
A Quality Attributes Approach to Defining Reactive
Systems Solution Applied to Cloud of Sensors

Artur Skowroński
Schibsted Tech Polska Sp. z o.o.

ul. Armii Krajowej 28

Krakow, Poland

Email: artur.skowronski@schibsted.pl

Jan Werewka
AGH University of Science and Technology

Department of Apllied Computer Science

Krakow, Poland

Email: werewka@agh.edu.pl

Abstract—Reactive systems have been investigated and used
for a long time. Due to new methods and new technology
development, the reactive systems needs their redefinition. These
systems are currently an interesting topic for IT (Information
Technology) solution providers. In this paper the authors try
to define a new view of the architecture of reactive systems,
because reactive systems are evolving and there is no clear
definition of them. The starting point of the investigation was the
reactive manifesto which defines reactive systems by four main
features (quality attributes): responsiveness, resilience, elasticity
and message driven interoperability. The mentioned quality
attributes are the basis for developing a system solution. For each
of the quality attributes, a set of tactics are proposed to maintain
attribute required behavior. The suitability of the proposed tactics
was investigated for Reactive Sensor Middleware which is part
of a CoS (Cloud of Sensors) in the PaaS (Platform as a Service)
layer. A cloud of sensors for pollution monitoring in urban areas
was used as an example. Verification of the tactics has confirmed
that some of the proposed tactics are suitable for the selected
CoS subsystem.

Index Terms—Keywords Reactive systems, reactive manifesto,
software architecture, quality attributes, tactics, cloud of sensors,
pollution sensing

I. INTRODUCTION

I
N THIS paper an approach is presented for the purpose

of defining a software architecture model for a class of

systems. The class considered here are reactive systems.

In the classic book [1] on reactive systems design, sys-

tems are described by their characteristics: highly interac-

tive, nonterminating process, interrupt driven, state-dependent

response, environment-oriented response, parallel processes,

usually stringent real-time requirements. The starting point of

the analysis of reactive systems was the reactive manifesto [2],

which defines reactive systems by its features. The manifesto

stated that “a coherent approach to systems architecture is

needed, and we believe that all necessary aspects are already

recognized individually: we want systems that are responsive,

resilient, elastic and message driven”. The systems described

by these features are called reactive systems. The reactive

manifesto went through two revisions. The scalable and event

driven traits from the previous version are replaced by elastic

and message driven in the current version. We found this

clarification interesting, especially when observing changes

in dependency diagram which is part of both revisions. In

the previous version the traits are all connected bidirectional

lines, suggesting that all of them depends on each other, which

was not very informative. That changed in Reactive Manifesto

2.0. The current iteration contains far more interesting inner

dependencies. Message Driven pattern was defined as basis

for all other traits. Responsiveness seems to be the main goal

of reactive systems, because all other traits depends on it.

The goal of this paper is to develop an system solution

based on selected quality attributes responsiveness, resilience,

elasticity and message driven pattern. For the predefined set of

quality attributes architectural tactics are proposed. The tactics

will be used in determining architectural models. The approach

is based on the classic software architecture development

process proposed by Software Engineering Institute [3][4]. In

the literature different solutions are proposed in the field. In [5]

a general approach is proposed for embodying nonfunctional

requirements (NFRs) into software architecture using architec-

tural tactics. In [6] the influence of quality properties on deci-

sion making regarding software architecture was investigated.

II. QUALITY ATTRIBUTES OF REACTIVE SYSTEMS

Quality attributes are referred to as Non Functional Re-

quirements (NFR) and represent a desirable behavior of the

system and are key success factors in developing software

architecture. In next subsections three quality attributes are

considered: elasticity, resilience and responsiveness.

