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Abstract—We address the optimization of drone trajectories in
urban environments. We introduce a Constraint Programming
formulation for a version of the problem where the vehicles
are at the same flight level and their path to fly by is known.
We show that, compared to an approach based on a Mixed-
integer Linear Optimization model introduced previously, the
Constraint Programming approach allows better performances
to be achieved in the solution of the problem for a specific instance
structure.

I. INTRODUCTION

HE growing use of drone delivery in urban environments

requires safe and efficient low-altitude trajectory planning
and optimization [4]. We address the problem of optimizing
drone trajectories by adjusting ground delays and cruise speeds
for flights operating along fixed horizontal paths at a common
flight level. The main constraints come from a key operational
requirement, and consists in maintaining a sufficient separation
between pairs of drones at each time along their trajectories.
Although the general problem of optimizing drone trajectories
involves deciding horizontal paths and flight-levels too for
the considered vehicles, the version addressed in this paper
is worth exploring as it may be exploited in decomposition
approaches for solving large-scale drone trajectory optimiza-
tion problems.

In [2], a mixed-integer linear optimization model is intro-
duced for drone trajectory optimization in urban environments,
where the selection of horizontal paths, flight-levels, and
ground delays are used as optimization levers. The Urban
Drone Trajectory Model (UDTM) introduced in [1] extends
this by also incorporating cruise speed decisions. In [8],
optimization is based on adjusting cruise speeds and ground
delays, with additional considerations for flight priorities. This
is extended in [9], where scheduled take-off uncertainty is
addressed too. In that work, the problem is solved using the
adversarial Benders decomposition. The subproblem, formu-
lated as a constraint programming model, which retains the
same optimization levers as in [8], is solved by three different
heuristics.

In this paper, we introduce a Contraint Programming (CP)
formulation for the considered problem, as an alternative to
the mixed-integer linear optimization model (MILP) from our
earlier work [1]. Two optimization criteria are considered.
The first minimizes the total deviation, defined as the sum of
differences between actual and scheduled landing times across
all flights. It reflects a system-level efficiency objective. The
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second minimizes the maximum individual deviation, aiming
to limit the worst-case deviation. This criterion is relevant
when coordination between multiple agents is limited [3]. We
show that the CP formulation performs better than the MILP
formulation on a specific instance structure, particularly when
minimizing the maximum deviation.

The remainder of the paper is organized as follows. Sec-
tion II presents the problem, recalls the MILP model from
earlier work, and introduces the CP model. Section III presents
and discusses numerical results. Section IV concludes the
paper and discusses possible directions for future research.

II. CP AND MILP FORMULATIONS

This section defines the problem under consideration, recalls
the MILP model previously introduced in [1], and presents the
CP model proposed in this study.

A. Problem statement

We consider a set of flight intentions, each defined by a
departure point, an arrival point, a scheduled take-off time, a
horizontal path, and an authorized cruise speed range, bounded
between a minimum and a maximum value for each segment of
the path. All flights operate at a single cruising flight-level and
follow fixed horizontal paths in an urban environment modeled
as a directed graph, as proposed in [2], where arcs represent
street segments and nodes represent their intersections. Drones
are assumed to be of the same type.

This study focuses on optimizing drone trajectories while
avoiding Potential Loss of Separation (PLoS) during the cruise
phase. A PLoS is defined as a situation in which the time
difference between the arrivals of two drones at the same
node is less than the minimum separation time. In this work,
the minimum separation time is considered node-specific. It
is derived from the minimum required separation distance and
the minimal authorized cruise speed on the arcs leading to that
node.

The goal is to determine, for each drone, a ground delay
before takeoff and a cruising speed for each arc of its path,
such that all separation between pairs of drones during the
cruise phase are satisfied.

B. Model parameters

The main parameters used in both the MILP and CP
formulations are summarized below.
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Flight parameters

F set of all flights.
Ty scheduled take-off time of flight f € F.
™2 ¢ RY  maximum ground delay before take-off.

Horizontal path parameters

kyf horizontal path assigned to flight f € F.

K =U;cr{ks} setof all horizontal paths.

fr flight of path k € K.

Ny set of nodes visited along path k € K.

ng departure node of path k € K.

ny arrival node of path k € K.

