
 

Abstract—In this paper, the performance research on 

CPython’s latest interpreter is presented, concluding that 

bytecode dispatching takes about 25 percent of total execution 

time on average. Based on this observation, a novel bytecode 

dispatching mechanism is proposed to reduce the time spent on 

this phase to a minimum. With this mechanism, the blocks 

associated with each kind of bytecodes are rewritten in 

hand-tuned assembly, their opcodes are renumbered, and their 

memory spaces are rescheduled. With these preparations, this 

new bytecode dispatching mechanism replaces the 

time-consuming memory reading operations with rapid 

operations on registers. 

This mechanism is implemented in CPython-3.3.0. Experiments 

on lots of benchmarks demonstrate its correctness and efficiency. 

The comparison between original CPython and optimized 

CPython shows that this new mechanism achieves about 8.5 

percent performance improvement on average. For some 

particular benchmarks, the maximum improvement is up to 18 

percentages.  

I. INTRODUCTION 

he past decade has witnessed the widespread use of 

Python, which is a typical dynamic language designed 

to execute on virtual machines. Several software 

engineering advantages over statically compiled binaries, 

including portable program representations, thread manage 

-ment, some safety guarantees, built-in automatic memory, and 

dynamic program composition through dynamic class loading, 

are provided by Python. These advanced features enhance the 

user programming model and drive the success of Python 

language. However, these features also require the dynamic 

compilers to do quite a lot of extra operations, such as type 

checking, wrapping/unwrapping of boxed values, virtual 

method dispatching, bytecode dispatching, etc. These extra 

operations usually make Python programs several or dozens of 

times slower than static programs achieving the same 

functionality. Moreover, traditional static program optimiza 

-tion technologies are frustrated, introducing new challenges 

for achieving high performance. 

In response, more and more researchers have paid their 

attention to optimize dynamic language compilers. The 

technologies proposed aim to improve performance by 
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monitoring programs’ behavior and using this information to 

drive optimization decisions [1]. The dominant concepts that 

have influenced effective optimization technologies in today’s 
virtual machines include JIT compilers, interpreters, and their 

integrations. 

JIT (just-in-time) techniques exploit the well-known fact that 

large scale programs usually spend the majority of time on a 

small fraction of the code [2]. During the execution of 

interpreters, they record the bytecode blocks which have been 

executed more than a specified number of times, and cache the 

binary code associated to these blocks. The next time these 

bytecode blocks are executed, it has no need to interpreter these 

bytecodes once again, just jumps to the cached binary code, and 

continues the execution. By this way, much interpreting work is 

omitted, and performance improvement can be achieved. 

However, since the threshold is quite large in general, the 

interpreting stage still accounts for a large proportion of total 

execution time. JIT strategies work well for for/while blocks 

which likely exist in science compute field. For the programs, 

whose purposes are remote configuration, warning, tracing, 

statistics, communication, etc, it is very hard to find hot blocks. 

Though not large, these programs are usually executed quite 

frequently.  

Interpreters have a series of advantages which make them 

attractive [3]. Firstly, optimizing interpreters reduces the 

uptime of all Python programs with or without hot blocks. 

Secondly, they are quite simpler to construct than JIT compilers, 

making them quicker, more reliable to construct and easier to 

maintain. Thirdly, interpreters require less memory than JIT 

compilers, for both the interpreted virtual machine code and the 

interpreter itself. Interpreters for dynamic language have two 

main structures [1]: switch-based structure and threaded-based 

structure, whose details are given in section 2 part B. The latter 

is the latest and most efficient mechanism. Recently, many 

researchers have applied dynamic techniques to improve the 

performance of threaded-based structure. Piumarta and 

Riccardi [4] describe their techniques to dynamically generate 

threaded codes for purpose of eliminating a central dispatch site 

and inlining common bytecode sequences. Ertl and Gregg [5] 

extend Piumarta and Riccardi’s work by duplicating bytecode 

sequences, researching various interpreter generation heuristics, 
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and concentrating on improving branch prediction accuracy. 

Gagnon and Hendren [6] adapt Piumarta and Riccardi’s 
research to work in the context of multithreading and dynamic 

class loading. Sullivan et al. [7] describe a combination 

between an interpreter implementation and a dynamic binary 

optimizer, which enhances the efficacy of the underlying 
dynamic binary optimizer during the execution of interpreter. 