A. Elasticity

Elasticity is the ability of a system to scale resources up or

down with minimal latency for different environment behavior

during system runtime for different time periods. The ability

can be reached manually or automatically. For the reactive

systems the following sub attributes can be distinguished:

Consistent System Load. The load of IT systems can be

not evenly distributed. The system should be able to scale

both up and down - changing dynamically and automatically

the amount of resources allocated. The goal is to handle user

requests in a predictable, consistent manner. Attribute metrics

should represent a standard level of usage of resources. It‘s

lower boundary should not be set too low (the system is

wasting resources, over-provisioned) while it‘s upper boundary

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 789–795

DOI: 10.15439/2015F117

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 789

should not be set to high - in this case, we are in constant risk

of throttling the system at any moment (under-provisioning).

Latency in allocating and deallocating resources. The sys-

tem should be able allocate resources to achieve elasticity

corresponding to the current load. Due to that time is a

critical criteria - the amount of time needed to set up an

additional application process should be as short as possible.

The application should be small and granulated and it‘s startup

time really quick beginning from the “cold” system and ending

with the ability of handling user requests. The criteria chosen

are time of allocating and de allocating new resources. The

attribute metrics are numeric - startup time from the state

before allocating new resources to the moment, when new

resources are able to handle new users.

Scalability. An elastic system should be scalable in a pre-

dictable way. Its performance should improve proportionally to

added resources. The overhead of adding new application in-

stance should be as small as possible. It is desirable to achieve

linear proportion between those two values (performance to

capacity of added resources).

B. Resilience

A resilient system is one that delivers a service that can

be justifiably trusted when facing changes [9]. Resilience is

related to a system’s ability of maintaining service provision

without deviating from the fulfillment of system goals, despite

changes that might affect the system or its environment. An

example of resilience evaluation is presented in [7]. For de-

scription of resilience the following sub attributes are selected

based on the “technologies” defined in [9].

Evolvability. It is ability to respond effectively to change.

Within evolvability, an important topic is adaptivity, i.e., the

capability of evolving while executing and retaining the notion

of justified confidence.

Assessability. It is based on verification and evaluation.

Classically, verification and evaluation are performed offline

in a pre-deployment stage. In reactive systems assessment and

evaluation has to be performed at run-time, during operation.

Usability. Computing systems have already pervaded all

activities of our life, hence the importance of usability.

Diversity. Diversity should be advantageous in order to

prevent vulnerabilities, e.g. have single points of failure.

From our perspective, there are additional sub attributes

which resilient system should have:

Automaticity. Reactive systems, due to constant changes,

should not be administrated by people only. A system should

react automatically on changes in it (e.g. a situation when

a given service is down or a new deployment is ready) and

perform a predefined strategy, mitigating the occurrence of

human errors which could cause the system to close down. In

a resilient system, infrastructure should automatically resize

itself to keep required quality.

Rationality. The system should be able to provide value

even when it is partially inaccessible. In that case the system

is built from the isolated micro services, it shouldn‘t happen

that the system is not responding when one trivial part is not

able to respond (e.q. we have parts of system unaccessible

due to power blackout). This feature cannot be easily added

to the system in the later stages and should be taken into

account during the design process. A system should know

which parts are important and cannot be missed (responding

to a failure) and which parts are trivial (it’s just add value).

Rational systems don‘t fail if there is no reason to do that.

C. Responsiveness

Responsiveness refers to the ability of a system to fulfill

assigned tasks within a given time as seen by the user.

Consistent response time. It is important to achieve con-

sistent response time for a system request. Typically, mean

response time is used as a metrics. Unfortunately, it doesn‘t

say much about a time consistency of a request. Two systems

with exactly the same mean can have a highly different pattern

of behavior. One system can be predictable and consistent, the

other may have quick as well as slow response times. For both

systems their mean metrics will still be similar. Consistency

increase user trust in the system reliability. The attribute

metrics may be a standard deviation of response time for a

full request-response loop. It describes how a system behaves

in the long term in a given time and presents information about

the best and worst cases.

Adapting data processing to the given usecase. Data from

the system should be accessible as fast as they bring the value

for the end client. Topic becomes more important when we

are talking about communication between systems which are

better adapted to fast data acquisition and usage. Internet of

Things presents both new opportunities and challenges, that’s

why Fast Data term becomes more and more important in

synergy with Big Data systems.

