
Correlation clustering by contraction

László ASZALÓS, Tamás MIHÁLYDEÁK
University of Debrecen

Faculty of Informatics

26 Kassai str., H4028 Debrecen, Hungary

Email: {aszalos.laszlo, mihalydeak.tamas}@inf.unideb.hu

Abstract—We suggest an effective method for solving the
problem of correlation clustering. This method is based on
an extension of a partial tolerance relation to clusters. We
present several implementation of this method using different
data structures, and we show a method to speed up the execution
by a quasi-parallelism.

I. INTRODUCTION

THE principle of minimum total potential energy (MTPE)

is a fundamental concept used in physics, chemistry,

biology and engineering. It asserts that a structure or body

shall deform or displace to a position that minimizes the total

potential energy. This concept could be used at other fields,

too. In this paper, we show its application in clustering. The

clustering is an important tool of unsupervised learning. Its

task is to group the objects in such a way, that the objects in

one group (cluster) are similar, and the objects from different

groups are dissimilar, so it generates an equivalence relation:

the objects being in the same cluster. If we want to apply the

principle MTPE, then we can say that the objects aim to achive

a situation in which they are in a cluster containing minimal

number of dissimilar, and maximal number of similar objects.

In the last fifty years, many different clustering methods were

invented based on different demands.

Correlation clustering is a new method, Bansal at al. pub-

lished a paper in 2004, proving several of its properties, and

gave a fast, but not quite optimal algorithm to solve the prob-

lem [1]. Naturally, correlation clustering has a predecessor.

Zahn proposed this problem in 1965, but using a very different

approach [2]. The main question is the following: which equiv-

alence relation is the closest to a given tolerance (reflexive and

symmetric) relation? Bansal et al. have shown, that this is an

NP-hard problem [1]. The number of equivalence relations

of n objects, i.e. the number of partitions of a set containing

n elements is given by Bell numbers Bn, where B1 = 1, Bn =
∑n−1

i=1

(

n−1

k

)

Bk. It can be easily checked that the Bell numbers

grow exponentially. Therefore if n > 15, in a general case we

cannot achieve the optimal partition by exhaustive search, thus

we need to use some optimization methods, which do not give

optimal solutions, but help us achieve a near-optimal one.

This kind of clustering has many applications: image seg-

mentation [3], identification of biologically relevant groups of

genes [4], examination of social coalitions [5], improvement

of recommendation systems [6] reduction of energy consump-

tion [7], modelling physical processes [8], (soft) classification

[9], [10], etc.

Fig. 1. Minimal frustrated graph and its optimal partitions

At correlation clustering, those cases where two dissimilar

objects are in the same cluster, or two similar objects are

in different clusters are treated as a conflict. Thus the main

question could be rewritten as: which partition generates

the minimal number of conflicts? It can be shown, that in

the general case—where the transitivity does not hold for

the tolerance relation—the number of conflicts is a positive

number for all partitions of a given set of objects. Let us take a

graph on Figure 1, where the similarity is denoted by solid, and

dissimilarity by dashed lines. In case of persons, the similarity

and dissimilarity are treated as liking or disliking each other,

respectively. Mathematically, the similarity is described as a

weighted graph, where 1 denotes similarity, and -1 denotes

dissimilarity. As the absolute value of these weights are the

same, thus it is enough to only use the signs of the weights.

Hence the graph is called a signed graph in the literature. The

lower part of this figure shows the three optimal partitions

from the five, each of them containing only one conflict. As

all partitions of the graph on Figure 1 have at least one conflict,

it is called a frustrated graph, and this one is the smallest such

graph.

If the correlation clustering is expressed as an optimization

problem, the traditional optimization methods (hill-climbing,

genetic algorithm, simulated annealing, etc.) could be used

in order to solve it. We have implemented and compared the

results in [11]. With these methods the authors were able to

determine a near optimal partition of signed graphs with 500

nodes.

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 425–434

DOI: 10.15439/2015F137

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 425

In this paper we introduce a new method which was

invented directly to solve the problem of correlation clustering,

and can use the specialities of the problem. The main idea is

extremely simple, but it needs several witty concepts, to get a

fast and effective algorithm.
Before going into details, let us see the hierarchical

clustering—where the solution is usually received as a result

of a series of contractions. The user needs to choose a

dissimilarity metric of clusters. These metrics are based on

the distance of the members (objects) of the clusters. Next, the

hierarchical clustering constructs a hierarchy, which starts with

singleton clusters, and each higher level is earned by joining

two clusters of the previous level. The last level consists of

one cluster which contains all the objects. This clustering is

an automatic process, where the user selects one level of this

hierarchy (and the equivalence relation generated by it), and

uses accordingly.
In case of correlation clustering the user has limited op-

tions. If the hierarchy, according to the tolerance relation

is generated, the cost function (i.e. the number of conflicts)

can be calculated for each level (for each partition) of the

hierarchy, and we take the minimal. This does not mean, that

we reach the optimal partition for each tolerance relation. This

hierarchy has n levels (n partition) from the Bn possible ones,

e.g. if n is 500, then we have 500 levels, and 1.6 · 10844

different partitions. Therefore we need to choose carefully

which partitions to add to the hierarchy.
There are two ways to construct the hierarchy: bottom-up

and top-down. In the latter, we split one cluster into two. If

the original cluster contains k objects, there are 2k − 2 ways

to split it, thus the full search is not feasible. There are other

methods to find a good split, but the hierarchy construction

by splitting is not so common. The bottom-up way is based

on joining clusters. There are k(k − 1)/2 ways of joining

clusters, and after the contraction of two clusters we update

the pre-calculated distances of clusters accordingly, as if we

had k clusters before contraction.
In this paper we will use Python programs to present the

algorithms. The Python programming language is perfect tool

for prototyping:

• Python code listings are shorter than pseudo codes, be-

cause we can use program-libraries without long expla-

nations or repetition of well-known algorithms.

