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Abstract—In the ongoing GEWISS project it is planned to
implement a geographical heat information and simulation sys-
tem. It shall provide a planning and simulation tool for the
interlinking of urban development and district heating network
development to support the political decision making process in
the City of Hamburg. The system shall combine macroscopic
and microscopic simulations to a co-simulation system. The
simulation as a service approach is presented as a loosely-
coupled scalable solution to realize large-scale energy network
simulations. It is based on cloud computing technologies for
the optimal utilization of computing resources in heterogeneous
simulation-infrastructures. This approach can be used to realize
simulation systems integrating Multi-Agent System (MAS) based
simulations and other simulation technologies. For practical eval-
uation, two implementation approaches based on a MAS platform
as a service-oriented solution will be presented and compared to
an approach involving standard web-service technologies.

I. INTRODUCTION

S
IMULATIONS take a significant stake in finding intel-

ligent solutions and concepts for future Smart Energy

Networks. They are vital to test the suitability of such concepts

and solutions and therefore, needed before an actual realization

can take place. This regards today’s energy grid that undergoes

a structural change towards the so-called Smart Grid as well as

other energy networks as e.g., heat supply systems. Besides the

realization of control and coordination strategies for the Smart

Grid, the uniformed planning of both urban development

and energy network development is essential. The holistic

contemplation of such a Smart City requires the combination

of different simulation concepts. Regardless of the domain,

it is essential to test operational concepts with respect to

their cost effectiveness and to optimize them if necessary [1],

[2]. Contrasting to the test of operational concepts, which

often requires fine-granular simulations with consideration of

microscopic aspects, in terms of planning questions for urban

and energy network development macroscopic simulations are

of concerns.

The simulation as a service approach presented in this paper

is related to the GEWISS project [3]. The goal of this project is

to develop a geographical information and simulation system

in order to support the political decision making in terms

of an interlinking between urban development and district

heating network development. It shall combine macroscopic

modeling approaches from urban development regarding the

evolution of building structures in a quarter, with microscopic

simulations of the heat energy demand of buildings respec-

tively building blocks. A multi-agent based co-simulation

system is envisioned, where the microscopic behavior of single

buildings or building blocks will be modeled as agents and

the selection of appropriate sub-simulations will be mapped

to agent-based goal deliberation. The latter will not be part

of this paper. This paper focuses on presenting a possible

approach to support large-scale co-simulations of macroscopic

and microscopic simulation components, that can be rolled

out to a heterogeneous IT-infrastructure. The goal of the

proposed approach is to utilize cloud computing technologies

and service-oriented design concepts in order to build loosely-

coupled simulation systems, that integrate different simulation

types and models in a service-oriented fashion. Cloud com-

puting technologies and approaches should be used to form

a private cloud on heterogeneous university IT-infrastructure,

consisting out of different types of servers, in order to utilize

the available computation resource optimally and to integrate

slow but cheap computers like, e.g., Raspberry Pi single-board

computer meaningfully.

The remainder of this paper is structured as follows. Section II

describes current cloud computing infrastructures and related

simulation frameworks and approaches as well as a related

approach in the domain of modeling and simulating the heat

energy demand of buildings. In Section III the GEWISS

project will be described in more detail before the concept

of simulation as a service will be described in Section IV.

Section V describes and discusses possible implementation

alternatives and challenges, followed by Section VI where the

implementation alternatives will be evaluated in terms of their

scalability. Finally, Section VII concludes the paper.

II. RELATED WORK

This Section introduces examples for state of the art cloud

computing technologies, and describes related simulation ap-

proaches and frameworks, as well as related work in terms of

the GEWISS Project.

A. Cloud Computing Technologies

Cloud computing [4] is seen as a new approach to IT infras-

tructure management, facilitating a pay-as-to-go usage model.