III. TACTICS FOR REACTIVE SYSTEMS

A tactic is a design decision that aims to improve one

specific design concern of a quality attribute [5]. Software

architects utilize a rich set of proven architectural tactics and

patterns to help satisfy specific quality concerns. Architectural

patterns have an overarching impact on a software system,

and are typically selected early in the design process. They

determine the overall style of the design and include well-

known solutions schemes [8]. Tactics and patterns are known

architectural concepts; the work [9] provides more specific

and in-depth understanding of how they interact. In the next

subsections tactics are proposed for a previously selected set

of quality attributes.

A. Elasticity

1) Ability to scale part of a system independently: If we

want to achieve usage of resources in a sufficient way, we need

the ability to scale a different part of the system in response

to its growing demand. Today, applications no longer rely on

monolithic architecture. Parts of the system are developed in

different technologies and they can have a very distributed

necessity of system resources.

790 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Sharding. Sharding is a specific type of database partitioning

and its role is to split a database into smaller pieces, called

shards, which are easier to manage, faster and less vulnerable

to problems of global locking, meanwhile being easier to repli-

cate due to its reduced size. Shards shouldn’t share information

between them, giving the ability to spread data between differ-

ent physical instances and scale them independently, without

the necessity of maintaining high-end, high-power systems. A

common strategy is e.g. sharding data geographically, where

we can take into account problem of latency too.

2) Decrease overhead of single components: Starting the

executing of software components is the biggest factor in

system latency. Below, are some tactics proposed, which are

used to reduce software overheads

Containerization. Containerization and Software Containers

are not new topics. However, they gain attraction in recent

years, thanks to the support of IaaS Providers. In contrast

to virtual machines it uses the kernel of the host machine

and runs on isolated user space instances. Containers can be

prepackaged and quickly distributed, with a minimal starting

time of a single instance. It’s worth to mention that there are

particular Operating System Solutions created directly to work

with Containerized software.

Lightweight technology stack. The bigger codebase, the

longer load time can be felt by user. Splitting application

into smaller pieces can drastically shorten time needed to run

the new instance. Due to that fact, when want to achieve

ability to run application instances dynamically on demand,

we shouldn‘t relay on heavyweight enterprise technologies

with huge amount of dependencies. Each application should

have as little dependencies as possible and use external li-

braries/framework only when it‘s necessary.

3) Allowing for Resource Balancing: In the system which

rely on the input from user, who can join or disconnect in

any moment, amount of received data can vary dramatically

over time. Having that in mind system should have ability for

automatic resources balancing. Humans are error prone and

too to slow to react while working with rapidly changing load.

System should be able to allocate and deallocate resources to

maximize ratio between throughtput and economic cost.

Implementing Backpressure. Backpressure in terms of re-

sponsive systems means the ability to acquire a feedback mes-

sage from request passed through the system, e.g. by passing

the message through the queue. Acquiring feedback is neces-

sary to scale software in the correct way, e.g. the utilization of

component resources. The implementation of backpressure is a

nontrivial problem due to the asynchronous model of the com-

munication. However, it is especialy important while dealing

with the everlasting stream of data - there is possibility that the

system under load will be overloaded by the incoming data.

Resource Managing based on Kernel Sharing Layer. An

approach is used based on kernel features to provide the

abstraction and isolation of system resources, instead of them

on system-level defined rules, rather than monitoring the

application and pooling its state through metrics values, such

systems respond to application demands, by increasing its

resources and spawning new instances (e.g. Apache Mesos

[10] with Apache Aurora). It’s solution fitted for Server Racks

and Clusters to hide abstraction of multitenancy systems.

Immutable Designing. The less mutable state inside

application, the easier application is to scale. In that case

instances can‘t be easily replicated and a client can be served

only by the instance with which started communicating. If

the application is stateless, the load balancer can pass user

input to whatever instance of application has free resources

at the moment. The Domain Driven Design methodology is

a good tool to evaluate which part of the application should

be mutable and which not. Using good suited tools, such as

functional programming languages or using message driven

approach can be also benefitial.