• Python has high level data structures (list of set, set of

lists, etc.) which simplify the programs.

• Although Python programs are slow, we are not interested

in exact running times, but in the time rates: the effect

of replacing an algorithm with a better one?

We tested programs on one core of a 2.3 GHz double core

processor under Linux and Python 3.4.0. The times are given

in seconds.
The first implementation uses the most trivial data structure

to store a graph: the adjacency matrix. The adjacency matrix

of a tolerance relation contains elements −1 and 1 only, so

its graph is total. The asymptotic behaviour of the correlation

clustering of tolerance relation is known from [8]. If we allow

zero values in the adjacency matrix, i.e. we have a partial

tolerance relation, the behaviour of the clustering changes.

The more zeros are in the adjacency matrix, the bigger the

difference in behaviour. These behaviours are not yet described

or explained mathematically, computer experiments for many

objects are needed to discover the exact tendencies. Hence

for us the most interesting graphs are the sparse graphs. In

general, it is easy to implement the generation of Erdős–

Rényi type random graphs [12], but it is hard to ensure that it

generates a connected graph for small probability parameter p.

Therefore in our experiments we used Barabási-Albert type

random graphs [12] (we refer to them as BA graphs in the

following) where the connectivity follows from the algorithm

of the generation.

The structure of the paper is the following: Section 2 ex-

plains the correlation clustering and shows the result of joining

two clusters. In Section 3 we present a naive contraction

method. Next we specialize the method for sparse graphs. In

Section 5 we give the quasi-parallel version of the specialized

algorithms. Finally we discuss our plans and conclude the

results.

II. CORRELATION CLUSTERING

In the paper we use the following notations: V denotes the

set of the objects, and T ⊂ V ×V the tolerance relation defined

on V . We handle a partition as a function p : V → {1, . . . , n}.
The objects x and y are in a common cluster, if p(x) = p(y).
We say that objects x and y are in conflict at given tolerance

relation T and partition p iff value of cpT (x, y) = 1 in (1), i.e.

if they are similar and are in different clusters, or if they are

dissimilar and in the same cluster.

cpT (x, y)←







1 if (x, y) ∈ T and p(x) 6= p(y)
1 if (x, y) /∈ T and p(x) = p(y)
0 otherwise

(1)

We are ready to define the cost function of relation T
according to partition p:

cT (p)←
1

2

∑

cpT (x, y) =
∑

x<y

cpT (x, y) (2)

As relation T is symmetric, we sum cpT twice for each pair,

or restrict the summing in order to use each pair only once.

The objects are usually represented with numbers, hence we

can calculate the cost function as the last part of (2) shows.

Our task is to determine the value of minp cT (p), and one

partition p for which cT (p) is minimal. Unfortunately this

exact value cannot be determined in practical cases, except

for some very special tolerance relations. Hence we can get

only approximative, near optimal solutions.

The statistical software R has 6 different distance functions

for determining distance of objects. In our case the tolerance

relation replaces these metrics. The same software has 8 dif-

ferent cluster distance functions. None of them is suitable for

our needs.

Let us see, what is the result of joining two clusters

according to the cost function. Let A and B be these clusters,

426 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

moreover let us denote the partition before and after joining

by p and q, respectively.

1) If {x, y}∩(A∪B) = ∅, then cpT (x, y) = cqT (x, y) holds.

2) If x ∈ (A ∪ B) and y /∈ (A ∪ B) (or in reverse), then

cpT (x, y) = cqT (x, y) holds.

3) If x ∈ A and y ∈ B, then cpT (x, y) = 1−cqT (x, y) holds.

As objects x and y are from different clusters, p(x) 6=
p(y). So if cpT (x, y) = 1, then (x, y) ∈ T , but after the

joining q(x) = q(y), hence cqT (x, y) = 0. Similarly if

cpT (x, y) = 0, then (x, y) /∈ T , so cqT (x, y) = 1.

4) Finally, if x, y ∈ A (or x, y ∈ B), then cpT (x, y) =
cqT (x, y).

To determine cT (q) if we know cT (p), it is enough to calculate

the difference cT (q) − cT (p). From the previous list it is

obvious that we only need to take into account the third item.

Before the contraction between clusters A and B there were

#{(x, y)|x ∈ A, y ∈ B, (x, y) ∈ T} conflict, and after the

contraction these conflicts disappear. But #{(x, y)|x ∈ A, y ∈
B, (x, y) /∈ T} new conflicts are created by the contraction.

The change is the difference of these numbers.

If we treat the conflict of two objects as a distance, then the

aggregating function is the difference of two sums. At hier-

archical clustering the closest clusters are joined. For us, the

contraction method is a greedy algorithm, and we promote the

joining of those possible ones which produce maximal profit,

which mostly decreases the cost function. These two ideas are

confluent, because the difference mentioned before becomes

negative, and we join those clusters where the absolute value of

this difference is maximal, so where the difference is minimal.

Unfortunately, according to its negativity we cannot call the

difference as distance.

We note that our programs use notations of Bansal, and

if the tolerance relation holds for two objects, the number

denoting it is positive. From this, it naturally follows that the

program uses the differences cT (p)− cT (q), i.e. the profits of

joining. We only execute the contraction if this difference is

positive.

The upper part of the Figure 2 shows a relation. For the

sake of simplicity of the picture, this relation is a partial

tolerance relation. The middle part of the figure displays the

“distances” of the singleton clusters earned from the relation.