Computational resources are made available on a demand-

driven basis instead of statically dedicated physical systems.
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Therefore, the approach minimizes idle times and optimizes

the utilization of resources, which leads to a minimization

of resource dissipation. The authors of [5] bring forward the

argument, that by adapting cloud computing ideas for optimal

resource utilization, it is reasonable that existing computers in

a company or university network could contribute their spare

resources in a private cloud. This approach is picked up to

propose the simulation as a service concept to realize large-

scale simulations as required in the GEWISS project, that scale

well and support optimal utilization of a heterogeneous IT-

infrastructure. Cloud applications can be built on the Infras-

tructure as a Service (IaaS) or the Platform as a Service (PaaS)

layer. On the IaaS layer, access to the cloud is granted by

virtual machines that allow fine-grained control of the software

stack and provide low-level aspects like operating systems. On

the PaaS layer, a cloud operator establishes a new software

layer with a dedicated middleware programming interface, and

thus, lower level details are abstracted. PaaS facilitates the

development of applications on top of the given platform, but

restricts the types of applications to those which are supported

by the platform. The Software as a Service (SaaS) layer

are user-ready applications running in the cloud, which are

typically built upon the IaaS or PaaS layer. There are many dif-

ferent approaches and technologies for the implementation and

operation of cloud applications. This Section will focus on two

different PaaS solutions and describe them exemplary. PaaS

solutions are more suitable for the realization of simulations

as a service than IaaS approaches, as they abstract from the

operating system level and offer an Application Programming

Interface (API) for the realization of scalable applications on

top of a cloud infrastructure. The Mesos platform [6] offers a

thin resource sharing layer, that enables fine-grained sharing

across diverse cluster computing frameworks by providing

a common interface for accessing cluster resources. Mesos

focuses on providing shared commodity clusters between

diverse cluster programming frameworks like Hadoop [7] or

MPI [8] to improve cluster utilization. Resources are shared in

Mesos to allow frameworks to achieve data locality by taking

turns in reading data stored on each machine. It introduces

a distributed two-level scheduling mechanism called resource

offers. A resource offer encapsulates a bundle of resources that

a framework can allocate on a cluster node to run tasks. Mesos

decides how many resources it offers each framework, while

the frameworks decide which resources they accept and which

computations are executed. Mesos delegates the control over

the scheduling to the frameworks. This decentralized schedul-

ing model may not always result in globally optimal schedul-

ing, but according to [6] it performs well in practice and

allows the frameworks to meet goals such as data locality near

perfectly. While Mesos focuses on resource-sharing in data-

centers, JadexCloud [5] is a PaaS infrastructure to develop,

deploy and manage distributed applications with a strong focus

on distribution transparency. It is based on a Multi-Agent

Systems (MAS) platform and allows to build cloud-based

agent applications with service-oriented communication. The

key concept is a three layered model, that helps separating

responsibilities and managing complexity. A daemon layer

provides a node infrastructure for managing cloud resources. It

automatically detects and announces nodes joining and leaving

the network. The platform layer on top supports application

related management tasks including the automatic deployment

of application artifacts on different nodes as well as starting

and stopping of components. Finally, the application layer

facilitates the application development by providing the API

and tools for debugging. The current version of the provided

PaaS infrastructure [9] supports the management of non-

functional requirements. It allows to define non-functional

properties for services that are monitored automatically, e.g., a

wait-queue property that counts the request currently waiting

to be answered. Based on this non-functional properties the

service selection can be automated by defining non-functional

requirements like, e.g., finding the service with the smallest

wait-queue. Due to its focus on cloud-components offering

services (agents), and the automatic deployment of application

artifacts to dynamically joining and leaving network nodes,

JadexCloud seems to be well suited to realize the simulation

as a service approach.

B. Simulation and Modeling as a Service Approaches

In [10] it is described how simulation software can be ac-

cessed as service (SimSaaS) in a service-oriented architecture

(SOA) approach. It is stated that carrying out an experiment

can be achieved by connecting multiple simulation services

to form a work-flow which represents how the experiment

proceeds. The authors of [10] state that simulation services

differ from regular web services as concepts of time and

state are essential, thus, viewing them as stateful services,

that treat each service request as a series of dependent trans-

actions that are related to the previous requests as well as

the model’s current state. Therefore, different communication

and synchronization paradigms are described and assessed in

terms of their suitability to interconnect stateful simulation

services. The approach presented in this paper adopts the

ideas from [10] by combining them to a design approach

for large-scale energy network simulation with the extension

that stateless simulation services may also be suitable for the

realization and integration of small sub-simulation models. A

survey about current trends and technologies in the field of

modeling and simulation as a cloud service is given in [11].