B. Resilience

The resilience of the system is an offshoot of both depend-

ability and availability, defined to better suit the demands of

an architecture based on micro services. Lack of availability

of microservices sums up. The important thing is to design a

system in such way that when one of the elements fails it will

not bring down the whole application functionality.

1) Replication: The most obvious way to achieve high

availability of all systems parts is to provide redundancy. This

is especially preferable when a considered system is stateless

and every request can be processed by any instance.

Bulkhead. Bulkheads are used in ships to create separate

watertight compartments which prevents the ship from sinking.

The idea can be effectively used in computer systems. In a

similar manner, a computer system should have redundant

components which are easily replicable whenever something

happens to the system and one of its counterparts.

2) Delegation: In contrast to the classic synchronous

method calls, a reactive system cannot use exception and ex-

ception handling due to its isolated nature. Thrown exceptions

don‘t have a chance to reach component which is able to

handle it. Information about failure should be delegated to

another component able to resolve it.

Feedback supervisor. In the reactive system a supervisor

should exist, which is a special component existing outside

the standard flow of the systems and has information about

the whole system. Whenever a failure occurs, corresponding

information with the whole bounded context should be send

to the supervisor. It‘s a great way to decouple the standard

flow of the system from the failure support and error handling

mechanism (e.g. Netflix‘s Hystrix).

3) Isolation: The main problem of distributed systems is

the possibility of partial failure. We don‘t want errors prop-

agate over the systems, dragging whole infrastructure down.

Isolation is an important trait of the system created from the

micro services, which assures that failure of one part does not

spread over whole system.

State and behavior containment by Bounded Context. Ev-

ery component should be as small as possible and enclose

specific problem domains inside the bounded context. Bound-

aries are connected by messaging protocols. This ensure that

JAN WEREWKA, ARTUR SKOWRONSKI: A QUALITY ATTRIBUTES APPROACH TO DEFINING REACTIVE SYSTEMS SOLUTION APPLIED TO CLOUD OF SENSORS791

the system architecture reflects the problem domain making it

easy to evolve. It also promote component composability and

modularization on the architectural level.

Containment of failures. It should be possible to contain a

failure inside the block where it occurred. The failure shouldn‘t

be promoted to the next block, inhibiting “disease spreading”.

No error should be able to cascade through the system. When-

ever we do not provide the fallback, we should fail-fast to not

saturate system resources and pass failure to the supervisor.

C. Responsiveness

The responsiveness of the systems was investigated for

a long time. In [5] six general principles for the synthesis

of responsive software systems are presented: fixing, locality

design, processing versus frequency tradeoff, shared resources,

parallel processing, and centering. In the current systems de-

veloping a new approach for responsiveness tactics is essential.

1) Deferred data validation: The biggest difference be-

tween local software and software working throughout the

network is the fact, that the distributed software has a far

much longer feedback loop for each request. Whenever a user

performs any action, it needs to wait to validate it on the

server side, which can be a long operation striking user out of

context. That‘s why it is important to sustain for the user an

illusion of local work.

Normalization of data. System need to be able to cope with

different type of inputs communicating on both a different

protocols and data quality. That bring a necessity of bringing

normalization layer which is able to retrieve common values

from system, marking all data with an input specific metadata

which can be used to additional analytics.

Data store synchronization. Thanks to better technology, it

is possible to use data storage both on the client as on the

server side. During work with web applications the user has

feeling to work with native application by providing him with

two data stores, a local and remote one. This is especially

handy when both client and server are written in the same

technology, sharing a common codebase. The user is working

on the local copy bringing a short feedback. The local copy

synchronization is performed in the background. The user is

informed only whenever conflict happens.

Multiplayer game style data validation. To achieve smooth-

ness of experience, programmers introduced a sophisticated

system of the multiplayer game. Each player plays in his local

environment and information about his actions is passed to the

server, which confirms if its actions are possible to be done.