Dk.n predecessor of node n € AN \ {n{i} on path

ke K.
minimum and maximum travel time along arc
(pk,n,n), based on speed bounds.

drnin max

kns%k,n

Ik
N = UkeKNk

nominal landing time for path k£ € K.

set of all nodes visited by at least one flight.

For each pair of departure and arrival nodes associated with
flight f € F, the horizontal path ks is either selected from
a predefined set of available paths (see Section III-B1), or
computed using the A* algorithm (see Section III-B2). Note
that, for each flight, the nominal landing time corresponds to
the landing time obtained without ground delay and assuming
the maximum allowed speed on all arcs.

Potential loss of separation parameters

P set of PLoS.
kL k2 e K the two paths involved into the PLoS i € P.
fLffeF the two flights involved into the PLoS i € P.

ng € ./\ff} ﬁ./\/'f/z
’ *  within the PLoS i € P.

M2 M* >0 big-M constants used to linearize the separation
constraints for PLoS ¢ € P.

Sn >0 minimum separation time at node n € N.

Y set of all paths involved in a PLoS at node n € N.

The set P includes all PLoS, identified by detecting inter-
secting nodes between the horizontal paths of different flights.
Further details on how PLoS are identified, and on how the
Big-M constants are computed, can be found in [1]. These
constants are computable since all flight times are bounded
by the earliest and latest possible arrival times at each node.

Note that in some cases, a pair of flight path share multiple
consecutive nodes, giving rise to several detected PLoS. These
PLoS are referred to as correlated PLoS. In such situation, the
order of passage must be maintained across all involved nodes
to ensure separation.

PLoS point where the paths k;} and k? intersect
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Correlated PLoS parameters

@ set of all correlated PLoS.

s €EP first (reference) PLoS in correlated PLoS o € O.
L, CP set of remaining PLoS for o € O.

ki k2 € K the two paths involved into the correlated PLoS

o€ O.

C. MILP model

The MILP formulation introduced in our previous work [1],
corresponding to the UDTM-FPFL variant with a single cruis-
ing flight level, is recalled below. Two optimization criteria are
considered: (i) minimizing the sum of deviations (referred to
as the SumDev criterion), and (ii)) minimizing the maximum
individual deviation (denoted as MaxDev). Both formulations
share variables and constraints and differ in the objective
function.

The decision variable of the SumDev-MILP models are the
following.

tkn,Vk € K,¥n € Nk continuous variable representing the

arrival time of flight fi at node n.

binary variable equal to 1 if f} passes
before fiz at node n;, 0 otherwise.

w; €{0,1}, Vie P

The SumDev-MILP formulation aims at minimizing the
total deviation. For each path k£ € K, the deviation is defined
as the difference between the arrival time at the final node,
,ngs and its nominal landing time I'j. Since I'j is a fixed
value for each flight, this objective corresponds to minimizing
the sum of individual delays. The formulation is defined as
follows:

min Z (tk,nk' - Fk)

[SumDev-MILP]

keEK
S.t. tkmz > Tfk’ Vk e K (D
tk,nﬁ < Tfk + oM Vke K 2)

Vk e K,¥n e i, \ {n{} (3)
Vk € K,¥n € Ni \ {n{} 4

thon = thprn = A s

theon = thprn < digy s

teem, —thim, = S — MP(1—w), VieP (5
bty = B2,y = Sny — MPug, Vie P (©6)
uix = uq, Vo € O,Vi € L, @)

tkn € RT, VE € K,Vn € N},
u; € {0,1}, Vi € P.

Constraints (1)—(2) define the feasible time window for the
start of the cruise phase, taking into account a ground delay
before take-off bounded between 0 and 6™?#*. Constraints (3)-
(4) make sure the travel time along each arc to remain within
admissible bounds. For any node n (excluding the departure
node) on a path k, the arrival time ¢, ,, depends on the arrival
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time at the preceding node pj ., and the time required to
traverse the arc (pg,n,n). The minimum and maximum travel
times, denoted respectively by g‘;? and d;’7*, are derived
from the maximum and minimum authorized cruise speeds
on that arc and arc length. Constraints (5)-(6) ensure that a
minimum time separation s,, is maintained between the two
flights involved in each PLoS 7 € P. These constraints model
a disjunctive condition: either flight f! passes before flight
f? at node n;, or the inverse. This disjunction is handled by
introducing a binary variable u;, which determines the order of
passage, and big-M contraints. Finally, Constraint (7) ensures
that for each correlated PLoS, the order of passage is same
across all associated nodes.

