

Abstract—In this paper, the performance research on

CPython’s latest interpreter is presented, concluding that

bytecode dispatching takes about 25 percent of total execution

time on average. Based on this observation, a novel bytecode

dispatching mechanism is proposed to reduce the time spent on

this phase to a minimum. With this mechanism, the blocks

associated with each kind of bytecodes are rewritten in

hand-tuned assembly, their opcodes are renumbered, and their

memory spaces are rescheduled. With these preparations, this

new bytecode dispatching mechanism replaces the

time-consuming memory reading operations with rapid

operations on registers.

This mechanism is implemented in CPython-3.3.0. Experiments

on lots of benchmarks demonstrate its correctness and efficiency.

The comparison between original CPython and optimized

CPython shows that this new mechanism achieves about 8.5

percent performance improvement on average. For some

particular benchmarks, the maximum improvement is up to 18

percentages.

I. INTRODUCTION

he past decade has witnessed the widespread use of

Python, which is a typical dynamic language designed

to execute on virtual machines. Several software

engineering advantages over statically compiled binaries,

including portable program representations, thread manage

-ment, some safety guarantees, built-in automatic memory, and

dynamic program composition through dynamic class loading,

are provided by Python. These advanced features enhance the

user programming model and drive the success of Python

language. However, these features also require the dynamic

compilers to do quite a lot of extra operations, such as type

checking, wrapping/unwrapping of boxed values, virtual

method dispatching, bytecode dispatching, etc. These extra

operations usually make Python programs several or dozens of

times slower than static programs achieving the same

functionality. Moreover, traditional static program optimiza

-tion technologies are frustrated, introducing new challenges

for achieving high performance.

In response, more and more researchers have paid their

attention to optimize dynamic language compilers. The

technologies proposed aim to improve performance by

1 Corresponding author. Email: gunj@ustc.edu.cn

monitoring programs’ behavior and using this information to

drive optimization decisions [1]. The dominant concepts that

have influenced effective optimization technologies in today’s
virtual machines include JIT compilers, interpreters, and their

integrations.

JIT (just-in-time) techniques exploit the well-known fact that

large scale programs usually spend the majority of time on a

small fraction of the code [2]. During the execution of

interpreters, they record the bytecode blocks which have been

executed more than a specified number of times, and cache the

binary code associated to these blocks. The next time these

bytecode blocks are executed, it has no need to interpreter these

bytecodes once again, just jumps to the cached binary code, and

continues the execution. By this way, much interpreting work is

omitted, and performance improvement can be achieved.

However, since the threshold is quite large in general, the

interpreting stage still accounts for a large proportion of total

execution time. JIT strategies work well for for/while blocks

which likely exist in science compute field. For the programs,

whose purposes are remote configuration, warning, tracing,

statistics, communication, etc, it is very hard to find hot blocks.

Though not large, these programs are usually executed quite

frequently.

Interpreters have a series of advantages which make them

attractive [3]. Firstly, optimizing interpreters reduces the

uptime of all Python programs with or without hot blocks.

Secondly, they are quite simpler to construct than JIT compilers,

making them quicker, more reliable to construct and easier to

maintain. Thirdly, interpreters require less memory than JIT

compilers, for both the interpreted virtual machine code and the

interpreter itself. Interpreters for dynamic language have two

main structures [1]: switch-based structure and threaded-based

structure, whose details are given in section 2 part B. The latter

is the latest and most efficient mechanism. Recently, many

researchers have applied dynamic techniques to improve the

performance of threaded-based structure. Piumarta and

Riccardi [4] describe their techniques to dynamically generate

threaded codes for purpose of eliminating a central dispatch site

and inlining common bytecode sequences. Ertl and Gregg [5]

extend Piumarta and Riccardi’s work by duplicating bytecode

sequences, researching various interpreter generation heuristics,

Performance Research and Optimization on CPython’s Interpreter

Huaxiong Cao, Naijie Gu1, Kaixin Ren, and Yi Li

1) Department of Computer Science and Technology, University of Science and Technology of China

2) Anhui Province Key Laboratory of Computing and Communication Software

3) Institute of Advanced Technology, University of Science and Technology of China

Hefei, China, 230027

Email: chx319@mail.ustc.edu.cn, gunj@ustc.edu.cn

T

Proceedings of the Federated Conference on

Computer Science and Information Systems pp. 435–441

DOI: 10.15439/2015F139

ACSIS, Vol. 5

978-83-60810-66-8/$25.00 c©2015, IEEE 435

and concentrating on improving branch prediction accuracy.