It defines the term Modeling and Simulation as a Service

(MSaaS) as a model for provisioning modeling and simulation

(M&S) services on demand from a cloud service provider

(CSP), that keeps the underlying infrastructure, platform, and

software requirements and details hidden from the user. In this

case the CSP is responsible for licenses, software upgrades,

scaling the infrastructure, and providing grade of service and

quality of service as specified in service level agreements. The

SaaS model provides access to hosted applications in a cloud

environment, allowing users to access services at low cost and

scale as needed. This model was extended in [12] to include

high-performance hosted simulation and modeling services.

The described Polymer Portal is a first-generation simulation
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and modeling as a service (SMaaS) platform. Contrasting to

the approach presented in this paper, where the simulation as

a service approach is presented as a modeling approach to

build distributed, scalable simulation systems, the approach

presented in [12] focuses on ready to use simulation- and

modeling-services that users can access for a fee.

C. Simulation Frameworks and Approaches

There exist many different tools and frameworks that de-

velopers can use to built simulations upon. Some of these

simulation frameworks focus on specific application domains

and thus, support the developers by providing domain specific

models and tools, while other frameworks focus on a broader

application-domain independent scope and support simulations

in general. While application-domain specific frameworks take

some of the implementation work from the developer and

often allow a faster implementation, they restrict developers

in terms of implementational freedom and limit them, if their

problem does not fit into the domain specific scope of the

framework. Examples for domain specific simulation frame-

works are, e.g., Mosaik, a flexible Smart Grid co-simulation

framework [13] and RinSim, a simulator for logistics problems

[14]. An example for a general simulation framework is the

Jadex project [15]. When it comes to providing simulation

functionality as a service there a two practicable ways. The

first one is to implement the simulation using an application-

domain dependent or independent simulation framework (or

of course implementing it completely from scratch). In this

case, the implemented simulation system will be considered

as a black box with defined input and output parameters when

it is encapsulated by a service component, that provides the

simulation functionality as a service method. An example for

this implementation scheme is given in [16] where 4GL Matlab

simulation models are encapsulated by service components, to

provide their functionality via REST (Representational State

Transfer) web-services. The other implementational alternative

is to implement the whole simulation with service-based

technology. In this case it is possible to provide both, the

macroscopic functionality of the simulation itself, as well

as the microscopic functionality of single simulation com-

ponents out of the box, without the need to encapsulate it

first. An example for such a simulation system is given in

[17], where a Multi-Agent based self-healing resource-flow

system was built that used services to provide the functionality

of the simulated robots. The standardization of simulation

interoperability resulted in the High Level Architecture (HLA),

an IEEE standard for modeling and simulation [18]. The

HLA is a technical architecture developed to facilitate the

reuse and interoperability of different simulation systems and

assets. It provides a general framework, which can be used by

developers to structure and describe their simulation systems

and to interoperate them with other simulation systems. But

due to its complexity it is hardly used outside the military

domain [19].

D. Modeling Urban Energy and Heat Demand

In terms of modeling the urban energy and heat demand

the approach presented in [20] and [21] is related to the

undertaking in the GEWISS project. Both projects aim at mod-

eling the energy respectively heat demand of urban buildings

and building structures. But while the GEWISS project will

follow a Multi-Agent based simulation approach, modeling

the building and building structures as microscopic agents the

approach presented in [20] and [21] uses 3D city models to

calculate the heat demand of whole district areas. It uses the

OGC Standard CityGML [22], an open, multi-functional model

that can be used for geospatial transactions, data storage, and

database modeling, for the modeling of 3D buildings. Based

on the surface of the 3D models of whole building blocks

their energy and heat demand is calculated as a macroscopic

approach.

III. INTRODUCING THE GEWISS PROJECT

The requirements for the simulation as a service approach

are derived from the GEWISS project. In this project a ge-

ographical heat information and simulation system will be

developed to support the analysis of heat demand and urban

development for the City of Hamburg (Germany). The goal

is the development of a simulation tool (framework) that

supports the interlinking of urban development and district

heat network development by providing a planning tool for

different scenarios.