The MaxDev-MILP formulation aims at minimizing the
maximum individual deviation across all flights. To this end,
an additional continuous variable A = maxgck (tkne — k)
is introduced representing the maximum deviation, and it is
modeled with Constraint (8). The formulation is defined as
follows:

min A [MaxDev-MILP]

st. A>tppe — T, VEkEK ®)
Constraints (1) to (7)
tkn € RT, VEk € K,¥Vn € N},
u; € {0,1}, Vi e P
A eRY.

D. CP model

An alternative formulation of the SumDev-MILP and
MaxDev-MILP is proposed using CP formalism. Unlike the
MILP formulation, which combines continuous and binary
variables with linear constraints, the CP model is based on
interval and integer variables and supports global constraints
and logical operators.

a) Decision variables:

Interval variables. One fixed-duration interval variable,
denoted tasky , defined for each path & € K and each
visited node n € N, models the occupancy of node n by
flight fj for a duration s,, corresponding to the minimum
separation time required at that location. The start of this
interval, StartOf(tasky, ,), represents the arrival time of flight
fx at node n, and is equivalent to the continuous variable ¢ ,,
in the MILP formulation.

Integer variable. A single integer variable A is introduced
to represent the maximum deviation. It is used only in the
MaxDev version to express the upper bound over all devia-
tions.

b) Constraints:

Each CP constraint corresponds to a MILP counterpart and

captures the same temporal or logical relationship.

Precedence and speed limit constraints:
StartOf(tasky, ,,¢) > Ty, , Vk € K ©)

StartOf(tasky, ,.¢) < Tp, + 0™, Vk € K (10)

EndBeforeStart(task,p, ., tasken, dimn — Sp..);
Vk € K,ne N\ {ng} (11)

max

StartBeforeEnd (tasky n, taski p, ., Sp.., — dim )
Vk € K,n €N\ {ni}. (12)

Constraints (9) and (10) ensure that the cruise phase starts
within an admissible time window. These constraints are
equivalent to the MILP Constraints (1) and (2). Con-
straints (11) and (12) impose time bounds on the travel
between two consecutive nodes. They rely on the following
global constraints, defined for two interval variables taskl
and task2:

o Constraint (11) ensures that

StartOf (tasky,,,) > EndOf(taskyp, ) — sp,.,. + dp'w

o Constraint (12) ensures that
StartOf(tasky, ) < EndOf(tasky p, ) — Sp,., + din:

Since EndOf(taskyp, ,) = StartOf(taskp, ) + Sp...»
Constraints (11) and (12) together imply that the time between
the start of two consecutive tasks lies within [dj'y, dj'a¥].

They are thus equivalent to constraints (3) and (4) in the MILP
formulation.

Separation constraints:
NoOverlap (SequenceVar([tasky »], Vk € Vy)),
vYn e N. (13)

Constraint (13) uses the global constraint NoOverlap to en-
force time-based separation at each PLoS point. It is ap-
plied to the sequence variable SequenceVar([tasky »|k € V),
constructed from the set of interval variables {taskj n}rev,
where each interval models the presence of a flight at node n
for a fixed duration s,. The SequenceVar structure allows the
solver to reason globally about the ordering of intervals on a
shared unary resource. Combined with NoOverlap, it ensures
that no two intervals in the set overlap in time, thereby pre-
venting simultaneous occupancy of the node. This constraint
is equivalent to the disjunctive separation Constraints (5)—
(6) in the MILP formulation, but provides a more compact
representation.

Order preservation constraint in correlated PLoS:
SameSequence (SequenceVar([taskkgym* ; taskyz n,. 1),

SequenceVar([taskyi ,,, taskkgﬁm])) ,
Yoe O, Vie L, (14)

Constraint (14) ensures that the relative order in which two
flights cross a sequence of PLoS points remains consistent
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when these nodes are part of the same correlated PLoS.
This consistency is enforced by the global constraint SameSe-
quence, which compares two ordered lists of interval variables,
each representing the presence of the same pair of flights
(paths) at different nodes. The first list defines the reference
order at node n;:, while the second list corresponds to any
other node n;,Vi € L, involved in the same correlated PLoS
set. The constraint guarantees that if one flight precedes the
other at the reference node, the same order is maintained at
all other nodes. This constraint plays the same role as MILP
Constraint (7).