Gagnon and Hendren [6] adapt Piumarta and Riccardi’s
research to work in the context of multithreading and dynamic

class loading. Sullivan et al. [7] describe a combination

between an interpreter implementation and a dynamic binary

optimizer, which enhances the efficacy of the underlying
dynamic binary optimizer during the execution of interpreter.

Despite the enhancements above, interpreters are still worse

than static compilers from the runtime perspective. The purpose

of our research is to explore new ways to achieve further

performance improvement. In this paper, the performance

research on CPython’s latest interpreter is presented, finding

that bytecode dispatching takes about 25 percent of total

execution time on average. Then, a novel bytecode dispatching

mechanism, which aims at reducing memory reading

operations during bytecode dispatching and reducing the time

spent on this phase to a minimum, is proposed. This mechanism

is implemented inside CPython’s interpreter. Experiments on
lots of benchmarks demonstrate the correctness and efficiency

of our new mechanism. The comparisons between original

CPython and optimized CPython show that our new

mechanism can achieve about 8.5 percent performance

improvement on average. For some particular benchmarks, the

maximum improvement is up to 18 percentages.

The remainder of this paper is structured as follows: In the

next section, we make comparisons among different compilers

of Python and present both switch-based and threaded-based

mechanisms. Section 3 reports our performance research on

CPython’s interpreter. Section 4 discusses the main techniques

we adopted to construct a new bytecode dispatching

mechanism. Benchmarks and Experiments are given in section

5. Section 6 discusses the related work. We conclude this paper

in the last section.

II. BACKGROUND

A. CPython VS Other Python compilers

A series of dynamic compilers are designed to run Python

programs, such as CPython, Jython [8], IronPython [9], Pyston

[10], PyPy [11], etc. The comparisons among them are shown

on Table I, and these benchmarks are provided officially by

Pyston/minibenchmarks and Pyston/microbenchmarks. Among

these compilers, CPython is the official and standard compiler

for Python language, it can support all the grammars and

extensions. Others are developed for special applications. They

focus on particular scenarios and take in-depth optimization

passes. In this context, these compilers show their excellent

performances for some benchmarks, but for other benchmarks,

they may be several times slower than CPython. As shown on

Table I, taking fid.py for example, it takes CPython 3.696

seconds to execute this script, while IronPython, Pyston and

PyPy spend less than 2 seconds on the same script. However, it

takes CPython 1.082 seconds to execute emwomding.py, while

JPython, IronPython, Pyston and PyPy spend more than 3.700

seconds on the execution of emwomding.py.

What’s more, some benchmarks, like pydigits.py, empth_lo
-op.py, vecf_add.py, nq.py, raytrace.py, cannot be executed

successfully by some of these compilers. Based on these

comparisons, our research focuses on CPython, and has not

only practical application value, but also instruction meaning

for the improvement of other interpreters.

B. Switch-based Mechanism VS Thread-based Mechanism

The performance of interpreters depends heavily on their

bytecode dispatching mechanisms. CPython’s interpreter
provides two main bytecode dispatching mechanisms:

switch-based mechanism and thread-based mechanism.

The inner loop of switch-based interpreters is quite simple:

jump to the dispatch point, fetch the next bytecode and dispatch

to its implementation through a switch statement. Its typical

framework is shown in Fig. 1.

As shown in Fig. 1, the interpreter is an infinite loop with a

big switch block to dispatch bytecodes successively. Each

bytecode are implemented by a particular case in the body of

this switch block. At the end of each case, control are passed

back to the beginning of the infinite loop by breaking out of this

switch block. Traditional C compilers like GCC translate this

switch block into a series of comparison statements.

Considering a particular bytecode whose opcode is

BINARY_SUBTRACT, five indispensable comparisons

should be executed before reaching its associated block.