Despite the enhancements above, interpreters are still worse 

than static compilers from the runtime perspective. The purpose 

of our research is to explore new ways to achieve further 

performance improvement. In this paper, the performance 

research on CPython’s latest interpreter is presented, finding 

that bytecode dispatching takes about 25 percent of total 

execution time on average. Then, a novel bytecode dispatching 

mechanism, which aims at reducing memory reading 

operations during bytecode dispatching and reducing the time 

spent on this phase to a minimum, is proposed. This mechanism 

is implemented inside CPython’s interpreter. Experiments on 
lots of benchmarks demonstrate the correctness and efficiency 

of our new mechanism. The comparisons between original 

CPython and optimized CPython show that our new 

mechanism can achieve about 8.5 percent performance 

improvement on average. For some particular benchmarks, the 

maximum improvement is up to 18 percentages. 

The remainder of this paper is structured as follows: In the 

next section, we make comparisons among different compilers 

of Python and present both switch-based and threaded-based 

mechanisms. Section 3 reports our performance research on 

CPython’s interpreter. Section 4 discusses the main techniques 

we adopted to construct a new bytecode dispatching 

mechanism. Benchmarks and Experiments are given in section 

5. Section 6 discusses the related work. We conclude this paper 

in the last section. 

II. BACKGROUND 

A. CPython VS Other Python compilers 

A series of dynamic compilers are designed to run Python 

programs, such as CPython, Jython [8], IronPython [9], Pyston 

[10], PyPy [11], etc. The comparisons among them are shown 

on Table I, and these benchmarks are provided officially by 

Pyston/minibenchmarks and Pyston/microbenchmarks. Among 

these compilers, CPython is the official and standard compiler 

for Python language, it can support all the grammars and 

extensions. Others are developed for special applications. They 

focus on particular scenarios and take in-depth optimization 

passes. In this context, these compilers show their excellent 

performances for some benchmarks, but for other benchmarks, 

they may be several times slower than CPython. As shown on 

Table I, taking fid.py for example, it takes CPython 3.696 

seconds to execute this script, while IronPython, Pyston and 

PyPy spend less than 2 seconds on the same script. However, it 

takes CPython 1.082 seconds to execute emwomding.py, while 

JPython, IronPython, Pyston and PyPy spend more than 3.700 

seconds on the execution of emwomding.py. 

What’s more, some benchmarks, like pydigits.py, empth_lo 
-op.py, vecf_add.py, nq.py, raytrace.py, cannot be executed 

successfully by some of these compilers. Based on these 

comparisons, our research focuses on CPython, and has not 

only practical application value, but also instruction meaning 

for the improvement of other interpreters.  

B. Switch-based Mechanism VS Thread-based Mechanism 

The performance of interpreters depends heavily on their 

bytecode dispatching mechanisms. CPython’s interpreter 
provides two main bytecode dispatching mechanisms: 

switch-based mechanism and thread-based mechanism. 

The inner loop of switch-based interpreters is quite simple: 

jump to the dispatch point, fetch the next bytecode and dispatch 

to its implementation through a switch statement. Its typical 

framework is shown in Fig. 1.  

As shown in Fig. 1, the interpreter is an infinite loop with a 

big switch block to dispatch bytecodes successively. Each 

bytecode are implemented by a particular case in the body of 

this switch block. At the end of each case, control are passed 

back to the beginning of the infinite loop by breaking out of this 

switch block. Traditional C compilers like GCC translate this 

switch block into a series of comparison statements. 

Considering a particular bytecode whose opcode is 

BINARY_SUBTRACT, five indispensable comparisons 

should be executed before reaching its associated block. 

Assuming that all bytecodes have the same probability of 

occurrence, it takes N/2 (N is the total kinds of bytecodes) 

comparisons on average to find the corresponding block. As to 

TABLE I. 
COMPARISONS AMONG CPYTHON, JYTHON, IRONPYTHON, PYSTON AND PYPY 

Benchmarks  CPython-3.3.0 Jython IronPython Pyston PyPy 

empty_loop.py 3.532s 5.491s Failed 19.248s 0.248s 

pydigits.py 0.034s 2.126s 1.431s Failed 0.039s 

fid.py 3.696s 4.776s 1.527s 0.636s 0.864s 

vecf_add.py 9.890s 12.970s 25.150s Failed 0.059s 

allgroup.py 0.836s 4.428s 3.052s Failed 18.804s 

chaso.py 26.268s 33.091s 51.366s Failed 1.392s 

go.py 53.787s 56.746s 123.404s Failed 33.638s 

nbody.py 12.677s 19.535s 17.057s 25.540s 1.470s 

nq.py 29.879s Failed 35.673s Failed 44.418s 

raytrace.py 11.608s 16.418s 26.724s Failed 1.228s 

polymorphism.py 4.358s 7.228s 7.959s 4.390s 14.260s 

unwinding.py 1.082s 3.757s 2.802s 93.180s 4.481s 
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CPython, N is 101. So, performing bytecode dispatching wastes 

the majority of execution time and it is very inefficient. 