Maximal deviation constraints:

A > StartOf(tasky,ne ) — Tk, VE € K. (15)

Constraint (15) defines an upper bound A on the individual
deviations from nominal values. It plays the same role as MILP
constraint (8) in the MaxDev objective.

¢) Model formulations:

The SumDev-CP formulation which minimizes the total
deviation, is given by:
min Y (StartOf(task ne) — k)
keK
s.t. Constraints (9) to (14).

[SumDev-CP]

The MaxDev-CP formulation which minimizes the maxi-
mum individual deviation, is given by:

min A

s.t. Constraints (9) to (15).

[MaxDev-CP]

III. EXPERIMENTAL RESULTS

This section presents the numerical results obtained for
the MILP and CP formulations introduced in Sections II-C
and II-D.

A. Experimental setup

All experiments were conducted using the Gurobi [5] solver
for the MILP model and the IBM CP Optimizer [6] (via
Docplex) for the CP model. For MILP formulations, Gurobi
applies a Branch-and-Bound algorithm combined with cutting
planes and presolve routines to explore the search space. For
the CP model, the IBM CP Optimizer employs a depth-first
search strategy enhanced by constraint propagation, domain
reduction, and dynamic variable ordering. Default solver pa-
rameters were used in all cases. A single thread was enforced
with a time limit of one hour. All runs were executed on a
high-performance computing system equipped with 80 cores
running at 2.10 GHz and 1 TB of memory.

Each experiment uses a set of generated flight intentions,
as detailed in Section III-B. Each flight intention includes a
departure and arrival node, a fixed horizontal path, a scheduled
take-off time, and a cruise speed range between 4 m/s and
10 m/s.
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@Departure node @) Arrival node

— Arc

Fig. 1.
pairs.

Grid graph showing fixed departure (green) and arrival (red) node

B. Test instances

Two types of test instances are considered to evaluate the
models. The first type is based on synthetic grids specifically
designed to induce a high density of interconnected PLoS. By
interconnected PLoS, we refer to situations where resolving
one PLoS directly activate another. The second type consists
of Vienna instances built on the urban network of the city of
Vienna.

1) Instances with high density of interconnected PLo0S:
These instances are built on a synthetic grid graph, designed
to define the structure of flight interactions.

The graph consists of 72 nodes and 254 arcs, with a fixed
arc length per instance. Five arc lengths are considered: 60
meters, 250 meters, 500 meters, 1000 meters, and 2000 meters.
To control traffic density, 10 representative flights have been
designed. Their departure and arrival nodes are illustrated in
Fig.1, and their scheduled take-off times (in seconds) are
provided in TABLE I. These 10 representative flights are
replicated to generate instances with 20, 30, 40, 50, and 60
flight intentions. Each additional group of 10 flights differs by
a 4-second shift in the scheduled take-off time. A maximum
ground delay §™?* of 60 seconds (1 minute) is allowed for all
flights.

TABLE I
SCHEDULED TAKE-OFF TIMES (IN SECONDS) FOR THE FIRST 10 FLIGHTS,
RELATIVE TO THAT OF THE FIRST FLIGHT.

Pair 1 2 3 4 5 6 7 8 9 10

Scheduled take-off time (s) 0 6 13 7 8 12 12 16 31 32

For each number of flights and arc length, five instances are
generated by randomly selecting, for each flight, a horizontal
path from a predefined set of available paths. This results
in a total of 25 Grid-based instances for each number of
flights. The instance generation process is computationally
inexpensive, with an average time of less than one second
per instance.

2) Vienna instances: These instances are based on the
urban network of the city of Vienna. The graph contains 4,441
nodes and 7,287 arcs, and spans a metropolitan area approxi-
mately 12 kilometers in diameter (see Fig. 2). Departure and
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arrival nodes are selected randomly, with the aim of producing
flight paths that are spatially dispersed across the network.

Fig. 2.

Vienna city graph.

We consider test sets with 50, 100, 150, 200, 250, and 300
flights. For each flight, the shortest horizontal path between
a selected departure/arrival nodes is computed using the A*
algorithm. Fifty representative instances are generated per
number of flights. Each instance is produced in less than two
seconds on average.

C. Results on instances with high density of interconnected
PLoS

The results obtained on the considered Grid-based instances
highlight clear differences in performance between models as
the number of flights increases.