Assuming that all bytecodes have the same probability of

occurrence, it takes N/2 (N is the total kinds of bytecodes)

comparisons on average to find the corresponding block. As to

TABLE I.
COMPARISONS AMONG CPYTHON, JYTHON, IRONPYTHON, PYSTON AND PYPY

Benchmarks CPython-3.3.0 Jython IronPython Pyston PyPy

empty_loop.py 3.532s 5.491s Failed 19.248s 0.248s

pydigits.py 0.034s 2.126s 1.431s Failed 0.039s

fid.py 3.696s 4.776s 1.527s 0.636s 0.864s

vecf_add.py 9.890s 12.970s 25.150s Failed 0.059s

allgroup.py 0.836s 4.428s 3.052s Failed 18.804s

chaso.py 26.268s 33.091s 51.366s Failed 1.392s

go.py 53.787s 56.746s 123.404s Failed 33.638s

nbody.py 12.677s 19.535s 17.057s 25.540s 1.470s

nq.py 29.879s Failed 35.673s Failed 44.418s

raytrace.py 11.608s 16.418s 26.724s Failed 1.228s

polymorphism.py 4.358s 7.228s 7.959s 4.390s 14.260s

unwinding.py 1.082s 3.757s 2.802s 93.180s 4.481s

436 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

CPython, N is 101. So, performing bytecode dispatching wastes

the majority of execution time and it is very inefficient.

Threaded-based mechanism is the latest and most efficient

mechanism for interpreters, popularized by the Forth

programming language [12]. There are many kinds of

threaded-based interpreters, and direct threading is regarded as

the most efficient one. Direct threading mechanism improves

performance by eliminating redundant comparisons. In

addition, rather than returning to a central dispatch point, the

implementation of each direct threading opcode ends with the

particular code required to dispatch the next opcode. This

optimization eliminates the centralized dispatch, removing lots

of jump instructions. The framework of direct threading

mechanism is shown in Fig. 2.

As shown in Fig. 2, execution starts with fetching the address

of the very first bytecode’s implementation and then jumping to
that address. For each bytecode, it performs its own work at

first, then increases the instruction pointer, thirdly fetches the

address of next bytecode’s implementation from memory, and

jumps to the target address to handle successive bytecode. The

native instructions associated with bytecode dispatching is

shown in Fig. 3, with one stack reading, one memory reading

and one jump. It can be seen from Fig. 3 that the bytecode

dispatching overheads associated with direct threading

mechanism are quite lower than those associated with

switch-based mechanism.

III. MOTIVATION: PERFORMANCE RESEARCH

So far, it can be seen that bytecode dispatching plays a very

important role in the performance of CPython. To make this

concept intuitional, a series of meticulous experiments are

conducted and the experimental results are shown in table II.

To make the results credible and accurate, this work utilizes

hardware performance counters provided by Intel, and

calculates the number of ticks which are consumed by the

procedure to find next bytecode. The results are shown in Table

II column 2. The ticks, which are consumed by the total

program execution are also recorded and listed in Table II

column 3. In Table II column 4, the ratios between them are

calculated and listed. According to this table, it can be sure that

the time consumed by bytecode dispatching is 25 percent of the

total execution time on average. So if this stage could be further

optimized, the total performance of CPython will be improved

obviously.

As shown in Fig. 3, the bytecode dispatching in direct

threading mechanism is composed of one stack reading, one

jump and one memory reading. Inside the memory reading,

there are an addition and a multiplication. Since operations on

stack are quite frequent, the first stack reading instruction will

also hit the L1 cache. Table III [13] lists the time needed to read

data from register, L1 cache, L2 cache, memory and disc.

According to this table, the first instruction takes about 2ns.

The second instruction contains an addition operation, a

multiplication operation and a load operation. The first two

operations can be finished within several ticks. However, since

L1 cache can only contain eight pages (32k L1 cache, page size

4k), reading the address of successive bytecode’s

implementation leads to lots of L1 cache misses. In this context,

it has to get the right value from L2 cache, or even memory,

which may take dozens of nanoseconds. Assuming that reading

from these three memory structures has the same probability of

occurrence, it takes about 30ns to finish this memory reading.

So, it can be seen that the second instruction takes the majority

of the time spent on bytecode dispatching, and optimizing this

instruction will contribute a lot to bytecode dispatching.

Fig. 1 The framework of switch structure.