A. Project Description

In order to utilize the potential of climate protection and

to allocate available resource with high cost-effectiveness,

the strategic heat planing must be interlinked with urban

development projections (and vice versa). In this case, an

abstraction of the spatial location of existing buildings is for

obvious reasons not possible. Aspects such as the conversion

of urban areas, infill, redevelopment or demolition as well as

renovation of buildings or building groups should be tailored

to the local available heat sources. Conversely, this means that

the grid-based heat supply should be planned with respect to

existing and future building stock. For this indentation it is

necessary that data will be collected and analyzed with respect

to spatial location. The combination of data and analysis to

the heat demand and urban development should take place

in a geographic information system (GIS). The goal of the

GEWISS project is to extend such a GIS with geographic heat

information and simulation capabilities in order to provide

planning assistance for future developments.

Therefore, a framework should be develop that allows users

to simulate the medium and long-term development of a

heat supply system. Here, the specification of both external

conditions (e.g., the development of energy prices) as well

as municipal political measures (e.g., regulations or financial

incentives for certain structural measures) should be supported

and also the analysis of their effectiveness. The goal hereby

is to explore business models as well as different urban

development plans in a systematic fashion. This should help
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the City of Hamburg to find measures to achieve an optimal

solution to match environmental protection objectives in the

heating sector. From the overall project goal a set of scientific

and technical working tasks are derived, which are relevant

for the functional and non-functional requirements of the

simulation and information system to be built:

• The strategic conception of heat planning and urban

development should be integrated, so that energy and

emission reductions can be implemented efficiently.

• All areas of a heating system (generation, transmission,

storage and demand) should be considered through a par-

ticipatory modeling and simulation approach that involves

all relevant stakeholders.

• As a core, an agent-based simulation with visualization

capabilities should be realized.

B. Simulation Requirements

A series of functional and non-functional requirements

unfolds from the mentioned project goals. For example, the

design of the simulation entities must consider all areas of

the heating system, taking into account production, transport,

storage and demand. This means, that the simulation tool

must be able to support large-scale simulations with more

than 100,000 simulation entities (agents). The agents that

are designed to model buildings or building blocks may

be required to support a rule-based temporal evolution. The

considerations of important stakeholders implies on the one

hand influences on the design of simulation scenarios, but

allows on the other hand the scenario-dependent modeling of

rule-based descriptions for the automatic simulation through

autonomous agents. The validation of these descriptions is

to be ensured against separate micro-simulations. In order to

fulfill this requirements a simulation tool that supports the

realization of co-simulations based on a service-oriented mid-

dleware is envisioned. Co-simulation is a prominent method

to solve multi-physic problems. Such simulations combine

well-established and specialized simulation tools for different

fields [23]. In the context of the GEWISS project a co-

simulation is distinguished by a distributed simulation as well

as a distributed modeling (defined by the usage of different

modeling tools). A distributed simulation in this context is

understood as the integration of multiple, self-contained simu-

lations. Additional information about the strong impact of non-

functional requirements on large-scale systems can be found

in [24].

IV. THE CONCEPT OF SIMULATION AS A SERVICE

The concept of the simulation as a service approach derives

from the simulation requirements of the GEWISS project. The

goal is to use cloud computing ideas and technologies to built

loosely-coupled large-scale simulation systems. By adapting

the SaaS concept to the simulation domain, simulations will be

provided as services in a cloud infrastructure. The conceptual

architecture and approach is depicted in Fig. 1. The idea is

that simulations will be contained within a Simulation Service

Component. This component encapsulates the functionality of

the simulation and provides a service interface to execute it in

a service-oriented fashion. This approach unifies the invocation

of different simulation types while also allowing the combi-

nation of different implementation models and programming

languages. Fig. 1 exemplifies two different simulation types

that can be combined and invoked in an unified way following

this approach.

A common modeling technique in the engineering domain

is the usage of fourth generation languages (4GL). These are

programming languages focusing on rapid application devel-

opment. The expression was coined by [25]. Recently, they

have gained new attention through the introduction of model

based software development [26]. Examples for 4GL are

MATLAB, Simulink, Modelica, GAMS (General Algebraic

Modeling System). These languages are used in many research

projects for rapid prototyping as well as the realization of

models or algorithms, e.g., for demand side management and

the integration of regenerative energy resources into smart

grids [27]. Although they reduce the overall development ef-

fort through the usage of comprehensible application-oriented

paradigms, the integration of such 4GL models into large-scale

simulations is a considerable challenge [16]. Encapsulating

their functionality by a Service Simulation Component allows

to execute them in an unified way, while also enabling their

execution in a scalable cloud infrastructure.

The other depict simulation type is a MAS based simulation.