For the MaxDev objective, the CP formulation maintains
consistent performance across all traffic levels and arc lengths,
as shown in TABLE II, which presents the average solving
time (in seconds) for each combination of arc length and
number of flights. All instances are solved except for a single
case with 60 flights. The only unresolved instance corresponds
to the most constrained configuration, involving 60 flights and
an arc length of 60 meters. In contrast, the number of instances
solved to the optimality by the MaxDev-MILP decreases
with increasing number of flights. As shown in TABLE III,
which reports the number of optimally solved instances for
each combination of number of flights and arc length, the
MILP model solves only 21 out of 25 instances at 40 flights,
14 at 50 flights, and 4 at 60 flights. The most significant
computational difficulties are observed for short arc lengths,
particularly 60 meters. In such cases, the limited traversal time
induces narrow feasible domains for the temporal variables.
This considerably restricts the range of possible time shifts
available to satisfy separation constraints, especially since a
minimum separation distance of 32 meters—adopted from the
work of [7]—is imposed between drones. In contrast, the
CP model handles these tightly-constrained instances more
efficiently. This behavior is clearly reflected in the solving
times reported in TABLE II. For instance, at 50 flights with

60-meter arcs, MaxDev-CP solves all five instances in under
360 seconds on average, while MaxDev-MILP exceeds 3400
seconds.

TABLE II
AVERAGE SOLVING TIME (IN SECONDS) FOR CP AND MILP MODELS ON
GRID-BASED INSTANCES, FOR DIFFERENT NUMBERS OF FLIGHTS AND
ARC LENGTHS, WITH A ONE-HOUR TIME LIMIT.

20 flights
Arc length (meters) 60 250 500 1000 2000
MaxDev-MILP 0.74 0.06 0.04 0.04 0.05
MaxDev-CP 2.81 0.09 0.06 0.06 0.07
SumDev-MILP 3600.0 0.34 0.35 0.35 0.38
SumDev-CP 3600.0 13.52 13.33 13.26 13.67
30 flights
Arc length (meters) 60 250 500 1000 2000
MaxDev-MILP 203.74 0.88 0.84 0.83 0.93
MaxDev-CP 7.18 1.52 1.50 1.50 1.60
SumDev-MILP 3600.0 2966.43 3150.54 3020.26 2928.27
SumDev-CP 3600.0 3600.0 3600.0 3600.0 3600.0
40 flights
Arc length (meters) 60 250 500 1000 2000
MaxDev-MILP 3596.55 5.03 4.94 4.95 5.14
MaxDev-CP 20.52 2.94 2.96 2.94 2.94
SumDev-MILP 3600.0 3600.0 3600.0 3600.0 3600.0
SumDev-CP 3600.0 3600.0 3600.0 3600.0 3600.0
50 flights
Arc length (meters) 60 250 500 1000 2000
MaxDev-MILP 3439.21 1484.84 1509.12 1527.03 1533.80
MaxDev-CP 356.58 18.11 17.60 17.32 26.75
SumDev-MILP 3600.0 3600.0 3600.0 3600.0 3600.0
SumDev-CP 3600.0 3600.0 3600.0 3600.0 3600.0
60 flights
Arc length (meters) 60 250 500 1000 2000
MaxDev-MILP 3600.0 3002.21 3055.06 3011.09 2996.38
MaxDev-CP 1031.30 212.06 236.13 287.37 299.82
SumDev-MILP 3600.0 3600.0 3600.0 3600.0 3600.0
SumDev-CP 3600.0 3600.0 3600.0 3600.0 3600.0

Fig. 3 provides a detailed comparative analysis of the
objective values and lower bounds obtained by the MaxDev-
MILP and MaxDev-CP across Grid-based instances. Fig. 3a
reports the differences in objective values (MaxDev-MILP
minus MaxDev-CP) for each arc length and number of flights,
while Fig. 3b displays the corresponding differences in lower
bounds. Each color encodes a specific arc length category, and
for each number of flights (40, 50, and 60), five instances are
considered per arc length.