Fig. 2 The framework of direct threading mechanism.

compiled code:
void * table[] = { …
 ##LOAD_FAST,
 ##LOAD_CONST,
 ##BINARY_ADD,
 ##BINARY_SUBTRACT, … };
bytecode implementations:
….;
LOAD_FAST:
 …;
 cpcode = get_opcode(insn_next);
 goto *table[opcode];
LOAD_CONST:
 …;
 opcode = get_opcode(insn_next);
 goto *table[opcode];
BINARY_ADD:
 …;
 opcode = get_opcode(insn_next);
 goto *table[opcode];
BINARY_SUBTRACT:
 …;
 opcode = get_opcode(insn_next);
 goto *table[opcode];
….

Compiled code:
 Unsigned char code[] = { …
 LOAD_FAST,
 LOAD_CONST,
 BINARY_ADD,
 BINARY_SUBTRACT, … };
Bytecode implementations:
For(; ;) {
 insn = get_next_insn(insn);
 opcode = get_opcode(insn);
 switch(opcode) {
 case NOP: …; break;
 case LOAD_FAST: …; break;
 case LOAD_CONST: …; break;
 case BINARY_ADD: …; break;
 case BINARY_SUBTRACT: …;
break;
 ….
 }
}

HUAXIONG CAO, NAIJIE GU, KAIXIN REN, YI LI: PERFORMANCE RESEARCH 437

Fig. 3 The native instructions associated with opcode dispatch.

TABLE II

TIME SPENT ON BYTECODE DISPATCHING

benchmarks Dispatching ticks Total ticks Ratio

Queen.py 124356740795 560761937239 22.176388%

test_pow.py 66430602 605265570 10.975447%

diff.py 11349007012 42445898103 26.737583%

test_sqrt.py 209325165518 823381752732 25.422613%

test_image.py 121776483 633664878 19.217801%

iterator.py 218799781767 847798974988 25.807980%

generator.py 987262878658 3744968182830 26.362383%

range.py 1238431745418 4568662416948 27.107098%

while.py 1810252155978 6454065479106 28.048246%

average 511107298026 1.8937026e+12 26.989839%

TABLE III

THE TIME TOKEN TO READ DATA FROM DIFFERENT STORAGES

 Reg

-ister

L1

cache

L2

cache

Mem

-ory

disc

Time

(ns)

0.5 2 10~20 50~100 25~50

IV. THE NEW DISPATCHING MECHANISM

According to the above section, bytecode dispatching spends

most of the time on memory reading. To optimize bytecode

dispatching procedure, a new bytecode dispatching mechanism

is proposed and the framework of CPython’s interpreter is

reconstructed, drawing the inspiration from [14]. Our new

techniques proceed in three phases and their functionalities are

described below.

Phase 1: Rewriting and statistics. This phase rewrites the

statements associated with each kind of bytecodes in

hand-tuned assembly, and calculates the length of the final

binary code of each case. The results are shown at Table IV.

According to this table, there are 19 kinds of bytecodes which

own less than 64 byte binary code, 51 kinds of bytecodes which

own less than 128 byte but more than 64 byte binary code, 22

kinds of bytecodes which own more than 128 byte but less than

256 byte binary code, and 9 kinds of bytecodes which own

more than 256 byte binary code.

TABLE IV

STATISTICS ON LENGTH OF BYTECODES’ FINAL BINARY CODE

length [0,64] (65,128] (128,256] (256,512]

number 19 51 22 9

Phase 2: calculation. This phase calculates the proper size of

each memory unit, named BSIZE. Inside the optimized

interpreters, the memory allocated to each kind of bytecodes is

an integral multiple of BSIZE bytes. Mark binary[i] as the

length of binary code associated with ith kind of bytecodes, the

BSIZE should be the minimum positive number which

conforms to condition (1) and condition (2).

 : 2i
i BSIZE (1)

 100

0

256
i

binary i

BSIZE

 (2)

The first constraint assures the calculation of next bytecode’s
address is simplified to a quick left shift. The second constraint

assures that the maximum opcode of bytecodes isn’t bigger
than the threshold value (256) defined by CPython. If the

BSIZE is too big, there will be a lot of NOP instructions and the

executable file will be quite big, causing damage to the

performance. That’s why BSIZE should be set as small as

possible. According to Table IV, the proper value of BSIZE is

128.