We formally define it in the next chapter. Finally the lower part

of the figure shows the updated distances when some clusters

are contracted. These distances are the superposition of the

predecessor clusters.

III. CONTRACTION METHOD

We can now define the Contraction method for correlation

clustering. Algorithm 1 is implemented in Python. In the

following formulae the brackets refer to the lines of the code.

The implementations use the routines of https://www.ics.uci.

edu/∼eppstein/PADS/UnionFind.py for handling disjoint sets:

it contracts two clusters in line 8. We do not present the

preprocessing of neither the tolerance relation, nor of the

result, but the clustering phase is emphasized.

Fig. 2. The partial tolerance relation, the generated “distances” at the
beginning and after several contraction steps.

1) Construct a “distance” matrix D based on a tolerance

relation T :

d(i, j)←

{

1 if (i, j) ∈ T,
−1 if (i, j) /∈ T,

(3)

Although d(i, i) would be 1 by definition, we set up 0,

in order to avoid contracting any clusters by themselves.

We denote the preprocessing T and setup of D with dots.

[line 3− 4]

2) Now, each object—as a singleton cluster—in one-one

bijection with rows and columns of D. Select one

maximal element of matrix D, and then its row and

column coordinates will refer to the clusters to join. Let

these be x and y [line 6].

3) If the maximal element is not positive, the algorithm

ends [line 7].

4) Otherwise add to column x the column y (contraction),

next delete column y, i.e. fill it with zero [lines 9− 12].

Then repeat this for the rows.

5) Continue from Step 2. [line 13]

The statistics describing the running time of Algorithm 1

is given in Table I. Here the columns denote graphs with

different sizes, and the rows tagged by the value of q. This

parameter gives the ratio of fulfilment of tolerance relation T
among objects. If this number is small, only a few clusters

can be joined, so the Contraction method finishes soon and

LASZLO ASZALOS, TAMÁS MIHÁLYDEÁK: CORRELATION CLUSTERING BY CONTRACTION 427

Algorithm 1 Naive contraction with matrix

1import numpy; import UnionFind

2N=2000; q=0.4

3d = numpy.zeros((N,N), dtype = numpy.int)

4...

5uf = UnionFind.UnionFind()

6x,y = numpy.unravel_index(d.argmax(),d.shape)

7while d[x,y] > 0:

8uf.union(x,y)

9for z in range(N):

10d[x,z] += d[y,z] ; d[z,x] += d[z,y]

11d[...,y] = 0; d[y,...] = 0

12d[x,x] = 0

13x,y = numpy.unravel_index(d.argmax(),

14d.shape)

TABLE I
RUNNING TIMES FOR COMPLETE SIGNED GRAPHS.

100 500 1000 2000 5000

q = 0.1 0.017 0.598 3.015 16.080 174.511

q = 0.5 0.027 0.773 3.736 19.152 198.269

q = 0.9 0.029 0.785 3.789 19.226 197.325

the solution contains many but quite small clusters. But if this

ratio is large, there are lot of possibilities to join clusters, and

the Contraction method runs for a long time and gives only a

few, but big clusters. It can even occur, that we get only one

cluster, containing all the elements.

In our previous article we examined the behaviour of

contraction of tolerance relation on n objects [13]. For this,

we took 101 different values for q from 0 to 1, and for each q
we tested the clustering for 10 different relations (graphs), and

used their average. By using this implementation to calculate

everything for 2000 objects, took more than 5 hours. These are

independent calculations, so they can be run in parallel. We

note that this program uses the low-level routines of Numpy

extensions, which speeds up the execution according to the

conventional Python implementation.

This 8-line-long naive implementation does not take into

account such details, which are obvious for the reader. As

we contract rows and columns, and delete one row and one

column (fill up with zeros), in the future the program will not

put any non-zero number into these rows and columns, thus

it is unnecessary to include these elements of the matrix in

the calculations. We could tag them, and later skip them in

the cycles. It could be a better solution, however, to change

the deletion of a row and a column by swapping them with

the last row and column, respectively. Next, we can logically

reduce the size of the matrix D, and set the upper limit in

cycles to the size of the matrix.

Up to here, for any pair of objects the tolerance relation

either holds or does not, i.e. the objects are either similar or

dissimilar. However, in some cases we have no knowledge

about either, thus the relation is partial. (A well-known partial

relation is the ordering of n-tuples, where the relation holds

TABLE II
RUNNING TIME OF ALGORITHM 1 ON RANDOM ER GRAPHS WITH

PARAMETERS (2000, pi), WHERE THE RATE OF THE POSITIVE EDGES IS q

q = 0.1 q = 0.5 q = 0.9

p1 = 0.9 16.870 19.294 19.418

p2 = 0.5 18.040 19.240 19.372

p3 = 0.1 18.148 19.112 19.371

only if one tuple Pareto dominates the other.) We can use (1)

for any partial tolerance relation. By definition, if two objects

are neither similar nor dissimilar, there is no conflict between

them. The partial tolerance relations are visualized by signed

graphs: if two objects are comparable then there is an edge

between them, otherwise there is not, like in Figure 2. If the

relation holds, the weight of the edge is 1, if not, its weight

is -1. If the relation is not defined between the objects, the

weight of the non-existent edge could be defined as 0. From

these weights we can construct the “distance matrix” D for

any partial relation.

It is not suprising that Algorithm 1 could be used for partial

tolerance relations without any modification. We generated

several partial relations with 2000 objects, to test our al-

gorithm. The graphs of the partial tolerance relations were

Erdős–Rényi type random graphs, where any two nodes are

connected with probability pi. Next, the weight of this edge (if

exists) would be 1 with probability q and −1 with probability

1− q.