The server has godlike power over each player and if he finds

conflicts, resolves them and informs players about a verdict.

Thanks to that each player has his own smooth experience.

2) Sustaining consistent response time: It is necessary

to receive data as soon as they are able to be processed by

system and end user. Synchronization should be done in the

background. If our system responds to fast, responses it will

be placed inside a buffer which should be maintained. If it

will be too slow, we risk lowering the consistency of the

overall system.

Streaming based data store To suit needs of the Fast Data

system, our technology stack need to be adapted to processing

not only huge amount of data, but also need to be able to

process them in the fast way. Such a system needs to be able to

combine storing huge amount of data from the many different

concurrent inputs as a data warehouse, it also need to be able

to deliver stream result in a quick way with a most current

results for a waiting clients. An example of such a solutions

can be Apache Storm and Apache Spark.

Non-blocking client-server communication. Communicat-

ing in a synchronous way is the biggest issue when trying

to achieve consistent response times. A server communicating

in a synchronous way is always waiting for a response and a

one long request can delay a whole queue of operations. Each

request should be responded to in the deferred way.

Worst case scenarios designing. To ensure that a response

will be produced in reasonably, consistent time, it is important

to use algorithms with low complexity. To provide a good level

of stability in distributed systems, we need to bound a system

with realistic timeouts. It is important not to break connections

in case the data are processed correctly, but too long.

IV. A CLOUD OF SENSOR WITH REACTIVE SENSOR

MIDDLEWARE

The proposed tactics for the reactive system will be verified

for RSM (Reactive Sensor Middleware) which is part of a CoS

(Cloud of Sensors) in the PaaS (Platform as a Service) layer.

The proposed RSM is very important because it is assumed

that the number of sensors will increase rapidly. The physical

sensors and a well-defined communication interface will be

delivered by sensor providers. The sensor providers will deal

with service installation, sensor infrastructure maintenance,

and the sensor data offering to sensor service consumers over

the Internet. The service consumers can use the sensor data

with their own or other providers’ applications, which are

integrated with the physical sensors. The described solution is

known as a CoS (Cloud of Sensors). This makes it possible for

users to lease the sensing hardware and associated applications

instead of buying the complete infrastructure.

There are similar solutions to CoS such as cyber physical

cloud (CPC), the Internet of things (IoT) or Fog Computing

[11], which is a paradigm that extends Cloud computing to

the edge of the network and services can be hosted at end

devices. All these solutions [12] have sensors and a cloud as

an integral part of their architecture. CPS consists of computer

(cyber) systems that interact with the physical world. CPC is

simply a CPS with cloud integration. Thus, CPC is CPS with

a cloud as its backbone for computation and communication.

In contrast, the Internet of Things (IoT) enables pervasive

and ubiquitous interconnection in near real-time on a massive

scale with different remote devices (mostly sensors) that can

be uniquely identified, located, and communicated with. Cost

effective and scalable IoT solutions can be achieved using

cloud-centric architecture.

Cloud of Sensors Solution Architectures Existing research

into CoS and related architectures proposes various solutions.

792 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

Fig. 1. CoS structure with Reactive Sensor Middleware located in PaaS layer

Some interesting examples are given below.

Paper [13] presents the design and evaluation of a Data

Quality-Aware Sensor Cloud (DQS-Cloud) which is based

on a cloud-based sensor data services infrastructure. The

objective of the paper is to make a DQ as a multidimensional

space in which all sensor devices produce multiple quality

parameters or metadata such as accuracy, delay, frequency,

latitude, longitude, sensor type, etc. Paper [14] proposes a

new infrastructure called Sensor-Cloud infrastructure which

virtualizes a physical sensor as a virtual sensor using cloud

computing. An important issue is the developing of mathe-

matical models (e. g. [15]) for the virtualization of sensor

node resources. In [16] two alternative architectures for service

management in IoT and sensor networks are discussed: based

on Open Service Gateway (OSGi) framework and Remote

Services for OSGi (R-OSGi) bundle.