Threaded-based mechanism is the latest and most efficient 

mechanism for interpreters, popularized by the Forth 

programming language [12]. There are many kinds of 

threaded-based interpreters, and direct threading is regarded as 

the most efficient one. Direct threading mechanism improves 

performance by eliminating redundant comparisons. In 

addition, rather than returning to a central dispatch point, the 

implementation of each direct threading opcode ends with the 

particular code required to dispatch the next opcode. This 

optimization eliminates the centralized dispatch, removing lots 

of   jump instructions. The   framework   of   direct    threading 

mechanism is shown in Fig. 2. 

As shown in Fig. 2, execution starts with fetching the address 

of the very first bytecode’s implementation and then jumping to 
that address. For each bytecode, it performs its own work at 

first, then increases the instruction pointer, thirdly fetches the 

address of next bytecode’s implementation from memory, and 

jumps to the target address to handle successive bytecode. The 

native instructions associated with bytecode dispatching is 

shown in Fig. 3, with one stack reading, one memory reading 

and one jump. It can be seen from Fig. 3 that the bytecode 

dispatching overheads associated with direct threading 

mechanism are quite lower than those associated with 

switch-based mechanism.  

III. MOTIVATION: PERFORMANCE RESEARCH 

So far, it can be seen that bytecode dispatching plays a very 

important role in the performance of CPython. To make this 

concept intuitional, a series of meticulous experiments are 

conducted and the experimental results are shown in table II.  

To make the results credible and accurate, this work utilizes 

hardware performance counters provided by Intel, and 

calculates the number of ticks which are consumed by the 

procedure to find next bytecode. The results are shown in Table 

II column 2. The ticks, which are consumed by the total 

program execution are also recorded and listed in Table II 

column 3. In Table II column 4, the ratios between them are 

calculated and listed. According to this table, it can be sure that 

the time consumed by bytecode dispatching is 25 percent of the 

total execution time on average. So if this stage could be further 

optimized, the total performance of CPython will be improved 

obviously. 

As shown in Fig. 3, the bytecode dispatching in direct 

threading mechanism is composed of one stack reading, one 

jump and one memory reading. Inside the memory reading, 

there are an addition and a multiplication. Since operations on 

stack are quite frequent, the first stack reading instruction will 

also hit the L1 cache. Table III [13] lists the time needed to read 

data from register, L1 cache, L2 cache, memory and disc. 

According to this table, the first instruction takes about 2ns. 

The second instruction contains an addition operation, a 

multiplication operation and a load operation. The first two 

operations can be finished within several ticks. However, since 

L1 cache can only contain eight pages (32k L1 cache, page size 

4k), reading the address of successive bytecode’s 

implementation leads to lots of L1 cache misses. In this context, 

it has to get the right value from L2 cache, or even memory, 

which may take dozens of nanoseconds. Assuming that reading 

from these three memory structures has the same probability of 

occurrence, it takes about 30ns to finish this memory reading. 

So, it can be seen that the second instruction takes the majority 

of the time spent on bytecode dispatching, and optimizing this 

instruction will contribute a lot to bytecode dispatching. 

 

 
Fig. 1 The framework of switch structure. 

 

 
Fig. 2 The framework of direct threading mechanism. 

 

compiled code: 
void * table[] = { … 
    ##LOAD_FAST, 
    ##LOAD_CONST, 
    ##BINARY_ADD, 
    ##BINARY_SUBTRACT, … }; 
bytecode implementations: 
….; 
LOAD_FAST:      
    …;  
    cpcode = get_opcode(insn_next); 
    goto *table[opcode]; 
LOAD_CONST:      
    …;  
    opcode = get_opcode(insn_next); 
    goto *table[opcode]; 
BINARY_ADD:      
    …; 
    opcode = get_opcode(insn_next); 
    goto *table[opcode]; 
BINARY_SUBTRACT:      
    …;  
    opcode = get_opcode(insn_next); 
    goto *table[opcode]; 
…. 