The algorithm is the same, it takes the same steps, therefore

we can assume, that we get very similar results for clustering.

But the data in Table II refutes this assumption. If many edges

are missing from the complete graph (pi is small) and most

of the edges are negative (q is small), then the algorithm

does not stops after a few steps, as did it for a bigger pi.
Similarities force the contractions. The more 1s in D, the more

contractions are executed by the algorithm, which takes time.

The more -1s in D—the contractions are obstructed—the less

contractions are executed by the algorithm, and the process

stops early. The zeros (i.e. missing edges) here decrease the

effects of 1 and -1: the number of contractions fall between

the two extreme cases (when all zeros are replaced with 1 and

-1, respectively).

As we wrote before, Néda at al. described the asymptotic

behaviour of correlation clustering for complete graphs [8],

thus the computer simulations in this case are not challenging.

In case of any signed graph (including the partial tolerance

relations) we have conjectures only about the asymptotic

behaviour. Néda at al. simulated correlation clustering of BA

graphs with 140 nodes in 2009, which we extended to 500

nodes in 2014 [13], and even though the results are impressive,

they are not quite sufficient to see the tendencies.

The BA graphs are sparse graphs, they have O(|V |) edges.

It is superfluous to reserve O(|V |2) memory cells in a matrix

to store these edges. In the next section we show a memory

efficient algorithm to solve the correlation clustering problem

for sparse graphs.

428 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

IV. REFINING THE METHOD

The previous Python implementation shows the crucial

questions of the method:

Q1 For constructing a greedy algorithm we need the most

profitable contraction, i.e. from the stored and updated

(recalculated) values we need to select the biggest one,

or one of the biggest ones.

Q2 We need to be able to reach the element dx,y of the matrix

D, to read it, to update it, or to delete it.

As the previous implementation stores matrix D as a two-

dimensional array (matrix), the solution of Q2 is trivial,

however to solve Q1, we need a full search in D.

In BA graph with ten thousands of nodes, a node is only

part of a few edges. This means that in its row of “distance”

matrix D there are only a few non-zero elements (which are

interesting at calculations). Therefore it is worth to represent

the matrix D as a sparse matrix. There are several ways to

store a sparse matrix in the memory. The simplest way is to

store the list of (row, column, value) triplets. This storage

type is called a coordinate list.

In case of using a coordinate list, the solution to Q1 does not

change substantially, because a full search is needed in triplets.

(Now we have no element without valuable information.) Yet,

the solution of Q2 becomes more complicated. Until now, dx,y
was reachable in constant time (with pointer-arithmetic). Now

the triplets of D are in a list, so in a worst case scenario, a

full-search is needed. If this list is ordered, a binary search

is enough, but it is very hard to preserve this ordering during

contractions:

• If dx,z = −dy,z , then after contraction dx,z becomes 0,

but we do not want to store this element, so we need to

delete it.

• If dx,z = 0 and dy,z 6= 0, then after the contraction, one

new item is created and needs to inserted into the list,

while an old one is to deleted.

The hash table could help us solve Q2 effectively, because

its speed is near to O(1) at insertion. The hash table is

a possible (and fast) implementation of the data structure

associative arrays (dictionary in Python). Algorithm 2 is the

reimplementation of the Contraction method with an associa-

tive array.

As before, we only indicate the phase of preprocessing

[line 23]. This code is much longer than the previous one,

we need to care about more details. While in the previous

program, we retrieved the indices of the biggest element of

D with one complicated instruction, we needed to take it

into pieces here: from the values of the associative array the

algorithm selects the biggest one [line 27], and collects the

keys belonging to this maximal value [lines 29–30]. From

these keys it chooses a pair. We refer the members of this

pair as i and j. We wish to reuse the part of this code,

which describes the contraction, therefore we implemented

the contraction step as a function [lines 2–20]. For similar

reasons, the pair (i, j) is stored in an associative array, called

s. Our construction guaranties, that i < j, and at contraction

Algorithm 2 Contraction by associative array

1import UnionFind

2def contraction(d, s):

3d2 = {}

4for pair, value in d.items():

5x,y = pair

6if x in s:

7x = s[x]

8if y in s:

9y = s[y]

10if x == y:

11continue

12if x > y:

13x,y = y,x

14if (x,y) in d2:

15d2[(x,y)] += value

16if d2[(x,y)] == 0:

17del d2[(x,y)]

18else:

19d2[(x,y)] = value

20return d2

21

22N=1000; q=0.2

23d = ...

24uf = UnionFind.UnionFind()

25if len(d) < 2:

26return

27max_d = max(d.values())

28while max_d > 0:

29pairs = [pair for pair,value in

30d.items() if value ==max_d]

31i,j = pairs[0]; s = {j:i}; uf.union(i,j)

32d2 = contraction(d,s)

33if len(d2) < 2:

34break

35d = d2.copy()

36max_d = max(d.values())

we keep the smaller one. This means, that upon meeting a key

(which is a coordinate-pair), we need to check whether one

of it is equal to j (to the key in the associative array s) or

not. If it is, then we need to replace it with i (with the value

according the key) [lines 6–9]. In the diagonal of D, only zero

values are allowed, but we do not store them, so if something

gets into this diagonal it is ignored [lines 10–11]. We store

the indices by ordering [lines 12–13]. If a known pair occurs,

then we update its value, whereas unknown pairs are stored

[lines 14–19]. Sometimes one cluster is connected with two

different clusters, and their effects are opposite. Remember on

Figure 1 the husband who loves her wife (+1) but hates her

paramour (-1). If the wife left him with her paramour, these

numbers add up, and we get 0. So the best if he forget about

this new couple. We can speed up our method by not storing

zero values, so we omit this one, too [lines 16–17].