Phase 3: opcode redefinition. This phase redefines the

opcodes of bytecodes, with their order stay the same. Let

opcode[i] be the new opcode of ith kind of bytecode, and the

algorithm used here is shown as follows:

0 0

1
1 ,1 100

opcode

binary i
opcode i opcode i i

BSIZE

 (3)

Taking the first three bytecode (POP_TOP, ROT_TWO and

ROT_THREE) as an example, their original opcodes are 1, 2

and 3, respectively. Assuming the first bytecode has 200 byte

binary code, the second bytecode has 350 byte binary code, and

the third bytecode has 100 byte binary code, their final opcodes

will be 1, 3 and 6. The memory allocation of the interpreter with

new dispatching mechanism is shown in Fig. 4.

As shown in Fig. 4, POP_TOP’s binary code is stored in the
first grid region (from top to bottom), ROT_TWO’s binary
code is stored in the second grid region, while the

ROT_THREE’s binary code is stored in the third grid region.
There are gaps between neighboring kinds of bytecodes. In

addition, the framework of the new interpreter of CPython is

shown in Fig. 5. Inside this new interpreter, the binary code of

all kinds of bytecodes is arranged in numerical order and each

of them occupies several BSIZE memory spaces. So, every

time CPython jumps to the implementation associated to next

bytecode, it just need to execute this simple statement: “goto
(base + BSIZE*opcode)”. Fig. 6 shows the native instructions

associated with this statement, including one stack reading, one

left shift, one addition and one jump. The middle two

instructions are operations on registers and can be finish within

//read stack and get the opcode of next
//bytecode
mov -0x1c4(%ebp),%ebx
//read memory and get the address
//related to next bytecode
mov 0x8220000(,%ebx,4),%eax
//jump to deal with next bytecode
jmp *%eax

438 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

2 ticks (0.8ns). Hence, it just takes 2.8ns to get the address of

next bytecode’s implementation, instead of 30ns. Since

NEXTOP operation is executed so many times, this new

structure will bring a lot of performance promotion.

Fixed

BSIZE

200

binary

code

300

binary

code

100

binary

code

POP_TOP

POP_TWO

POP_THREE

BASE

Fig. 4 The memory allocation of post-construction interpreter.

Fig. 5 The framework of interpreter with new bytecode dispatching.

Fig. 6 The native instructions associated with new bytecode dispatching.

V. EXPERIMENTAL EVALUATION

This new bytecode dispatching mechanism has been

implemented under Ubuntu-12.04 on Intel(R) Core(TM) 2

CPU E6550 2.33GHz with 2 processors, 2G memory, 32k L1

cache and 4M L2 cache. When assess the optimized CPython,

about 35 benchmarks are gathered from CPython-3.3.0 and

Pyston-0.2. Two criterions are considered here: (1) correctness

(optimized CPython can provide the same functionality as

original one.), and (2) efficiency (optimized CPython can

execute benchmarks faster than original one).

A. Correctness

Taking benchmark diff.py as an example, file sysmodule.c

and file _testcapimodule.c are chosen from CPython’s source
files randomly and are used as two parameters of diff.py. Then,

diff.py is executed by optimized CPython and original CPython

separately, and two result files are produced. Later, Linux

command diff are used to compare these two result files,

concluding that there is no difference between them.

In addition, the benchmarks, which are listed in Table I and

cannot be executed successfully by Jython, IronPython, Pyston

or PyPy, can be executed successfully by optimized CPython.

Actually, optimized CPython can execute all these 35

benchmarks and the time spent on these benchmarks is shown

in Fig. 7.

B. Efficiency

Optimized CPython and original CPython are compiled with

the same parameters, and both of them are used to execute these

benchmarks separately. Each benchmark is executed one

thousand times to reduce volatility, and the final results are

shown in Fig. 7. As to some benchmarks taking too little time to

run, we recode the time spent on their several times running.

Taking image.py for example, it just takes original CPython

0.046 seconds to run this benchmark. So, running

image.py*100 takes 4.6 seconds. Similarly, running

queen.py/10 takes 10.23 seconds, for the reason that it takes

CPython 102.3 seconds to finish the queen.py. It can be seen

from Fig. 7 that all of these benchmarks achieve performance

improvement with our new bytecode dispatching mechanism.

The average performance improvement is about 8.5%. In

particularly, benchmark image.py achieves up to 18%

performance improvement.