Compiled code: 
    Unsigned char code[] = { … 
        LOAD_FAST, 
        LOAD_CONST, 
        BINARY_ADD, 
        BINARY_SUBTRACT, … }; 
Bytecode implementations: 
For( ; ; ) { 
    insn = get_next_insn(insn); 
    opcode = get_opcode(insn); 
    switch(opcode)  { 
        case NOP: …; break; 
        case LOAD_FAST: …; break; 
        case LOAD_CONST: …; break; 
        case BINARY_ADD: …; break; 
        case BINARY_SUBTRACT: …; 
break; 
        …. 
    } 
} 
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Fig. 3 The native instructions associated with opcode dispatch. 

 

TABLE II  

TIME SPENT ON BYTECODE DISPATCHING 

benchmarks Dispatching ticks Total ticks Ratio 

Queen.py 124356740795 560761937239 22.176388% 

test_pow.py 66430602 605265570 10.975447% 

diff.py 11349007012 42445898103 26.737583% 

test_sqrt.py 209325165518 823381752732 25.422613% 

test_image.py 121776483 633664878 19.217801% 

iterator.py 218799781767 847798974988 25.807980% 

generator.py 987262878658 3744968182830 26.362383% 

range.py 1238431745418 4568662416948 27.107098% 

while.py 1810252155978 6454065479106 28.048246% 

average 511107298026 1.8937026e+12 26.989839% 

 
TABLE III 

THE TIME TOKEN TO READ DATA FROM DIFFERENT STORAGES 

 Reg 

-ister 

L1 

cache 

L2 

cache 

Mem 

-ory 

disc 

Time 

(ns) 

0.5 2 10~20 50~100 25~50 

 

IV. THE NEW DISPATCHING MECHANISM 

According to the above section, bytecode dispatching spends 

most of the time on memory reading. To optimize bytecode 

dispatching procedure, a new bytecode dispatching mechanism 

is proposed and the framework of CPython’s interpreter is 

reconstructed, drawing the inspiration from [14]. Our new 

techniques proceed in three phases and their functionalities are 

described below. 

Phase 1: Rewriting and statistics. This phase rewrites the 

statements associated with each kind of bytecodes in 

hand-tuned assembly, and calculates the length of the final 

binary code of each case. The results are shown at Table IV. 

According to this table, there are 19 kinds of bytecodes which 

own less than 64 byte binary code, 51 kinds of bytecodes which 

own less than 128 byte but more than 64 byte binary code, 22 

kinds of bytecodes which own more than 128 byte but less than 

256 byte binary code, and 9 kinds of bytecodes which own 

more than 256 byte binary code.  

 

TABLE IV 

STATISTICS ON LENGTH OF BYTECODES’ FINAL BINARY CODE  

length [0,64] (65,128] (128,256] (256,512] 

number 19 51 22 9 

 

Phase 2: calculation. This phase calculates the proper size of 

each memory unit, named BSIZE. Inside the optimized 

interpreters, the memory allocated to each kind of bytecodes is 

an integral multiple of BSIZE bytes. Mark binary[i] as the 

length of binary code associated with ith kind of bytecodes, the 

BSIZE should be the minimum positive number which 

conforms to condition (1) and condition (2). 

 : 2i
i BSIZE    (1) 

 
 100

0

256
i

binary i

BSIZE

 
 

 
  (2) 

The first constraint assures the calculation of next bytecode’s 
address is simplified to a quick left shift. The second constraint 

assures that the maximum opcode of bytecodes isn’t bigger 
than the threshold value (256) defined by CPython. If the 

BSIZE is too big, there will be a lot of NOP instructions and the 

executable file will be quite big, causing damage to the 

performance. That’s why BSIZE should be set as small as 

possible. According to Table IV, the proper value of BSIZE is 

128. 

Phase 3: opcode redefinition. This phase redefines the 

opcodes of bytecodes, with their order stay the same. Let 

opcode[i] be the new opcode of ith kind of bytecode, and the 

algorithm used here is shown as follows: 

 

     
0 0

1
1 ,1 100

opcode

binary i
opcode i opcode i i

BSIZE



 
     

 

  (3) 

Taking the first three bytecode (POP_TOP, ROT_TWO and 

ROT_THREE) as an example, their original opcodes are 1, 2 

and 3, respectively. Assuming the first bytecode has 200 byte 

binary code, the second bytecode has 350 byte binary code, and 

the third bytecode has 100 byte binary code, their final opcodes 

will be 1, 3 and 6. The memory allocation of the interpreter with 

new dispatching mechanism is shown in Fig. 4. 

