Logo PTI Logo icetasi

Proceedings of the 2025 International Conference on Engineering, Technology and Applied Science Innovations

Annals of Computer Science and Information Systems, Volume 46

Neurocognitive Approaches to Fraction Learning: Integrating EEG, fMRI, and Eye Tracking in Mathematics Education

, , ,

DOI: http://dx.doi.org/10.15439/2025I30

Citation: Proceedings of the 2025 International Conference on Engineering, Technology and Applied Science Innovations, Gerasimos Pylarinos, Christos P. Antonopoulos, George Syrrokostas, Panteleimon Apostolopoulos, Stratos David (eds). ACSIS, Vol. 46, pages 3945 ()

Full text

Abstract. This paper reviews neurocognitive studies using EEG, fMRI, and eye-tracking to investigate how learners understand fractions. While challenges with fractions are well documented, most research has focused on adults, leaving children underrepresented. The review highlights how the brain processes symbolic and nonsymbolic fractions, the involvement of regions such as the intraparietal sulcus, and the role of visual attention and neural timing in mathematical reasoning. It also examines how targeted instruction can reshape brain activity related to fraction magnitude estimation. Emphasis is placed on the promise of portable EEG devices for real-time classroom use, supporting personalized and responsive teaching. The findings underscore the potential of educational neuroscience to inform more effective and developmentally appropriate practices in mathematics education.