The performance improvement happens for two main

reasons. Firstly, this new interpreter replaces slow memory

reading operations with quick operations on registers, and

reduces the time spent on bytecode dispatching. Secondly, less

memory reading operations cut down on the cache misses,

especially for low specification machines. Perf [15] is used to

measure L1 data cache misses for part of these benchmarks and

the results are shown at Table V. Table V column 2 lists the

cache misses reported by original CPython when it is used to

execute these benchmarks, while Table V column 3 lists the

cache misses reported by optimized CPython when it is used to

do the same jobs. The last column in Table V shows that about

14.64 percent of cache misses are left out on average. The more

memory reading operations it reduces, the greater chance that

//read stack and get the opcode of next
//bytecode
mov -0x1c4(%ebp),%eax
shl $8, %eax //left shift
//BASE is an immediate value
addl $BASE, %eax
//jump to deal with next bytecode
jmp *%eax

bytecode implementations:
BASE:
….;
asm(“.balign BSIZE \n\t”);
LOAD_FAST:
 …;
 opcode = get_opcode(insn_next);
 goto (BASE+opcode* BSIZE);
asm(“.balign BSIZE \n\t”);
LOAD_CONST:
 …;
 opcode = get_opcode(insn_next);
 goto (BASE+opcode* BSIZE);
asm(“.balign BSIZE \n\t”);
BINARY_ADD:
 …;
 opcode = get_opcode(insn_next);
 goto (BASE+opcode* BSIZE);
asm(“.balign BSIZE \n\t”);
BINARY_SUBTRACT:
 …;
 opcode = get_opcode(insn_next);
 goto (BASE+opcode* BSIZE);
….

HUAXIONG CAO, NAIJIE GU, KAIXIN REN, YI LI: PERFORMANCE RESEARCH 439

Fig. 7 Ratio of benchmarks before and after optimization.

TABLE V

STATISTICS ON L1 DATA CACHE MISSES

Benchmarks ori-CPython opti-CPython 1-(opti/ori)

queen.py 64M 43M 32.8%

pow.py 3.93M 3.54M 9.9%

diff.py 36.9M 33.1M 10.3%

sqrt.py 3.46M 2.56M 26.0%

image.py 1.37M 1.14M 16.8%

iterator.py 83.5M 80.7M 3.35%

generator.py 170M 148M 12.9%

range.py 292M 270M 7.53%

while.py 295M 259M 12.2%

average - - 14.64%

Note: “ori-CPython” stands for “original CPython”, “opti-CPython” stands for
“optimized CPython”, and “1-(opti/ori)” stands for “1 - (optimized CPython /

original CPython)”.

remaining memory reading operations hit the cache. In another

word, the remaining memory reading operations can be

finished in less time.

VI. RELATED WORK

There are a large quantity of recent papers researching

interpreter performance. Romer et al. [16] have reported the

performance characteristics of some interpreters. Later, Ertl

and Gregg [3] investigated the performance of recent efficient

interpreters. Both of these two studies have found that almost

every interpreters perform an exceptionally high number of

indirect branches. Since most of indirect branches are caused

by bytecode dispatching, their conclusion is consistent with

this performance research reporting in section 3. Our research

aims at reducing the time spent on the second instruction in Fig.

3 to a minimum, while their work aims at optimizing the third

instruction in Fig. 3 and reducing indirect branches

mispredictions. This is the main difference between us.

Several techniques are used to reduce indirect branches

mispredictions. J Hoogerbrugge and L Augusteijn [17], [18]

have proposed that software pipelining interpreters is a way to

reduce dispatch branch cost on architectures with split indirect

branches. In addition, Subroutine threading [19] has also been

proposed to avoid the overheads of indirect branches in

intrepreter implementations. Each bytecode is implemented

with a particular C function. Instead of dispatching or interpret

-ing bytecode, a simple JIT compiler generates executable code

for a sequence of calls to these functions. This method can

eliminate indirect branches at the cost of sacrificing both

simplicity and portability.

Cache misses have a significant impact on the program

performance [20]. Brunthaler [21] have proposed a

formalization of interpreter opcode ordering (bytecode

scheduling) for an interpreter with an extended opcode set, and

concluded that high cache miss ratio is another bottleneck of

interpreters. A lot of techniques, like feedback-guided

technique [22], profile-guided technique [23], etc, are

conducted to achieve better orderings, improving code locality

and reducing cache misses. Jason McCandless and his

co-worker [24] implement a metaheuristic (Monte Carlo) to

generate better orderings, achieving considerable performance

improvement. As shown in section 5, cache misses can also be

reduced by our new mechanism, making the new interpreter

perform better.