Unfortunately the associative arrays do not allow us to pick

items by specific needs, hence, to get all the keys in form (j, ·)
and (·, j), we need traverse the whole associative array, and

check whether the actual item is concerned in the contraction

or not. In the BA random graphs, the nodes i and j have only

LASZLO ASZALOS, TAMÁS MIHÁLYDEÁK: CORRELATION CLUSTERING BY CONTRACTION 429

a few nearby node (connected to it by an edge), hence this

traverse needs extra effort (in comparison to direct access of

the edges of a node).

The statistic demonstrating Algorithm 2 is in the first data

column—denoted with D—in Table IV. The numbers in this

table are not seconds or number of conflicts, but rates of

benchmarks. Figure 3 and Table III shows the real running

times of the bases of the benchmarks. The real running times

of Algorithm 2 are much smaller than the running times of

Algorithm 1. But if we think about it, we can realize, that

these numbers are incomparable. The naive algorithm used

total graphs, and a total graph with two thousands nodes has

about two millions edges, but a BA random graph has only

four thousands. To find the one with the maximal value (Q1)

is not the same job, and even the solution of Q2 is easier in

the case of associative arrays. We have about five-hundredths

many edge, and the running time only one third. To tell the

truth Algorithm 2 only uses the conventional Python here—

does not use any extension compiled to fast machine code—

i.e. overall the execution of the code is much slower.

This programming language enables us to combine different

data structures. Hence we can construct one associative array

about profits related to a given cluster, and organize these

associative arrays into an associative array. This two level

dictionary is very common in the Python literature. To speed

up the solution of Q2, we store one “distance” at two places: in

each node’s associative array of the according edge. This helps

us collect all the edges belonging to the clusters needing to

join. This double storage complicates our programs. Moreover,

the empty associative arrays generate errors, so we need to

check whether the associative arrays become empty, or all the

objects are in one cluster.

Here the values of the profits of contractions are distributed

among the associative arrays. Hence to find the maximal value

we need to search for the maximal value in each associative

array, and to select the maximal one among these maximal

values (line 5). Lines 7–9 is a list comprehension, in which

we traverse all associative arrays, and check, whether there is

a key, for which this maximal value is assigned. If yes, we

record the pair of the key i of the associative array, and the

key j of the maximal value. If all the maximal values have

been found, we select one (more precisely the first) key from

the keys of the maximal values. This key is a pair, and we

refer to its elements by i and j in the following (line 10). We

delete the edge belonging to the selected pair (line 11), and we

store the keys in the associative array belonging to i (line 12).

It is an important step, Python does not allow to modify a

data structure while traversing it. (Do not cut off the tree you

are standing on!) Similarly, we docket the associative array

belonging to j (line 14), and by traversing this associative

array we update the weights of the edges in contact to the

contracted cluster (lines 16–19). If it is not possible (there is no

corresponding (i, z) edge to the edge (j, z)) then we construct

the missing edge. When all edges (j, ·) are processed, we can

delete the associative array belonging to j (line 25), and the all

references to this cluster (i.e. (·, j) type edges), too (line 22). If

Algorithm 3 Contraction by associative array of associative

arrays.

1import UnionFind

2N=1000; q=0.2

3d = ...

4uf = UnionFind.UnionFind()

5max_d = max([max(di.values()) for di in d])

6while max_d > 0:

7pairs = [(i,j) for i,di in d.items()

8for j,value in di.items()

9if value == max_d]

10i,j = pairs[0]

11del d[i][j]; del d[j][i]

12di_k = list(d[i].keys())

13uf.union(i,j)

14dj = list(d[j].items())

15for z,value in dj:

16if z in di_k:

17d[i][z] += value; d[z][i] += value

18if d[i][z] == 0:

19del d[i][z]; del d[z][i]

20else:

21d[i][z] = value; d[z][i] = value

22del d[z][j]

23if d[z] == {}:

24del d[z]

25del d[j]

26if d[i] == {}:

27del d[i]

28if len(d) == 1:

29break

30max_d = max([max(di.values())

31for i,di in d.items()])

TABLE III
RUNNING TIMES FOR D2

r IN SECONDS

N 0.1 0.5 0.9
100 0.004–0.009 0.004–0.012 0.008–0.015
500 0.076–0.227 0.075–0.227 0.165–0.327

1000 0.483–1.126 0.488–1.267 0.863–1.581
2000 2.370–5.867 2.397–5.927 3.985–8.506
5000 0.230–3.310 3.576–25.155 15.386–36.270

10000 6.205–23.424 15.298–104.581 122.131–265.172

the contracted cluster becomes empty (any strange, sometimes

it can happen), we need to delete it (lines 26–27). If only one

cluster remains, we can stop the method (lines 28–29).

The statistics about Algorithm 3 can be found in the third

column—denoted with D2— of Table IV. From this table it

is obvious, that the two level dictionary is more effective than

the ordinal dictionary.

In Python the associative arrays are implemented as hash

tables. It is well known, that here the deletion is a costly

operation, and thus we delete the whole structure in small

steps. By examining the handling of the hash table in Pythonic

way, we rewrote the code in Algorithm 3 in a such way, that at

contraction we do not delete directly from the joined cluster,

but we create a new associative array for the joined cluster,

and fill it with its predecessors. As deletion from dictionary is

solved by replacing data with dummy items, the recreation of

430 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 100 1000 10000

ti
m

e
 (

s
e
c
)

nodes

0.1
0.5
0.9

Fig. 3. Running time of implementation D2
r for graphs with different N and

q

the joined cluster can free up memory and speed up problem

Q2. The deletion from the nearby clusters remains the same.