References

  1. M. I. Fandiño Pinilla, “Fractions: conceptual and didactic aspects,” Acta Didactica Universitatis Comenianae. Mathematics, vol. 7, pp. 81–115, 2007.
  2. P. Giannopoulou, M. A. Papalaskari, and S. Doukakis, “Neuroeducation and computer programming: A review,” in GeNeDis 2018, pp. 59–66. Springer, 2020. [Online]. Available: https://doi.org/10.1007/978-3-030-35249-3_8
  3. M. S. Schwarz, V. Hinesley, Z. Chang, and J. M. Dubinsky, “Neuroscience knowledge enriches pedagogical choices,” Teaching and Teacher Education, vol. 83, pp. 87–98, Apr. 2019. [Online]. Available: https://doi.org/10.1016/j.tate.2019.04.002
  4. M. Tissenbaum and J. D. Slotta, “Data-driven iteration of a collaborative inquiry curriculum,” Journal of the Learning Sciences, vol. 28, no. 1, pp. 84–126, 2019. [Online]. Available: https://doi.org/10.1080/10508406.2018.1522253
  5. W. Strielkowski, V. Grebennikova, A. Lisovskiy, G. Rakhimova, and T. Vasileva, “AI-driven adaptive learning for sustainable educational transformation,” Sustainable Development, vol. 33, no. 2, pp. 1921–1947, 2025.
  6. S. M. Wortha, J. Bloechle, M. Ninaus, K. Kiili, A. Lindstedt, J. Bahnmueller, … E. Klein, “Neurofunctional plasticity in fraction learning: An fMRI training study,” Trends in Neuroscience and Education, vol. 21, p. 100141, 2020.
  7. Y. Park, P. B. Kalra, Y. S. Chuang, J. V. Binzak, P. G. Matthews, and E. M. Hubbard, “Developmental changes in nonsymbolic and symbolic fractions processing: A cross-sectional fMRI study,” Developmental Science, vol. 28, no. 5, p. e70042, 2025.
  8. Z. Chang, M. S. Schwartz, V. Hinesley, and J. M. Dubinsky, “Neuroscience concepts changed teachers’ views of pedagogy and students,” Frontiers in Psychology, vol. 12, p. 685856, 2021.
  9. M. S. Thomas, D. Ansari, and V. C. Knowland, “Annual research review: Educational neuroscience: Progress and prospects,” Journal of Child Psychology and Psychiatry, vol. 60, no. 4, pp. 477–492, 2019
  10. P. Toscani, “Éditorial du dossier ‘Neurosciences et éducation’,” Éducation et Socialisation. Les Cahiers du CERFEE, no. 49, 2018.
  11. D. A. Turner, “Which part of ‘two-way street’ did you not understand? Redressing the balance of neuroscience and education,” Educational Research Review, vol. 6, no. 3, pp. 224–232, 2011. [Online]. Available: https://doi.org/10.1016/j.edurev.2011.04.001
  12. S. Dehaene, M. Piazza, P. Pinel, and L. Cohen, “Three parietal circuits for number processing,” in The Handbook of Mathematical Cognition, pp. 433–453. Psychology Press, 2005.
  13. M. Piazza and E. Eger, “Neural foundations and functional specificity of number representations,” Neuropsychologia, vol. 83, pp. 257–273, 2016.
  14. M. Arsalidou, M. Pawliw-Levac, M. Sadeghi, and J. Pascual-Leone, “Brain areas associated with numbers and calculations in children: Meta-analyses of fMRI studies,” Developmental Cognitive Neuroscience, vol. 30, pp. 239–250, 2018.
  15. D. Ansari, N. Garcia, E. Lucas, K. Hamon, and B. Dhital, “Neural correlates of symbolic number processing in children and adults,” Neuroreport, vol. 16, no. 16, pp. 1769–1773, 2005.
  16. H. M. Sokolowski, W. Fias, A. Mousa, and D. Ansari, “Common and distinct brain regions in both parietal and frontal cortex support symbolic and nonsymbolic number processing in humans: A functional neuroimaging meta-analysis,” Neuroimage, vol. 146, pp. 376–394, 2017.
  17. R. Cohen Kadosh, A. Henik, O. Rubinsten, H. Mohr, H. Dori, V. Van de Ven, et al., “Are numbers special? The comparison systems of the human brain investigated by fMRI,” Neuropsychologia, vol. 43, pp. 1238–1248, 2005.
  18. L. Kaufmann, S. E. Vogel, M. Starke, C. Kremser, M. Schocke, and G. Wood, “Developmental dyscalculia: compensatory mechanisms in left intraparietal regions in response to nonsymbolic magnitudes,” Behavioral and Brain Functions, vol. 5, pp. 1–6, 2009.
  19. R. W. Emerson and J. F. Cantlon, “Continuity and change in children’s numerical cognition,” Child Development Perspectives, vol. 9, no. 3, pp. 152–156, 2015.
  20. Y.-L. Cheng, M. C. Cheung, C. S.-H. Ho, and T. K. Ng, “A systematic review of neuroimaging studies on mathematical processing,” Neuroscience & Biobehavioral Reviews, vol. 132, pp. 556–572, 2022.
  21. M. Arsalidou, M. Pawliw-Levac, M. Sadeghi, and J. Pascual-Leone, “Brain areas associated with numbers and calculations in children: Meta-analyses of fMRI studies,” Developmental Cognitive Neuroscience, vol. 30, pp. 239–250, 2018.
  22. G. Vatansever, S. Üstün, N. Ayyıldız, and M. Çiçek, “Developmental alterations of the numerical processing networks in the brain,” Brain and Cognition, vol. 141, p. 105551, 2020.
  23. R. Hester, C. Fassbender, and H. Garavan, “Individual differences in error processing: a review and reanalysis of three event-related fMRI studies using the GO/NOGO task,” Cerebral Cortex, vol. 14, no. 9, pp. 986–994, 2004.
  24. S. M. Wortha, A. Obersteiner, and T. Dresler, “Neurocognitive foundations of fraction processing,” in Handbook of Cognitive Mathematics, pp. 1–27, 2021.
  25. M. L. Lai, M. J. Tsai, F. Y. Yang, C. Y. Hsu, T. C. Liu, S. W. Y. Lee, … C. C. Tsai, “A review of using eye-tracking technology in exploring learning from 2000 to 2012,” Educational Research Review, vol. 10, pp. 90–115, 2013.
  26. A. R. Strohmaier, K. J. MacKay, A. Obersteiner, and K. M. Reiss, “Eye-tracking methodology in mathematics education research: A systematic literature review,” Educational Studies in Mathematics, vol. 104, pp. 147–200, 2020.