As shown in Fig. 4, POP_TOP’s binary code is stored in the 
first grid region (from top to bottom), ROT_TWO’s binary 
code is stored in the second grid region, while the 

ROT_THREE’s binary code is stored in the third grid region. 
There are gaps between neighboring kinds of bytecodes. In 

addition, the framework of the new interpreter of CPython is 

shown in Fig. 5. Inside this new interpreter, the binary code of 

all kinds of bytecodes is arranged in numerical order and each 

of them occupies several BSIZE memory spaces. So, every 

time CPython jumps to the implementation associated to next 

bytecode, it just need to execute this simple statement: “goto 
(base + BSIZE*opcode)”. Fig. 6 shows the native instructions 

associated with this statement, including one stack reading, one 

left shift, one addition and one jump. The middle two 

instructions are operations on registers and can be finish within 

//read stack and get the opcode of next 
//bytecode  
mov    -0x1c4(%ebp),%ebx    
//read memory and get the address 
//related to next bytecode 
mov    0x8220000(,%ebx,4),%eax   
//jump to deal with next bytecode 
jmp    *%eax   
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2 ticks (0.8ns). Hence, it just takes 2.8ns to get the address of 

next bytecode’s implementation, instead of 30ns. Since 

NEXTOP operation is executed so many times, this new 

structure will bring a lot of performance promotion. 
 

Fixed 

BSIZE

200 

binary 

code

300 

binary 

code

100 

binary 

code

POP_TOP

POP_TWO

POP_THREE

BASE

 
Fig. 4 The memory allocation of post-construction interpreter. 

 

 
Fig. 5 The framework of interpreter with new bytecode dispatching. 

 

 
Fig. 6 The native instructions associated with new bytecode dispatching. 

V. EXPERIMENTAL EVALUATION 

This new bytecode dispatching mechanism has been 

implemented under Ubuntu-12.04 on Intel(R) Core(TM) 2 

CPU E6550 2.33GHz with 2 processors, 2G memory, 32k L1 

cache and 4M L2 cache. When assess the optimized CPython, 

about 35 benchmarks are gathered from CPython-3.3.0 and 

Pyston-0.2. Two criterions are considered here: (1) correctness 

(optimized CPython can provide the same functionality as 

original one.), and (2) efficiency (optimized CPython can 

execute benchmarks faster than original one). 

A. Correctness 

Taking benchmark diff.py as an example, file sysmodule.c 

and file _testcapimodule.c are chosen from CPython’s source 
files randomly and are used as two parameters of diff.py. Then, 

diff.py is executed by optimized CPython and original CPython 

separately, and two result files are produced. Later, Linux 

command diff are used to compare these two result files, 

concluding that there is no difference between them. 

In addition, the benchmarks, which are listed in Table I and 

cannot be executed successfully by Jython, IronPython, Pyston 

or PyPy, can be executed successfully by optimized CPython. 

Actually, optimized CPython can execute all these 35 

benchmarks and the time spent on these benchmarks is shown 

in Fig. 7. 

B. Efficiency 

Optimized CPython and original CPython are compiled with 

the same parameters, and both of them are used to execute these 

benchmarks separately. Each benchmark is executed one 

thousand times to reduce volatility, and the final results are 

shown in Fig. 7. As to some benchmarks taking too little time to 

run, we recode the time spent on their several times running. 

Taking image.py for example, it just takes original CPython 

0.046 seconds to run this benchmark. So, running 

image.py*100 takes 4.6 seconds. Similarly, running 

queen.py/10 takes 10.23 seconds, for the reason that it takes 

CPython 102.3 seconds to finish the queen.py. It can be seen 

from Fig. 7 that all of these benchmarks achieve performance 

improvement with our new bytecode dispatching mechanism. 

The average performance improvement is about 8.5%. In 

particularly, benchmark image.py achieves up to 18% 

performance improvement. 