For CPS systems other solution architectures are more

suitable. In [17] a unified 5-level architecture is proposed

as a guideline for implementation of CPS (Cyber Physical

Systems). CPS solutions can be extended using SOA (Service-

Oriented Architecture) solutions.

The CoS solution used for tactics verification of reactive

systems, using cloud-centric architecture with Reactive Sensor

Middleware in the PaaS layer is outlined on Fig. 1.

Pollution Monitoring in an Urban Area A cloud of sensors

may have very broad applications. As an example an atmo-

spheric pollution monitoring system was chosen in the paper.

The goal of such a system is on-line pollution monitoring

for decision making and the development of environmental

policies, with the goal of reducing the impact of pollution on

ecosystems and human health.

Some distinguished examples are given here. In [18] an

interoperable system for air quality information management

is proposed. The system is based on open-source standards-

compliant tools and designed to develop a Spatial Data In-

frastructure (SDI). In [19] a Pollution-Sense system for air

pollution monitoring and control is presented. Participatory

sensing combines the use of everyday mobile devices, such as

cellular phones, GPS technology and location-based services,

and sensors, to form interactive, bidirectional mobile sensing

information systems. The system should provide large amounts

of pollution data in time and space with different granularities.

In [20] a method is described for the automatic detection of

air pollution and fog using sensors mounted on vehicles. The

described system consists of sensors which acquire their pri-

mary data from cameras and Light Detection and Recognition

(LIDAR) instruments. In [21] a sensor cloud based on WSN

(Wireless Sensor Networks) is proposed which virtualizes the

wireless sensors and provides sensing as a service to users.

Different users of pollution monitoring systems can be

distinguished. Some examples of users of such systems are:

(1) Single persons or families (e.g. planning an excursion in an

urban area); (2) People with allergies or breathing problems

like asthma (e.g. planning to go outside); (3) Schools (e.g.

planning different sport activities outside for children); (4)

Early warning systems for municipal operation; (5) Urban

planning used for air pollution reduction.

There are different types of pollution sensors which can be

wearable, mounted on vehicles or UAVs, or installed in fixed

positions (buildings, weather stations, etc.). The specialization

of pollution sensors may differ significantly: (1) Personal

environmental sensors, which are wearable sensors connected

to or integrated with smart phones; (2) Pollution sensor

stations installed on fixed points or on vehicles measuring air

pollutants; (3) LIDAR (Light Detection and Recognition) used

to detect small concentrations of air pollutants.

From the above discussion it is clear that providers of the

sensor as a service layer can be individual persons or orga-

nizations with the motivation to receive payment for service

proportional to sensor usage. The presented discussion aims

only to be an overview of possible pollution system monitoring

solutions, and is not intended to demonstrate the full picture.

V. VERIFICATION OF TACTICS

The proposed set of tactics will be verified for an RSM

which is part of a CoS placed in the PaaS layer. Of course

not all of the proposed tactics for reactive systems will be

suitable for RSM. Only the tactics most useful while building

the aforementioned system will be selected.

Elasticity is a very important aspect of a system based

on dynamically attached external data sources (in our case

sensors). We do not know in advance the size of the streams

of data that our application will be exposed to. For this

reason correctly implemented resource balancing needs to

be a core part of the infrastructure. Proper implementation

of backpressure tactics is especially important as the system

needs to be able to control the flow of data. A perfect solution

would appear to involve quickly running and disabling new

application instances when there is an urgent load increase

JAN WEREWKA, ARTUR SKOWRONSKI: A QUALITY ATTRIBUTES APPROACH TO DEFINING REACTIVE SYSTEMS SOLUTION APPLIED TO CLOUD OF SENSORS793

or decrease, in order to setup and disable containers on the

shared Resource, especially when the application is stateless

and implemented using a light technology (a good example of

such a stack is Node.js Amazon Lambda). In this case, for a

cloud of sensors a sharding tactic should be proposed. Usually

data received from sensors are closely related to geographical

locations or data sensor types, therefore the data should be

logically grouped to ensure processing efficiency. This makes

it possible to easily separate data in order to mitigate latencies

during querying of the data store.