It would be very time consuming to recreate them, too. By

the fifth column—denoted with D2

r— of Table IV this extra

effort has no evident profit: the accuracy is almost the same,

but the running time is slightly longer.

V. QUASI-PARALLEL VARIANT

The hierarchical clustering sometimes has very natural

interpretations. For a given distance function d : V × V → R,

where d(x, x) = 0 for any x ∈ V Sibson defined a dendogram

function c : [0,∞) → E(V) [14], where E(V) is the set

of equivalence relations on V . This function c fulfils the

following criteria:

• If h ≤ h′ then c(h) ⊆ c(h′),
• The final value of c(h) [i.e. c(∞)] is V × V and

• c(h+ δ) = c(h) for any small δ > 0.

In case of a minimal distance (the distance of clusters

defined by the minimum of distances of their elements), let

E = {(x, y)|x, y ∈ V, d(x, y) < h}, i.e. add to the set of

nodes V all the edges shorter than h. This is a symmetric

relation. Next, take the transitive closure of this relation, which

becomes an equivalence relation. Taking these equivalence

relations for all h ≥ 0, we get the dendogram c.
Can we use this idea? Unfortunately not. If we have a chain

of objects connected by edges, then their optimal clustering

produces pairs and maybe one singleton cluster [15]. In the

case of a star topology we got a pair and singletons. Therefore

the transitive closure of a (partial) tolerance relation is not

suitable for us. But we can try to contract independent pairs.

As they are independent, the contraction can be done in

parallel! This means that we lose the purely greediness of the

contraction method. Moreover the dynamics of the method is

changing. If we started by contracting two singleton clusters i
and j, for which there was a third cluster k such that di,k > 0
and dj,k > 0, then the next contraction used clusters i∪ j and

k at algorithms before. Moreover if there was a fourth cluster

l, for which di,l > 0, dj,l > 0 and dk,l > 0, then the following

contraction used clusters i ∪ j ∪ k and l, and so on. In other

words the initial combined cluster grows in each steps until

it is surrounded with clusters only, for which the profit of the

contraction with this giant cluster is negative. If we execute

the contractions in parallel, then we have more centres (not so

giant clusters).

Algorithm 4 Determining the independent edges

1def independent(pairs):

2s = {}

3random.shuffle(pairs)

4for i,j in pairs:

5if len({i, j} &

6(s.keys() | s.values())) == 0:

7s[j] = i

8return s

We do not need to rewrite the whole Algorithm 2 as most

of the code is reusable. For example, to get the independent

pairs we have the list of best pairs. Previously we used the

first pair from the list, now we will use more. Algorithm 4

selects the independent ones. This algorithm gets all best

pairs, and constructs an associative array from the independent

edges. The algorithm traverses the best edges, and an edge is

independent from the stored ones, if its nodes do not occur

in the associative array, neither as a key, nor as a value.

The original ordering limits the set of independent edges, so

we shuffle the starting list, in order for the subsequent runs

to give a different results, therefore the clustering becomes

indeterministic, and by repeating the whole process it should

be possible to choose the best of them.

The Algorithm 5 is a slight modification of Algorithm 2 so

we only provide the difference: you need to replace lines 25–

36 in Algorithm 2 with the listing of Algorithm 5. The main

difference is that Algorithm 2 which allowed only one pair in

the associative array, now allows any number of pairs, which

need to be independent.

In this case, the question arises: it is worth to complicate

things? Based on the first idea, it could speed up the process,

because we can omit the superfluous steps, as we do not need

to traverse the associative array several times, it is enough only

once, to get the same number of contractions. The second

Algorithm 5 Quasi-parallel contraction, associative array

1if len(d) < 2:

2return

3max_d = max(d.values())

4while max_d > 0:

5pairs = [pair for pair,value

6in d.items() if value ==max_d]

7s = independent(pairs)

8for i,j in s.items():

9uf.union(i,j)

10d2 = contraction(d, s)

11if len(d2) < 2:

12break

13d = d2.copy()

14max_d = max(d.values())

LASZLO ASZALOS, TAMÁS MIHÁLYDEÁK: CORRELATION CLUSTERING BY CONTRACTION 431

TABLE IV
COMPARISON OF RUNNING TIMES AND ACCURACY ON 3/2 BA GRAPHS

D D D2 D2 D2
r D2

r

q=0.1
100 2.44/1.01 0.88/1.02 1.41/1.04 1.03/0.99 1.47/1.04 1.00/1.00
500 3.68/0.98 1.22/0.99 1.68/1.01 0.96/1.00 1.74/1.01 1.00/1.00

1000 4.12/0.98 1.64/1.00 1.50/1.00 0.99/1.00 1.54/1.00 1.00/1.00
2000 4.48/0.98 1.67/1.00 1.59/1.00 1.02/1.00 1.58/1.00 1.00/1.00
5000 61.79/1.08 0.96/1.00 16.84/1.32 1.03/0.99 17.43/1.32 1.00/1.00

10000 56.66/1.03 0.79/1.00 13.93/1.16 1.07/1.00 14.02/1.16 1.00/1.00
q=0.5

100 2.46/0.95 0.79/0.98 1.28/1.02 0.97/0.99 1.36/1.03 1.00/1.00
500 3.77/0.98 1.30/1.00 1.63/1.01 1.01/1.00 1.66/1.01 1.00/1.00

1000 4.37/0.97 1.61/1.00 1.58/1.00 1.01/1.00 1.70/1.00 1.00/1.00
2000 4.26/0.98 1.67/1.00 1.59/1.00 1.02/1.00 1.61/1.00 1.00/1.00
5000 5.43/0.98 1.67/1.00 2.07/1.02 1.04/1.00 2.18/1.02 1.00/1.00