They are well-known and widely spread [28]. Here, different

types of agents are used to model the reality and to examine

different problems. Such simulations exhibit different grades

of complexity and inter-simulation dependencies. If a simple

MAS based simulation that is executed on a single network

node is considered, it can easily be encapsulated by a Sim-

ulation Service Component as a whole. This will provide an

unified service-oriented way of invocation and control the exe-

cution and the life-cycle of the simulation as a whole. If a more

complex, distributed MAS based simulation is considered, a

possible integration approach is to encapsulate a dedicated

starting component with a Simulation Service Component,

which starts the distributed application and collects the results

to return them.

Fig. 1. Simulation as a Service Conceptual Architecture and Approach

Simulations that are encapsulated by a Simulation Service

Component can either by called by clients directly if they
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require a specific simulation functionality, or more complex

simulations can be composed out of multiple simulation ser-

vices. In this case a simulation component can use the services

offered by other simulation components, if they require the

results provided by these simulation components as a sub-

simulation. An example for this use-case is the realization of

a mesoscopic co-simulation where a macroscopic simulation

requires results from microscopic simulation components. This

will be the case in the GEWISS project, were questions

regarding the development of district heat networks shall be

examined with regards to macroscopic simulations regarding

urban development and microscopic simulations regarding the

heat demand of households. If the composition of different

simulation services is of concern, approaches like the Web Ser-

vice Business Process Execution Languages (WS-BPEL) re-

spectively the Business Process Model and Notation (BPMN)

for the orchestration of web-services might be adoptable to

the simulation domain.
Basically there are two main paradigms for the composition

of simulation services. Fig. 2 depicts the hierarchical com-

position and execution of simulations as an UML sequence

diagram. It illustrates the execution of a simulation A. During

its execution, the simulation requests services of the sub-

simulations B and C, while sub-simulation C requires the

results from sub-simulation D in order to answer the request

from Simulation A. The hierarchical structure depict in Fig. 2

resembles the envisioned structure of the simulation system in

the GEWISS project, where a main simulation (macroscopic)

requires results from microscopic sub-simulations. Thereby,

the sub-simulations are only active when their simulation

services are called by the main simulation. The simulated

time in this case can either be managed by the encapsulating

root simulation and passed on to the sub-simulations or each

sub-simulation can handle it’s own time model, which allows

to model interacting simulation with different time-scales

(microscopic and macroscopic).

Fig. 2. UML sequence diagram: Hierarchical composition and execution of
simulation services.

A different composition paradigm is depict in Fig. 3 where

two simulations are executed parallel while exchanging data.

This paradigm resemble the one described in [10] where it

is stated that simulation services differ from web services as

they have to be considered as stateful services, that treat each

service request as a series of dependent transactions that are

related to the previous requests as well as the model’s current

state. Regarding this composition paradigm of interlinked

simulations it has to be ensured that their time model is

synchronized, so that events are processed in a correct order.

Fig. 3. UML sequence diagram: Parallel composition and execution of
simulation services.

V. IMPLEMENTATION ALTERNATIVES AND CHALLENGES

In general it is reasonable to facilitate established service-

oriented technologies to provide simulations as a service. If

distribution transparency, scalability and robustness properties

should be adopted for the provided simulation services, it

is reasonable to facilitate established cloud computing tech-

nologies as well. If the simulation is considered as a black

box and not implemented with explicit cloud distribution in

mind it might be more feasible to use the IaaS approach to

abstract from the physical hardware in order to achieve the

previous mentioned cloud computing properties. In this case

the IaaS approach excels the PaaS approach, because the later

one requires the application to be built on top of API of the

according platform. Although it is also possible to encapsulate

a black box simulation with a component regarding the API

of the PaaS platform, but in this case the simulation does not

profit from the distribution, scalability or robustness properties

of the PaaS platform. So if an already existing simulation

system should be provided as a cloud simulation service, a

solution built upon a IaaS platform is advantageous. If the

simulation is built from scratch or the simulation model is a

simple one with a small footprint, it is beneficial to built it

against the PaaS API respectively to encapsulate the simple

model with a component that is built against the API.