As shown in Fig. 3a, for 40 and 50 flights, the objective
values returned by MaxDev-MILP and MaxDev-CP are iden-
tical across all instances when the arc length is 250 meters
or greater. However, at 60 flights, deviations appear even
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a. Objective value difference (MaxDev-MILP — MaxDev-CP) b. Lower bound differences (MaxDev-MILP - MaxDev-CP)
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250 meters I 2 ooo
2 8 10
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é 6 H 12000 meters B g
g 5
5 £ 20| }
% 41 - =] 1 60 meters
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Number of flights Number of flights
Fig. 3. Analysis of the MaxDev objective and lower bound values obtained by MaxDev-MILP and MaxDev-CP across Grid-based instances with a one-hour
time limit.
TABLE III
NUMBER OF GRID-BASED INSTANCES SOLVED TO OPTIMALITY WITHIN THE ONE-HOUR TIME LIMIT, FOR VARYING NUMBERS OF FLIGHTS AND ARC
LENGTHS.
Number of flights 20 30 40 50 60
Arc length (meters) 60 250 500 1000 2000 60 250 500 1000 2000 60 250 500 1000 2000 60 250 500 1000 2000 60 250 500 1000 2000
MaxDev-MILP S5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 15 5/5 5/5 5/5 5/5 15 45 3/5 3/5 35 05 U5 1S US 15
MaxDev-CP 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 5/5 4/5 5/5 5/5 5/5 5/5
SumDev-MILP 05 5/5 5/5 5/5 5/5 0/5 2/5 2/5 2/5 2/5 05 0/5 05 05 0/5 05 05 05 05 05 0/5 05 05 0/5 0/5
SumDev-CP 0/5 5/5 5/5 S5/5 55 0/5 0/5 05 0/5 05 0/5 05 05 05 05 05 05 05 05 05 0/5 05 05 0/5 055

for longer arcs, with several non-zero differences up to 4-9
seconds observed across all arc categories. The largest dis-
crepancies occur for 60-meter arcs, where all instances display
objective gaps, indicating that the MILP formulation fails to
match the optimal solution achieved by CP. Fig. 3b further
highlights the limitations of MILP in these configurations. For
60-meter arcs under high traffic levels (50 and 60 flights), the
differences between the MILP lower bounds and the lower
bounds returned by CP reach up to 30 seconds.

For the SumDev objective, both SumDev-MILP and
SumDev-CP reach the one-hour time limit in instances with
30 flights, and make solving time a less informative indicator
for their comparaison (see TABLE II). Fig. 4d shows the
mean time at which the last bound update occurs, illustrating
a clear distinction in the resolution strategies applied by the
two approaches. In SumDev-CP, bounds are typically updated
within the first few seconds and remain unchanged thereafter.
At 20 flights, for instance, the last update occurs on average
after 25 seconds. In contrast, MILP continues to refine bounds
until the time limit.

Fig. 4a illustrates the number of instances where SumDev-
CP achieves a lower SumDev objective than SumDev-MILP,
across all considered number of flights. As shown in Fig. 4a,
the number of instances where CP outperforms MILP varies
with the number of flights. At 40 flights, CP outperforms MILP
in 13 instances versus 12. At 50 flights, the advantage shifts
to MILP, with 14 instances where it provides better solutions

compared to 6 for CP. However, at 60 flights, CP outperforms
MILP in 19 out of 25 instances. Fig. 4b shows the distribution
of objective value differences (SumDev-MILP minus SumDev-
CP). For traffic levels ranging from 20 to 50 flights, MILP
tends to yield better solutions than CP for arc lengths of
250 meters and above. Most of the differences are small or
negative, indicating slightly better objective values obtained
by MILP. In contrast, for 60-meter arcs, CP outperforms
MILP. This is especially clear at 40 and 50 flights, where
the differences in favor of CP reach up to +80 and +56
seconds respectively. The MILP model appears less effective
in handling short arcs. At 60 flights, CP yields better results
than MILP across all arc lengths in the tested instances. In
particular, for 60-meter arcs, the objective difference reaches
values as high as +183 seconds in favor of CP, and the median
difference remains positive for nearly all arc configurations.
Fig. 4c displays the difference in lower bound values obtained
by SumDev-MILP and SumDev-CP across all arc lengths and
numbers of flights. As observed, SumDev-MILP tends to pro-
vide tighter bounds than CP throughout all configurations. This
confirms the benefit of the continuous relaxation exploited by
MILP.