  27. M. A. Just and P. A. Carpenter, “A theory of reading: from eye fixations to comprehension,” Psychological Review, vol. 87, no. 4, p. 329, 1980.
  28. K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka, and J. Van de Weijer, Eye Tracking: A Comprehensive Guide to Methods and Measures. Oxford, U.K.: OUP Oxford, 2011.
  29. M. Carrasco, “Visual attention: The past 25 years,” Vision Research, vol. 51, no. 13, pp. 1484–1525, 2011.
  30. A. Obersteiner, G. Moll, J. T. Beitlich, C. Cui, M. Schmidt, T. Khmelivska, and K. Reiss, “Expert mathematicians' strategies for comparing the numerical values of fractions—Evidence from eye movements,” North American Chapter of the International Group for the Psychology of Mathematics Education, 2014.
  31. A. Obersteiner and C. Tumpek, “Measuring fraction comparison strategies with eye-tracking,” ZDM, vol. 48, pp. 255–266, 2016.
  32. S. Huber, K. Möller, and H. C. Nuerk, “Adaptive processing of fractions—Evidence from eye-tracking,” Acta Psychologica, vol. 148, pp. 37–48, 2014.
  33. A. Obersteiner and I. Staudinger, “How the eyes add fractions: Adult eye movement patterns during fraction addition problems,” Journal of Numerical Cognition, vol. 4, no. 2, pp. 317–336, 2018.
  34. M. Hurst and S. Cordes, “Rational-number comparison across notation: Fractions, decimals, and whole numbers,” Journal of Experimental Psychology: Human Perception and Performance, vol. 42, no. 2, p. 281, 2016.
  35. S. N. Jacob and A. Nieder, “Tuning to non-symbolic proportions in the human frontoparietal cortex,” European Journal of Neuroscience, vol. 30, no. 7, pp. 1432–1442, 2009.
  36. J. Mock, S. Huber, J. Bloechle, J. Bahnmueller, K. Moeller, and E. Klein, “Processing symbolic and non-symbolic proportions: Domain-specific numerical and domain-general processes in intraparietal cortex,” Brain Research, vol. 1714, pp. 133–146, 2019.
  37. M. R. Lewis, P. G. Matthews, and E. M. Hubbard, “Neurocognitive architectures and the nonsymbolic foundations of fractions understanding,” in Development of Mathematical Cognition, pp. 141–164. Elsevier, 2016.
  38. M. DeWolf, J. N. Chiang, M. Bassok, K. J. Holyoak, and M. M. Monti, “Neural representations of magnitude for natural and rational numbers,” NeuroImage, vol. 141, pp. 304–312, 2016.
  39. A. Ischebeck, M. Schocke, and M. Delazer, “The processing and representation of fractions within the brain: An fMRI investigation,” NeuroImage, vol. 47, no. 1, pp. 403–413, 2009.
  40. I. M. Lyons, H. C. Nuerk, and D. Ansari, “Rethinking the implications of numerical ratio effects for understanding the development of representational precision and numerical processing across formats,” Journal of Experimental Psychology: General, vol. 144, no. 5, p. 1021, 2015.
  41. S. Dehaene and L. Cohen, “Cultural recycling of cortical maps,” Neuron, vol. 56, no. 2, pp. 384–398, 2007.
  42. R. M. Lewis, L. K. Gibbons, E. Kazemi, and T. Lind, “Unwrapping students' ideas about fractions,” Teaching Children Mathematics, vol. 22, no. 3, pp. 158–168, 2015.
  43. E. V. Chemerisova, M. S. Atanov, I. N. Mikheev, and O. V. Martynova, “Classification of verbal and mathematical mental operations based on the power spectral density of EEG,” Psychology, vol. 15, no. 2, pp. 268–278, 2018.
  44. E. V. Chemerisova, M. S. Atanov, I. N. Mikheev, and O. V. Martynova, “Classification of verbal and mathematical mental operations based on the power spectral density of EEG,” Psychology, vol. 15, no. 2, pp. 268–278, 2018.
  45. F. J. Alvarado-Rodríguez, K. P. Ibarra-González, C. Eccius-Wellmann, H. Vélez-Pérez, and R. Romo-Vázquez, “Electrophysiological brain response to error in solving mathematical tasks,” Mathematics, vol. 10, no. 18, p. 3294, 2022.
  46. M. A. Klados, K. Kanatsouli, I. Antoniou, F. Babiloni, V. Tsirka, P. D. Bamidis, and S. Micheloyannis, “A graph theoretical approach to study the organization of the cortical networks during different mathematical tasks,” PLoS One, vol. 8, no. 8, p. e71800, 2013.
  47. P. Lin, Y. Zhu, X. Zhou, Y. Bai, and H. Wang, “Neural dissociations between magnitude processing of fractions and decimals,” in 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Nov. 2021, pp. 92–95. IEEE.
  48. B. Rivera and F. Soylu, “Incongruity in fraction verification elicits N270 and P300 ERP effects,” Neuropsychologia, vol. 161, p. 108015, 2021.
  49. O. P. Hoon, “Neuroscience in mathematics: An electroencephalographic study on fraction learning,” Journal of Science and Mathematics Education in Southeast Asia, vol. 25, no. 2, pp. 15–31, 2002.
  50. S. D’Urso, R. Luongo, and F. Sciarrone, “Enhancing educational outcomes through EEG-based cognitive indices and supervised machine learning: A methodological framework,” in 2024 28th International Conference Information Visualisation (IV), Jul. 2024, pp. 1–6. IEEE.
  51. N. Kosmyna and P. Maes, “AttentivU: an EEG-based closed-loop biofeedback system for real-time monitoring and improvement of engagement for personalized learning,” Sensors, vol. 19, no. 23, p. 5200, 2019.
  52. J. G. Cruz-Garza, J. A. Brantley, S. Nakagome, K. Kontson, M. Megjhani, D. Robleto, and J. L. Contreras-Vidal, “Deployment of mobile EEG technology in an art museum setting: Evaluation of signal quality and usability,” Frontiers in Human Neuroscience, vol. 11, p. 527, 2017.
  53. E. Lekati and S. Doukakis, “Neuroeducation and mathematics: The formation of new educational practices,” in Worldwide Congress on Genetics, Geriatrics and Neurodegenerative Diseases Research, Cham: Springer International Publishing, 2022, pp. 91–96.