The next Section will provide an evaluation of three differ-

ent implementation alternatives and evaluate them in terms of

their scalability. A case study was ventured, in order to show

how a simulation as a service component could be built based

on different technologies. A 4GL-model simulating the energy

demand of a single household equipped with an electrical

heater was used for this case study. In the following, the three

implementation alternatives are described briefly before they

are evaluated in the next Section.

REST Webservices: The first implementation follows the

approach presented in [16] and encapsulated the 4GL-model

with a REST web-service. In order to provide scalability, a

load balancer was connected upstream to distribute the request

based on a round-robin scheduling mechanism among multiple
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simulation nodes.

Jadex NFP Service Selection: The second implementation

facilitated the approach for elastic component-based cloud

applications presented in [9]. This approach introduces the

concept of service selection based on non-functional prop-

erties. Again the 4GL-model is encapsulated by a service

component. In this case the service is equipped with a non-

functional property observer that observes the length of the

wait queue of this service. If the simulation service is going

to be requested by a client, a non-functional property evaluator

evaluates the mentioned waiting queue size property and

selects the best service (lowest number of waiting clients).

Thus, an optimal distribution of client calls is achieved.

JadexCloud Service Pool: The third implementation uses the

JadexCloud PaaS middleware [5]. Like other PaaS solutions

it simplifies the construction of a cloud application by pro-

viding common base abstractions, tool sets and an API. The

JadexCloud infrastructure has two main advantages for the

development and deployment of distributed application. Any

service offered by a component can be made available in a

platform-controlled service pool. The utilization of the service

pool deliberates the developer from starting and handling

the life-cycle of the service-components himself. The service

pool will start new service-components automatically if new

resources are needed to handle incoming requests. Therefore,

the service pool acts as a proxy handling all incoming service-

requests and forwards them to service-components with free

resources. The usage of the service pool, does not only simpli-

fies the development of scalable services but also supports the

dynamical deployment of service-components to remote plat-

forms. If the service pool detects new JadexCloud platforms

in the network range, it automatically deploys the governed

service-components on this platforms and starts new instances

on the remote platform, in case such are required to handle

incoming service requests. So following this implementation

scheme, the service component encapsulating the 4GL-model

was equipped with a service pool to handle the automatic

deployment on a cluster of JadexCloud nodes and to handle the

life-cycle and load-balancing in order to achieve scalability.

VI. SIMULATION AND EVALUATION OF IMPLEMENTATION

ALTERNATIVES

In order to evaluate the three proposed implementation

alternatives in terms of their scalability three implementation

prototypes were realized. Each of the three simulation setups

will be described briefly before the results of the scalability

analysis will be discussed. The simulation setup for the imple-

mentation based on REST web-services (1) is depicted in Fig.

4. Similar in all three setups is a client (a HTTP web-service

client in this case) that places n parallel requests. For this

example, the 4GL-model simulating the energy demand of a

single household is encapsulated by a REST web-service. The

service is deployed to five homogeneous workstations running

Apache Tomcat 71 as an application container. On one of these

1http://tomcat.apache.org/ (accessed September 25, 2015)

workstations the Apache HTTP Server2 equipped with the

mod_jk3 Tomcat connector is used as a load-balancer. It uses a

round-robin scheduling mechanism to distribute the calls to the

simulation services in an equal way. For the purpose of testing

the scalability and distribution properties only one service-

component was deployed on each of the network nodes.

Fig. 4. Simulation Setup: REST Webservices.

The simulation setup for the service selection based on

non-functional requirements (2) is depicted in Fig. 5. Again

a client places n parallel service calls. In this setup the

simulation service encapsulating the 4GL-model is realized

as a Jadex service and is equipped with a non-functional

property monitor, that monitors the size of the service’s wait-

queue. For each of the service calls, the client queries the

service monitors and uses a non-functional property evaluator

to evaluate them with regards to quality criteria. The best

service (lowest number of waiting requests) is selected and

then called directly. Thereby, an optimal degree of capacity

utilization is achieved as it is ensured that always the service

with the lowest capacity utilization is ensured.

Fig. 5. Simulation Setup: NFP Service Selection.

The simulation setup for the utilization of a service pool

and the JadexCloud infrastructure (3) is depicted in Fig. 6.

