/5 5/5 5/5 5/5 5/5 1/5 4/5 3/5 3/5 3/5 0/5 1/5 1/5 1/5 1/5

MaxDev-CP 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 4/5 5/5 5/5 5/5 5/5

SumDev-MILP 0/5 5/5 5/5 5/5 5/5 0/5 2/5 2/5 2/5 2/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5

SumDev-CP 0/5 5/5 5/5 5/5 5/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5 0/5

for longer arcs, with several non-zero differences up to 4-9

seconds observed across all arc categories. The largest dis-

crepancies occur for 60-meter arcs, where all instances display

objective gaps, indicating that the MILP formulation fails to

match the optimal solution achieved by CP. Fig. 3b further

highlights the limitations of MILP in these configurations. For

60-meter arcs under high traffic levels (50 and 60 flights), the

differences between the MILP lower bounds and the lower

bounds returned by CP reach up to 30 seconds.

For the SumDev objective, both SumDev-MILP and

SumDev-CP reach the one-hour time limit in instances with

30 flights, and make solving time a less informative indicator

for their comparaison (see TABLE II). Fig. 4d shows the

mean time at which the last bound update occurs, illustrating

a clear distinction in the resolution strategies applied by the

two approaches. In SumDev-CP, bounds are typically updated

within the first few seconds and remain unchanged thereafter.

At 20 flights, for instance, the last update occurs on average

after 25 seconds. In contrast, MILP continues to refine bounds

until the time limit.

Fig. 4a illustrates the number of instances where SumDev-

CP achieves a lower SumDev objective than SumDev-MILP,

across all considered number of flights. As shown in Fig. 4a,

the number of instances where CP outperforms MILP varies

with the number of flights. At 40 flights, CP outperforms MILP

in 13 instances versus 12. At 50 flights, the advantage shifts

to MILP, with 14 instances where it provides better solutions

compared to 6 for CP. However, at 60 flights, CP outperforms

MILP in 19 out of 25 instances. Fig. 4b shows the distribution

of objective value differences (SumDev-MILP minus SumDev-

CP). For traffic levels ranging from 20 to 50 flights, MILP

tends to yield better solutions than CP for arc lengths of

250 meters and above. Most of the differences are small or

negative, indicating slightly better objective values obtained

by MILP. In contrast, for 60-meter arcs, CP outperforms

MILP. This is especially clear at 40 and 50 flights, where

the differences in favor of CP reach up to +80 and +56

seconds respectively. The MILP model appears less effective

in handling short arcs. At 60 flights, CP yields better results

than MILP across all arc lengths in the tested instances. In

particular, for 60-meter arcs, the objective difference reaches

values as high as +183 seconds in favor of CP, and the median

difference remains positive for nearly all arc configurations.

Fig. 4c displays the difference in lower bound values obtained

by SumDev-MILP and SumDev-CP across all arc lengths and

numbers of flights. As observed, SumDev-MILP tends to pro-

vide tighter bounds than CP throughout all configurations. This

confirms the benefit of the continuous relaxation exploited by

MILP.

Overall, the CP model demonstrates a clear advantage under

the MaxDev objective in high-density of interconnected PLoS

settings, both in terms of solving time and number of instances

solved. It systematically outperforms the MILP formulation

across all traffic levels tested. For SumDev, CP is more
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Fig. 4. Analysis of the SumDev objective and lower bound values obtained by SumDev-MILP and SumDev-CP across Grid-based instances with a one-hour
time limit.

effective in generating high-quality feasible solutions early in

the search, while MILP provides tighter lower bounds and

proves optimality more quickly.

D. Results on Vienna instances

The experiments conducted on the Vienna instances ex-

hibit a distinct computational behavior from the Grid-based

instances described in Section III-C. These instances are

characterized by a lower density of PLoS and a more dispersed

network structure (see Fig. 2 and Fig. 5).

TABLE IV
AVERAGE SOLVING TIME (IN SECONDS) FOR CP AND MILP MODELS ON

VIENNA INSTANCES, WITH A ONE-HOUR TIME LIMIT.

Number of flights 50 100 150 200 250 300

MaxDev-MILP ≤0.01 0.03 0.07 0.13 0.21 0.39

MaxDev-CP 0.02 0.07 0.17 0.34 0.62 1.01

SumDev-MILP 0.01 0.04 0.08 0.16 0.29 0.49

SumDev-CP 72.02 1080.05 2592.05 3600.00 3600.00 3600.00

TABLE IV shows the average solving times for CP and

MILP models on Vienna instances, under a one-hour time

limit. Under the MaxDev objective, both MaxDev-MILP and

MaxDev-CP solve all instances up to 300 flights to the opti-

mality. Solving times, however, differ. MaxDev-MILP remains

consistently faster, with average times below 0.4 seconds

compared to 1.01 seconds for CP at 300 flights. This behavior

contrasts with the Grid-based instances, where CP was faster

under the same objective. The observed shift can be attributed

to the reduced number of interconnected PLoS in the Vienna

network.
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Fig. 5. Boxplot of the number of PLoS per instance as a function of the
number of flights

For the SumDev objective, the MILP formulation success-

fully solves all instances within short computation times,

independently of the traffic level. In contrast, the CP model

loses its ability to prove optimality beyond 150 flights. This

behavior is illustrated in Fig.6a, which displays the number of

instances solved to optimality by SumDev-CP as a function of

the number of flights. The corresponding differences in lower

bounds between the two models are shown in Fig.6b, where

the gap increases with problem size, reaching a median of 9.5

seconds at 300 flights.

Despite the inability to certify optimality with a one-hour

time limit, both approaches return identical objective values

across all traffic levels, as presented in Fig.6c. This observation

suggests that the solutions produced by the CP model are

optimal. Moreover, the CP formulation updates its lower bound

very early during the search, as illustrated in Fig.6d: the

average time of the last update remains below 0.02 seconds
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Fig. 6. Analysis of the SumDev objective and lower bound values obtained by SumDev-MILP and SumDev-CP across Vienna instances with a one-hour
time limit.

for 50 flights and under 30 seconds for 300 flights.

In summary, the Vienna instances are solved efficiently

across all numbers of flights by the MILP formulation. For the

MaxDev objective, MILP and CP formulations exhibit compa-

rable performance, with all instances solved to optimality and

low solving times. For SumDev, MILP achieves optimality

in all cases, while CP finds solutions with the same objec-

tive value but exhibits increasing optimality gaps as traffic

increases. The early stagnation of CP bound updates limits its

ability to certify optimality in large-scale configurations.

IV. CONCLUSION AND FUTURE RESEARCH

This paper compared MILP and CP formulations for opti-

mization of urban drone trajectories under two deviation-based

objectives. Numerical experiments on Grid-based and Vienna

instances revealed that CP outperforms MILP for MaxDev

in instances with high density of interconnected PLoS, while

MILP provides tighter lower bounds for SumDev and scales

better on Vienna instances. CP proves effective in quickly

identifying good solutions, though it struggles to improve

bounds. These results confirm the complementary strengths

of both approaches, depending on the objective and instance

structure. CP can serve as an effective tool for generating

initial feasible solutions to warm-start MILP models. Future

research directions include the integration of these models into

decomposition approaches.
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