10000 4.68/0.99 1.49/1.01 1.87/1.03 1.05/1.01 1.99/1.03 1.00/1.00
q=0.9

100 1.35/1.05 0.88/1.04 0.84/1.00 1.00/1.00 0.88/1.00 1.00/1.00
500 1.61/1.00 0.95/1.01 0.86/1.00 0.99/1.00 0.92/1.00 1.00/1.00

1000 1.85/1.00 1.12/1.00 0.79/1.00 1.01/1.00 0.82/1.00 1.00/1.00
2000 1.66/1.00 1.05/1.00 0.69/1.00 1.00/1.00 0.71/1.00 1.00/1.00
5000 2.29/1.00 1.18/1.00 1.01/1.00 0.97/1.00 1.08/1.00 1.00/1.00

10000 1.53/1.00 1.05/1.00 0.66/1.00 1.09/1.00 0.68/1.00 1.00/1.00

column—denoted by D—of Table IV shows the numbers

of the quasi-parallel variant. It is obvious that this parallel

variant is better than the original according to the running

time. But if we learned that there is no free lunch, maybe

the accuracy of method were worse. Let us see the numbers.

By Table IV Algorithm 2 produces less conflict, thus gets

closer to the optimum. We measured the whole process at three

different values of q. We wish to repeat this investigation in

more details. We executed the original (Algorithm 2) and the

parallel (Algorithm 5) version of the Contraction method on

the same signed graphs. The original graph was 3/2 BA graph

with thousands of nodes. The weight of the edges were given

randomly according the value of q for 101 different q. After the

contraction method we calculated the cost-functions. Figure 4

shows the result. Moreover we summed the values of the cost

functions (calculated the “integral” of the curves), and at the

parallel version the sum was 94.8–96.0 percent of the original

version (these numbers denote conflicts, so the smaller is better

here). Five experiments show similar results, so we believe that

this is the tendency. This is not a big difference, but disproves

our hypothesis. This fact undermines our beliefs in greedy

algorithm, so a careful examination is needed. We think, that

the giant cluster is the result of an early decision at non-parallel

algorithms. This decision could be perfect or bad. Maybe

the latter occurs more often. The parallel version postpones

the decision, it executes several contractions in parallel, gets

smaller clusters, and maybe causes less vital mistakes.

By examining the Table IV, we can see, that the parallel

version really is faster than the original. Surprisingly, at

different values of q the speed rate is different. For small q
we see big differences, while at big q the parallel version will

not be twice as fast as the original.

Let us compare this parallel version (D) with the variant

using an associative array of associative arrays (D2), because

until now this was the fastest implementation. If q is small,

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.2 0.4 0.6 0.8 1

Greedy
Parallel

Fig. 4. Cost functions earned by the original and parallel algorithms. x-
coordinate denotes the rate q of positive edges and y-coordinate denotes the
value of the cost function.

the parallel version is remarkably faster for big N . If q is big,

the variant with double dictionary is the clear winner.

Of course, the following question arises: It is worth to

construct the parallel version of Algorithm 3, or not? The

modification is minimal:

• We need to replace line 10 with a cycle for the indepen-

dent pairs from pairs.

• We need to indent lines 11–29, to treat this lines as the

core of the cycle in line 10.

We leave these modifications to the reader, and do not present

this as a next code listing. Table IV shows the statistics of

this parallel variant—denoted by D2. If q is small—we only

need a small number of contractions to get the near optimal

solution—then the second parallel variant (D2) is much faster

then its origin (D2), but for big Ns it is slower than the first

parallel implementation (D). Surprisingly if we need a lot of

contraction (e.g. q is big), then the parallel version (D2) is

much slower than its origin (D). By observing the accuracy

432 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

of the last implementation, the tendency is more evident: 84.3–

87.7 percent of conflicts of the non-parallel version.

We could continue the comparison of greedy and parallel

variants, but we compared the accuracy of the different parallel

implementations. The rates of the integrals were 99.9–101.0

percent.

The running times of the three parallel versions are com-

parable by Table IV. Hence we run the different “parallel”

implementations on BA graphs with 20,000 nodes to find the

differences. Each implementation solved 15 problems in one

hour and a half. The implementation D was the slowest, about

8 percent slower than the others. But its accuracy was the best:

the difference was less than half percent.

We tried the skip-list data structure for Contraction, where

the complexity of the insertion, deletion and search is

O(log n), and not constant. By our statistics this implementa-

tion was five times slower than the implementation with double

dictionary. The results based on these prototypes suggest for

us that the industrial implementation will based on a (double)

dictionary, too.

VI. FUTURE PLANS

There are tools to find the weakness of codes presented in

this paper, and their execution could be optimized. Moreover

by choosing a different programming language it gives (maybe

several magnitudes) faster implementation. We refer to a quote

of D. E. Knuth: We should forget about small efficiencies, say

about 97% of the time: premature optimization is the root of

all evil. Yet we should not pass up our opportunities in that

critical 3%. We would like to invent new algorithms and not

to patch this ones.

Our main aim was to introduce a simple idea, and its

little improvements. We have fulfilled our plans and broke

through our former limits of 500 nodes (with significantly

higher results), although previously we used faster languages.

To solve the correlation clustering problem for bigger and

bigger set of objects is challenging for us, so we will continue

this path. We believe to go futher we need to use other kind

of parallelism: divide and empire.

The zero “distances” of clusters were left along the whole

article. We did not examine whether they have any effect to

contract clusters where the corresponding distance is zero.

This contraction does not decrease and does not increase

the number of conflicts immediately. It is worth to examine

whether this kind of contractions has any future effects, or not.