Resilience is defined as the time taken by a system to return

to an acceptable state after failure. The investigated cloud of

sensors is highly dependent on the external data, therefore

constant supervision is essential. A component which

monitors the behavior of intermediate elements is needed, and

this can be achieved by using a feedback supervisor tactic. A

good level of isolation in the system should be provided as

data can be acquired from different inputs and the instances

collecting the data are independent. A containment of failure

tactic can be used to prevent the failure of one instance

impacting others. All instances should not be deployed in

a single cluster, instead the system should use a bulkhead

tactic which splits it into different physical locations, thereby

mitigating the potential for a critical situation in which the

system is unresponsive as a whole.

An important aspect of the design of the discussed sensor

cloud from a responsiveness perspective is the use of a

normalization of data tactic. This ensures that the data store

always has data in a proper, common format and is able to exe-

cute all necessary analytic operations quickly and responsively,

without intermediate steps. Also, providing non-blocking

client-server communication is important if we want to achieve

consistent response times for clients of our cloud solution.

VI. SUMMARY

The current reactive system’s needs must be examined from

different perspectives due to the emergence of new system

solutions and new technologies. One such factor is the big

data processing issue, caused by the need for real time data

stream acquisition and visualization, which makes it important

to perform architecture refactoring of reactive systems. The

approach presented, which starts with the analysis of quality

attributes and their tactics, seems proper at this stage of de-

velopment. The investigation of the suitability of the proposed

tactics for Reactive Sensor Middleware which is a part of CoS

(Cloud of Sensors) placed in the PaaS (Platform as a Service)

confirms the approach. The next stage will be experimentation

on other real system examples, analyzing suitable architecture

patterns and finally defining a reference architecture model for

reactive systems.

REFERENCES

[1] R. J. Wieringa, “Design methods for reactive systems,” 2003.
[2] “The reactive manifesto, published on september 16 2014.

(v2.0), http://reactivemanifesto.org.” [Online]. Available: http:
//reactivemanifesto.org

[3] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Boston, MA, USA: Addison-Wesley, Inc., 1998. ISBN 0-201-19930-0

[4] R. Wojcik and et al., “Attribute-driven design version 2.0, tr-023.” SEI,
Carnegie Mellon Univ, 2014.

[5] S. Kim, D.-K. Kim, L. Lu, and S. Park, “A tactic-based approach
to embodying non-functional requirements into software architectures.”
in EDOC. IEEE Computer Society, 2008. ISBN 978-0-7695-3373-5
pp. 139–148. [Online]. Available: http://dblp.uni-trier.de/db/conf/edoc/
edoc2008.html#KimKLP08

[6] H. R. E. Majidi, M. Alemi, “Software architecture: A survey and
classification,” 2010 Second International Conf. on Communication

Software and Networks, pp. 460–464, 2010.
[7] J. Cámara, P. Correia, R. de Lemos, and M. Vieira, “Empirical

resilience evaluation of an architecture-based self-adaptive software
system,” ser. QoSA ’14. New York, NY, USA: ACM, 2014.
doi: 10.1145/2602576.2602577. ISBN 978-1-4503-2576-9 pp. 63–72.
[Online]. Available: http://doi.acm.org/10.1145/2602576.2602577

[8] J.-C. Laprie, “From dependability to resilience,” in 38th IEEE/IFIP Int.