Overall, the CP model demonstrates a clear advantage under
the MaxDev objective in high-density of interconnected PLoS
settings, both in terms of solving time and number of instances
solved. It systematically outperforms the MILP formulation
across all traffic levels tested. For SumDev, CP is more



ZAHRAA ASFOUR ET AL.: A CONSTRAINT PROGRAMMING APPROACH FOR URBAN DRONE TRAJECTORY OPTIMIZATION
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Fig. 4. Analysis of the SumDev objective and lower bound values obtained by SumDev-MILP and SumDev-CP across Grid-based instances with a one-hour

time limit.

effective in generating high-quality feasible solutions early in
the search, while MILP provides tighter lower bounds and
proves optimality more quickly.

D. Results on Vienna instances

The experiments conducted on the Vienna instances ex-
hibit a distinct computational behavior from the Grid-based
instances described in Section III-C. These instances are
characterized by a lower density of PLoS and a more dispersed
network structure (see Fig. 2 and Fig. 5).

TABLE IV
AVERAGE SOLVING TIME (IN SECONDS) FOR CP AND MILP MODELS ON
VIENNA INSTANCES, WITH A ONE-HOUR TIME LIMIT.

Number of flights 50 100 150 200 250 300
MaxDev-MILP <0.01 0.03 0.07 0.13 0.21 0.39
MaxDev-CP 0.02 0.07 0.17 0.34 0.62 1.01
SumDev-MILP 0.01 0.04 0.08 0.16 0.29 0.49
SumDev-CP 72.02 1080.05 2592.05 3600.00 3600.00 3600.00

TABLE IV shows the average solving times for CP and
MILP models on Vienna instances, under a one-hour time
limit. Under the MaxDev objective, both MaxDev-MILP and
MaxDev-CP solve all instances up to 300 flights to the opti-
mality. Solving times, however, differ. MaxDev-MILP remains
consistently faster, with average times below 0.4 seconds
compared to 1.01 seconds for CP at 300 flights. This behavior
contrasts with the Grid-based instances, where CP was faster
under the same objective. The observed shift can be attributed

to the reduced number of interconnected PLoS in the Vienna
network.

1000 e==Grid-based instances (G)
= Vienna instances (V)
3,000
2,000 %
1,000 %

==
=

_—

—

Number of PLoS per instance

20(G)  30(G) 40(G) 50(G) 50(V) 60(G) 100 (V) 150 (V)

Number of flights (Type of instances)

200 (V) 250 (V) 300 (V)

Fig. 5. Boxplot of the number of PLoS per instance as a function of the
number of flights

For the SumDev objective, the MILP formulation success-
fully solves all instances within short computation times,
independently of the traffic level. In contrast, the CP model
loses its ability to prove optimality beyond 150 flights. This
behavior is illustrated in Fig.6a, which displays the number of
instances solved to optimality by SumDev-CP as a function of
the number of flights. The corresponding differences in lower
bounds between the two models are shown in Fig.6b, where
the gap increases with problem size, reaching a median of 9.5
seconds at 300 flights.

Despite the inability to certify optimality with a one-hour
time limit, both approaches return identical objective values
across all traffic levels, as presented in Fig.6c. This observation
suggests that the solutions produced by the CP model are
optimal. Moreover, the CP formulation updates its lower bound
very early during the search, as illustrated in Fig.6d: the
average time of the last update remains below 0.02 seconds
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b. Lower bound differences (SumDev-MILP - SumDev-CP)
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time limit.

for 50 flights and under 30 seconds for 300 flights.

In summary, the Vienna instances are solved efficiently
across all numbers of flights by the MILP formulation. For the
MaxDev objective, MILP and CP formulations exhibit compa-
rable performance, with all instances solved to optimality and
low solving times. For SumDev, MILP achieves optimality
in all cases, while CP finds solutions with the same objec-
tive value but exhibits increasing optimality gaps as traffic
increases. The early stagnation of CP bound updates limits its
ability to certify optimality in large-scale configurations.

IV. CONCLUSION AND FUTURE RESEARCH

This paper compared MILP and CP formulations for opti-
mization of urban drone trajectories under two deviation-based
objectives. Numerical experiments on Grid-based and Vienna
instances revealed that CP outperforms MILP for MaxDev
in instances with high density of interconnected PLoS, while
MILP provides tighter lower bounds for SumDev and scales
better on Vienna instances. CP proves effective in quickly
identifying good solutions, though it struggles to improve
bounds. These results confirm the complementary strengths
of both approaches, depending on the objective and instance
structure. CP can serve as an effective tool for generating
initial feasible solutions to warm-start MILP models. Future
research directions include the integration of these models into
decomposition approaches.
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