Another method which is widely used is combining

sequences of VM instructions into super-instructions [25]. This

technique focuses on reducing the number of bytecode

dispatches, and has two variants: static super-instructions and

dynamic super-instructions. The comparison between these two

variants are shown in [5].

As far as we know, the nearest research to our work is [14].

The main difference is that their research plans for each

bytecode a fixed-size block of instructions. In such a case,

bytecodes with short instruction implementation will incur a lot

of NOP instructions, which increases the code size of the

interpreter dispatch loop and reduce cache hit ratio. In addition,

bytecodes with long instruction implementation will lead to lots

of extra jump instructions. Relatively speaking, our mechanism

is more flexible and efficient than that, with much less NOP

instructions and no extra jump.

VII. CONCLUSIONS

In this paper, the performance research on CPython’s
interpreter is carried out, figuring out that bytecode dispatching

has a big influence on interpreters. Then, a novel bytecode

dispatching mechanism is designed, aiming at removing

memory reading operations during bytecode dispatching and

440 PROCEEDINGS OF THE FEDCSIS. ŁÓDŹ, 2015

 7

reducing the time spent on this phase to a minimum. The final

binary code of each kind of bytecodes is arranged in numerical

order and each of them occupies several BSIZE memory

spaces.

This novel mechanism is implemented, and its correctness

and efficiency are demonstrated by a large number of

benchmarks. Comparisons are made between original CPython

and optimized CPython to show that the new mechanism

achieves about 8.5 percent performance improvement on

average. For some particular benchmarks, the maximum

improvement is up to 18 percentages. This performance

improvement happens for two main reasons: lesser memory

reading operations and lesser cache misses. The novel

mechanism proposed here can also be adopted by other

interpreters, and will contribute to their performance

improvement.

REFERENCES

[1] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney, “A survey
of adaptive optimization in virtual machines,” Proc. of IEEE, vol. 93, no.

2, pp. 449-466, Feb., 2005. http://dx.doi.org/10.1109/jproc.2004.840305

[2] D. E. Knuth, “An empirical study of FORTRAN programs,” Softw.:

Practice and experience, vol. 1, no. 2, pp. 105-133, Jun., 1971.

http://dx.doi.org/10.1002/spe.4380010203

[3] M. A. Ertl, and D. Gregg, “The structure and performance of efficient

interpreters,” JILP, vol. 5, pp. 1-25, Mar., 2003.

[4] I. Piumarta, and F. Riccardi, “Optimizing direct threaded code by
selective inlining,” ACM Sigplan Not., vol. 33, no. 5, pp. 291-300, May,

1998. http://dx.doi.org/10.1145/277652.277743

[5] M. A. Ertl, and D. Gregg, “Optimizing indirect branch prediction
accuracy in virtual machine interpreters,” ACM Sigplan Not., vol. 38, no.

5, pp. 278-288, May, 2003. http://dx.doi.org/10.1145/780822.781162

[6] E. Gagnon, and L. Hendren, "Effective inline-threaded interpretation of

Java bytecode using preparation sequences," in Compiler Construction, G.

Goos, J. Hartmanis and J. v. Leeuwen, Ed., Heidelberg, DE: Springer,

2003, pp.170-184. http://dx.doi.org/10.1007/3-540-36579-6_13

[7] G. T. Sullivan, D. L. Bruening, I. Baron, T. Garnett, and S. Amarasinghe,

"Dynamic native optimization of interpreters," in Proc. 2003 workshop

on Interpreters, virtual machines and emulators, New York, 2003, pp.

50-57. http://dx.doi.org/10.1145/858570.858576

[8] R. W. Bill, Jython for Java programmers, 1st. ed., USA: SAMS, 2001.

ISBN 978-0735711112. http://file182.cordpdf.org/1juv4l_jython-for-

java-programmers.pdf

[9] J. Hugunin, "IronPython: A fast Python implementation for .NET and

Mono," in PyCon., Washington, USA, 2004.