Conf. On Dependable Systems and Networks, 2008.
[9] N. B. Harrison and P. Avgeriou, “How do architecture patterns and

tactics interact? a model and annotation,” J. Syst. Softw., vol. 83, no. 10,
pp. 1735–1758, Oct. 2010. doi: 10.1016/j.jss.2010.04.067. [Online].
Available: http://dx.doi.org/10.1016/j.jss.2010.04.067

[10] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H.
Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” EECS Department, University
of California, Berkeley, Tech. Rep. UCB/EECS-2010-87, May 2010.
[Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2010/
EECS-2010-87.html

[11] S. Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proceedings of the 2015 Workshop on

Mobile Big Data, ser. Mobidata ’15. New York, NY, USA: ACM, 2015.
doi: 10.1145/2757384.2757397. ISBN 978-1-4503-3524-9 pp. 37–42.
[Online]. Available: http://doi.acm.org/10.1145/2757384.2757397

[12] V. Sehgal, A. Patrick, and L. Rajpoot, “A comparative study of cyber
physical cloud, cloud of sensors and internet of things: Their ideology,
similarities and differences,” in Advance Computing Conference (IACC),

2014 IEEE International, Feb 2014. doi: 10.1109/IAdCC.2014.6779411
pp. 708–716.

[13] A. Kothari, V. Boddula, L. Ramaswamy, and N. Abolhassani, “Dqs-
cloud: A data quality-aware autonomic cloud for sensor services,” in
Collaborative Computing: Networking, Applications and Worksharing,

2014 International Conference on, Oct 2014, pp. 295–303.
[14] M. Yuriyama and T. Kushida, “Sensor-cloud infrastructure - physical

sensor management with virtualized sensors on cloud computing,” in
Network-Based Information Systems (NBiS), 2010 13th International

Conference on, Sept 2010. doi: 10.1109/NBiS.2010.32. ISSN 2157-0418
pp. 1–8.

[15] S. Misra, S. Chatterjee, and M. Obaidat, “On theoretical model-
ing of sensor cloud: A paradigm shift from wireless sensor net-
work,” Systems Journal, IEEE, vol. PP, no. 99, pp. 1–10, 2014. doi:
10.1109/JSYST.2014.2362617

[16] D. Wilusz and J. Rykowski, “Comparison of architectures for service
management in iot and sensor networks by means of osgi and
rest services,” in Proceedings of the 2014 Federated Conference on

Computer Science and Information Systems, ser. Annals of Computer
Science and Information Systems, M. P. M. Ganzha, L. Maciaszek, Ed.,
vol. 2. IEEE, 2014. doi: 10.15439/2014F324 pp. pages 1207–1214.
[Online]. Available: http://dx.doi.org/10.15439/2014F324

[17] J. Lee, B. Bagheri, and H.-A. Kao, “A cyber-physical
systems architecture for industry 4.0-based manufacturing systems,”
Manufacturing Letters, vol. 3, no. 0, pp. 18 – 23, 2015.
doi: http://dx.doi.org/10.1016/j.mfglet.2014.12.001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S221384631400025X

[18] F. D’Amore, S. Cinnirella, and N. Pirrone, “Ict methodologies and
spatial data infrastructure for air quality information management,”
Selected Topics in Applied Earth Observations and Remote Sensing,

IEEE Journal of, vol. 5, no. 6, pp. 1761–1771, Dec 2012. doi:
10.1109/JSTARS.2012.2191393

[19] D. Mendez, A. Perez, M. Labrador, and J. Marron, “P-sense: A par-
ticipatory sensing system for air pollution monitoring and control,”
in Pervasive Computing and Communications Workshops, 2011 IEEE

International Conference on. doi: 10.1109/PERCOMW.2011.5766902
pp. 344–347.

794 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

[20] P. Sallis, C. Dannheim, C. Icking, and M. Maeder, “Air pollution and fog
detection through vehicular sensors,” in Modelling Symposium (AMS),

2014 8th Asia, Sept 2014. doi: 10.1109/AMS.2014.43 pp. 181–186.

[21] S. Madria, V. Kumar, and R. Dalvi, “Sensor cloud: A cloud of virtual
sensors,” Software, IEEE, vol. 31, no. 2, pp. 70–77, Mar 2014. doi:
10.1109/MS.2013.141

JAN WEREWKA, ARTUR SKOWRONSKI: A QUALITY ATTRIBUTES APPROACH TO DEFINING REACTIVE SYSTEMS SOLUTION APPLIED TO CLOUD OF SENSORS795