We do not know any examples that could assist this question

from neither the natural nor the social sciences.

We can imagine three clusters i, j and k, where di,j = 0
di,k = c and dj,k = −c. It is obvious, that contracting i and j
the value of di∪j,k becomes zero, so the number of conflicts

does not lessen. While by contracting i and k the number of

conflicts decreases by c, if c > 0. But it is not clear when we

have thousands of clusters, the situation is the same, or not. If

we have BA random graphs, the zero “distance” clusters, i.e.

independent clusters are very common.

VII. CONCLUSION

We introduced a correlation clustering problem, and ex-

tended the (partial) tolerance relation to clusters. Using this

concept we have shown the Contraction method, and its

several implementation in Python. Despite of the weakness of

this programming language these implementations gave fast

results for big sets, although the problem is NP-hard. By

our knowledge these are the state of the art algorithms in

correlation clustering. We found a near-optimal solution for

a problem where the upper bound of the number of possible

partitions is 1064,079 [16].

Our previous measurements show, that the accuracy of this

method is among the best optimization methods [11]. These

two properties enable the usage of this method in real-life

applications.

REFERENCES

[1] N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,”
Machine Learning, vol. 56, no. 1-3, pp. 89–113, 2004. doi:
10.1023/B:MACH.0000033116.57574.95. [Online]. Available: http:
//dx.doi.org/10.1023/B:MACH.0000033116.57574.95

[2] C. Zahn, Jr, “Approximating symmetric relations by equivalence
relations,” Journal of the Society for Industrial & Applied Mathematics,
vol. 12, no. 4, pp. 840–847, 1964. doi: 10.1137/0112071. [Online].
Available: http://dx.doi.org/10.1137/0112071

[3] S. Kim, S. Nowozin, P. Kohli, and C. D. Yoo, “Higher-order correlation
clustering for image segmentation,” in Advances in Neural Information

Processing Systems, 2011. doi: 10.1.1.229.4144 pp. 1530–1538.
[4] A. Bhattacharya and R. K. De, “Divisive correlation clustering

algorithm (dcca) for grouping of genes: detecting varying patterns
in expression profiles,” bioinformatics, vol. 24, no. 11, pp. 1359–
1366, 2008. doi: 10.1093/bioinformatics/btn133. [Online]. Available:
dx.doi.org/10.1093/bioinformatics/btn133

[5] B. Yang, W. K. Cheung, and J. Liu, “Community mining from signed
social networks,” Knowledge and Data Engineering, IEEE Transactions

on, vol. 19, no. 10, pp. 1333–1348, 2007.
[6] T. DuBois, J. Golbeck, J. Kleint, and A. Srinivasan, “Improving

recommendation accuracy by clustering social networks with trust,”
Recommender Systems & the Social Web, vol. 532, pp. 1–
8, 2009. doi: 10.1145/2661829.2662085. [Online]. Available: http:
//dx.doi.org/10.1145/2661829.2662085

[7] Z. Chen, S. Yang, L. Li, and Z. Xie, “A clustering approximation
mechanism based on data spatial correlation in wireless sensor
networks,” in Wireless Telecommunications Symposium (WTS), 2010.
IEEE, 2010. doi: 10.1109/WTS.2010.5479626 pp. 1–7. [Online].
Available: http://dx.doi.org/10.1109/WTS.2010.5479626

[8] Z. Néda, R. Florian, M. Ravasz, A. Libál, and G. Györgyi,
“Phase transition in an optimal clusterization model,” Physica A:

Statistical Mechanics and its Applications, vol. 362, no. 2, pp.
357–368, 2006. doi: 10.1016/j.physa.2005.08.008. [Online]. Available:
http://dx.doi.org/10.1016/j.physa.2005.08.008

[9] L. Aszalós and T. Mihálydeák, “Rough clustering generated by
correlation clustering,” in Rough Sets, Fuzzy Sets, Data Mining, and

Granular Computing. Springer Berlin Heidelberg, 2013, pp. 315–324.
[Online]. Available: http://dx.doi.org/10.1109/TKDE.2007.1061

[10] ——, “Rough classification based on correlation clustering,” in Rough

Sets and Knowledge Technology. Springer, 2014, pp. 399–410.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-11740-9 37

[11] L. Aszalós and M. Bakó, “Advanced search methods (in Hungarian),”
http://morse.inf.unideb.hu/∼aszalos/diak/fka, 2012.

[12] R. Durrett, R. Durrett, and R. Durrett, Random graph dynamics. Cam-
bridge university press Cambridge, 2007, vol. 200, no. 7.

[13] L. Aszalós, J. Kormos, and D. Nagy, “Conjectures on phase transition at
correlation clustering of random graphs,” Annales Univ. Sci. Budapest.,

Sect. Comp, no. 42, pp. 37–54, 2014.
[14] R. Sibson, “Slink: an optimally efficient algorithm for the single-

link cluster method,” The Computer Journal, vol. 16, no. 1,
pp. 30–34, 1973. doi: 10.1093/comjnl/16.1.30. [Online]. Available:
http://dx.doi.org/10.1093/comjnl/16.1.30

LASZLO ASZALOS, TAMÁS MIHÁLYDEÁK: CORRELATION CLUSTERING BY CONTRACTION 433

[15] D. Nagy, “Correlation clustering of trees,” Master’s thesis, University
of Debrecen, Faculty of Informatics, Hungary, 2015. Available: http:
//hdl.handle.net/2437/211878

[16] D. Berend and T. Tassa, “Improved bounds on bell numbers and on
moments of sums of random variables,” Probability and Mathematical

Statistics, vol. 30, no. 2, pp. 185–205, 2010.

434 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