The performance improvement happens for two main 

reasons. Firstly, this new interpreter replaces slow memory 

reading operations with quick operations on registers, and 

reduces the time spent on bytecode dispatching. Secondly, less 

memory reading operations cut down on the cache misses, 

especially for low specification machines. Perf [15] is used to 

measure L1 data cache misses for part of these benchmarks and 

the results are shown at Table V. Table V column 2 lists the 

cache misses reported by original CPython when it is used to 

execute these benchmarks, while Table V column 3 lists the 

cache misses reported by optimized CPython when it is used to 

do the same jobs. The last column in Table V shows that  about 

14.64 percent of cache misses are left out on average. The more 

memory reading operations it reduces, the greater chance that 

//read stack and get the opcode of next 
//bytecode  
mov    -0x1c4(%ebp),%eax    
shl      $8, %eax  //left shift 
//BASE is an immediate value 
addl    $BASE, %eax  
//jump to deal with next bytecode 
jmp    *%eax  

bytecode implementations: 
BASE: 
….; 
asm(“.balign BSIZE \n\t”); 
LOAD_FAST:      
    …;  
    opcode = get_opcode(insn_next); 
    goto (BASE+opcode* BSIZE); 
asm(“.balign BSIZE \n\t”); 
LOAD_CONST:      
    …;  
    opcode = get_opcode(insn_next); 
    goto (BASE+opcode* BSIZE); 
asm(“.balign BSIZE \n\t”); 
BINARY_ADD:      
    …; 
    opcode = get_opcode(insn_next); 
    goto (BASE+opcode* BSIZE); 
asm(“.balign BSIZE \n\t”); 
BINARY_SUBTRACT:      
    …;  
    opcode = get_opcode(insn_next); 
    goto (BASE+opcode* BSIZE); 
…. 
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Fig. 7 Ratio of  benchmarks before and after optimization. 

 
TABLE V 

STATISTICS ON L1 DATA CACHE MISSES  

Benchmarks ori-CPython opti-CPython 1-(opti/ori) 

queen.py 64M 43M 32.8% 

pow.py 3.93M 3.54M 9.9% 

diff.py 36.9M 33.1M 10.3% 

sqrt.py 3.46M 2.56M 26.0% 

image.py 1.37M 1.14M 16.8% 

iterator.py 83.5M 80.7M 3.35% 

generator.py 170M 148M 12.9% 

range.py 292M 270M 7.53% 

while.py 295M 259M 12.2% 

average - - 14.64% 

Note: “ori-CPython” stands for “original CPython”, “opti-CPython” stands for 
“optimized CPython”, and “1-(opti/ori)” stands for “1 - (optimized CPython / 

original CPython)”. 
 

remaining memory reading operations hit the cache. In another 

word, the remaining memory reading operations can be 

finished in less time. 

VI. RELATED WORK 

There are a large quantity of recent papers researching 

interpreter performance. Romer et al. [16] have reported the 

performance characteristics of some interpreters. Later, Ertl 

and Gregg [3] investigated the performance of recent efficient 

interpreters. Both of these two studies have found that almost 

every interpreters perform an exceptionally high number of 

indirect branches. Since most of indirect branches are caused 

by bytecode dispatching, their conclusion is consistent with 

this performance research reporting in section 3. Our research 

aims at reducing the time spent on the second instruction in Fig. 

3 to a minimum, while their work aims at optimizing the third 

instruction in Fig. 3 and reducing indirect branches 

mispredictions. This is the main difference between us. 

Several techniques are used to reduce indirect branches 

mispredictions. J Hoogerbrugge and L Augusteijn [17], [18] 

have proposed that software pipelining interpreters is a way to 

reduce dispatch branch cost on architectures with split indirect 

branches. In addition, Subroutine threading [19] has also been 

proposed to avoid the overheads of indirect branches in 

intrepreter implementations. Each bytecode is implemented 

with a particular C function. Instead of dispatching or interpret 

-ing bytecode, a simple JIT compiler generates executable code 

for a sequence of calls to these functions. This method can 

eliminate indirect branches at the cost of sacrificing both 

simplicity and portability.  

Cache misses have a significant impact on the program 

performance [20]. Brunthaler [21] have proposed a 

formalization of interpreter opcode ordering (bytecode 

scheduling) for an interpreter with an extended opcode set, and 

concluded that high cache miss ratio is another bottleneck of 

interpreters. A lot of techniques, like feedback-guided 

technique [22], profile-guided technique [23], etc, are 

conducted to achieve better orderings, improving code locality 

and reducing cache misses. Jason McCandless and his 

co-worker [24] implement a metaheuristic (Monte Carlo) to 

generate better orderings, achieving considerable performance 

improvement. As shown in section 5, cache misses can also be 

reduced by our new mechanism, making the new interpreter 

perform better.  