It uses the same client and simulation service component as

described before, but contrasting to the previous described

service selection based on non-functional properties, a global

2http://httpd.apache.org/ (accessed September 25, 2015)
3http://tomcat.apache.org/connectors-doc/ (accessed September 25, 2015)
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service pool is used to act as a proxy between the actual

services and the client. The service pool deploys the service

code automatically to all five workstations and handles the

execution of one service-component on each workstation. Due

to comparability reasons with the two other setups, only one

service-component was started on each of the JadexCloud

platforms, although it is possible to configure the service pool

accordingly to make use of more components. Comparable

to the first simulation setup the service pool use a round-

robin based scheduling mechanism to distribute the service

requests equally to all pooled services. The service distribution

is completely transparent for the clients, as they only interact

with the proxy.

Fig. 6. Simulation Setup: Service Pool.

In order to analyze the scalability properties of the three pre-

sented implementation alternatives a number of experiments

were conducted. The results of this analysis are shown in

Fig. 7. The x-axis depicts the number of parallel calls on a

logarithmic scale and the time in milliseconds it took to serve

all the parallel requests is depicted on the y-axis (logarithmic

scale as well). In order to dampen spikes for each number n

of parallel calls 10 experiments were ventured and the mean

values were used for the evaluation. For n = 10, 100, 1000

parallel calls the three implementation alternatives perform

quite similar and all three show a linear scalability. This

behavior differs for n = 10000 parallel service requests. The

implementation utilizing the non-functional property based

service selection still scales linear. But both, the implemen-

tation using REST web-services and the JadexCloud service

pool scale considerably worst. Therefore further experiments

for these two implementations were conducted. As shown

in the graph for n = 2000, 3000, 4000 parallel calls they

still perform nearly linear. When the number of parallel calls

reaches n = 5000 they lose this scalable behavior. We assume

that this deviation between the three approaches is because

the according load balancer (Apache HTTP Server or Jadex

Service Pool) became saturated. If a large amount of parallel

calls has to be processed by a load balancer it may become

overloaded. Therefore, the load balancer itself could be the

bottleneck of the system. This behavior differs from the service

selection based on non-functional properties, as in this case

the client itself evaluates the degree of capacity utilization

of the offered services and selects the best. Therefore, the

required distribution effort is shifted to the client. In order to

further investigate this behavior, future work will analyze the

scalability behavior of the three implementation alternatives on

a System-on-a-Chip cluster. This cluster is characterized by a

larger amount of machines with less computational power each

in comparison to the workstation cluster used in this experi-

ment. Thus, the scalability and load-balancing properties of the

implementation alternatives will become more relevant.Also a

combination of the non-functional property selection approach

with the service pool approach is envisioned. Even if the

scalability properties of the non-functional property selection

approach excels the ones from the service pool approach,

the dynamically deployment properties of the service pool

approach are of great value, especially if an application is

executed on dynamic infrastructure with joining and leaving

network nodes. Therefore, a combination is envisioned where

the default round-robing scheduling mechanism of the service

pool is going to be replaced by one selecting the service based

on non-functional properties like, e.g., the size of the wait-

queue.

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+1 1E+2 1E+3 1E+4

C
A
LL
 D
U
R
A
T
IO
N
 (
M
S
)

NUMBER OF PARALLEL CALLS

REST Webservices (1) Jadex NFP Service Selection  (2) JadexCloud Service Pool (3)

Fig. 7. Results of the Scalability Analysis.

VII. CONCLUSION

In this paper we presented the concept of simulation as a

service as a promising approach for the realization of large-

scale smart-energy network simulations. It was described how

the approach will be used to implement a geographical heat

information and simulation system in the GEWISS project.

The goal is to provide a planning and simulation tool for the

interlinking of urban development and district heat network

development in order to support the political decision making

process in the City of Hamburg. The envisioned system will

combine macroscopic and microscopic simulations to a co-

simulation system. The simulation as a service approach was

presented as loosely-coupled and scalable solution to realize

a large-scale simulation system based on cloud computing

technology in order to optimal utilize the computing resources

of a heterogeneous university IT-infrastructure. Three different

THOMAS PREISLER ET AL.: SIMULATION AS A SERVICE 1771



implementation alternatives were described and evaluated in

terms of their scalability. The results encouraged the usage

of the Jadex PaaS platform. A MAS platform that allows

to built agent-based cloud application with service-oriented

communication and supports the execution and deployment

with service pools, service selection based on non-functional

requirements and the automatic deployment of components

(agents) and services to fluctuating network nodes.
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