[10] M. L. Hetland, "Pedal to the Metal: Accelerating Python," in Python

Algorithms, Trondheim, NO: Springer, 2014, pp.255-258.

http://dx.doi.org/10.1007/978-1-4842-0055-1_12

[11] Pypy. (2006). PyPy is a fast, compliant alternative implementation of the

Python language. [Online]. Available: http://pypy.org/.

[12] Forth-language for interactive computing. (1970). an technical report on

Forth. [Online]. Available: http://mx1.1strecon.org/downloads/

Forth_Resources/CM_ForthLanguageInteractiveComputing_1970.pdf.

[13] J. L. Hennessy, and D. A. Patterson, Computer architecture: a

quantitative approach, Waltham, GB: Elsevier, 2012. ISBN

978-0-12-383872-8. http://www.cpp.edu/~kding/materials/Computer%

20Architecture%20A%20Quantitative%20Approach%20(5th%20edition

).pdf

[14] Y. Ye, C.-Q. Li, and J.-S. Hu, “Transplantation and Optimization of
Dalvik Virtual Machine Based on CK610,” Comput. Eng., vol. 16, pp.

100, 2011. doi:10.3969/j.issn.1000-3428.2011.16.098

[15] A. Melo, "The new linux' perf' tools," in 17th Int. Linux Sys. Tech. Conf.,

Nuremberg, GE, 2010.

[16] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman, W. A. Wong, J.-L. Baer,

B. N. Bershad, and H. M. Levy, “The structure and performance of
interpreters,” ACM Sigplan Not., vol. 31, no. 9, pp. 150-159, 1996.

http://dx.doi.org/10.1145/248209.237175

[17] J. Hoogerbrugge, and L. Augusteijn, "Pipelined Java Virtual Machine

Interpreters," in Compiler Construction, Vol. 1781, D. A. Watt, Ed.,

Heidelberg, GE: Springer, 2000, pp.35-49. http://dx.doi.org/10.1007/

3-540-46423-9_3

[18] J. Hoogerbrugge, L. Augusteijn, J. Trum, and R. v. d. Wiel, “A code
compression system based on pipelined interpreters,” Softw.: Practice

and Experience, vol. 29, no. 11, pp. 1005-23, 1999.

http://dx.doi.org/10.1002/(sici)1097-024x(199909)29:11<1005::aid-spe2

70>3.0.co;2-f

[19] M. Berndl, B. Vitale, M. Zaleski, and A. D. Brown, "Context threading: A

flexible and efficient dispatch technique for virtual machine interpreters,"

in Proc. Int. Symp. Code Gen. Optim., Washington, USA, 2005, pp. 15-26.

http://dx.doi.org/10.1109/cgo.2005.14

[20] Ristov, and Sasko, "Performance impact of reconfigurable L1 cache on

GPU devices," Computer Science and Information Systems (FedCSIS),

2013 Federated Conference on, Kraków, Poland, IEEE, 2013, pp.

507-510.

[21] S. Brunthaler, "Interpreter instruction scheduling," in Compiler

Construction, J. Knoop, Ed., Heidelberg, GE: Springer, 2011, pp.164-178.

http://dx.doi.org/10.1007/978-3-642-19861-8_10

[22] P. Zhao, and J. e. N. Amaral, "Feedback-directed switch-case statement

optimization," in Proc. 2005 Int. Conf. Parallel Process. Workshops,

Oslo, NO, 2005, pp. 295-302. http://dx.doi.org/10.1109/icppw.2005.32

[23] K. Pettis, and R. C. Hansen, “Profile guided code positioning,” ACM

Sigplan Not., vol. 25, no. 6, pp. 16-27, 1990. http://dx.doi.org/10.1145

/93548.93550

[24] D. Gregg, and J. Mccandless, "Optimizing interpreters by tuning opcode

orderings on virtual machines for modern architectures," in Conf. Princip.

Prac. Program. Java, Kongens Lyngby, DK, 2011, pp. 161-170.

http://dx.doi.org/10.1145/2093157.2093183

[25] Optimizations for a java interpreter using instruction set enhancement.

(2005). Optimizations for a java interpreter using instruction set

enhancement. [Online]. Available: https://www.scss.tcd.ie/publications

/tech-reports/reports.05/TCD-CS-2005-61.pdf.

HUAXIONG CAO, NAIJIE GU, KAIXIN REN, YI LI: PERFORMANCE RESEARCH 441