Another method which is widely used is combining 

sequences of VM instructions into super-instructions [25]. This 

technique focuses on reducing the number of bytecode 

dispatches, and has two variants: static super-instructions and 

dynamic super-instructions. The comparison between these two 

variants are shown in [5]. 

As far as we know, the nearest research to our work is [14]. 

The main difference is that their research plans for each 

bytecode a fixed-size block of instructions. In such a case, 

bytecodes with short instruction implementation will incur a lot 

of NOP instructions, which increases the code size of the 

interpreter dispatch loop and reduce cache hit ratio. In addition, 

bytecodes with long instruction implementation will lead to lots 

of extra jump instructions. Relatively speaking, our mechanism 

is more flexible and efficient than that, with much less NOP 

instructions and no extra jump. 

VII. CONCLUSIONS 

In this paper, the performance research on CPython’s 
interpreter is carried out, figuring out that bytecode dispatching 

has a big influence on interpreters. Then, a novel bytecode 

dispatching mechanism is designed, aiming at removing 

memory reading operations during bytecode dispatching and 
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reducing the time spent on this phase to a minimum. The final 

binary code of each kind of bytecodes is arranged in numerical 

order and each of them occupies several BSIZE memory 

spaces.  

This novel mechanism is implemented, and its correctness 

and efficiency are demonstrated by a large number of 

benchmarks. Comparisons are made between original CPython 

and optimized CPython to show that the new mechanism 

achieves about 8.5 percent performance improvement on 

average. For some particular benchmarks, the maximum 

improvement is up to 18 percentages. This performance 

improvement happens for two main reasons: lesser memory 

reading operations and lesser cache misses. The novel 

mechanism proposed here can also be adopted by other 

interpreters, and will contribute to their performance 

improvement. 

REFERENCES 

[1] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney, “A survey 
of adaptive optimization in virtual machines,” Proc. of IEEE, vol. 93, no. 

2, pp. 449-466, Feb., 2005. http://dx.doi.org/10.1109/jproc.2004.840305 

[2] D. E. Knuth, “An empirical study of FORTRAN programs,” Softw.: 

Practice and experience, vol. 1, no. 2, pp. 105-133, Jun., 1971. 

http://dx.doi.org/10.1002/spe.4380010203 

[3] M. A. Ertl, and D. Gregg, “The structure and performance of efficient 

interpreters,” JILP, vol. 5, pp. 1-25, Mar., 2003. 

[4] I. Piumarta, and F. Riccardi, “Optimizing direct threaded code by 
selective inlining,” ACM Sigplan Not., vol. 33, no. 5, pp. 291-300, May, 

1998. http://dx.doi.org/10.1145/277652.277743 

[5] M. A. Ertl, and D. Gregg, “Optimizing indirect branch prediction 
accuracy in virtual machine interpreters,” ACM Sigplan Not., vol. 38, no. 

5, pp. 278-288, May, 2003. http://dx.doi.org/10.1145/780822.781162 

[6] E. Gagnon, and L. Hendren, "Effective inline-threaded interpretation of 

Java bytecode using preparation sequences," in Compiler Construction, G. 

Goos, J. Hartmanis and J. v. Leeuwen, Ed., Heidelberg, DE: Springer, 

2003, pp.170-184. http://dx.doi.org/10.1007/3-540-36579-6_13 

[7] G. T. Sullivan, D. L. Bruening, I. Baron, T. Garnett, and S. Amarasinghe, 

"Dynamic native optimization of interpreters," in Proc. 2003 workshop 

on Interpreters, virtual machines and emulators, New York, 2003, pp. 

50-57. http://dx.doi.org/10.1145/858570.858576 

[8] R. W. Bill, Jython for Java programmers, 1st. ed., USA: SAMS, 2001. 

ISBN 978-0735711112. http://file182.cordpdf.org/1juv4l_jython-for- 

java-programmers.pdf 

[9] J. Hugunin, "IronPython: A fast Python implementation for .NET and 

Mono," in PyCon., Washington, USA, 2004. 

[10] M. L. Hetland, "Pedal to the Metal: Accelerating Python," in Python 

Algorithms, Trondheim, NO: Springer, 2014, pp.255-258. 

http://dx.doi.org/10.1007/978-1-4842-0055-1_12 

[11] Pypy. (2006). PyPy is a fast, compliant alternative implementation of the 

Python language. [Online]. Available: http://pypy.org/. 

[12] Forth-language for interactive computing. (1970). an technical report on 

Forth. [Online]. Available: http://mx1.1strecon.org/downloads/ 

Forth_Resources/CM_ForthLanguageInteractiveComputing_1970.pdf. 

[13] J. L. Hennessy, and D. A. Patterson, Computer architecture: a 

quantitative approach, Waltham, GB: Elsevier, 2012. ISBN 

978-0-12-383872-8. http://www.cpp.edu/~kding/materials/Computer% 

20Architecture%20A%20Quantitative%20Approach%20(5th%20edition

).pdf 

[14] Y. Ye, C.-Q. Li, and J.-S. Hu, “Transplantation and Optimization of 
Dalvik Virtual Machine Based on CK610,” Comput. Eng., vol. 16, pp. 

100, 2011. doi:10.3969/j.issn.1000-3428.2011.16.098 

[15] A. Melo, "The new linux' perf' tools," in 17th Int. Linux Sys. Tech. Conf., 

Nuremberg, GE, 2010. 

[16] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman, W. A. Wong, J.-L. Baer, 

B. N. Bershad, and H. M. Levy, “The structure and performance of 
interpreters,” ACM Sigplan Not., vol. 31, no. 9, pp. 150-159, 1996. 

http://dx.doi.org/10.1145/248209.237175 

[17] J. Hoogerbrugge, and L. Augusteijn, "Pipelined Java Virtual Machine 

Interpreters," in Compiler Construction, Vol. 1781, D. A. Watt, Ed., 

Heidelberg, GE: Springer, 2000, pp.35-49. http://dx.doi.org/10.1007/ 

3-540-46423-9_3 

[18] J. Hoogerbrugge, L. Augusteijn, J. Trum, and R. v. d. Wiel, “A code 
compression system based on pipelined interpreters,” Softw.: Practice 

and Experience, vol. 29, no. 11, pp. 1005-23, 1999. 

http://dx.doi.org/10.1002/(sici)1097-024x(199909)29:11<1005::aid-spe2

70>3.0.co;2-f 

[19] M. Berndl, B. Vitale, M. Zaleski, and A. D. Brown, "Context threading: A 

flexible and efficient dispatch technique for virtual machine interpreters," 

in Proc. Int. Symp. Code Gen. Optim., Washington, USA, 2005, pp. 15-26. 

http://dx.doi.org/10.1109/cgo.2005.14 

[20] Ristov, and Sasko,  "Performance impact of reconfigurable L1 cache on 

GPU devices," Computer Science and Information Systems (FedCSIS), 

2013 Federated Conference on, Kraków, Poland, IEEE, 2013, pp. 

507-510. 

[21] S. Brunthaler, "Interpreter instruction scheduling," in Compiler 

Construction, J. Knoop, Ed., Heidelberg, GE: Springer, 2011, pp.164-178. 

http://dx.doi.org/10.1007/978-3-642-19861-8_10 

[22] P. Zhao, and J. e. N. Amaral, "Feedback-directed switch-case statement 

optimization," in Proc. 2005 Int. Conf. Parallel Process. Workshops, 

Oslo, NO, 2005, pp. 295-302. http://dx.doi.org/10.1109/icppw.2005.32 

[23] K. Pettis, and R. C. Hansen, “Profile guided code positioning,” ACM 

Sigplan Not., vol. 25, no. 6, pp. 16-27, 1990. http://dx.doi.org/10.1145 

/93548.93550 

[24] D. Gregg, and J. Mccandless, "Optimizing interpreters by tuning opcode 

orderings on virtual machines for modern architectures," in Conf. Princip. 

Prac. Program. Java, Kongens Lyngby, DK, 2011, pp. 161-170. 

http://dx.doi.org/10.1145/2093157.2093183 

[25] Optimizations for a java interpreter using instruction set enhancement. 

(2005). Optimizations for a java interpreter using instruction set 

enhancement. [Online]. Available: https://www.scss.tcd.ie/publications 

/tech-reports/reports.05/TCD-CS-2005-61.pdf.  

 

 

HUAXIONG CAO, NAIJIE GU, KAIXIN REN, YI LI: PERFORMANCE RESEARCH 441


